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Abstract

The spontaneous capillary-driven filling of microchannels is important for a wide range of
applications. These channels are often rectangular in cross-section, can be closed or open, and
horizontal or vertically orientatl In this work, we develop the theory for capillary imbibition and

rise in channels of rectangular cross-section, taking into account rigidified and non-rigidified
boundary conditions for the liquid-air intecks and the effects of surface topogra@syuming

Wenzel or Cassie-Baxter states. We provide simple interpolation formulae for the viscous friction
associated with flow through rectangular cross-section channels as a function of aspect ratio. We
derive a dimensionless cross-over tinfg, below which the exact numerical solution can be
approximated by the Bousanquet solution and above which by the visco-gravitational solution. For
capillary rise heights significantly below the equilibrium height, this cross-over ting~is
(3X4/2)*® and has an associated dimensionless crossover rise XegidBX./2)"3, whereX=1/G is

the dimensionless equilibrium rise height @ds a dimensionless form of the acceleration due to
gravity. We also show from wetting considerations that for rectangular channels, finggrs of
wetting liquid can be expected to imbibe in advance of the main meniscus along the corners of the
channel wallsWe test the theoryia capillary rise experiments using polydimethylsiloxane oils of
viscosity96.0, 48.0, 19.2 and 4.8 mPavghin a range of closed square tubes and open rectangular
cross-section channels wigl-8 walls. We show that the capillary rise heights can be fitted using
the exact numerical solution and that these are similar to fits using the analytical visco-gravitational
solution. The viscous friction contributiomas found to be slightly higher than predicted by theory
assuming a non-rigidified liquid-air boundary, but far below that for a rigidified boundary, which
was recently reported for imbibition into horizontally mounted open microchannels. In these
experiments we also observed fingers of liquid spreading along the internal edges of the channels in
advance of the main body of liquid consistent with wetting expectations. We briefly discuss the

implications of these observations for the design of microfluidic systems.

Keywords. Lucas-Washburn, capillary rise, microfluidic channel.



1. Introduction

The capillary-driven imbibition of liquids into tubes, channels and porous media is
fundamental to a diverse range of applications, such as printing (Schoelkopf J et al., 2002), lab-on-
chip (Brody et al., 1996; Squires and Quake, 2005), porous media (e.g. Marmur and Cohen, 1997
Siebold, 200D and soil water repellency (Shirtcliffe et al, 2006). The fundamental principles
governing these types of problems are based on balancing the inertial forces, viscous forces,
hydrostatic pressure and the capillary forces. Effective use and control of capillary imbibition
requires an understanding of the different layers of subtlety that a problem may provide. Thus,
there are different time regimes from the very early stage inertia dominated stage, described by
Quéré (1997), to the late stage viscous regime of Lucas (1918) and Washburn (1921); the transition
between these regimésr capillary rise is discussed by Fries and Dreyer (2008a). For horizontally
mounted channels where gravity can be neglected and these regimes are described by the exact
analytical Bousanquet solution (Bousanquet, 1923), whose form is valid whether the channel is
closed or open (e.g. Bouaidet et al., 2005; Jokinen and Franssila, 2008); the Lucas-Washburn
solution is the long time limit of the Bousanquet solution. We define a closed-channel as one
whereby all walls are solid and an open-channel as one with a liquid-air interfacesffedtiee
wall. Due to its importance in microfluidics, capillary imbibition has previously been considered
for a wide range of cross-sectional shape channels, such as circular (e.g. Strage et al.,, 2003),
rectangular (e.g. Ichikawa et al., 2004; Jong et al., 2007; Zhu and Feikoan, 2010) and
grooved/triangular (Yost and Holm, 1995; Romero and Yost, 2006; Baret et al., 2007). Moreover,
the same approach has been taken for channels defined by hydrophilic paths on a hydrophobic
substrate (Darhuber et al., 2001) and by the space between two parallel plates (Rosendahl et al.,
2004) under the assumption of flow with low Reynolds number and liquid imbibing in a tube/slab-
like manner. When channels are mounted vertically gravity becomes important and exact analytical
solutions for capillary imbibition are no longer possible in general. Howawsco-gravitational
solution for time as a function of meniscus position does exist for the equivalent of the Lucas-
Washburn regime (e.g. Krotov and Rusanov, 1999; Hamraoui et al. 2000, Hamraoui and Nylander,
2002), including for liquid-liquid systems (Mumley et al, 1986). In these problems, the role of the
shape and wetting state of the walls @itcal.

Advances in lithographic fabrication techniques are increasing the range of studies in which
capillary aspects of imbibition and rise are critical. These advances are leading to studies with
microfluidic (e.g. Yang et al, 2011) and nanofluidic capillaries widths of a few tens of nm (Han et
al., 2006) or with depths as small as 6 nm (Oh et al, 2009). Whilst non-constant channel cross
sections have been a focus of study experimentally and theoretically (Legait, 1983; Staples and
Shaffer, 2002, Reysatt et al, 2008; Liou et al, 2009), increased solid-liquid contact area, and hence
increased capillary pull can be achieved using a range of in-channel structures. In a series of
studies, Bico and co-workers studied imbibition using hemi-wicking, which amplifies the capillary
pull using wall roughness (Bico 2000, Bico et al., 2002; Bico and Quéré, 2003; Ishino et gl, 2007)
ideas recently applied to rough §&Sm/Cu intermetallic surfaces (Liu et al, 2011). Their work used
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average parameters to characterize the capillary effect of roughness and topographic structures.
This has been complemented by modelling studies by Kusumaatmaja et al. (2008) and Mognetti
and Yeomans (2009) focused on feature shape and channel filling patterns, finite element
modelling and experiments incorporating both capillary and viscous effects of flow through
micropost (Srivastava et al., 2QEyon and Kim 2011), and experimental studies using, e.g. stars,
octagons and squares (Chen et al., 2009).

In hemi-wicking, the simplest viewpoint remains a capillary-driven penetration with a
leading edge meniscus advancing in a tube/slab-like manner. However, the actual solid-liquid-
vapor interface at the leading meniscus can be far more complicated as is known for capillary rise
in square cross-section tubes, where the rise of a central meniscus is preceded by liquid fingers
rising up the four internal edges. This reduces the equilibrium meniscus height by a factor of (2+
7?)/4 (Dong and Chatzis, 1995; Bico and Quéré, 2002). These effects are due to the wetting
effects in corners and edges (Concus and Finn, 1969; Ransohoff and RadkeRah®88nd
Weislogel, 2009, Girardo et al., 2009, 2012; Weislogel at al., 2011). Most recently, Ponomarenko
et al. (2011) have studied the capillary rise of wetting liquids in the corners of different geometries
and shown that in the viscous dominated regime the meniscus of these fingers rises without limit
following a universal tim&®law, in contrast to the Lucas-Washburn tiffilaw which eventually
saturates at an equilibrium height. These geometry induced wetting effects can be expected to
impact both on capillary rise and imbibition in microfluidic channels with non-circular cross-
sections. There is therefore a need to study capillary-driven imbibition and rise within rectangular
cross-section channels and with open and closed boundaries.

In this paper, we first provide in section 2.1 an overview of the theoretical basis of capillary
driven rise and imbibition. We do so in a form that brings out the coherence of the equations and
their sdutions for different channel shapes in different orientations. We develop simple
interpolation formulae for the viscous friction associated with open and closed rectangular channels
of different aspect ratio. We show how within this formulation different contact angles on the
various channel walls can be incorporated using surface free energy changes, including
considerations of surface roughness or topography as required for hemi-wicking. Subsequently, in
section 2.2 we compare the exact numerical solution for capillary-driven imbibition to the various
analytical solutions of the approximate equations with and without gravity. We obtain a condition
for the cross-over time and rise height below which the Bousanquet solution is the best
approximation and above which the visco-gravitational solution is a more accurate description. In
section 2.3, w discuss the sensitivity of imbibition for open rectangular channels to the value of
contact angle and the limitations of this approach when corner filling along edges between walls
due to wetting is taken into account.

In sections 3 and 4 we present experiments on the capillary rise of polydimethylsiloxane
(PDMS) oils in closed square tubes of glass and in open rectangular channels of SU-8. We observe
that capillary rise in rectangular channels using PDMS oils involves a rising central meniscus, but
with thin fingers spreading in advance of this main rise along the inside corner edges qualitatively
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consistent with the type of behaviour described in Ponomarenko et al. (2011). The extent of
advance of the fingers is sufficient to completely exit our channé¥ find that fits to the
numerical solution of the exact differential equation describing capillary rise, neglecting the
fingers, up to the point where the fingers reach the ends of the channels can describe the rise of the
central meniscus of the liquid in both of these cases. We also find that the friction in the open-
channel case is consistent with a non-rigidified liquid-air interface rather than for a rigidified
boundary as recently reported for imbibition into horizontally mounted open microchannels (Yang
et al., 2011).

2. Theoretical approach

2.1 Model formulation

In this section we review the standard analytical approach to describing capillary driven imbibition

to provide a common notation and clarity on the assumptions used, particularly with regards the
wetting of the surfaces. Our aim is to consider the structure of the equations for uniform cross-
section open and closed channels, but independent of precise geometry.

2.1.1 Momentum and gravity terms

We consider a tubér “slab”) of liquid of densityp, constant cross-sectional arkaand
lengthx(t) advancing along a channel displacing a gas phase. The rate of change of momentum is
then,

d( dx d2x dx\
PA E(XEJZPA;XFJFPAD(EJ 1)

wheret is time. The force driving the imbibition (or rise) is the capillary one and tiessting the
imbibition are gravity and viscous forces. For a vertically mounted channel the gravitational force
IS,

fgravz_w Sin¢ A\:X (2)

whereg=9.81 m ¥ is the acceleration due to gravity apds the angle of orientation of the channel
to the horizontal.

2.1.2 Capillary terms

The capillary terms arise from the interchange or creation of solid-vapor, solid-liquid and
liquid-vapor interfaces as the front of the tube of liquid advances. In this simplified model the
profile of the solid-liquid-vapor interface is assumed to remain the same as a small advance
forward, Ax, occurs. The surface free energy chafgeas the liquid advances is then caused by
changes in the various interfacial areas (Fig. 1),



AF = AX z I—iSV_)SL(7iSL - 7isv>+ Z LiLV Vv 3)
i i

where they's, andy'sy are the interfacial energies per unit area relating td"telid wall element,
7Lv is the surface tension of the liquid®' ™" is the perimeter length of th solid wall element on
which contact with vapour is replaced by contact with the liquid,Lar{ds the perimeter length of
any liquid-vapor interface createflince the Young’s law contact angle is cos@'=(y 'sv-7's)/ 7Lv
and the capillary forcés,p, is (AF/AX) in the limit of Ax—0, we obtain,

foap=r1v | D, LV 7% cosdl+ > LY 005(1800) (4)
i i

where cos(18)= -1 has been used to show the similarity in the terms when the interface between a
liquid and vapour is regarded as a perfectly hydrophobic surface.

channel

liquid vapor

-
e~ .
---------
......

Figure 1. Surface free energy changes as a tube/slab of liquid penetrates into a
channel resulting in new solid-liquid and liquid-vapor interfaces.

Figure 2 shows three specific channel geometries: a) circular cross-section tube d®radius
b) closed and c) open rectangular channel of widiind depttH. In each case, it is assumed that

the solid surfacesam have different surface chemistries (i.e. contact angles). In the simplest case of
a tube, only the first term contributes and the perimeter lengttRis@ that eq. (4) becomes,

fct;t;;e = 27Ry, COSH, 5)
In the case of the closed and open rectangular channels, eq. (4) becomes,
fias = yLVW[cosHeB +cosd,] + g(cos@eL +Cosoy )] (6)

wheree=H/W and (B, T, L, R) label the contact angles for the bottom, top and left and right hand
side surfaces; for the open chanéigE180 is used in eq. (6).
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Figure 2. Solid-liquid and liquid-vapor interfaces associated with, a) circular eoen tube, b) closed

rectangular channel, and c) open rectangular channel.

Other shaped channels, such as a tube of elliptical cross-section and V-shaped grooves or
triangular channels, can be assessed in the same manner from eq. (4). For example, an open ol
closed V-shaped channel of widthand deptiH gives,

foroove yLVW[cos@eT + % V1+4e? (cos49eL +cosOt )} 7

where6'.=180 gives the open groove result. For the case of flow between two parallel plates with
open sides along a path defined by a hydrophilic stripe on the plates, eq. (8)"witl8¢ and
0"=180C can be used.

2.1.3 Capillary terms and surface roughness

A slightly more complex situation is when one or more of the surfaces are rough or
topographically structured at the small scale. In the Wenzel case the liquid fully penetrates into the
surface features whereas in the Cassie-Baxter state the liquid bridges between surface features
(Quéré, 2008; Shirtcliffe et al., 2010). When the contact angle is well befyw@tace roughness
can drive enhanced spreading (e.g. McHale et al., 2004). Using the surface free energy argument,
eq. (4) becomes,



feap=r1v | 2,7 cosy + D LY 005(18(? ) (8)
i i

where the Young’s law contact angle, ', is replaced by the Wenzel or Cassie-Baxter contact
angle,0'r with 8'1=60'\y or 8'1= 0'cg, andL;%V" is the planar projection of the perimeter length of
thei™ solid wall element across which the liquid advances. The Wenzel and Cassie-Baxter contact
angles are defined by,

C0sf,, = r, CoSsH, 9)
and

COSOcg = @5 COSO, — (1_ ¢s) (10)

wherersis the roughness at the contact line apgdis the solid surface fraction. More generally, a
mixed partially penetrating state may exist atg then takes on the appropriate value taking into
account both surface roughness and solid surface fraction (Shirtcliffe at al., 2010). Thus(#®q. (5)-
attempt to take into account the effect of roughness or topography on the capillary drive for
imbibition simply by the replacement of the contact angle by the appropriate Wenzel, Cassie-Baxter
or mixed state one involving both the surface chemistry and surface structure. This approach based
on minimizing surface free energy changes does not take into account contact line pinning and
hysteresis.

2.1.4 \Viscous terms and interpolation formulae

The viscous force for flow down a tube or a channel can be deduced from the flow velocity
profile assuming incompressible, Newtonian liquid with a laminar flow, and solving the continuity
and Navier-Stokes equations. For the closed rectangular channel geometrgtBabd¥996) give
the general approach and solution for the flow (see also Ichikawa et al., 2004). The non-zero
component of the equations relates the flow veloaify,z), in the x-direction to the pressure
gradient,

2 2
5_‘21+5_‘;=1(%J (11)
oy o0z mnldx

where 7 is the viscosity an@(x) is the pressure profile which only depends upomhis equation

can be solved for a channel of arbitrary aspect ead/W using a Fourier series approach to obtain

a general solution fax(y,z) to which non-slip boundary conditions can then be applied for the upper
and lower channel surfaces. To work out the viscous force we first evaluate the depth and width
averaged value of the flow velocity of the closed chanfigh,



Have = ( j{ 4]2‘ 2 +1)* { ((ZIigl)ﬂjtan(%ﬂ (12)

This allows us to write the pressure gradient in terms of the average flow velocity so that the flow
profile is,

u(y, 2) {;?Eve Ji A1) { ngi(%ygv)}cos(al zjw)  (13)

and we have defined an aspect ratio functigfz), as

¢ (2+)x
&

£ ()= [ 9_32 11)4 {1_ 2tanr(calc /2)} ”

Ve (2I + a

The viscous force on the top, bottom and two walls of the rectangular channel is then,

W/2 H/2
fvc,sc2xr7[ j (au(y,z)j dy+ j (—a“(y’ Z)j dz] (15)
-W/2 oz z=H /2 /2 oy y=W /2

—H

which gives,
£ = - TP e (16)
& o(e)

This form makes obvious the relationship between flow in a closed rectangular channel of arbitrary
aspect ratio and the one-dimensional result because in the limit of a shallow and infinitely wide
channel, i.eW—o, the aspect ratio functiofi(e)—1.

Repeating the previous approach for an open channel gives,

Have = (%Wji 2 +1)* {taryz(l(ilsgﬂg)_l} (17

nrx |o

which allows the pressure gradient to be written in terms of the average flow velocity so that the
flow profile is,



u(y, z):—[ 125 Ji [cosr(al z/H) tanha°smh(a| z/H) 1]cos(a| y/H)

3.2
72'84/0 I=O

(18)

wherea,” = (2I +1)7z5 and we have defined an aspect ratio functigf), as

[;0(8):[ 342]51 11)4 {1_ tanr:alo} )

" i (2I + a

The viscous force on the bottom (but not top) and two walls of the rectangular channel is then,

o _ w2 au(y,z) 8u Y, Z )
fie = n{ VJIZ[ .~ jz_ody+2j( o jyzw,zdz (20)

which gives,
fv?sc == 377xuave (21)
& o(e)

In a similar manner to the closed rectangular channel result, eq. (16), this form makes obvious the
relationship between flow in an open rectangular channel of arbitrary aspect ratio and the one-
dimensional result because in the limit of a shallow and infinitely wide channély-»eo, the

aspect ratio functiordy(¢)—1. It should be noted that alternative, but equivalent Fourier series
solutions for the flow in an open rectangular exist, such as that in Baret et al. (2007) and Yang et al.
(2011).

Whilst eq. (14) and eq. (19) are exact, it is useful for fittmgxperimental data to have
simple interpolation formulae. For channels with aspectgatidhe ranges=0.0 to 2.0, we find
suitable interpolations with limits of unity as—>0 are given by,

- 1(g) ~1+ 0.362374 +1.02098@:> (22)
and
g“o‘l(g) ~1+0.671004 + 4.16971%?> (23)

Figure 3 shows the exact summations given by eq. (14) and eg. (19) and the interpolations from eq.
(22) and eq. (23). Below aspect ratios of 0.60, the agreement is good to around 3% or better and
above this aspect ratio up £52.0 is better than 1% (as shown in the inset of fig 3). A similar
approach could also be adopted for flow in other shapes of channels, such as triangular grooves
(Ayyaswamy et al, 1974).
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Figure 3.Geometric factors in the viscous force for flow in open andeclos
rectangular channels with aspect ratidH/W between 0 and 2.0. The symbols are
the exact results and the solid lines are the interpolation formulae. The inset shows
the corresponding % error between the two.

For completeness, we note the standard expression for viscous force for flow in a circular
cross-section tube,

fise” = —8nmXUgue (24)

visc

2.1.5 Defining equation and its assumptions

The equation describing capillary-driven imbibition is given by combieigg (1), (2) and
(8) with ecs. (16), (21) or (24) as appropriate for the channel or tube and asayggiuy/dt can be
used,

1d(dx? . dx
——| — |=b—-gsingx—aXy — 25
2dt[ dtJ 9= {dtj (3)

In this equation, the viscous coefficienhas dimensions of inverse tirt&") and is defined for the
tube, closed rectangular channel and open rectangular claannel

8n/ pR?
a=1127/pH?¢ (¢) (26)
3n/pH ¢, (¢)
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and the capillary coefficient tertn has dimensions of speein’s?) and is defined in these three
cases as,

2y, coso, [ pR
b= M{Z LSt cosdy — > LY } =17 [cos@eB +cosf, + a;(cosé?eL +cosff )]/pH
PR 7.y |c0sOS +cosh. + g(cos@eL +cosf) )]/pH
(27)
For closed channels with smooth surfaces and the same contact angle on all shyfaces
b=2y,, cosb,(1+ &)/ pH . For open rectangular channels, the free surface vapor boundary acts as a

perfect hydrophobic surface (i.8.'=180), and if all other contact angles are the same,
b=y, [cosd, (1+25)-1]/pH . The capillary coefficien (eq. (27) can thus be written for the three
cases as:
27 LV COSQG/ PR
b=1 2y, cosb,(1+¢&)/ pH (28)
7w [c0sd, (1+2¢) - 1]/ pH

Equation (25) is well-known in the theory of capillary driven imbibition, but is written here
in a form that emphasizes the similarities between circular cross-section tubes, closed and open
rectangular channels of arbitrary aspect ratio. Moreover, it allows the key assumptions to be easily
identified and their influence on the structure of eq. (25) to be assessed. For example, using the open
form for viscous dissipation in an open rectangular channel assumes that momentum can be
transferred across the liquid-vapor interface as liquid flows up the tube of liquid to extend itself.
However, as indicated by Yarg al. (2011) in their study on the capillary flow in horizontally
oriented shallow open rectangular channéls10 um andwW=15, 25, 50 and 7pm) a rigidified
liquid-vapor interface can occur due to contaminants or surfactants on the liquid-vapor interface.
Their fitting therefore used the viscous paramatéom eq. (26) for a closed rectangular channel
with the capillaryb parameter from eq. (27) for an open rectangular channel.

The assumptions in the approach in sections 2.1.2 and 2.1.3 taken to derive the capillary
terms is that they include a quasi-equilibrium advancing state and this le@i@sYioung’s law
equilibrium contact angleg.. Many authors have questioned this and replaced the contact angle by
either the advancing contact angle or the velocity dependent dynamic contacHaffgien’s
formula (Siebold et al., 2000; Chebbi, 2007) or molecular-kinetic theory (Hamraoui et al, 2000;
Hamraoui and Nylander, 2002; Blake and de Coninck, 2004) or have considered a range of possible
dynamic contact angle relationships (e.g. Popescu et al., 2008). It is also possible that a quasi-
equilibrium meniscus shape may be achieved, but only after an initial capillary penetration. Even
after the initial penetration, a further assumption is that the profile of the liquid meniscus advances
in a tube/slab-like manner without change and this we examine further in section 2.3 using wetting
concepts commonly used for corner filling problems. Possibly one of the most limiting aspects in
complex shape channels is that a given wetting state, such as a Cassie-Baxter, Wenzel or mixed
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state arising from minimum surface free energy change considerations, is not &npxiari.
Moreover, the extent of hysteresis and asymmetric imbibition properties can be linked to complex
topographies (e.g. Kusumaatmaja et al., 2008). Thus for capillary filling in channels of complex
shapes alternatives to a purely analytical (with numerical solution) approach that have been
considered include the Lattice Boltzmann approach (e.g. Kusumaatmaja et al., 2008; Clime et al.,
2012), numerical simulation using diffuse interface modelg. Mehrabian et al., 2011), smoothed
particle hydrodynamics (e.g. Tartakovsky & Meaking, 2005) and molecular-dynamics (e.g. Ahadian
et al., 2009; Stukan et al., 2010).

2.2 Exact and approximate solutions

Equation (25) predicts that experiments on capillary-driven imbibition/rise into charinels o
different cross-sectional shapes and with open and closed surfaces will show the same type of
behaviour, but each will have its own length and timescales determined by the appropriate form of
the two parametera andb. Whilst it cannot be solved exactly, approximate solutions can be
obtained for the different characteristic length and time scales. Fries and Dreyer (2009) discuss a
systematic approach to obtaining dimensionless scaling for the case of a cylindrical tube and porous
media using the Buckingham theorem.

2.2.1 Bousanquet solution for a horizontal capitlar
To obtain a dimensionless form of eq. (25) we scale the position and time coordinates as
T=atandX=ax(2b)?,

d?x? . dx?
=1-Gsinp X — 29
[ dT? j ¢ ( dT J (29)

where we have defined a dimensionless con§agt2/b)%/a. Using eq. (26) and eq. (28) the tube,
closed and open channel cases are,

92p°R°
64,°y,, COS0,

\/ 9°p°H ¢ ()

1447°(1+ £ )y, cOSb, (30)

29°p°H ()
97727/Lv [(1+ 25)003‘9(9 - 1]

The dimensionless form given in eq. (29) corresponds to the Fries and Dreyer (2009) case 3 where
the basic parameter is gravity and the scaling parameters are inertia and viscosity. Our definitions of
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X andT are not identical to their scaled variables in the case of a tube, but our controlling parameter
G is simply related to their2 by G=2"%(2. WhenGsing—0 so that the capillary is horizontally
oriented, the solution to eq. (29) is the Bousanquet solution (1923),

X3(T)=T -[1-exp(-T)] (31)

At long timescales whefi>>1 (i.e.t>>1/a), eq. (31) giveX(T)~T"? or x(t)=(2b/a)t*?, which is

the Lucas-Washburn solution when the viscous term dominates; effectively the first tsgr(2B)

can be ignored. At short timescales wiex1 (i.e.t<<1/a), eq. (31) giveX(T)~T/V2 orx(t)=b*4,
which is the inertial solution of Quéré (1997) with a linear imbibition with time; effectively the last
term in eq. (2Pcan be ignored.

In fitting experimental data for imbibition into horizontal channels, the full Bousanquet
solution (eq. (31)) can be used provided data is captured across both the long and short timescales as
determined by H. If data for only short or only long timescales is captured then either the Quéré
(Inertial) or Lucas-Washburn (Viscous) solutions should be used.

2.2.2 \Viscous solution for a vertical capillary
WhenT>>1 and the inertial term can be ignored, but gravity cannot be neglected,)eq. (29
becomes,

. dx?
0=1-Gsing X — 32
® (dTJ (32)

As shown by Washburn (1921), and discussed by Fries and Deyer (2008b) (see also Mumley et al.,
1986 and Krotov and Rusanov, 1999), this has an analytical solution, but for time as function of
position rather than for position as a function of time. By rearranging eq. (32) to,

2X (d_xj _1 (33)
1-Gsing X \ dT

an exact integration can be performed to get the visco-gravitational solution,

T=— "2 _[GsingX +logl—Gsing X )] (34)
(G Slnq))

whereX=0 atT=0 has been assumed. WhesinpX—0, the log(1&singX) can be expanded and
this givesT~X?, which is the Lucas-Washburn solution. @sinpX—1, the logarithm diverges so
thatT—oo0 and so at equilibrium the capillary rise heighXis1/(Gsing), i.e.xs=b/(gsing). Fries and
Dreyer (2008b discuss the problems of inverting eq. (34) and also provide an analytic solution in

14



terms of the Lambek/(x) function defined byv=W(w)expW(x)). Eq. (34) can be rewritten in terms
of x andt as

t= ——éb iJrln(l—iJ (35)
(gsing)”  x, X

In fitting experimental data for imbibition into vertical channe{s=90") the viscous-
gravitational solution (eq. (34) or eq. (35)) can be used provided data is captured including both the
early Lucas-Washburn stagex? and the approach to equilibrium as determinec-by/g. The
fact eq. (35) is an analytical solution with time as a function of position, which cannot be easily
inverted, does not prevent fitting of experimental data since time can be fitted as a function of
measured position as easily as position as a function of measured time.

2.2.3 Inertial solution for a vertical capillary
WhenT>>1 and the viscous term can be ignored, but gravity cannot be neglected, eq. (29
becomes,

2 2
[ddez j:l—GsingoX (36)

There is no obvious closed form solution to eq. (36), but a perturbation solution can be constructed
for X as a power series i@sing (Quéré, 1997). Whessing=0 the zeroth order solution is
X,A(T)=T?/2. We then writeX(T)~X,+ GsingX; and substitute into eq. (36) and keep first order terms

in Gsing,

2
[d d(?;l)J - _% (37)

This has a solutio(T)=-T%12, which gives a gravity modified inertial solution of,

X(T)zL 1- \/EGSIH¢T (38)
V2 12
or in non-scaled quantities,
gsingt
x(t) ~ /bt 1— 39
(t) ( ol j (39)

Equation (38) can also be inverted to give,
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T(X)~ ﬁx[u GSJ%XJ (40)

2.2.4 Cross-over between Bousanquet and visco-@gi@omal solutions

Equation (29) can be solved numerically for any valueGsing using the inertial
approximation for the initial boundary conditioi$0)=0 and (&2dT)=c=0. Figure 4 shows the
behavior ofX(T) as a fraction of the equilibrium heigix,, for G=0.1 andg=90" together with the,
Bousanquet, Lucas-Washburn and inertial approximations. Perhaps surprisingly even at capillary
rise heights up to 20% of the equilibrium height both the Lucas-Washburn and the viscous-
gravitational approximations show substantial differences from the exact solution. Moreover, this is
not significantly improved using the first order gravitational correction to the inertial approximation.
Numerically the initial rise height is best described by the Bousanquet solution (eq. (31)) until it
crosses over with the visco-gravitational solution (eq. (34)) at aroukéX()=(6.5,0.22). Above
this cross-over the visco-gravitational solution ever more closely agrees with the exact numerical
solution as the rise height tends to its equilibrium value; however, it always lies above the exact
numerical solution. Since the curve exponentially approaches equilibriurd-4g9/ (Xe ~exp(-
G*T/2), fitting experimental data taken in the long time limit using eq) (&uld force better
agreement by overestimatigy
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Figure 4. Comparison of approximate analytical solutions for Bousanqust (oo
visco-gravitational (+++), Lucas-WashburkA), inertial (#ee) and inertial with
gravity correction (- - -) to the exact numerical solution (solid line}5fe0.1 and
@=90°. The capillary rise heighX is shown as a fraction of the equilibrium rise
height,X.. The inset shows the long time behaviour for the exact solution and the
Bousanquet solution. On this scale the visco-inertial cannot be distinguished from
the exact solution and the Lucas-Washburn approximation cannot be

distinguished from the Bousanquet solution on the longer time scale.
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The derivative d/dT can be calculated for each of eq. (31) and eq. (34) and this shows that
in the Bousanquet case the initial slopex¢F) is 1N2 whereas in the visco-gravitational case the
initial slope tends to infinity as X2 Since in both cases the slopes are positive at all poFitwel
in the visco-gravitational case—»>X.=1/(Gsing) whereas in the Bousanquet c&sex, there is one
and only one cross-over poirfi;.(X.).at which the two curves meet. The cross-over tifgecan be
calculated numerically as a function®$ing by equating the Bousanquet solution (eq. (31)) to the
visco-gravitational solution (eq. (34)or a vertical channel with=9@ this is shown in fig. 5 (0oo
symbols and left hangraxis) as a function o6=1/X.. A numerical interpolation of this function
accurate to 3% in T, over the rang&=1x10" to 1.0 is given by a 2/ power law,

T.(G)~ gsngl: 1.341x 23 (41)

The validity of the 2/8° power lawcanbe shown analytically for small although the pre-factor in
eq. (43 is found to be (3/2*=1.3104. Numerically, using 1.3104 is accurate%oid the range of

G up to 0.1, to 1% in the range Gfup to 0.01, and 5.8% in the range®tip to up to 1.32. A best

fit interpolation for the numerically calculated rise height at which the crossGyegcurs over the
range up taG=0.25 is given by 1.07026}° the exact numerical calculation is shown in fig. 5 by
the AAA symbols (right hang-axis) and the interpolation is the dotted line. An improved estimate
is given by using the interpolation f@g in the Bousanquet solution (e@1)) and this is shown as
the solid line passing through thaA symbols.

To derive the 2/8° power law forT. we expand the log term in the visco-gravitational
approximation (eg. (34)) td%order and regroup terms to get,

X2 N 3 213 w)
(T_X2)2/3 2Gsing

From the Bousanquet solution (eq. (31)), we then note that,

T _f:z 7o Th(:e))q =Tf(T) (43)

which defines a functiof(T). Combining eq. (42) and eq. (43) @t X)=(T.,X.) then gives,

. f(T )z 3 2/3 =[%j2/3 (44)
¢ | 2Gsing 2
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when the cross-over time is larf.)—1 and when it is smai(T.)—0.5T.”® so that the power law

changes from 2/3 to 1/2 d&s becomes small. Since lare corresponds to smasing (i.e. large
Xo) We obtain the numerically observed 2i8ower law with the pre-factor of (378 1.3104. This
also suggests that the fractional crossover rise height for Gsia will be,

e

1/3
X, [ 3 1.1447
Ze = 45
X (2X§J x 2" (49)

and this is shown in fig. 5 as the dashed line (referenced to the right hand side y-axis).
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Figure 5. Cross-over timeT,, at which the viscaaertial solution better
approximates the exact numerical solution than the Bousanquet solution (000
symbols and left hand y-axjshe solid line is the interpolatiofix1.3534X."*
optimized forG up to 0.25 withg=90" (left handy-axis). Capillary rise height
XJ/X. at the cross-over calculated numericalldAf symbols) and an
interpolation usingi~1.070256"* (dotted line). Using the interpolation @f in

the Bousanquet equation gives an improved estimab€, ¢olid line through

AAA symboly; the dashed line shows the analytical approximation

X~(312)3X 13,

The Bousanquet and visco-gravitational solutions can be combined to provide an overall
approximate solution by using the fomselution whenr<T, and the latter solution whérT, (i.e.
the solution predicting the lower capillary rig€T)). This provides a broad time range approximate
solution as shown in fig. 6 fa8=0.1. Figure 6 also illustrates the percentage error between the
exact solution and this approximate solution for a vertical capillary w80, which has a
maximum error of 6.7% af=6.3 whenX./X.=0.216. ForG=0.0283, corresponding to a cross-over
at X/X=0.1, the maximum error is 3.2% and f6=0.814, corresponding to a cross-over at
X/ Xe=0.7, maximum error is around 17%.
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Figure 6 The exact solution f@=0.1 andp=9¢ (solid curve and left hangtaxis)
and the approximation obtained using the lower value Xotaken from the
Bousanquet and the visco-gravitational solutioxesx (and left hand y-axis). The

percentage error using the approximation peaks @oo and right hang-axis).

2.3 Filling conditions and capillary fingers

According to the approach in section 2.2, for capillary-driven imbibition to commence it ha
to be energetically favourable for the liquid to enter the channel, i.e. the surface free energy chang
in eq. (3) must satisfF<0, or equivalently the capillary force in eq. (4) must safisf§ and theo
parameter in eq. (27) must be positive. Thus, for an open or closed rectangular channel,

cosh? +cosd, + g(coseeL + cos<9§)> 0 (46)

For a closed channel with smooth surfaces and the same contact angle on all surfaces this simply
means the contact angle must be less th&nHafwever, for an open rectangular chanfi&:180
and so the condition becomes,

cosd, >

47
1+ 2¢ (47)

as noted by previous authors. Therefore as the aspect ratio of a rectangular channel reduces
imbibition becomes increasingly difficult and lower contact angles corresponding to more wetting
liquids are required. For example, aspect ratiog=di0, 0.6, 0.3 and 0.2 require contact angles
below 78.5, 63.0° 51.3° and 44.4. Effectively the capillary pull required is principally from the

wall area which becomes relatively less as the width of channel increases.

From an experimental perspective the accuracy of quantitative estimates of the capillary
coefficientb parameter in both the inertial (Quéré) and viscous (Lucas-Washburn) regimes from the
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initial imbibition data become more difficult for open rectangular channels. In these cases data is
typically analyzed using plots of,f) and §t), respectively, and in these cases the sldpesil be
proportional tob? andb. Indeed, examining the exact Bousanquet solution for capillary-driven
imbibition, eq. (31), which describes horizontal channels over all tifieand approximately

vertical channels at timeB<T,, shows that the contact angle dependencé(i arises from an

overall factor proportional td. Thus, if we writex’(t)=bf(a,t) wheref(a;t) is a function not
involving the contact angle, a plot ®f(t) versusf(a,t) will have a slope ok=b. The sensitivity of

the slopek, to small changes in the contact angle can be evaluated as a fractional error in the slope
on these plots. For the case of closed and open channels with the same contact angle on each
surface, the error in the slope for the Lucas-Washburn and Bousanquét, plots

K ob tand,
‘k‘/ %= ‘b‘ / = {(25 +1)sind, /[(2¢ +1)cos6, 1] (48)

As shown by fig. 7, the error given by eq. 48 a percentage change in slope per degree is
large and changes rapidly for contact angles close to the transition to imbibition; a small uncertainty
in contact angle results in large changes in the slope and hence estimaftesnofexperimental
data. Experimentally, for open channels there is therefore an incentive to work with liquids that wet
the surfaces effectively and therefore have contact angles below that determined by the critical angle
for imbibition arising from the aspect ratio. However, this then leads to increasing risks that the
assumption that imbibition occurs in a tube like manner with a meniscus of constant profile will not
be accurate as discussed below.

10

open channels

&0.1

|l e(€)|/50

closed channel

0 15 30 45 60 75
Contact angle, 6,

Figure 7 The sensitivity of the fractional change in slope per degree in dtas-Lu
Washburn equation to small changes in contact angle for closed and open

rectangular channels; aspect ratiog=0.1, 0.25 and 0.5 are shown.
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Figure 8. Surface free energy changes as a tube/slab of liquid penetrates

into a channel resulting in new solid-liquid and liquid-vapor interfaces. a)
Two-dimensional corner viewpoint, and b) an edge viewed as a sequence of

two dimensional corners.

Rectangular and many other cross-sectional shape channels differ in their wetting properties
from flat and smoothly circular surfaces, precisely because two walls meet at an angle. This effect,
the corner filling condition, can be understood by a simple two-dimensional model. Consider two
walls joining at an angle®with a liquid initially partially filling the corner to a depth(fig. 89.

When the corner fills with liquid by an additional amouwutt, the surface free energy change is
given by,

- 2Ah .

AF = 2Ah{(7/sL—7SV) + 7y tana} = 22VW [sing —cosd,]  (49)
cosa cosa

where Young’s law has been used to replace the combination of interfacial tensions by cos&. Thus,

the change in surface free energy is zero or negative whenewgrsing, which gives,

(a+6,)<90° (50)

as the corner filling condition. In the case of a flat surfase€d®® and a surface wets when the
contact angle vanishes, and. in the case of parallel pizt€8,and the surface wets between the
plates whenevef.<9(. Thus, eq. (46), which is the condition for imbibition assuming a tube of
liquid advancing in a channel, must be considered alongside ¢g. (50

Whilst this was a two-dimensional argument, an edge can be viewed as a sequence of two-
dimensional corners (fig. 8b) and so the same condition, eq. (50), will apply. For example, for the
open rectangular channel the side walls meet the bottom surfacé st €@fat the corner filling
condition is8.<45°, whereas eq. (47) suggests imbibition will only occur for channel aspect ratios,

& larger than 0.207. Thus, fingers of liquid can imbibe into open channels at aspect ratios lower
than might otherwise be expected. Bico and Quéré (2002) have shown that corner filling leads in
square cross-section capillary tubes to fingers of liquid rising along the internal edges against
gravity in advance of the central meniscus, which itself rises to an equilibrium height which is a
factor (2+1'/%)/4 less than would be the case without the fingers. Moreover, Ponomarenko et al.
(2011) have recently used scaling arguments to show that in the viscous regime of capillary rise
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against gravity and independent of specifics of the geometry the fingers spread faster than the main
meniscus which follows a Lucas-Washburn law.

Thus, for good capillary-driven imbibition in open and closed rectangular channels with
reduced sensitivity to the precise value of contact angle, eq. (46) implies it is better to use low
contact angle liquids. However, doing so is likely to lead to increasingly stronger effects from liquid
fingers spreading along the edges between walls at lower contact angles and higher intrusion rates.
From the point of view of microfluidics and lab-on-a-chip, the consequences of this are potentially
serious with fingers of liquid spontaneously spreading in advance of the bulk liquid and potentially
causing contamination. An interesting question is whether the capillary-drive imbibition/rise in open
and closed rectangular channels of the main meniscus can still be accurately described by eq. (31
and(34). The experimental consideration of this is given in section 4.

3. Experimental methods

To test the theory on the influence of capillary shape experiments were conducted on the
capillary rise of polydimethylsiloxane (PDMS) oils in three cross-sectional geometries, circular
glass capillary tubes, square glass capillary tubes, and SU8 open rectangular cross section channels
The liquid-air interface in open-channels is essentially completely hydrophobic/oleophobic and so a
strongly wetting liquid, such as PD®Awith its low equilibrium contact angleg£0) is needed to
ensure complete wetting. This choice also eliminates any sensitivity to the precise v@lderof
liquid penetration into open channels discussed in section 2.3. For each geometry, four PDMS oils
(Dow Corning Xiameter PMX-200) of viscositieg=96.0, 48.0, 19.2 and 4.8 mPa s (¥5%) and
corresponding densities of 960, 950, 930 and 913 Rgvetre investigated. The surface tension of
theseoils is constant at 19.8 mN'The details of the tubes/channels used are given in table 1.

Table 1. Physical dimensions of channels and experimental parameters.

Channel Size (pum) Aspect ratio
(e = HI'W)
Circular glass tube R = 650 -
Glass square tube H x W= 600 x 600 1
H x W =400 x 400 1
SUS open rectangular H x W= 135" x 600° 0.225
channels Hx W=135x 400° 0338
* 45 um
b 45 1m

The open SU8 channelgere fabricated on glass slides using photolithography. After a slide
was cleaned, a 20 um thick SU8 base layer (SU8-10 MicroCham$pin coated, pre-baked (65°C
for 2 min then at 95°C for 2 min), UV exposed through a mask, and then post-baked at 65°C for 30
min. A second SUS8 layer (SU8-50 MicroChem), of a nominal thickness ofuh3%vas then spin
coated, pre-baked, UV exposed and then post-baked (65 °C for 30 min then at 95° C for 30 min) to
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form the side walls of the channels; this ensured that all three faces of the channels were constructed
of SU8. The photoresistas then developetb leave open rectangular channels. The depths of the
channels were measured with a stylus profilometer. Variability in the depths of the chaamnels
observed between samples. The data presented in this report are for channels with depths in the
range 130-14@m, and for each channel the measured depth value is used when comparing the data
with theory. Commercially available square glass capillary tubes of sidgg@dd 60Qum were

also used in the experiments together with a B0 radius circular glass capillary tube for
calibration and comparison. SEM characterisations found the internal wall surfaces of the circular
and square glass capillaries to be smooth and free from striations.

Each tube/channel was cleaned in isopropylalcohol (IPA) and dried &€ T00one hour
prior to measurementsA small amount of blue dye was used to increase contrast; control
experiments without the dye did not show any differences in the dynamics of capillary rise. The
samplewas mounted vertically next to a rectangular grid which provided a length calibration.
PDMS oil from a large reservoivas brought up ito contact with the tube/channel very slowly until
spontaneous filling statl A high speed camera (NAC Hotshot 5128@$ used to capture videos
of the rise of the liquid at 50 frames per second. The videos were analysed after the experiment and
the position of the central meniscus measured in ImageJ from the corresponding frames at a set of
predetermined time intervals. The initial time 0 was defined as the time the liquid first appeared
to enter the tube/channel; this was determined to within one frame (i.e. 20 ms). The spatial
resolution can be estimated from the field of view of the camera and the pixel resolution and is
around 0.02 mm. Each sample/tube was used once only, but measurements were repeated on
samples with the same physical dimensions several times and under the same conditions to check
for reproducibility.

4. Results and discussions

As discussed in section 2.3, flow in non-circular channels can be expected to be
accompanied by advancing liquid fingers that develop with time, increase in prominence and
progress ahead of the main meniscus of the liquid. These fingers were visible in the closed square
glass tubes (with aspect rattigl) along all four of the internal edges defined by were two walls
meet at 98 These liquid fingers were very thin and confined to the edges where the walls of the
tubes meet making them difficult to clearly imaigeour experimental set up (fig. 9a). These
observations are consistent with those of Girardo et al. (2009) for similar aspect ratio, but in open
channels. In contrast, the fingers in our open rectangular SU8 channels with aspectQ@2R2b
and 0.338, which propagated along the internal edges defined by where the bottom of the channel
and a side wall meetyere very prominent and exteedfar beyond the main meniscus of the liquid
(fig. 9b). They were found to progress much faster than the main front of the bougdch an
extent as to eventually exit from the end of the channels completely. The dependence of the shape of
the fingers ore is consistent with the measurements of Seemann et al. (2005) of static liquids in
open rectangular channels, who found that their shape was determined by contact angle and aspect
ratio, and that, for completely wetting liquid& €0), thick and extended fingers occurred when the
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height of channels was sufficiently small compared to their widtla fd).5, whereas thin fingers,
restricted to the corners of the channels, were observed-6of.

Figure 9. .Micrographs of the shapes of the meniscus of the liquid in rectangular

channels/tubes. The arrows show liquid fingers which develop with time and

advance ahead of the main meniscus. a) Closed square tubes: fingbis are
and are confined to the four edges where the walls of the tube meet. b) Open
rectargular channels with €=0.225 (also 0.338): fingers are thick and extended
and propagate along the internal edges defined by where the bottom of the

channel and a side wall meet.

In our experimental conditions, the cross over time for the imbibition of the main body of
liquid above which the visco-gravitational solution is a better approximation than the Bousanquet
solution (discussed in section 2.2) occurs within the first 25 ms after liquids enter the tubes/channels
for all viscosities, which, in all our measurements, takes place within the first measurement time
interval. The viscous-gravitational solution is, therefore, the best analytical approximation for our
experiments. For each measurement, the variation of the position of the meniscus wiilagime
fitted to both the exact numerical solution (eg. (25)) and analytical solution (eq. (35p=8ih).

Both fits were performed within Mathematit@\olfram research) using three fitting parametars,

b andty, where the viscous coefficierd)(and capillary coefficientb] are defined by eq. (26) and

eq. (28), respectively. Fitting at the very early stages of imbibition was found to be sensitive to the
initial time offset parametey which was, in practice, found to be less than meccasionally,

two measurement time intervals. In all fits, a constant contact angle vatiyre @fwas assumed,

and for the open rectangular channels data analysis was restricted to the part of the experiment
during which the wetting fingers remained in the chasnel

The solid symbols inig. 10 show the variation with timé) (of the capillary rise heighk)
of the 19.2 mPaS oil in a) 650 um radius glass tube, b) 400 um square tube, c) 600 pum square tube,
d) 400 pum open microchannel, and e) 600 pum open microchannel. The data show good
reproducibility in circular and square tubes. However, some variability between samples (up to
10%) was observed for open channels. The most likely reason for this is the variation in depth of the
channels between samples. The solid linesgnl0 are the numerical solutions (eq. (25)), whilst
the dashed lines are the fits obtained using the approximate visco-gravitational solution (eq. (35)).
The data can be fitted accurately (to within 5%) using both solutions, albeit a discrepancy at the very
early stage of imbibition (seen in figs 10c, 10d and 10 e). This is, perhaps, not surprising since our
analysis assumes a constant contact angle and does not take into account of any dynamic contact
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angle changes during the initial entry into the tubes/channels. Moreover, the parameters obtained
from fitting using the exact numerical solution and the approximate analytical visco-gravitational
solution agree to within 10% for the viscous coefficiarand 3% for the capillary coefficiemt

Thus, either the numerical or the visco-gravitational solution can be used to fit the position of the
meniscus for our closed tubes and open channels. Moreover, the existence of liquid fingers
advancing ahead of the main meniscus of liquid do not seem to prevent the theory from describing
the advance of the meniscus for the main body of liquid for values of channel aspeet ratio

considered in our work.
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Figure 10. The variation of the rise height with time of the 19.2 nd#a8: a) 650 um

radius glass tube, b) 400 um square tah&00 um square tube, d) 400 um open channel
and e) 600 pm open channel. The solid sysibgpresent the experimental data and the
solid and dashed lines the numerical and analytical fits respectively. The dotted lines give

the expected rise using the nominal device parameters
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In our experiments, we found that the equilibrium capillary rise height was broadly
consistent with expectations using the nominal device parameters. The value of the capillary
parameteib obtained from the fits agrees very well (to within 2% for circular cross-section) tubes
with the experimental observations of the equilibrium heightxige=x.g). However, the rate at
which the liquid approached this equilibrium ssa@lways slower than predicted by theory, as is
illustrated by the dotted curves in Fig. 10, which represent the expected rise. The value of the
viscous coefficient is larger than predicted by theory for all viscosities and most all tubes and
channels except for the 400 um open channels. We found this parameter to be aroti@@y.2 (
times larger than the theoretical value for circular tubes and aroun#d011) &nd 1.3%40.1) times
larger than the theoretical value for 60 and 400 um closed square capillaries, respectively. For
the 600um and 400 um wide open channels the fitted values of the viscous coetitsesutound
1.5 ¢0.2) and 0.940.1) times the value predicted from the theory. Preliminary measurements on
smaller radius circular cross-section capillary tubes suggests there is a better agreement between
fitted and predicted values as the radius reduces to less than a tenth of the capillary length of the
liquid. The data for the square tubes and rectangular channels also indicate a better agreement for
smaller dimensions with a reasonable agreement for therG@ide open channels.

Retardation of liquid rise in capillaries and tubes has previously been reported by other
authors who have suggested a range of possible reasons. These include a possible dynamic contac
angle effect during flow (Siebold et al., 2000; Hamdaoui and Nylander; 2002 Chebbi 2007; Xiao et
al., 2006; Xue et al 2006and a possible retardation coefficient arising from an increased frictional
dissipation of the moving liquid front (Hamdaoui and Nylander, 2002). A number of different
models for how ca& in the capillary ternb in eq. (28), hence in eq.(25), might be replaced by a
dynamic cog and how that would relate to dissipation were considered in detail by Popescu et al.
(2008). They considered four models for a dynamic contact angle including both hydrodynamic
(Hoffman, 1975; de Gennes, 1985; Cox, 1986) and molecular-kinetic theory (Blake & Haynes,
1969). In the Hoffman-de Gennes (HdG) approach, the dynamic contact épgledge speed,
dx/dt, relationship is,

(%} ~ kv 0(t)cos 6, — cos O(t)) (51a)

wherek is a constant determined by viscous dissipation @itk /7 is characteristic velocity
determined by the ratio of surface tension to viscosity. For the linearized form of the molecular-
kinetic theory (MKT) model the analogous relationship is,

dx

(Ej =& (cosd, —cosdt)) (51b)

where the combinatiogv* is a coefficient related to wetting line friction, which depends on both
fluid viscosity and solid-liquidinteraction (Bertrand et al., 2009; Stukan et al., 2010 ). If we focus
on cylindrical tubes and use &@) from eq. (51a), (51b) in eq. (28) rather thanéds obtain a
parameteby using the dynamic contact angle, i.e.
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2y | 1 (dx
HdG model) b—b, =2y,, cosd =Y lcosh) ———| — 52a
( ) o Vv /pR R | e kv@[dtﬂ ( )

and

(MKT model) b—b, =2y, cos@/pRzzy—LRV cosf, — j - (%ﬂ (52Db)
R v

there then arises an additional velocity dependent term. Interestingly, when the dynamic parameter
bg is used in eq. (25) rather than the equilibrium parantetiére effect can be viewed as retaining
the original equilibriunb parameter, bueplacing thea parameter by a dynamag parameter,

RENES I

L

The additional term in eq. (53a), (53b) is time dependent and vanishes as the imbibition progresses
and the dynamic contact angle relaxes to its equilibrium value. This type of term can be expected to
cause a slower approach to equilibrium than might be expected from eq. (25) using only a constant
contact angle approximated by the equilibrium contact angle. This is consistent with the numerical
investigation of Popescu et al. (2008) and with physical expectations that when a vertical tube first
comes into contact with the horizontal meniscus of the reservoir the instantaneous contact angle is
likely to be 90 and must relax towards the equilibrium value as imbibition commences. This is also
consistent with our preliminary observations that agreement of the ftt@drameter with
theoretical expectations improves as the radius of the tube decreases. A similar argument should
applyto square capillaries and open channels.

(HAdG model a—ay =

jab)

or

(MKT model) a—ay =

o)

In our case, it is also possible that some of the increased viscous dissipation in the
rectangular channels could be induced by the wetting fingers and that their contributions may be
dependent on the size and/or aspect ratd the channels. However, Girardo et al. (2012) found
that fingers do not seem to induce appreciable extra dissipation in the early stage of microcapillary
imbibitions in horizontally mounted smooth microchannels. It is also of note that the fitted values of
the viscous coefficierd for the open channels are a factor 2 and 3 lower (for the 400 um and 600
um wide open channels) than would be expected for a rigidified liquid-air boundary, as required by
Yang et al (2011) to explain the dynamics of capillary flow in their horizontally mounted open
narrow microchannels. This indicates that a non-rigidified liquid-air interface best represents the
flow in our lower aspect ratio channels. A further detailed quantitative investigation would be
needed to clarify the dependence of the viscous coefficient on channel size and aspect ratio on
dissipation, but this is beyond the scope of our report.

Whilst the measured equilibrium rise height values are to within 2% of the predicted
theoretical value for the circular cross-section tubes, they are around 5% smaller than theoretical
predictions for square tubes. We attribute this reduction to the wetting fingers, which are predicted
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to reduce the equilibrium height by a value(®fn*)/4 = 0.943 in square geometries (Bico and
Quére, 2002). The equilibrium height is however a factor of 0.83 (+0.03) times smaller than theory
for the open channels, although confidence in the exact factor requires some caution since the data
has considerable scatter. This is, perhaps, not surprising since the fingers are more prominent, and
so may induce a larger reductionthe equilibrium height (Bico and Quéré , 2002).
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Figure 11. The effect of viscosity on capillary rise for the 600 um square
tube. The dashed lines are the expected rise obtained by taking the fitted
value ofa for the 96.0 mPa s sample and scaling it according to the ratio of

viscosities. The inset shows the data scaled for viscosity. The scale time

96t/ 7.

Figure 11 shows the effect of viscosity on the capillary rise in a square tube with sides of
600 um. As expected, the rise is faster for the lower viscosity oils, but the equilibrium rise height
Xe=b/g remains constant as it is independent of viscosity. For the same physical geometry, the visco-
gravitational solution predicts that, at a given rise heightx aboc 77 (eq. (35), and eqgs. (26) and
(28)). It should, therefore, be possible to scale from one viscosity value to another provided the
density and surface tension of the liquid are independent of viscosity, which is the case for our
liquids to within 5%. To verify this experimentally, the data in fig. 11reqglotted with the time
for each viscosity data scaled to that of the 96.0 mPa s sample by multiplgyng factor equal to
96Mm (t*= tx96M); the results are shown in the inset to fig 11. It can be seen that the data scale with
viscosity, supporting the above argument. Moreover, this indicates that liquid rise can be predicted
for any viscosity value from the experimental data of one given viscosity (taken here to be the 96
mPa s) by scaling the value @fobtained from the fit to the analytical visco-gravitational solution,
according to the ratio of viscosities (dashed lines in fig. 11). Similar results were obtaid@® for
um square tubes (fig. 1Pand round capillaries (fig. 12b). However, our data for the open
rectangular channels do not scale as well with viscosity (fig. 12c and fig. 12d). We beliege this
due to the variations in the height of channels (130 - £8P(m) from one sample to another that
were difficult to prevent during their fabrication. An improved scaling is obtained (as shown in the
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insets of fig. 12c and 12d) if we account for the variations in channel depths between samples at a
given channel width as explained in the next paragraph.
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Figure 12. Capillary rise scaled for viscosity a) 400um square tube, bR=650 um
circular tube, c) 60@m open channel and d) 4@0n open channel. The insets to fig 12 c)

and fig 12 d) show the data scaled to account for depth variations betweges

The inset of fig. 13 shows the data from figs 10b andré&@dotted to show the effect of the
tube dimension on the liquid rise in square tubd¢s\W)) for the 96 mPa.s oil. As expected the
equilibrium rise heighi.-b/g scales inversely proportional td (eq. (28)) For a givenx/x., the
visco-gravitational solution (eq. 35) predidtsc aboc ;7/(H 3CC(3))oc ;7H_3, where(l(¢e)= (1) is
independent of dimension for square tubes. It should, therefore, be possible to scale liquid rise of
any sample of dimensiad relative to any other given dimension (say 400 pum) both for rise height
and time by multiplyingx by H/400 and time byH/400Y. Moreover, time can also be scaled for
viscosity in the same way as performed above (fig. 11 and 12a). The results are shown in fig. 13. It
is evident that the data cannot be fully scaled for sample dimensions. The reason for #iis is th
theory underestimates viscous dissipation by an amount that is dependent on sample dimension as
discussed above. For open channels of varying depths and whO,
t oc aboc 776 /(H 3, (g))oc 77/(\/\/H ¢, (5)), wherel,(¢) can be determined using eg. 23. So it should
also be possible, in principle, to scale the liquid rise for any sample of knownwWidteightH
(hencee) and viscosityn relative any other sample with given dimensions and viscosity following
the same procedure as for square capillaries. Whilst the data can be scaled for viscosity and small
variations in channel depths at fixed channel widths (insets of fig.12c and fig. 12d), it cannot also be
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fully scaled for channel width, in the same way as for closed square capillaries, because of the
dimension dependent retardation discussed above.
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Figure 13. The capillary rise in square tubes scaled for tube dimension and

viscosity for 400um (empty symbols) an@00 um (filled symbols). The scaled rise
height x*=(Hx/400) and scaled timg&= (H/400)t. The inset shows the effect of the

dimension of square tube on the capillary rise for thé 8fPa s oil.

5. Conclusions

In this work, we have presented the theory for capillary driven imbibition into tubes of
circular and square cross-sections and into open and closed rectangular channels in a common
formalism. The theory can describe tubes and channels at any angle to the horizontal from
horizontal to vertical. We have shown that thera goss-over time and imbibition length below
which the exact numerical solution of the equatisngest described by the analytical Bousanquet
solution and above which by the analytical visco-gravitational solution. We have also highlighted
that corner filling wetting ideas lead to the expectation of liquid fingers advancing in square and
rectangular tubes and channels in advance of the main meniscus and we have observed this to be the
case experimentally. Nonetheless, the theory accurately describes the form of the observed
imbibition for capillary rise of PDMS oils in closed square and open rectangular channels of
different width cross-sections. We found that the analytical viscous-gravitational scgtemm
approximation of the exact differential equation for capillary imbibition can be adequately used to
fit capillary rise in the systems we studied. From these fits, we found that the viscous friction
coefficient is larger than predicted by theory, but that agreement improves for smaller dimension
samples, and we attribute this to dynamic contact angle effects. The data indicate that the shapes of
the wetting fingers are dependent on the aspect ratio of the samples. For our completely wetting
liquids (6:=0), the liquid fingers are thin and form near the corner edges for square tubes with aspect
ratio e=1, whereas they are prominent for open channels with low valued®P25, 0.338), in

3C



agreement with observations on static fluids. These fingers may have important implications for the
design and performance of microfluidic devices based on liquid imbibition of wetting liquids with
contact angle®. < 45° in rectangular microchannels. It is possible that they may affect the amount
and dynamics of liquid flow, cause contamination between micro-compartments or connect what
would otherwise be separate area of liquids.
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