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Chapter 1
Introduction

If we consider a set of things, is natural to consider the evolution in time of

this set. Maybe some of these things will transform, other will vanish and

new one will be created. A process of this kind is the argument of interest

of the evolutionary problems.

Due to the generic definition of these processes, it is not difficult to imag-

ine application of these in the more disparate fields, from the biology to

the chemistry, from the physics to the demography, from the finance to the

ecology.

Nevertheless, it was Sir Francis Galton who deserves the credit for for-

mulating rigorously this problem for the first time. In fact around the 1870

he was asked to answer some questions concerning the evolution of the diffu-

sion of the various surnames. He observed indeed how some surnames, once

largely diffused, were at the moment close to extinction. In particular, in

its famous Problem 4001, he formulated mathematically the problem, and

posed the question “Would all surnames eventually become extinct?”. That

question was answered by the Rev. William Watson and, in 1874, Galton

and Watson wrote together a paper entitled ”On the probability of extinc-

tion of families”. They deduced a simple mathematical conclusion, proving

that if the average number of a man’s sons is at most 1, then their surname

will almost surely die out, while if it is more than 1, then there is a strictly

positive probability that the surname will survive for any given number of
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generations. A simple process of this kind, wherein an individual of the set

generates offsprings with a certain probability, passing them an inherited

property is called Galton Watson process and is the fundamental brick for

what we actually know by the name of branching processes.

As a matter of fact, the term branching process was forged by Kolmogorov

and Dmitriev in the work ”Branching processes” of 1947. Nowadays a branch-

ing process is defined as a Markov process that models a population wherein

each individual in generation n produces some random number of individuals

in generation n+ 1, according to a certain probability.

In this thesis we are interested in studying a particular evolutionary pro-

cess. In such process the individuals may belong to a finite number of ty-

pologies and each individual, after an exponentially distributed interval of

time, will either change type or die or generate offspring. Since we limit

ourselves to the case where at most one descendant at a time is generated,

such a process takes the name of Markovian binary tree.

After a brief introduction of notation and basic definitions, in Chapter 2

we will describe in detail the Markovian binary tree model, showing how to

fit the properties of the branching processes to our model. In particular we

will be interested in computing the probability that a certain population will

become extinct, a well known problem in the setting of Markovian binary

trees. We will conclude the chapter describing briefly the existing algorithm

for the computation of the extinction probability in the case wherein all the

individuals evolve independently one from the other.

In Chapter 3 we will introduce a parallel process of catastrophes running

alongside the population process. When a catastrophe happens, all the in-

dividuals alive are affected and either survive or die according to a certain

probability. This problem is much harder and the computation of the ex-

tinction probability is beyond our means. It will be introduced a parameter,

denoted by ω, whose positivity or negativity plays a discerning role between

populations having a positive probability to survive forever and those who

will become extinct almost surely. However, even the computation of such

a parameter is challenging, since it can be compared to the computation of

the maximal Lyapunov exponent associated to a linear random dynamical
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system.

Therefore, in Chapter 4, we will describe how to bound the parameter ω.

We will cite some existing bounds and deduce a couple of new one exploit-

ing the matrix properties of the problem. All these bounds will be tested

and compared in Chapter 5, where the results of some experiments will be

illustrated.

1.1 Notation and basic definitions

In order to make the whole text flow smoother, we use this section to recall

some basic definitions and to fix some notation.

Numerical analysis and linear algebra

The matrices are denoted by capital letters, and the symbol In denotes the

identity matrix of dimension n, where we omit the subscript if the dimension

appears obvious from the context. The vectors are denoted by boldface

letters and, if not specified differently, they are generally considered column

vectors. Among them a special role is played by the vectors 0 and e having

all the entries equal to 0 and to 1 respectively, and by the vectors ei having

all the entries null apart from the i-th which is equal to 1. The superscript
T denotes the transpose operator. The symbol Aij stands in for the i, j-th

entry of the matrix A and vi for the i-th entry of the vector v.

Given a real matrix A, we say that A ≥ 0(A > 0) if Aij ≥ 0(Aij > 0) for

each i, j. Given two real matrices A and B of the same dimension, we say

that A ≥ B(A > B) if A− B ≥ 0(A− B > 0). The same definition applies

to vector, where the inequalities are applied component-wise.

Usually the vectors we consider belong to Rn or, sometimes, to the its subset

Sn, where

Sn = {x ∈ Rn | xi ∈ N ∪ {0}, ∀i = 1, . . . , n} (1.1)

is formed by the vectors having nonnegative integer entries.

Given a square matrix A ∈ Rn×n, we say that the n-dimensional non zero

5



vectors v and u are left and right eigenvectors for A, corresponding to the

eigenvalue λ ∈ C, if and only if

Au = λu, (1.2)

and

vTA = λvT . (1.3)

We define the characteristic polynomial of a matrix A ∈ Rn×n by the formula

pc(λ) = det(A− λI)

, where det(·) denotes the determinant operator. The roots of the polynomial

pc(λ), counted with their multiplicity, form the spectrum of the matrix A,

which is denoted by

σ(A) = {λ1, . . . , λn}. (1.4)

It is known that λ is an eigenvalue for the matrix A if and only if λ ∈ σ(A).

If the value 0 belongs to the spectrum of the matrix A, the matrix is said to

be a singular matrix. An eigenvalue λ̄ is said to be a simple eigenvalue if it is

a simple root of the characteristic polynomial, i.e. pc(λ̄) = 0 and p′c(λ̄) 6= 0,

where p′c denotes the first derivative of the polynomial pc.

The spectral radius of a matrix A ∈ Rn×n is defined as the maximum of the

absolute values of the eigenvalues of A and is denoted by ρ(A), i.e.

ρ(A) = max
λ∈σ(A)

|λ|. (1.5)

Another useful notion is the norm, denoted by ‖·‖. A vector norm is a

function, ‖·‖ : Rn → R which associates a proper nonnegative value to each

vector belonging to a vector space. Precisely every function such that, for
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each u,v ∈ Rn and α ∈ R, fulfills the following properties

‖αu‖ = |α|‖u‖,

‖u+ v‖ ≤ ‖u‖+ ‖v‖,

‖u‖ = 0⇔ u = 0,

is a vector norm on the vector space Rn. It is possible to define a matrix

norm by replacing u and v ∈ Rn with A and B ∈ Rn×n and requiring the

same conditions to be satisfied. In particular, we observe that, with an abuse

of notation, given ‖·‖ a vector norm we are allowed to define immediately an

induced matrix norm by the defining the function

‖A‖ = max
‖x‖=1

{‖Ax‖}. (1.6)

Indeed the function just defined is a matrix norm and, moreover, it also

fulfills a sub-multiplicative property, in fact

‖AB‖ ≤ ‖A‖‖B‖, (1.7)

for each A,B ∈ Rn×n. A rather special norm is the maximum norm, defined

by

‖u‖∞ = max{|u1| . . . , |un|}, (1.8)

in the vector form and inducing the following matrix norm

‖A‖∞ = max
i=1,...,n

n∑
j=1

|Aij|. (1.9)

Given a couple of matrices of generic dimension it is possible to perform on

them the Kronecker product, an operation defined as follow,

Definition 1.1.1. For each A(1) ∈ Rm1×n1 and A(2) ∈ Rm2×n2, the Kronecker

product of the matrices A(1) and A(2) is defined by the matrix A(1) ⊗ A(2) ∈
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R(m1+m2)×(n1+n2) such that

A(1) ⊗ A(2) =


A

(1)
11 A

(2) · · · A
(1)
n11A

(2)

...
. . .

...

A
(1)
1m1

A(2) · · · A
(1)
n1m1A

(2)

 . (1.10)

This product possesses a lot of important properties, among these we

mention the mixed product property, which states that given the matrices

A,B,C,D, having dimensions allowing to define the standard products AC

and BD, the equality

(A⊗B)(C ⊗D) = (AC ⊗BD), (1.11)

is verified.

The matrix exponential may be defined through the Taylor expansion, in

parallel with what is usually done for the scalar exponential.

Definition 1.1.2. For every matrix A ∈ Cn×n the matrix exponential eA is

defined by

eA = I + A+
A2

2!
+
A3

3!
+ · · · =

∞∑
i=0

Ai

i!
. (1.12)

It is known that such a series has an infinite radius of convergence, there-

fore we can differentiate the entries of the matrix obtained term by term

yielding the formula
d

dt
eAt = AeAt = eAtA.

There exist many other equivalent way to define the matrix exponential, see

[19] for a detailed survey.

Although the definition of the exponential function is the same both in the

scalar and in the matrix case, many of the properties that were taken for

granted in the scalar case are no more true in the matrix one. This is due

to the non commutativity of the matrix product, and the following property

constitutes an example.
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Theorem 1.1.1. For A,B ∈ Cn×n, it holds

eA+B = eAeB ⇔ AB = BA. (1.13)

The proof of this fact is a direct consequence of the formula (1.12) and

can be found in [19].

Probability theory

Many of the concepts handled in the following chapters require some basic

notions of probability theory. Such a field is huge and we aim to give just a

brief introduction, which surely is not as complete and formal as the topic

demands, but we hope may be of some help for the understanding of what

follows.

Intuitively a probability function is a measure of how likely is an event to

happen. This measure is represented by a value between 0 and 1, where the

more an event is probable the higher is the measured value. In order to be

more formal, we need to introduce the probability space, which is given by

the triple

P = (Ω,F ,P), (1.14)

where

• Ω denotes the sample space, a collection of all the possible outcomes

that may be attained by running a certain experiment;

• F is a fixed σ-algebra on Ω, which means that F is a nonempty col-

lection of subsets of Ω such that is closed under the complement and

the countable unions of its members and contains Ω itself;

• P is the probability function and associates a proper probability measure

to a certain subset of the whole sample space. Thus P is a function P :

F → [0, 1] such that P(Ω) = 1 and is a countably addictive function,

i.e. if {Ai} ⊆ F is a countable collection of pairwise disjoint sets, then

P(
⋃
iAi) =

∑
i P(Ai).
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A very important role in probability theory is played by the random variables,

which are functions going from the space of the outcomes Ω into a certain

subset C of R, where C represents the feasible numerical outcomes of the

experiment. In a certain sense a random variables perform as the connection

between the real world experiment and the mathematical model we work on.

A random variable may be either discrete or continuous depending on the

structure of its co-domain C and is allowed to assume various random values

depending on the outcome of the experiment and on the probability function

defined in (1.14). In practice, denoting X our random variable, with an abuse

of notation we say that the probability for the value of X to be c ∈ C is given

by

P[X = c] = P[{w ∈ Ω |X(w) = c}], (1.15)

which is a known value if {w ∈ Ω |X(w) = c} ∈ F .

Given a random variable X, it is of a certain interest the understanding of

what is the value we could expect X to possess. Such a quantity is denoted

by E[X] and is called expected value. If X is a discrete random variable

E[X] =
∑
x∈C

P[X = x]x, (1.16)

while in presence of continuous random variable the summation is replaced

by the integral on the whole set C.
The probability generating function associated to a multivariate random vari-

able X = (X1, . . . , Xn) ∈ Rn, is the complex valued function F (s) defined by

the following formula

F (s) = E[sX] = E[sX1
1 , . . . , sXkk ], (1.17)

where sX is a multivariate random variable too and whose convergence is

guaranteed as soon as ‖s‖∞ ≤ 1, where ‖·‖∞ is the maximum norm, see

(1.8).

Another useful definition is that of conditional probability, that is to say the

probability for a certain random variable X to take a certain value, say n,

when it is known the value taken by another random value Y , say m. We
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denote this probability

P[X = n|Y = m] =
P[X = n and Y = m]

P[Y = m]
. (1.18)

We avoid to discuss here more about probability theory, apart from briefly

introduce a couple of useful probability distributions for a given random

variable X.

• The Poisson distribution of parameter λ > 0 is a discrete probability

distribution such that

P[X = n] =
e−λλn

n!
(1.19)

• The Exponential distribution of parameter λ > 0 is a continuous prob-

ability distribution such that

P[a < X < b] =

∫ b

a

f(x, λ)dx, (1.20)

where

f(x, λ) =

λe−λx x ≥ 0

0 x < 0.
(1.21)

Stochastic processes

Given a probability space (Ω,F ,P), see (1.14), a stochastic process on a

certain state space D ⊆ Rn is a collection of ordered random variables on Ω

having values in D. We say that the process is a discrete time process if the

collection is indexed by a numerable set of times T , i.e.

{Xn | n ∈ N}, (1.22)

it is a continuous time process if the set T is continuous, i.e.

{X(t) | t ≥ 0}. (1.23)
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The following definitions are presented for the discrete case, but may be

easily generalized to the continuous case. The value of a certain entry of the

process depends, in general, on the whole history of the process and on its

own time. If the future of a process depends only on the current state, i.e.

P[Xn = dn |Xn−1 = dn−1, . . . , X0 = d0] = P[Xn = dn |Xn−1 = dn−1], (1.24)

the process is called a Markov process.

A process fulfilling the following time homogeneity condition

P[Xn |Xn−1] = P[X1 |X0], (1.25)

for each n ≥ 1, is said to be a homogeneous process. In the discrete time case

a stationary Markov process takes the name of Markov chain.

Another useful property for a stochastic process is the ergodicity, an ergodic

processes is a process whose statistical properties may be deduced from a

single, sufficiently long, sample of the process. For a formal definition we

refer to [20].

In order to fix some more concepts, we briefly show how a Markov chain

works in practice. We suppose to have chosen the starting probability of the

process, i.e. P[X0 = s] for every s ∈ D. The probability value assumed by X1

depends on the probability value of the variable X0 and on the probability

distribution defining the transitioning phase, more precisely we define

p(si,sj) = P[X1 = sj |X0 = si], (1.26)

so that p(si,sj) represents the probability that in a slot of time the stochastic

process passes from the state si ∈ D to the state sj ∈ D. Such probabilities

are called transition probabilities and may be considered the fundamental

brick in the construction of a Markov chains. The chain evolves in this way

obtaining progressively P[X2 = s],P[X3 = s], . . ., for each s ∈ D.

In case we are allowed to provide with an index every element of the state

spaceD, i.e. ifD is a numerable space, we can define the transition probability
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matrix P , such that the (i, j)-th entry is given by

Pij = p(i,j), (1.27)

where p(i,j) is defined in (1.26).

The matrix P is a stochastic matrix, which means that the sum over the

entries of each row is equal to 1, due to the properties of the probability

function. Furthermore we observe that the matrix P defines completely the

whole Markov chain, in fact if we denote by x(n) the vector whose entry

(x(n))i = P[Xn = i], we have that

xT(1) = xT(0)P, (1.28)

and

xT(n) = xT(n−1)P = xT(0)P
n. (1.29)

The matrix P is said to be irreducible if, for each i, j ∈ S, there exists ñ

such that (P ñ)ij > 0. In the Markov chain context, an irreducible transition

probability matrix means that there exists a strict positive probability of

transitioning (even in more time slot) from every state to each other.

Given a state s ∈ S, we define Ts as the random variable representing the

time used by the process for coming back to state s after starting in that

state. Each state s ∈ S may be classified through Ts, indeed s is either a

transient state, if P[Ts <∞] < 1, or a recurrent state otherwise. Moreover if

E[Ts] <∞ a recurrent state is said to be positive recurrent state.

An important characteristic of a Markov chain is the behavior that may be

expected in the long term evolution of the process, this is displayed by the

stationary distribution, denoted by π, where

πi = lim
n→∞

P[Xn = i]. (1.30)

This probability distribution must fulfill the following property

πTP = πT , (1.31)
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so that π is a left eigenvector for the matrix P relatively to the eigenvalue

1. Such a probability distribution is known to exist and to be unique if the

matrix P is irreducible and all its states are positive recurrent.

The continuous time stationary Markov processes are the equivalent to the

Markov chains in the continuous time case. In this setting, the role of the

transition probability matrix is played by the rate matrix, or generator ma-

trix. This matrix is characterized by having nonnegative off diagonal entries

and the values on the diagonal such that the sum over each row is equal to 0.

In such a case, denoted by R the rate matrix, the process remains in state i

for a random time which follows an exponential probability distribution with

parameter −Rii, see (1.20), and then the process moves to another state j

according to a probability Rij/(−Rii).

The stationary distribution π is defined like in (1.30) and must fulfill the

condition

πTR = 0T . (1.32)

It is of a certain interest that if R is a rate matrix, −R is a singular M-matrix,

which is a class of matrices defined as follows

Definition 1.1.3. A matrix M is an M-matrix if it is possible to express M

in the form M = γI − B where B ≥ 0 and γ ≥ ρ(B), where ρ(B) is the

spectral radius of B, see (1.5).

An important feature of this class of matrices is the inverse positive prop-

erty, that is to say that given A a not singular M-matrix we have that

A−1 ≥ 0.

Graph theory

A graph is a structure composed by a set of objects where some pairs of them

are connected by links. The objects forming the graph are named vertices,

while the connecting links take the name of edges. A graph G may be denoted

in a compact form by

G = (V,E), (1.33)
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where V is the set of objects, i.e. the vertices, and E ⊆ V ×V represents the

set of the edges connecting the objects of the graph. If there exists an edge

between the pair of vertices v, w ∈ V , we specifies that edge by (v, w) ∈ E.

In our analysis we don’t make difference between the edge (v, w) and (w, v),

which means that the edges don’t have a direction, that is to say that the

graphs we consider are undirected graph.

If the number of vertices and edges is finite it is possible to define the order

and the size of a graph by the number of vertices and edges respectively, i.e.

order(G) = |V | and size(G) = |E|.
Given a vertex v ∈ V , the degree of v is given by the number of edges that

connect to it. A graph G is said to be a simple graph if (v, v) /∈ E for each

v ∈ V and there is no more than one edge between two different vertices.

A path is a sequence of edges connecting a sequence of vertices, it is denoted

by

P = {(v1, v2), (v2, v3), . . . , , (vn−1, vn)}, (1.34)

where v1, . . . , vn ∈ V . We say that v1 and vn are the start and the end vertex

of the path while v2, . . . , vn−1 are its internal vertices. A path P is said to

be a simple path if it doesn’t cross any vertex more than once, i.e. vi 6= vj

for each i, j = 1, . . . , n i 6= j. Among the not simple path we distinguish the

cycles as those paths having v1 = vn.

Definition 1.1.4. The length of a path is given by the the number of edges

it employs, i.e. length(P ) = |P |. The distance between two vertices is de-

termined by the minimal length of a path connecting them, if there isn’t any

connecting path between them the distance is established to be ∞.

If it is possible to find a path between v and w for each v, w ∈ V, v 6= w,

we say that the graph is connected.

It is now possible to define the tree, a special kind of graph that will be

largely employed in the following chapters.

Definition 1.1.5. A tree is an undirected simple graph G such that G is

connected and there exist no cycles in G.

Given a tree G, a vertex of G having degree 1 is called leaf. On the other
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hand a vertex with degree at least 2 is said to be an internal vertex.

Sometimes it is identified a special vertex in V , the root. If this is the case,

the edges possess a natural orientation, indeed an edge belongs to one and

only one path starting from the root, and this path can be crossed in a

direction going towards or away from the root.

In a rooted tree it is defined a partial ordering on V , indeed we say that

v < w if the unique path going from the root towards w passes through v.

In particular, if v < w and (v, w) ∈ E, we say that v is the parent of w and

w is a child of v. We observe that the parent is only one, while the children

can be many.

A special class of the trees is composed by the binary trees. For this class of

trees, the children associated to a parent are always 2, and take the names

of left child and right child.
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Chapter 2
Markovian Binary Trees

2.1 Continuous time Markovian multitype branch-

ing processes

A multitype branching process is a process which describes in a mathematical

way the evolution of a population of individuals. These individuals may

belong to a distinct, finite number of different typologies. For simplicity the

various types are denoted by the elements of the set M = {1, . . . ,m}.
Every individual is supposed to evolve in an independent way and during its

life may generate a random number of offsprings following specific stochastic

rules. Once an offspring is generated, this evolves following the rules inherited

by its parent and possibly gives birth to its own offsprings. This process

continues until there is at least an individual alive. Classical theory related

to this topic can be found in [3, 13, 30], wherein are also illustrated many

examples of practical application of this process.

• Demographic model: the main interest is the study of the aging struc-

ture of a certain population. Usually the different types represent the

various age ranges, see [35].

• Environmental niches model: in biology sometimes some individual be-

longing to a certain niche may generate offspring belonging to different

niches, for a detailed survey see [34].
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• Population genetics model: the objective is the study of the evolution of

a certain genotype or phenotype in a certain family considering that the

offspring is affected by individuals which are external to the considered

family, see [20].

• Physics: many examples can be found in physics, for instance in the

setting of cosmic ray cascades the electrons and the photons generate

each other.

In more detail, in a multitype branching process, at the moment of its death,

an individual of type i eventually generates offsprings of the various types

according to a certain probability distribution on Sm, see (1.1). Indeed, given

j ∈ Sm, the probability

pi(j) = pi(j1, . . . , jm), (2.1)

denotes the probability that a type i individual generates at its death jk de-

scendants of type k for each k ∈M.

In order to properly investigate the features of a multitype branching process

we need to employ the probability generating functions, introduced in (1.17),

which regulate the probabilistic behavior of the reproduction. In fact a key

role is performed by the functions f1, . . . , fm, where fi represents the prob-

ability generating function of the random variable indicating the number of

offsprings of the various types generated by an individual of type i,

fi(s) =
∑
j∈Sm

pi(j)s
j, (2.2)

where s = (s1, . . . , sm) ∈ [0, 1]m and sj = sj11 · · · sjmm .

For any vector i ∈ Sm it is well defined the continuous time Markov process

{Zi(t), t ≥ 0}, (2.3)

on the state space Sm, where the vector Zi(t) = (Z i
1(t), . . . , Z i

m(t)) is such

that Z i
k(t) represents the number of individuals of type k alive at time t
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given that, the starting configuration of individuals was given by the entries

of vector i, i.e. Zi(0) = i. We omit the superscript i whenever the context

doesn’t require it.

For each pair of vectors i, j ∈ Sm, it is possible to define the probability

P i(j; t) by

P i(j; t) = P[Z(τ + t) = j | Z(τ) = i] = P[Zi(t) = j], (2.4)

for each τ ≥ 0, where the last equality holds since the probability distribution

of the offsprings is supposed to be homogeneous in time. The probability

generating function of the variable Zi(t) is denoted by F i(s; t) and may be

expressed as

F i(s; t) =
∑
j∈Sm

P i(j; t)sj, (2.5)

where s ∈ [0, 1]m. In the following we will be mostly interested in the cases

wherein the starting population is given just by one individual. To this end

we define the vector of functions F(s, t) as

F(s, t) = (F e1(s; t), . . . , F em(s; t)), (2.6)

whose entries may be interpreted, in some sense, as a canonical basis. Indeed

these entries may generate any generic F i(s; t), as specified better after the

following classical result.

Proposition 2.1.1. Given t, τ > 0, then

F(s, t+ τ) = F(F(s, τ), t). (2.7)

Proof. Let’s define Nk,i
j (τ) as the number of type j offsprings that are gen-

erated by the k-th individual of type i alive at time t. It is clear that

Zj(t+ τ) =
m∑
i=1

Zi(t)∑
k=1

Nk,i
j (τ). (2.8)

By passing to the generating functions the thesis is proven.

19



In general if Z(t) = j = (j1, . . . , jm) ∈ Sm, then Z(t+ τ) may be obtained

as the sum of j1 + . . . + jm independent random vectors, where jk of them

have generating function F ek(s; τ) for each k ∈M.

These generating functions F ei(s; t) are often difficult to express for general

multitype branching process. We need therefore to introduce the multitype

Markovian branching processes. These processes have the peculiarity that the

lifespan of an individual of type i ∈ M follows an exponential distribution

of parameter αi, see (1.20). In fact, with this restriction, the Kolmogorov

forward and backward equations that govern the process and define F ei(s; t)

were completely deducted by Sevast’yanov in [38]. These formulas are quoted

here for completeness.

Theorem 2.1.1 (Kolmogorov equations). The following equations hold,

• Forward Kolmogorov equation:

∂

∂t
F ei(s; t) =

m∑
k=1

u(k)(s)
∂

∂sk
F ei(s; t), (2.9)

where u(i)(s) = αi[fi(s)− si] and 1
αi

is the average lifespan of a particle

of type i.

• Backward Kolmogorov equation:

∂

∂t
F ei(s; t) = u(i)[F(s; t)], (2.10)

A central role in the theory of the branching processes is hold by the

mean matrix, which may be defined in case of not explosive processes, that

is in the case where
∂

∂sj
fi(s)|s=e <∞, (2.11)

for each i, j ∈M, where the functions fi(s) are defined in (2.2). It is shown

in [3] that such a condition is sufficient to verify

E[Zj(t)|Z(0) = ei] <∞, (2.12)
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for each i, j ∈M and t ≥ 0. It is now possible to define the mean matrix we

mentioned before,

Definition 2.1.1 (Mean matrix). The mean matrix is the m×m matrix

M(t) = (mij(t))i,j=1,...,m,

where,

mij(t) = E[Zj(t) | Z(0) = ei]

.

It can be shown by means of (2.7) that these matrices fulfill

M(t+ τ) = M(t)M(τ), (2.13)

so that the set of the mean matrices, {M(t), t ≥ 0}, forms a semi-group,

i.e. a set with an associative binary operation. Moreover, thanks to (2.10),

it can be shown that the continuity condition

lim
t→0

M(t) = Im, (2.14)

is satisfied too. These properties together guarantee the semi-group {M(t), t ≥
0} to be generated by a certain matrix Ω ∈ Rm×m, such that for every t > 0,

the equality

M(t) = exp(Ωt) (2.15)

holds. An interesting interpretation may be given to the entries of the matrix

Ω. In fact Ωij represents the rate at which a particle of type i influences the

whole number of type j individual. This intuition leads us to express the

entries of the matrix Ω by the formula

Ωij = αibij, (2.16)

where αi is the average lifespan of a type i individual and

bij =
∂fi
∂sj

(s)|s=e − δij, (2.17)
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where δij is the Kronecker’s delta having value 1 if i = j and 0 otherwise.

We observe that bij represents the expected variation in the number of type

j individuals alive just after the death of a type i individual. It is possible to

give some other definitions in order to identify better the various typologies

of branching processes,

Definition 2.1.2. A multitype branching process is called positively regular if

there exists t0 > 0 such that M(t0) > 0, where the matrices M(t) are defined

in 2.1.1.

It is now important to quote the Perron-Frobenius theorem that we will

largely employ later, for a proof we refer to [6],

Theorem 2.1.2 (Perron-Frobenius Theorem. Positive matrices case). A

positive matrix M has a maximum modulus eigenvalue which is positive,

real, simple and equal to the spectral radius of M . All the other eigenval-

ues are strictly smaller in modulus. Moreover, there exist positive right and

left eigenvectors associated to such eigenvalue.

The same statement holds even if we require the matrix to be nonnegative,

irreducible and aperiodic.

By applying this theorem to the positive matrix M(t0), we find that this

matrix has a maximum modulus real eigenvalue λ(t0) and that every other

eigenvalue λ(t0)(i) of M(t0), is such that |λ(t0)(i)| < λ(t0). We observe that

it must exist λ eigenvalue of Ω such that λ(t0) = exp(λt0), i.e.

λ =
log λ(t0)

t0
, (2.18)

moreover λ is the eigenvalue of maximal modulus of Ω, and due to the Perron-

Frobenius theorem applied to M(t0), must also be simple and real.

Another important definition is the following,

Definition 2.1.3 (Singular process). A multitype branching process is said

to be singular if the generating functions f1(s), . . . , fm(s), defined in (2.2),

are all linear in s1, . . . , sm, with no constant term.
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It is now possible to quote another important result and its corollary, a

proof can be found (for the discrete time case) in [13, 30],

Theorem 2.1.3. Suppose that the process is positive regular and non singu-

lar. Then each vector j ∈ Sm, apart from j = 0, is a transient state of the

Markov chain {Z(t), t ≥ 0}.

And in particular it leads to the important following result,

Corollary 2.1.1. Under the hypotheses of theorem 2.1.3, for each r ∈ Sm
such that r 6= 0 it holds that

lim
t→∞

P[Z(t) = r] = 0. (2.19)

This means that, under these simple hypotheses, the process will either

die out or explode almost surely.

2.1.1 Extinction Probabilities

The population becomes extinct if for some t ≥ 0 it happens that Z(t) = 0,

and it is of a certain interest determining the probability of this event given

that Z(0) = ei for each i ∈M. Let

qi = P[∃ T ≥ 0 such that Z(T ) = 0|Z(0) = ei]. (2.20)

We observe that, due to the absorbing property of state 0, it is straightfor-

ward that

Z(t) = 0⇒ Z(t+ τ) = 0, ∀τ ≥ 0,

therefore if we define

qi(t) = P [Z(t) = 0|Z(0) = ei], (2.21)

then we have immediately that for every τ ≥ 0 the relation qi(t) ≤ qi(t+ τ)

holds. So, it is equivalent to define the extinction probability qi as

qi = lim
t→∞

qi(t), (2.22)
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for each i ∈ M. By means of the backward Kolmogorov equation (2.10) it

can be shown, see [3], that the extinction probability vector is the minimal

nonnegative solution of

u(s) = 0, (2.23)

where u(s) = (u(1)(s), . . . , u(m)(s)) is defined in (2.9). This is the same as

requiring that q is the minimal nonnegative vector such that the equality

fi(q)− qi = 0, (2.24)

holds for each i ∈ M, where the function fi(s) is the generating function

defined in (2.2).

A fundamental theorem that has to be quoted is this one, see [30, Theorem

7.1],

Theorem 2.1.4. Let Ω be the generator of the semi-group {M(t), t ≥ 0},
and suppose the process to be positive regular, let λ be the eigenvalue of the

matrix Ω defined in (2.18), then:

1. if λ ≤ 0, then q = e,

2. if λ > 0, then q < e.

In any case, q is equal to the minimal nonnegative solution of the vector

equation

f(s) = s, (2.25)

where f(s) = (f1(s), . . . , fm(s))

Due to the key role played by the equation (2.25), we name it the ex-

tinction equation. We observe that this vector equation is simply a compact

reformulation of the set of equations (2.24).

The Theorem 2.1.4 leads us to distinguish the various Markovian multitype

branching processes on the basis of the value of the eigenvalue λ.

Definition 2.1.4. Given λ the eigenvalue of the matrix Ω determined in

(2.18) we say that
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• if λ < 0 the process is subcritical,

• if λ = 0 the process is critical,

• if λ > 0 the process is supercritical.

Obviously we will be mostly interested in the computation of the ex-

tinction probabilities in the non trivial cases, that is to say in presence of

supercritical processes.

2.2 Transient Markovian arrival processes

A Markovian arrival process (MAP) is a two dimensional continuous time

Markovian process {(N(t), ϕ(t)), t ≥ 0} in the space ({0} ∪ N) × {1, ..,m},
where m is finite. The process ϕ(t) is called the phase process. The transition

between the phases may be observable or hidden, and the distinction between

these kind of transitions is determined by the happening of a certain event

during the transition. The process N(t) is the counter of the observable

transitions that happen in the time interval [0, t].

In a MAP the range of the possible transitions that can originate from a

certain state (n, i) is restricted to those pointing towards the states belonging

to the union of the sets {(n, j), 1 ≤ j ≤ n, j 6= i} and {(n + 1, j), 1 ≤ j ≤
n}. The transfer towards one of these two sets determine respectively the

transition that are said to be hidden or observable.

Therefore the process is governed by two distinct matrices

D1, D0 ∈ Rm×m, (2.26)

which determine the transition rates in case respectively of occurrence of an

event or not, i.e. the values of (D0)ij and of (D1)ij represent the rates of

transition associated to moving from the state (n, i) to the state (n, j) and

(n + 1, j) respectively. So, the whole rate matrix which generates the MAP
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may be expressed by

Q =


0 D0 D1 0 0 · · ·
1 0 D0 D1 0

2 0 0 D0 D1
. . .

3 0 0 0 D0
. . .

...
...

. . . . . . . . .

, (2.27)

where the levels define the different values of the process N(t).

Since Q is a generator matrix for a continuous time Markov chain, it has to

verify the condition Qe = 0, which means that

(D0)ii = −(
m∑

j=1,j 6=i

(D0)ij +
m∑
j=1

(D1)ij). (2.28)

Given thatN(0) = 0, we say that the process just described is a MAP(α, D0, D1),

where α denotes the initial probability distribution on the phase space, i.e.

αi = P[ϕ(0) = i].

We are now interested in describing the transient MAP [27]. We add to the

phase space an additional absorbing phase, denoted by 0. This phase is ab-

sorbing in the sense that, when the phase process enters the phase 0, no more

transition will occur. In other worlds, if ϕ(t0) = 0, then for every t ≥ t0 we

have that ϕ(t) = 0 and N(t) = N(t0), hence the process is said to be ended.

We introduce the vector d ∈ Rm such that, for each i ∈ 1, . . . ,m, the entry

di represent the rate of transition from phase i to phase 0.

In a transient MAP the matrices D0 and D1 which form the (2.27) are ex-

tended respectively by D∗0 and D∗1 ∈ R(m+1)×(m+1) defined as

D∗0 =

(
0 0T

d D0

)
, D∗1 =

(
0 0T

0 D1

)
. (2.29)

All the phases different from 0 are supposed to be transient, therefore even-

tually the MAP will enter its absorbing phase and the process ends. A MAP
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with m transient phases is thus defined by the tuple (D0, D1,d,α), where

D0, D1 ∈ Rm×m and d,α ∈ Rm.

Let’s now consider a MAP in state (n, i), due to the properties of the contin-

uous time Markov process, the time of permanence in such a state follows an

exponential distribution of parameter νi = −(D0)ii independently of n, and

at the end of this period it may occur:

• an hidden transition to state (n, j), where j 6= 0, i, with probability
(D0)ij
νi

;

• an observable transition to state (n+1, j), where j 6= 0, with probability
(D1)ij
νi

;

• a transition to the absorbing state (n, 0), with probability di
νi

.

It is possible to introduce the sequence {T1, T2, ...} as the sequence of the

intervals between two consecutive observable events.

Let’s now define a particular type of probability distribution, which is

Figure 2.1: Phase process of a transient MAP that is absorbed after 3 ob-
servable transitions.

based on the transient MAP defined above. We consider a transient MAP

with m transient phases, defined by (D0, D1,d,α). Let’s focus on the phase
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only process ϕ(t), see figure 2.2, which is a continuous time Markov process

generated by the rate matrix Q̃ defined by

Q̃ =

(
0 0T

d D

)
,

where D = D0 + D1. We are interested in the distribution of the random

variable X representing the time necessary for the process to enter the ab-

sorbing state 0. Such a distribution is called phase-type distribution and we

write X ∼ PH(α, D). This class of distribution is quite important for its

versatility, indeed, as can be seen in [26], the phase-type distributions are

dense into the family of positive valued distributions.

[SI POTREBBE FARE ESEMPI MAP (POISSON e PH-RENEWAL

PROCESSES)]

2.3 Markovian binary trees

A general Markovian tree (GMT) is a mathematical model which allows to

describe the life evolution of a set of individuals evolving independently one

from the other. The term Markovian appears in the name because the life of

each individual is governed by a transient Markovian arrival process as the

one described in the previous section. When an observable transition occurs,

in this setting, it means that offsprings are generated, with a distribution

that is embedded in the parameters defining the MAP.

In the following analysis we will be mostly interested into a special kind of

Markovian tree, the Markovian Binary Tree (MBT) introduced in [4]. The

peculiarity of this tree is that the various individuals are allowed to generate

only one descendant per observable transition.

2.3.1 Markovian Trees as continuous time Markov chain

A Markovian tree may be seen as a continuous time Markov process with

states

X(t) = (N(t), ϕ1(t), ..., ϕN(t)(t)), (2.30)
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in the space
⋃∞
k=0{{k}×{1, ...,m}k}, where N(t) represents the total number

of individuals alive at time t and ϕk(t) ∈ {1, ...,m} indicates the phase that

the k-th individual possesses at that time.

In order to understand the dynamics that are admitted in an MBT model,

here we present in detail all the possible transitions that may occur. Let’s

suppose that the process stands in the state defined by the configuration

(M, a, b, · · · c, r, d, · · · e),

↑ ↑ ↑ ↑ ↑ ↑
1 2 · · · i− 1 i i+ 1 · · · M

where the second line identifies the various individuals in the tree. We recall

that the life of each individual is governed by the same transient MAP with

parameters (D0, D1,d,α). In particular, focusing on the individual i, it may

occur:

1. An hidden transition: the phase of individual i changes from phase r

to phase s 6= 0, this happens with rate (D0)rs, and the process moves

to the state having configuration

(M, a, b, · · · c, s, d, · · · e),

↑ ↑ ↑ ↑ ↑ ↑
1 2 · · · i− 1 i i+ 1 · · · M

2. An absorption: the phase of individual i changes from phase r to the

absorbing phase 0, causing the individual i to die. This happens with

rate dr, and the process moves to the state having configuration

(M − 1, a, b, · · · c, d, · · · e),

↑ ↑ ↑ ↑ ↑
1 2 · · · i− 1 i · · · M − 1

3. An observable transition: the individual i generates a descendant. We

suppose for instance that in the process of reproduction the phase of

individual i changes from phase r to phase s and that the new born
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individual begin its life in phase σ. We define the matrix B ∈ Rm×m2
,

called the birth rate matrix, whose entries define the rates of occurrence

of a transition of this kind. The described transition happens with rate

Br,(s,σ) causing the process to move to the state having configuration

(M + 1, a, b, · · · c, s, σ d, · · · e).

↑ ↑ ↑ ↑ ↑ ↑ ↑
1 2 · · · i− 1 i i+ 1 i+ 2 · · · M + 1

Therefore, in general the whole process is ruled by the parameters (D0, B,d).

The birth rate matrix B is given by

Bi,(j,k) = (D1)i,jpi|(j,k), (2.31)

where pi|(j,k) is the conditional probability that a child starts its life in phase

j, given that its parent was in phase i and has made a transition to phase k.

In the case the probability distribution of the starting phase of the newborn

individual does not depend on the type of the parent, B can be fully obtained

by the parameters of the transient MAP (D0, D1,d,α), indeed

Bi,(j,k) = (D1)i,jαk. (2.32)

2.3.2 MBT as a multitype Markovian branching pro-

cess

We would like to exploit the branched structure of the Markovian Tree in

order to model it as branching process similar to the one described in Section

2.1. There are many ways to do it, here we present the two that are more

intuitive.

In this first model we set as the types of the multitype branching process

the different phases of the MAP, so that M = {1, . . . ,m}. A branch, which

starts with a type i individual, lives for an exponentially distributed time with

parameter νi = −(D0)ii before running into a branching point, allowing the

process evolve. The evolution may be described by means of the probabilities
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Figure 2.2: MBT as a Markovian branching process. The time T is a random
variable following an exponential distribution of parameter νi = −(D0)ii.

introduced in (2.1), indeed we have that the possible outcomes of a branching

point are showed in figure 2.3.2 and occur with the following probabilities

pi(j) =



di
νi

if j = 0

(D0)ij
νi

if j = ej ∀j = 1, . . . ,m and j 6= i
Bi,(j,k)

νi
if j = ej + ek ∀j, k = 1, . . . ,m

0 otherwise,

(2.33)

where B is the birth matrix defined in (2.31) and the process is completely

determined by the parameters (D0, B,d). Since this is a multitype Marko-

vian branching process, we can take advantage of the properties described

in Section 2.1. In particular the probability generating functions fi(s) for

i ∈M, see (2.2), take this form

fi(s) =
di
νi

+
m∑

j=1,j 6=i

(D0)ij
νi

sj +
m∑

j,k=1

Bi,(j,k)

νi
sjsk, (2.34)

or in vectorial form

f(s) = (D̃0)−1d + (D̃0)−1(D0 + D̃0)s + (D̃0)−1B(s⊗ s), (2.35)

where D̃0 is the diagonal matrix with entries ν1, . . . , νm and ⊗ denotes the

Kronecker operator, see Definition 1.1.1. Moreover, since the process is not

explosive, see (2.11), it is possible to define the mean matrix M(t) as in

Definition 2.1.1 and in particular the generator of the mean matrices semi-
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group Ω, see (2.15). Indeed Ω can be expressed, according to (2.16), by the

formula

Ωij = νi(
∂fi
∂sj

(s)|s=e − δij) = (D0)ij +
m∑
k=1

(Bi,(j,k) +Bi,(k,j)), (2.36)

or in a vectorial form by

Ω = D0 +B(Im ⊗ e + e⊗ Im). (2.37)

As we observed in Theorem 2.1.4, the extinction probabilities of a multitype

Markovian branching process, defined in (2.20) may be obtained by solv-

ing the extinction equation. By modeling the MBT as just described, the

extinction equation (2.25) assumes the following expression,

0 = fi(s)− si =

=
1

νi
(di +

m∑
k=1,k 6=i

(D0)iksk +
m∑

j,k=1

Bi,jksjsk + (D0)iisi)

=
1

νi
(di +

m∑
k=1

(D0)iksk +
m∑

j,k=1

Bi,jksjsk),

for each i ∈ 1, . . . ,m. So that the extinction equation (2.25) may be written

in this simple vectorial form

0 = d +D0s +B(s⊗ s). (2.38)

In order to find the minimal nonnegative solution of this equation we need

numerical methods that we will present later.

2.3.3 MBT as a general branching process

Another way to interpret the MBT as a branching process is by taking the

cue from the intrinsic branching structure of the relations developing between

parents and descendants. In this model a branching point is created only if

an individual either generates offsprings or dies, while in contrast with the
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model suggested in Section 2.3.2, the simple changes of type happen along the

edges and don’t generate branching points. This is to say that, if the lifespan

Figure 2.3: MBT as a general branching process. The time running between
consecutive branching is a random variable following a general distribution
given by the sum of various exponential distribution. With the thick line is
pointed out the life span of the starting individual.

is controlled by a transient MAP (D0, B,d), a branching point coincides with

either an observable transition or an absorption, while the hidden transitions

are scattered within the branches and don’t generate branching point. This

behavior is shown in figure 2.3.3, where it is presented a possible evolution

of the process in case it is ruled by a MAP.

In such a case the length of an edge is a random variable having a value

given by the sum of many exponential probability distribution. We present

here the probabilities defined in (2.1) hoping to get some hints regarding the

evolution of the process.

pi(j) =


θi if j = 0

ψi,(j,k) if j = ej + ek ∀j, k = 1, . . . ,m

0 otherwise,

(2.39)

where we define θ ∈ Rm as the vector whose component θi represents the

probability that a branch starting in type i dies without generating any off-
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springs, conditioned that its branch has encountered a branching point. Fur-

thermore, we denote Ψ ∈ Rm×m2
as the matrix whose entry ψi,(j,k) represents

the probability that a branch starting in i individual generates a descendant

starting in type k and change its own type to type j, conditioned that its

branch has encountered a branching point.

The vector f(s), whose entries are the probability generating functions de-

fined in (2.2), may be expressed in the following way

f(s) = θ + Ψ(s⊗ s). (2.40)

Unfortunately, we are not allowed to use the results relative to the multitype

Markovian branching processes obtained in section 2.1, indeed the length of

an edge does not follow an exponential distribution so that the branching

process is not Markovian.

2.4 Algorithmic approach for computing the

extinction probabilities

In the previous section we observed how, by interpreting the MBT as a multi-

type Markovian branching process, see section 2.3.2, it is possible obtain the

extinction probability vector q, as the minimal nonnegative solution of the

extinction formula expressed in (2.38), that we quote here for completeness

0 = d +D0s +B(s⊗ s). (2.41)

Since D0 is a non singular M-matrix, see Definition 1.1.3, this equation may

be rewritten in the form

s = θ + Ψ(s⊗ s), (2.42)

where θ = (−D0)−1d and Ψ = (−D0)−1B have the same meaning of the

parameters defined in the equation (2.39).

The following algorithms provide general strategies for the computation of

the minimal nonnegative solution of a vectorial quadratic equation having the
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form of equation (2.42). However for some of these algorithms it is possible

to give a probabilistic interpretation which may give us some intuitions about

how the algorithms actually work in practice.

Figure 2.4: The evolution of a process depicted as described in Section 2.3.3.
This process becomes extinct, in fact all the individuals dies after a while.
The process can be interpreted as a rooted tree, see the Definition 1.1.5,
wherein the vertices are identified by the birth of the starting individual
(the root), the branching points (the internal vertices) and the deaths of any
individual (the leaves)

2.4.1 Depth algorithm

The depth algorithm was proposed in the thesis of Nectarios Kontoleon [25]

and further analyzed in [4] and [14], which focused respectively on the proba-

bilistic and on the analytical aspects of the algorithm. From the algorithmic

point of view, the depth algorithm is simply a fixed point iteration applied

to equation (2.42). Indeed we are allowed to define the sequence

q(d)
n =

θ, if n = 0

θ + Ψ(q
(d)
n−1 ⊗ q

(d)
n−1), if n > 0,

(2.43)

which is proved to be a monotonically increasing sequence converging to the

extinction probability vector q. In order to study the convergence, we define

the approximation error by the formula

E(d)
n = q − q(d)

n ≥ 0, (2.44)
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and the following theorem is proved to be true, see [14, Theorem 2.3.4.]

Theorem 2.4.1. If the MBT is not critical, then an upper bound for the

approximation error for Depth algorithm is given by

E(d)
n ≤ Ψ(q ⊗ I + I ⊗ q)E

(d)
n−1. (2.45)

The criticality of a process is defined in Definition 2.1.4.

The convergence is assured, in the not critical case, by assuming that Ω,

defined by (2.37), is irreducible, in fact this hypothesis is sufficient for the

fulfillment of the following inequality

ρ(Ψ(q ⊗ I + I ⊗ q)) < 1, (2.46)

where ρ(·) denotes the spectral radius, see (1.5). Therefore a linear conver-

gence is guaranteed.

We consider a tree like the one represented in Figure 2.4, the depth of a

vertex of the tree, is given by its distance from the root, see Definition 1.1.4,

for instance the depths of the vertices a, b and c are respectively 5, 3 and 5.

The depth of a tree is given by the maximal depth of one of its vertices, it is

possible to check that the tree in Figure 2.4 possesses a depth of 5.

The depth algorithm is named in this way since we can interpret the sequence

{q(d)
0 , q

(d)
1 , q

(d)
2 . . .} as follows: the n-th entry of the sequence represents the

vector containing the probability that a tree is extinct and its depth is at

most equal to n. We say that a tree is extinct if the process which is rep-

resented by it, becomes extinct. This interpretation provides us with an

intuitive justification that the sequence {q(d)
0 , q

(d)
1 , q

(d)
2 . . .} is monotonically

increasing and converges to the extinction probability vector, i.e.

lim
n→∞

q(d)
n = q. (2.47)

In fact each element of the sequence is given by the probability for the

process to produce a tree satisfying two conditions: the tree must be extinct

and its depth must be bounded, see Figure 2.4.2. By increasing n, more and

more extinct trees fulfill the condition about the bounded depth, so that the
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Figure 2.5: Graphic representation of what happens when we increase n in
the depth algorithm.

sequence of probabilities {q(d)
n }n≥0 is not decreasing in n. The convergence

is assured by observing that a tree is extinct if and only if its depth is finite,

therefore the tree t2 in the figure 2.4.2 will be eventually absorbed by the

subset of the depth bounded trees for a sufficiently large value of n.

Without delving in the details this algorithm may be also compared to the

Neuts algorithm, which is an algorithm arising in the setting of the Quasi

Birth and Death Markov chains, as described in [4].

2.4.2 Order algorithm

The order algorithm was proposed together with the depth algorithm in the

thesis of Nectarios Kontoleon [25] and studied further in [4] and [14].

It works essentially in the same way the depth algorithm does, indeed, it

is still a fixed point iteration. By employing (1.11), the equation (2.42) is

rewritten in the equivalent form,

s = [I −Ψ(s⊗ I)]−1θ, (2.48)
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and the fixed point iteration is applied to this version of the equation. It

is observed that the matrix I − Ψ(s ⊗ I) with s ∈ [0, 1]m is a non singular

M-matrix, see Definition 1.1.3, and therefore, thanks to the inverse positive

property of the M-matrices [I − Ψ(s ⊗ I)]−1 ≥ 0. We are now allowed to

define the sequence

q(o)
n =

θ, if n = 0

[I −Ψ(q
(o)
n−1 ⊗ I)]−1θ, if n > 0,

(2.49)

which is a monotonically increasing sequence. In order to study the conver-

gence towards the extinction probability vector q, we define the approxima-

tion error by the formula

E(o)
n = q − q(o)

n ≥ 0. (2.50)

In parallel with Theorem 2.4.1, the following theorem is proved,

Theorem 2.4.2. If the MBT is not critical, then an upper bound for the

approximation error for Depth algorithm is given by

E(o)
n ≤ [I −Ψ(q ⊗ I]−1Ψ(I ⊗ q)E

(o)
n−1. (2.51)

The criticality of a process is defined in Definition 2.1.4 and for the proof

of this theorem we refer to [14, Theorem 2.3.4.].

It is possible to prove through analytical arguments that, if the process is non

critical the spectral radius of the matrix [I −Ψ(q ⊗ I]−1Ψ(I ⊗ q) is smaller

than 1, and in particular the following chain of inequalities holds

ρ([I −Ψ(q ⊗ I]−1Ψ(I ⊗ q)) ≤ ρ(Ψ(q ⊗ I + I ⊗ q)) < 1, (2.52)

implying that the order algorithm converges faster than the depth algorithm,

for a proof of this result see [14, Theorem 2.3.8.].

It is possible to prove the result of convergence even through probabilistic

arguments, in parallel to what was done for the depth algorithm. We refer

to Figure 2.4, the order of a certain vertex v is determined by number of left
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Figure 2.6: Graphic representation of what happens when we increase n in
the order algorithm.

edges belonging to the unique path going between v and the root, where the

branch connected to the root vertex is considered a left branch and must be

counted.

In our setting, each vertex is associated to the individual whose life path

passes through it, and the order of a vertex is given by the generation the

associated individual belongs to, i.e. the root is said to be generation 0, the

starting individual represents the first generation, the children of the starting

individual represent the second generation, and so on. For instance, in Figure

2.4, the order of the leaves a, b and c are respectively 3, 3 and 4. The order

of a tree is given my the maximal order of one of its vertices, we observe that

the tree in Figure 2.4 possesses a depth of 4.

The convergence to the effective extinction probability vector can be justified

in an intuitive way with an argument similar to the one used for the depth

algorithm, indeed an extinct tree necessarily have a finite order, even if it is

not true the vice versa.
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2.4.3 Thicknesses algorithm

The thicknesses algorithm is an immediate evolution of the order algorithm

and was proposed by Hautphenne et al. in [17]. In fact, due to (1.11),

equation (2.42) can be reformulated as

s = [I −Ψ(I ⊗ s)]−1θ, (2.53)

and the thicknesses algorithm works as a fixed point iteration applied in turn

to (2.48) and (2.53). So that we can define the sequence

q(t)
n =


θ, if n = 0,

[I −Ψ(q
(t)
n−1 ⊗ I)]−1θ, if n > 0 and n is even,

[I −Ψ(I ⊗ q(t)
n−1)]−1θ, if n > 0 and n is odd,

(2.54)

which is a monotonic non decreasing sequence, due to the positive inverse

property of the M-matrices, see Definition 1.1.3. Without delving into de-

tails, this algorithm is proved to converge at least linearly in the not critical

case, and always faster than the depth algorithm, see [14]. A probabilistic

interpretation exists also for this algorithm and is illustrated in [17]. We refer

to figure 2.4 and observe that a path from the root to a vertex is given by a

sequence of left and right edges, the thicknesses of a vertex is given by the

number of times that this sequence of edges changes from right to left or left

to right. The thicknesses of a tree is given by the maximum of the thicknesses

of its vertex. For instance, in figure 2.4, the thicknesses of the vertices a, b

and c is 3, 2 and 4 respectively, while the tree possesses a thicknesses of 5.

2.4.4 Newton algorithm

The algorithms described until now were in practice fixed point iteration

applied to various reformulation of (2.42), and all these converge linearly in

the non critical case. It is possible to apply to the various reformulation of

(2.42) also the classical Newton method for finding recursively better and

better approximations of the extinction probability vector q. For the details
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concerning this approach we refer to the works [14, 16].

The equation (2.42), can be reformulated as F (q) = 0, where

F (s) = s− θ −Ψ(s⊗ s). (2.55)

The space Rm provided with any norm is a Banach space, and F is a map-

ping of Rm in itself. We say that the mapping F : Rm → Rm is Fréchet

differentiable at x ∈ Rm if there exists a linear operator A : Rm → Rm such

that

lim
h→0

‖F (x+ h)−F (x)− Ah‖
‖h‖

= 0 (2.56)

the linear operator A is denoted by F ′
x and is called the Fréchet derivative

of F at x, for further details see [32]. It can be verified that the map defined

in (2.55) is Frechét differentiable and that

F ′
x : s 7−→ s−Ψ(s⊗ x+ x⊗ s). (2.57)

For a given starting point q
(N)
0 , it is now possible to define the sequence

determined by the Newton method for the solution of F (x) = 0,

q
(N)
n+1 = q(N)

n − (F ′
q

(N)
n

)−1(F (q(N)
n ))

= q(N)
n − [I −Ψ(q(N)

n ⊗ I + I ⊗ q(N)
n )]−1[q(N)

n − θ −Ψ(q(N)
n ⊗ q(N)

n )]

= [I −Ψ(q(N)
n ⊗ I + I ⊗ q(N)

n )]−1[θ −Ψ(q(N)
n ⊗ q(N)

n )]

provided that F ′
x is not singular for each x.

Theorem 2.4.3. Given a not critical process and a starting point such that

0 ≤ q(N)
0 ≤ θ, the Newton sequence {q(N)

0 , q
(N)
1 , q

(N)
2 , . . .} is such that:

• the sequence is well defined,

• the sequence is monotonically non decreasing, i.e. q
(N)
0 ≤ q

(N)
1 ≤

q
(N)
2 ≤ . . .,

• limn→∞ q
(N)
n = q,
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where q is the minimal nonnegative solution of (2.42). Moreover there exists

a positive constant C, such that

‖E(N)
n ‖ ≤ C‖E(N)

n−1‖2, (2.58)

where E
(N)
n = q − q(N)

n , so that the Newton algorithm converges at least

quadratically.

For the proof of this Theorem we refer to [16, Theorem 2.1.].

Here we briefly described only the Newton approach applied directly to equa-

tion (2.42), however similar methods arise by applying the Newton approach

to (2.48) and (2.53), for further details see [14, Chapter 3].

A slightly different Newton approach based on an associate QBD process is

described and analyzed in [18].

The Newton approaches proposed are proved to lead to methods converging

quadratically if the process is not critical, see Definition 2.1.4. On the other

hand, as we get close to critical processes the convergence rate decreases,

becoming linear as soon as the process turns critical. We will see with the

following algorithm how to partially bypass this inconvenience.

2.4.5 Optimistic algorithm

A completely different approach was proposed by Bini, Meini and Poloni in

[7, 29]. Firstly, it is necessary to observe that the formula (2.42) may be

rewritten in the following way

s = θ + B(s, s), (2.59)

where the notation B(s1, s2) = Ψ(s1 ⊗ s2) shoots for pointing out that

the map (s1, s2) 7−→ Ψ(s1 ⊗ s2) is a bilinear vector valued map. It is also

important to recall that, due to the definition of θ and Ψ, the vector e is

always a solution of (2.59).

We set now r = e− s, and by substitution the equation (2.59) becomes

r = B(r, s) + B(s, r)−B(r, r). (2.60)
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In particular we know that q, the the minimal nonnegative solution of (2.59),

stands for extinction probability vector, so that the vector q̃ = e−q may be

interpreted as the survival probability vector, and must fulfill the equation

(2.60).

Our objective becomes the computation of the probability that starting from

a population of just one individual the process doesn’t become extinct. This

is the reason why this algorithm is called optimistic algorithm.

We define the linear application

Hr : x 7−→ B(x, e) + B(e− r,x), (2.61)

so that (2.60) becomes

r = Hrr. (2.62)

We suppose Ω, defined in (2.37), to be irreducible, so that as soon as r ≤ e,

the matrix Hr is irreducible too. Furthermore Hr is even nonnegative so that

by means of the Perron Frobenius theorem, see Theorem 2.1.2, it is possible

to assure that ρ(Hq̃) = 1 and q̃ is a right positive eigenvector of matrix Hq̃.

Given a nonnegative irreducible matrix M , we define the operator PV(M)

which compute the right eigenvector of M associated to the eigenvalue ρ(M)

conveniently normalized in a standard way, for the details we refer to [29].

We observe that the vector q̃ must fulfill the following equality

r = PV(Hr). (2.63)

and in order to find q̃ a fixed point iteration is applied to (2.63). So, given a

starting approximation q̃0, it is possible to define the sequence {q̃0, q̃1, q̃2, . . .}
wherein

q̃n = PV(Hq̃n−1
), (2.64)

for each n ≥ 1. In [7] a Newton approach is proposed for solving (2.63).

Here it is sufficient to say that such an algorithm performs in some sense

in a specular way compared to the standard Newton algorithms described

in the previous section. Indeed the convergence of the algorithm is proved

to be quadratic if the extinction probability vector is far from 0, and in
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particular is quadratic if the process is critical. On the other hand, the rate

of convergence decreases as the probability for the process to die out tends to

0, and become linear if the process survives forever with certain probability.
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Chapter 3
Catastrophes

In the previous chapter we pointed out how the solution of the equation

(2.42) gives us an easy expression for the characterization of the extinction

probability vector. Such an equation holds for the simple MBT since the

different branches of the tree evolve independently one from the other.

We would like now to surround the tree with an environment which influences

at the same time all the individuals that belong to the branching process.

In this case the equation (2.42) is no longer justified since there is no more

independence in the evolution of the various individuals whose lives are now

simultaneously conditioned by the external environment. Due to this reason

the problem we would like to study now is a lot more complex and interesting

than the analysis of the simple MBT.

3.1 An extended scenario: A process of catas-

trophes

In literature this problem has been studied mostly from a probabilistic point

of view, on the other hand our approach means to consider a less general ex-

tension of the model with the purpose of being able to compute numerically

at least some approximation of the parameters which influence the process.

The external environment we consider is examined in detail by Latouche,

Hautphenne and Nguyen in [15], it consists only of a temporal sequence of
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times, {τn, n ∈ N}, such that each of these times coincide with the happening

of a catastrophic event. When a catastrophe happens, it affects each indi-

vidual alive which dies or survives according to a probability depending on

its type, i.e. an individual of type i survives with probability δi ∈ [0, 1] and

dies otherwise. It is possible to define the sequence {ξn, n ∈ N} of the times

passing between two consecutive catastrophes, i.e. ξ1 = τ1 and ξn = τn−τn−1

for each n > 1. Such a process is supposed to be stationary, ergodic and with

a finite mean.

The life of each individual in the tree, apart from the catastrophes process,

is still controlled by a transient MAP with parameters (D0, B,d) as the one

described in the previous chapter.

In (2.3) we defined the population process {Z(t), t ≥ 0}, it is possible to

extract from this continuous time process an embedded discrete process

{Zn, n ∈ N}, (3.1)

where (Zn)i denotes the number of individuals of type i alive just after the

n-th catastrophe. In figure 3.1 we illustrate an example of a MBT which

Figure 3.1: Markovian binary tree subject to catastrophes and generated by
only an individual at time 0. In this case we have Z0 = 1, Z1 = 3 and Z2 = 2.

doesn’t die out after two catastrophes.
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We define the survival matrix ∆δ as the diagonal matrix

∆δ =


δ1 0 · · · 0

0 δ2
. . .

...
...

. . . . . . 0

0 · · · 0 δm

 , (3.2)

and we use this matrix in the following proposition.

Proposition 3.1.1. For every i ∈ Sm, given that Z(0) = i and that the first

catastrophe happens at time ξ1, it holds that

Z1 = (iT eΩξ1∆δ)
T , (3.3)

where Ω is the generator of the mean matrices semi-group defined in (2.15).

Proof. We employ the notations introduced in Definition (2.1.1), so we have

that M(ξ1) = eΩξ1 is the matrix which describe the mean evolution of the

population in an interval of time of length ξ1 without catastrophes. There-

fore, since i ∈ Sm denotes the configuration of the population at time 0, we

have that the expected population vector at time ξ1, just before the catastro-

phe, is given by the transpose of the vector iT eΩξ1 . We conclude by observing

that the entry (Z1)i is given by the expected number of individual alive just

before the catastrophe, multiplied by δi. So, the following formula holds

(Z1)i = (iT eΩξ1)iδi,

for each i = 1, . . . ,m, and the thesis is proved.

In parallel with the simple MBT, we are interested mainly into the study

of the extinction probability vector. The presence of an external environment

makes almost obsolete the analysis concerning the extinction of the process

developed in the previous section. In fact, given λ the eigenvalue of Ω defined

in (2.18), it is still true that λ ≤ 0 implies q = e, but on the other hand

the supercriticality of the process, i.e. the strict positiveness of λ, is no
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more a sufficient condition for q < e. This is caused by the sequence of the

catastrophes which may decrease, sometimes in a drastic way, the survival

chances of a certain population.

In order to include the catastrophes in our analysis, we define the conditional

probability of extinction given the successive times of catastrophes by the

following formula,

qi(ξ) = P[ lim
n→∞

Zn = 0|Z0 = ei, ξ], (3.4)

where ξ = (ξ1, ξ2, . . .) contains the sequence of time intervals between con-

secutive catastrophes. We present now a couple of results that give us some

criteria for understanding better the behavior of the process, even in the

supercritical case. The first one is an application of the theorem proved by

Tanny in [39, Theorem 5.5, Corollary 6.3], which characterizes the scenario

wherein we imagine to have only one type of user, i.e. m = 1.

Theorem 3.1.1. If m = 1, then Ω = D0 + 2B and ∆δ = δ are both scalars

and

1. If eΩE[ξ]δ ≤ 1, then P[q(ξ) = 1] = 1;

2. If eΩE[ξ]δ > 1, then P[q(ξ) < 1] = 1 and

lim
n→∞

1/n log(Zn) = ΩE[ξ] + log(δ),

where ξ is a random variable with the same distribution of any ξn and Ω is

defined by formula (2.37).

This result is pretty intuitive, indeed it means that the extinction occurs

certainly if, applying a catastrophe after a time E[ξ], the expected number

of survivors is at most one. Otherwise the branching process has a strictly

positive probability to survive forever.

The result we present now is more complex result and it is once again the

application of a theorem proved by Tanny, see [40, Theorem 9.10]. We con-

sider the case with a general number of types, i.e. m ≥ 1, and the following

statement is true.
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Theorem 3.1.2. The following limit exists

ω = lim
n→∞

1

n
log‖eΩξ1∆δ . . . e

Ωξn∆δ‖ a.s., (3.5)

and it is equal to ω independently of the matrix norm employed. Furthermore

1. If ω ≤ 0, then P[q(ξ) = 1] = 1;

2. If ω > 0, then P[q(ξ) < 1] = 1, and

P[ lim
n→∞

1

n
log‖Zn‖ = ω | Z0 = ei, ξ] = 1− qi(ξ) a.s.,

for i = 1, . . . ,m,

where Ω is defined by formula (2.37).

In the appendix of [15] it is verified explicitly that the kind of process we

consider fulfills the hypotheses required by the theorems stated by Tanny in

the papers [39, 40].

On the parameter controlling the extinction

Theorem 3.1.2 points out the key role that is played by the parameter ω for

understanding if a process is doomed to extinguish or not.

The existence of the limit (3.5) is not obvious at all and has been an ob-

jective of study for a long time. Bellman, in the work [5] of 1954, proved a

limit existence result for some infinite products of random matrices satisfy-

ing certain restrictive hypotheses. Those restrictive terms are fulfilled by the

infinite product,

lim
n→∞

eΩξ1∆δ . . . e
Ωξn∆δ, (3.6)

so that, due to Bellman’s result, the following limit is known to exist,

ωBell = lim
n→∞

1

n
E[log(eΩξ1∆δ . . . e

Ωξn∆δ)ij], (3.7)

where E[·] denotes the expected value relative to the sequence of random

variables {ξ1, ξ2, . . .} and the value of the limit does not depend on the matrix
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entry chosen.

This result was extensively generalized by Furstenberg and Kesten in the

outstanding work [11]. They firstly proved an almost sure convergence for

the result obtained by Bellman, so that

ωBell = lim
n→∞

1

n
log(eΩξ1∆δ . . . e

Ωξn∆δ)ij a.s.. (3.8)

Then they observed the equivalence between choosing any one of the entries

and working with the maximum norm, defined by (1.9), obtaining

ωBell = lim
n→∞

1

n
log‖eΩξ1∆δ . . . e

Ωξn∆δ‖∞ a.s.. (3.9)

Hence, the following simple step was the observation that on Rn×n every

norm is equivalent, yielding to

ω = ωBell, (3.10)

where ω is the limit value defined in Theorem 3.1.2. In the following years, the

result achieved by Kesten and Furstenberg was proved in a lot of different

elegant ways, see the works by Kingman [24] and Oseledec [33]. Further

studies gave rise to equivalent expressions for the parameter ω. For instance,

we introduce a special class of function on the space of real valued matrices,

Definition 3.1.1 (Supermultiplicative function). A function f : Rn×n →
[0,∞) is called supermultiplicative if

• f is continuous;

• f(λA) = λf(A), for each λ ≥ 0;

• f(AB) ≥ f(A)f(B).

Key, in the work [22, Theorem 1], employed the supermultiplicative func-

tions as the ingredients for proving a result that, conveniently adjusted to

our process, leads to the following equivalent expression for the parameter

ω,

ω = lim
n→∞

1

n
log f(eΩξ1∆δ . . . e

Ωξn∆δ) a.s., (3.11)

50



where f is a generic supermultiplicative function. Key’s result may be applied

only assuming certain restrictive conditions, but it can be shown that those

terms are fulfilled by our process.

In the same paper Key provided an additional interesting formulation for ω,

see [22, Corollary 1], in fact

ω = lim
n→∞

1

n
log ρ(eΩξ1∆δ . . . e

Ωξn∆δ) a.s., (3.12)

where ρ(·) denotes the spectral radius, see (1.5). We highlight that this re-

sult is not an immediate consequence of (3.11) since the spectral radius is

not a supermultiplicative function, but is based also on [22, Proposition 3]

which states that f(A) ≤ ρ(A) for every f supermultiplicative function and

A ∈ Rn×n.

The computation of the parameter ω, despite all its possible different formu-

lation (3.5),(3.8),(3.11),(3.12), is a difficult matter. Indeed the catastrophe

may have a stronger or weaker effect depending on the values of the com-

ponents of the sequence (ξ1, ξ2, . . .) and on the types of the individuals that

are alive when a catastrophe happens. Therefore, apart from particular sim-

ple cases, our objective will be the identification of incisive lower and upper

bounds such that ω ∈ [ωl, ωu]. We will use a combined numerical and proba-

bilistic approach in order to narrow the interval [ωl, ωu] as much as possible.

Before proceeding with the analysis, it is interesting to open a parenthesis

about the random linear dynamical systems and maximal Lyapunov expo-

nent, so that it is more evident the hardness of the computation of the

parameter ω.

3.1.1 Linear random dynamical system

In this subsection our goal is to briefly introduce the framework of the linear

random dynamical system. In fact the computation of ω may be compared to

the computation of the maximal Lyapunov exponent of a particular system

of this kind.

Definition 3.1.2 (Random dynamical system). A random dynamical system
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is defined by the tuple (S,Γ, Q), where

• S denotes the space of the states where the system can stand, for sim-

plicity S ⊆ Rk for some k;

• Γ is a set of maps from S in itself, a σ-algebra G is supposed to be

defined on this set, see (1.14);

• Q is a probability measure defined on the σ-algebra G, see (1.14).

If the maps in Γ are linear, i.e. Γ ⊆ Rk×k, we talk about linear random

dynamical system.

A system like this works intuitively in the following way: we suppose

to be in state X0, the first transition is defined by choosing a map γ1 ∈ Γ

according to the probability Q, so that X1 = γ1(X0), then we choose in the

same way γ2 ∈ Γ leading to X2 = γ2(X1) = γ2γ1(X0) and so on. What we

obtain is therefore a Markov chain {Xn, n ∈ N} on the state space S.

It is evident that if the set Γ is formed by only one linear map A ∈ Rk×k, we

have Xn = AnX0 so that the behavior of the system depends on the spectrum

of the matrix A. In particular if A > 0, the system will explode if and only

if the spectral radius of A is greater than 1, i.e. ρ(A) > 1. In the case with

a general number of linear maps, the role of the spectral radius is played, in

some sense, by the maximal Lyapunov exponent of the system,

Definition 3.1.3 (Maximal Lyapunov exponent). The maximal Lyapunov

exponent (MLE) of the random linear dynamical system defined in 3.1.2 is

given by the formula,

λ{Γ, Q} = lim
n→∞

1

n
E log‖A1A2 . . . An‖, (3.13)

where {A1, A2, . . .} is an iid sequence of maps chosen among the elements of

Γ according to the probability Q.

The computation of λ{Γ, Q} is a well known problem in literature, and

in particular its hardness is witnessed in [24, 41].

We mentioned that in some sense the role of the spectral radius is played
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by the MLE. This statement may be justified briefly by observing that if

we have only one linear map, i.e. Γ = {A}, it is easy to compute the MLE

in fact λ{Γ, Q} = log(ρ(A)). Therefore the MLE may be seen as a sort of

generalization of the spectral radius.

As far as we know, exact algorithms in the general case exist only in presence

of maps with a certain structure [10, 21, 9] and mostly when the cardinality

of the set Γ is finite [36]. More commonly, the objective is either to give

bounds [22, 12] or to approximate the exact value of the MLE [31, 23, 28].

Going back to our problem, we recall that we are interested in computing

ω = lim
n→∞

1

n
E log‖eΩξ1∆δ . . . e

Ωξn∆δ‖.

This problem can be interpreted as the computation of the MLE of the

random Dynamical system having the following specific parameters,

• S = {x ∈ Rm | xi ≥ 0, i = 1, . . . ,m};

• Γ = {eΩt∆δ ∈ Rm×m | t ≥ 0};

• Q is defined by the probability distribution which rule the time interval

between two catastrophes.

So that the problem of computing ω inherits the whole set of difficulties that

goes with the computation of the maximal Lyapunov exponent of a random

dynamical system.

3.2 A duality approach

As explained in the previous section, in general computing the limit (3.5) is

difficult. However it must be observed the special structure of the matrices

which form the set of the maps of the linear random dynamical system we

are interested into.

In this section our aim is to give a different expression for ω, in order to

facilitate its analysis in the following chapter.
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We assume that the matrix Ω defined in (2.37) is irreducible. We denote by

λ the eigenvalue of Ω defined by (2.18). So we may define the matrix

Ω∗ = Ω− λIm, (3.14)

which is a matrix with nonnegative off diagonal elements, and with all the

eigenvalues with a strictly negative real part apart from one which is equal

to 0, therefore −Ω∗ is a singular M-matrix.

Lemma 3.2.1. An equivalent expression for ω is given by the formula

ω = λE[ξ] + lim
n→∞

1

n
log‖eΩ∗ξ1∆δ . . . e

Ω∗ξn∆δ‖. (3.15)

Proof. It is known that an expression for ω is given by (3.5). Therefore the

following equivalences holds,

ω = lim
n→∞

1

n
log‖e(Ω∗+λIm)ξ1∆δ . . . e

(Ω∗+λIm)ξn∆δ‖

= lim
n→∞

1

n
log‖eΩ∗ξ1eλξ1∆δ . . . e

Ω∗ξneλξn∆δ‖

= lim
n→∞

1

n
log(eλ(ξ1+..+ξn)‖eΩ∗ξ1∆δ . . . e

Ω∗ξn∆δ‖)

= lim
n→∞

λ
ξ1 + . . .+ ξn

n
+ lim

n→∞

1

n
log‖eΩ∗ξ1∆δ . . . e

Ω∗ξn∆δ‖.

The thesis follow from the strong law of large numbers.

There exists a corollary of the Perron-Frobenius theorem for singular M-

matrices, we state it here.

Theorem 3.2.1 (Perron-Frobenius Theorem. Singular M-matrices case).

The eigenvalue 0 for a singular irreducible M-matrix M is simple and there

exist positive right and left eigenvectors associated to such eigenvalue.

By applying this version of the Perron-Frobenius theorem to the matrix

Ω∗, we know that there exist strictly positive left and right eigenvectors,

denoted respectively u and v, for such a matrix associated to the 0 eigenvalue.
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Furthermore u and v are also the eigenvectors associated to the eigenvalue

λ of the matrix Ω. We choose to normalize these eigenvectors in a canonical

way, that is to say

uTe = 1, uTv = 1. (3.16)

It is useful to define the diagonal matrices having these vectors as diagonals,

to be more precise

∆u = diag(u), ∆v = diag(v). (3.17)

Indeed we need these matrices in order to express the fundamental matrix

Θ, defined by this formula,

Θ = ∆−1
u (Ω∗)T∆u. (3.18)

Proposition 3.2.1. The matrix Θ is a generator matrix. Moreover its sta-

tionary probability vector π is given by

π = ∆uv = ∆vu.

Proof. In order to prove that Θ is a generator matrix it is sufficient to verify

that the non diagonal entries of matrix Θ are nonnegative and that the row

sums are equal to zero for each row. The first point is verified by the following

chain of equalities,

Θij =
m∑

k,h=1

(∆−1
u )ik((Ω

∗)T )kh(∆u)hj =
1

ui
(Ω∗)jiuj,

and by the non negativity of the off diagonal entries of matrix Ω∗ and of u.

The row sums can be computed directly by multiplying Θ for the vector e,

Θe = ∆−1
u (Ω∗)T∆ue = ∆−1

u (Ω∗)Tu = ∆−1
u (uTΩ∗)T = ∆−1

u 0 = 0.

The truth of the statement concerning the stationary probability vector may
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be checked in a similar way

(∆uv)TΘ = vT∆u∆
−1
u (Ω∗)T∆u = (Ω∗v)T∆u = 0T∆u = 0T .

We are now interested in reformulating the expression for ω, see (3.15),

so that the matrix Θ appears in it.

Lemma 3.2.2. An equivalent expression the constant ω, defined by (3.15),

is given by the formula ω = λE[ξ] + ψ, where

ψ = lim
n→∞

1

n
log(eΘη1∆δ . . . e

Θηn∆δ)ij (3.19)

where we denote by ηj = ξ−j the intervals between events in the time reversed

version of the catastrophe process.

Proof. Using (3.15) we can write ω = λE[ξ] + ψ̃, where

ψ̃ = lim
n→∞

1

n
log(eΩ∗ξ1∆δ · · · eΩ∗ξn∆δ)ji.

Therefore we have to prove that ψ̃ = ψ. This is verified by the following
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chain of equalities,

ψ̃ = lim
n→∞

1

n
log((∆−1

u eΘT ξ1∆u∆δ∆
−1
u eΘT ξ2∆u∆δ · · ·∆−1

u eΘT ξn∆u∆δ)
T )ij

= lim
n→∞

1

n
log((∆−1

u eΘT ξ1∆δe
ΘT ξ2∆δ · · · eΘT ξn∆u∆δ)

T )ij

= lim
n→∞

1

n
log(∆δ∆

−1
u eΘξn∆δe

Θξn−1∆δ · · ·∆δe
Θξ1∆−1

u )ij

= lim
n→∞

1

n
log(∆δ∆ue

Θη1∆δe
Θη2∆δ · · ·∆δe

Θηn∆−1
u )ij

= lim
n→∞

1

n
log ρ(∆δ∆ue

Θη1∆δe
Θη2∆δ · · ·∆δe

Θηn∆−1
u )

= lim
n→∞

1

n
log ρ((∆δ∆u)

−1∆δ∆ue
Θη1∆δe

Θη2∆δ · · · eΘηn∆−1
u (∆δ∆u))

= lim
n→∞

1

n
log ρ(eΘη1∆δ · · · eΘηn∆δ)

= lim
n→∞

1

n
log(eΘη1∆δ · · · eΘηn∆δ)ij = ψ,

where we used the equivalent formulations for the maximal Lyapunov expo-

nent (3.12) and the stationarity of the process {ξn}n which imply that the

tuple (η1, . . . , ηn) = (ξ−1, .., ξ−n) has the same distribution as (ξn, . . . , ξ1).

After all this analysis, we observe that we can focus on the computation

of ψ instead of ω, that means that the set of the linear maps of the random

dynamical system we are interested into is now given by

Γ = {eΘt∆δ | t ≥ 0}. (3.20)

The benefit of this replacement will be pointed out in the following section.

3.3 Matrix exponential of a generator matrix

In the previous section we have defined the set of the matrices which form

the linear maps of our special linear random dynamical system, see (3.20).

These matrices play a key role in the computation of ψ, so that it is important

to spend some time studying their properties, hoping to obtain some useful

information which could simplify the evaluation of the parameter ψ.
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These matrices possesses a particular form, indeed the generic matrix is given

by the multiplication of the exponential of a random matrix times a fixed

diagonal one, i.e. eΘt∆δ, where Θ and ∆δ are defined respectively in (3.18)

and (3.2), and the randomness is introduced by the scalar t ≥ 0. In particular

we are interested in computing the random product

V (t1, . . . , tn) = eΘt1∆δ . . . e
Θtn∆δ. (3.21)

Since ∆δ is a diagonal matrix with positive diagonal entries, by applying the

Definition 1.12 of the matrix exponential, it is possible to write this random

product in the following equivalent form,

V (t1, . . . , tn) = eΘt1e∆̃δ . . . eΘtne∆̃δ , (3.22)

where ∆̃δ is the diagonal matrix such that (∆̃δ)ii = log δi.

We observe that the evaluation of this product may be a lot easier if it could

be possible to commute the factors, but the Theorem 1.1.1 states that this

can be done if and only if Θ∆̃δ = ∆̃δΘ which is in general not true. Therefore

without further assumption

V (t1, . . . , tn) 6= eΘ
∑n
i=1 tien∆̃δ . (3.23)

We recall now that in Proposition 3.2.1 we proved that Θ is a rate matrix,

and clearly Θt, for each t ≥ 0, maintain such property. Moreover the prob-

ability stationary vector remains the same for each t. Therefore it could be

interesting to examine the properties of the exponential of a rate matrix.

Proposition 3.3.1. For any rate matrix Θ ∈ Rn×n having stationary prob-

ability vector π ∈ Rn it holds that eΘt is a stochastic matrix with π as its

stationary probability vector for each t ≥ 0.

Proof. We recall that from the Definition 1.12 we have that

eΘt =
∞∑
i=0

(tΘ)i

i!
.
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In order to prove the stochasticity of the matrix eΘt it must verified the

positivity of its entries and that the sums over each row is equal to 1.

• The positivity of the entries is proved by considering Θ = H + υI for

υ ≤ 0 such that H ≥ 0, this decomposition exists since Θ is a rate

matrix. Thanks to Theorem 1.1.1, we have that

eΘ = eH+υI = eHeυI ,

since HυI = υIH = υH At this point is sufficient to observe that

eH ≥ 0 due to the non negativity of H and that eυI is equal to eυI

thanks to the definition of the matrix exponential. Therefore

eΘt = eteΘ = eteυeH ≥ 0.

• For the second part it is sufficient to observe that etΘe = e, which is

verified by

etΘe =
∞∑
i=0

(tΘ)i

i!
e = Ie +

∞∑
i=1

tiΘi−1

i!
Θe = e,

where the last equality is true since Θ is a generator, i.e. Θe = 0.

The argument concerning the fact about the stationary probability vector is

quite similar, indeed

πT etΘ = πT
∞∑
i=0

(tΘ)i

i!
= πT I +

∞∑
i=1

πTΘ
tiΘi−1

i!
= πT ,

where the last equality follow from πTΘ = 0T .

Therefore the linear maps forming the set (3.20) have a very specific

structure. Indeed, due to Proposition 3.3.1, eΘt is a stochastic matrix for

each t ≥ 0, and since 0 ≤ δi ≤ 1 fr each i = 1, . . . ,m, we have that all the

matrices eΘt∆δ are subtochastic matrices.

Moreover, due to the definition of Θ, see (3.18), the irreducibility of Θ is

59



implied by the irreducibility of the matrix Ω, see (2.37), condition that we

have already required at the beginning of the chapter. Therefore we can

suppose Θ to be irreducible. Hence, if we also suppose the entries δi to be

strictly greater than 0 for each i = 1, . . . ,m, we have that eΘt∆δ > 0 for each

t > 0.
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Chapter 4
Estimate of the extinction probability

and numerical results

In the previous chapter we introduced a process of catastrophes influencing

the behavior of the branching process we are studying. Theorem 3.1.2 intro-

duced the parameter ω whose value determines either a certain extinction or

a strictly positive probability of infinite time survival of the process.

In Lemma 3.2.2 we managed to obtain a nicer expression for ω, introducing

a new parameter ψ and observing that the computation of it may be likened

to the computation of the maximal Lyapunov exponent of a particular linear

random dynamical system, see definition 3.1.2, having a very specific set of

linear maps

Γ = {eΘt∆δ | t ≥ 0}. (4.1)

The properties of this set of maps are illustrated in the last part of the

previous chapter. Our objective is now to exploit these properties for achiev-

ing some information concerning the extinction probability, which may be

deduced through the estimation of the parameter ψ.
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4.1 Particular cases: exact computation of

the extinction probability

Despite the nice form of the set (4.1), the computation of the maximal Lya-

punov exponent ψ, defined in (3.19), is still beyond our possibilities. An

exact evaluation of such parameter may be obtained only in cases wherein

some additional restrictive assumptions are made.

4.1.1 Type independent extinction probabilities

In this simpler scenario we suppose that the survival probabilities are inde-

pendent from the type of the individuals, i.e. δi = δj for each i, j = 1, . . . ,m.

In this case ψ can be computed as stated in the following theorem, see [15,

Corollary 5.1]

Theorem 4.1.1. If for each i = 1, . . . ,m we have δ = δi, then

ψ = log(δ), (4.2)

where ψ is the parameter defined in (3.19).

Proof. Since δi = δj for every i, j = 1, . . . ,m, we have that ∆δ = δIm. By

means of (3.19) and Theorem 1.1.1, it is possible to express ψ in this simple

way

ψ = lim
n→∞

1

n
log‖eΘη1∆δ . . . e

Θηn∆δ‖

= lim
n→∞

1

n
log‖δneΘη1 . . . eΘηn‖

= lim
n→∞

log(δn)1/n + lim
n→∞

log‖eΘτn‖

= log(δ) + lim
n→∞

log‖eΘτn‖,

where τn =
∑n

i=1 ηi denotes the time of happening of the n-th catastrophic

event. Since the maximal Lyapunov exponent is independent from the norm

chosen, see definition (3.5), we employ the norm ‖·‖ = ‖·‖∞ so that ‖eΘτn‖ =
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1 because of the stochasticity of the matrix eΘt, proved in Proposition 3.3.1.

Hence we may conclude,

ψ = log(δ) + lim
n→∞

log‖eΘτn‖ = log(δ) + log 1 = log(δ).

4.1.2 Constant intervals between catastrophes

A different assumption that simplifies in a drastic way the problem is to

consider the intervals between the consecutive catastrophes having a constant

length. Even in this case it is possible to compute easily the parameter ψ,

indeed the following theorem is proved.

Theorem 4.1.2. If ξi = β for each i = 1, 2, . . ., then

ψ = log(ρ(eΘβ∆δ)), (4.3)

where ψ is the parameter defined in (3.19).

Proof. In this case we have that the following chain of equalities is true,

ψ = lim
n→∞

1

n
log‖eΘη1∆δ . . . e

Θηn∆δ‖

= lim
n→∞

log(‖(eΘβ∆δ)
n‖)1/n

= log(ρ(eΘβ∆δ)),

where the last equivalence is given by the Gelfand’s formula, whose proof

may be found in [37].

4.2 General case: a probabilistic approach

As already stated, a computable formula for ψ is available only in presence

of particular and too restrictive conditions. Therefore in the general case we

must content by obtaining approximations or bounds.
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In this section we engage the problem exploiting the probabilistic features of

the process we are working on, in fact the generator Θ defines a continuous

time Markov process

{φ(t) | t ≥ 0} (4.4)

on the state space Rm.

So that the study of the whole population process may be reduced to the

study of this single particle process. During its lifetime this particle faces a

sequence of accidents, corresponding to the whole population process catas-

trophes, and survives with a probability according to its type when one of

these happens, i.e. with probability δi for i = 1, ..,m. We define the times of

the successive occurrences of accidents as the sequence {θ0, θ1, θ2, . . .}, whose

entries are defined by θ0 = 0 and θn = θn−1 + ηn for n ≥ 1, where the se-

quence of (η1, η2, . . .) is defined in Theorem 3.2.2. It is possible to extract

from the process (4.4) an embedded discrete time process {φn | n ∈ N},
wherein φn = φ(θn). Moreover we denote by T the first epoch such that the

particle does not survive an accident. It is now possible to give a probabilis-

tic expression for the parameter ψ, in fact the formula (3.19) is equivalent to

the following

ψ = lim
n→∞

log P[T > θn, φn = j | φ0 = i, θ0, . . . , θn], (4.5)

for any choice of i, j = 1, . . . ,m.

We refer to [15] for the proof of the following theorem,

Theorem 4.2.1. If the sequence of times of catastrophes forms an ergodic

stationary process, then ψl ≤ ψ ≤ ψu, with

ψu = lim
n→∞

log P[T > θn, φn = j | φ0 = i], (4.6)

and

ψl =
m∑
i=1

uivi log δi, (4.7)

where u and v are respectively the left and the right eigenvector of Ω asso-

ciated to the eigenvalue λ, and ψ is defined by formula (4.5). The vectors u
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and v are normalized in the canonical way as stated in (3.16).

It is possible to give an alternative expression for ψl which is based only

on the matrix generator Θ, see (3.18), in fact

ψl =
m∑
i=1

πi log δi, (4.8)

where π is the stationary probability vector of the generator matrix Θ. This

equality is a direct application of Proposition 3.2.1.

The bounds suggested in Theorem 4.2.1 are tight, indeed in the case with

δi = δj for each i, j = 1, ..,m we have that

ψl = ψ = ψu,

the details may be seen in [15].

The upper bound ψu depends from the probability distribution chosen for

the process of the catastrophes, in [15] such an upper bound is evaluated in

a couple of special cases.

Poisson process of catastrophes

We assume the process {τn} to be a Poisson process of rate β = 1/E[ξ]. This

means that the probability distribution of the time interval between two con-

secutive catastrophes follows an exponential distribution of parameter 1/β.

With these assumptions it is possible to compute the transition probabilities

matrix P̃ associated to the discrete time phase process {φn | n ∈ N}. In fact

without catastrophes the transition matrix would be

P =

∫ ∞
0

eΘtβe−βtdt = β(βI −Θ)−1,

therefore the transition matrix for the process just after the happening of a

catastrophe is given by P̃ = P∆δ. So, with this information, it is possible to
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rewrite the upper bound given by Theorem 4.2.1 using the following equalities

ψu = lim
n→∞

1

n
log(P̃ )nij = log ρ(P∆δ) = (4.9)

= log ρ(β(βI −Θ)−1∆δ). (4.10)

Markovian arrival process of catastrophes

A more general case is considered if we suppose that the epochs of the

catastrophes are marked by the observable transitions of a MAP as the

one described in section 2.2. This MAP generates a bidimensional process

{M(t), φ(t), t ≥ 0}, so that the process M(t) counts the catastrophes oc-

curred before time t. We suppose that this MAP is governed by the matrices

D0 and D1 defined by formulas (2.26) and that the initial distribution vector

α is equal to the stationary probability vector of (−D0)−1D1. It is known

from [1] that the time reversal version of a MAP is still a MAP wherein the

governing matrices are given by

D̃i = ∆−1
ε DT

i ∆ε,

where ε is the stationary probability vector of D0 + D1 and ∆ε is the diag-

onal matrix having the element of ε on the diagonal. The initial probability

vector of the time reversed MAP is given by α̃ such that it is the stationary

probability vector of (−D̃0)−1D̃1.

In order to characterize the first epoch such that the particle does not sur-

vive an accident, it is necessary to keep track of the bidimensional process

{(ϕ(t), χ(t)), t ≥ 0}, where ϕ(t) is the phase of the population process at

time t, see (4.4), and χ(t) is the phase of the time reversed MAP of the catas-

trophes. The infinitesimal generator of this process is given by the matrix

Q = Q0 +Q1 where

Q0 = Θ⊗ I + I ⊗ Ã0, Q1 = I ⊗ Ã1, (4.11)

represent the transition rates without and in presence of catastrophes, re-

spectively.
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The transition probability matrix at the epoch of an accident is given by

P = (−Q0)−1Q1, therefore if we consider the moment just after the catas-

trophe the transition matrix becomes P̃ = P (∆δ ⊗ I).

It is now possible to give an alternative expression for the upper bound for-

mulated in Theorem 4.2.1,

ψu = lim
n→∞

1

n
log((I ⊗ α̃)P̃ n(I ⊗ e))ij

= log ρ(P̃ ) = log ρ(−(Θ⊗ I + I ⊗ Ã0)−1(∆δ ⊗ Ã1)).

4.3 General case: a matrix approach

We are now interested in exploiting the properties of the matrix appearing in

the various equivalent formulations available for the parameter ψ, in hopes

of providing useful bounds.

We denote by V (t) the substochastic matrix

V (t) = eΘt∆δ, t ≥ 0. (4.12)

The goal is to obtain informations concerning the parameter ψ, that we recall

may be computed through one of the following expressions

ψ = lim
n→∞

1

n
log(V (η1) . . . V (ηn))ij a.s., (4.13)

= lim
n→∞

1

n
log‖V (η1) . . . V (ηn)‖ a.s., (4.14)

= lim
n→∞

1

n
log ρ(V (η1) . . . V (ηn)) a.s., (4.15)

for each entry i, j = 1, . . . ,m and each matrix norm ‖·‖.
It is difficult to deduce bounds through formula (4.13), therefore we focus

our attention to the other two expressions.

Norm formulation

Firstly, we analyze the formulation (4.14) and, in particular, we consider the

maximum norm, see (1.8). We observe that it is possible to exploit some of
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the properties of the matrix norm operator in order to prove the following

proposition

Proposition 4.3.1. For every η1, . . . , ηn ≥ 0, the following chain of inequal-

ities holds

‖(eπT∆δ)
n‖∞ ≤ ‖V (η1) . . . V (ηn)‖∞ ≤ ‖∆n

δ ‖∞, (4.16)

where π is the steady state probability vector associated to the generator ma-

trix Θ.

Proof. We prove separately the two inequalities.

• ‖V (η1) . . . V (ηn)‖∞ ≤ ‖∆n
δ ‖∞:

Since the maximum norm is submultiplicative, see (1.7), we have that

‖V (η1) . . . V (ηn)‖∞ = ‖eΘη1∆δ . . . e
Θηn∆δ‖∞

≤ ‖eΘη1‖∞‖∆δ‖∞ . . . ‖eΘηn‖∞‖∆δ‖∞.

By recalling Proposition 3.3.1, we know that for each i = 1, . . . , n the

matrix eΘηi proves to be a stochastic matrix and therefore ‖eΘηi‖∞ = 1.

Hence we have that

‖V (η1) . . . V (ηn)‖∞ ≤ ‖∆δ‖∞ . . . ‖∆δ‖∞ = δnmax.

where δmax = maxi=1,...,m δi. The inequality is therefore proved since

δnmax = ‖∆n
δ ‖∞.

• ‖(eπT∆δ)
n‖∞ ≤ ‖V (η1) . . . V (ηn)‖∞:

We prove this fact by induction.

For n = 1 we have that for every t ≥ 0,

‖eπT∆δ‖∞ = ‖eπT e−ΘteΘt∆δ‖∞ = ‖eπT eΘt∆δ‖∞
≤ ‖eπT‖∞‖eΘt∆δ‖∞ = ‖eΘt∆δ‖∞,
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Therefore, by choosing t = η1, we have that

‖eπT∆δ‖∞ ≤ ‖eΘη1∆δ‖∞ = ‖V (η1)‖∞.

In order to prove the inductive step, we suppose the proposition to be

true for each product of at most n− 1 factors, in particular

‖(eπT∆δ)
n−1‖∞ ≤ ‖eΘt1∆δ . . . e

Θtn−1∆δ‖∞ (4.17)

for each choice of t1, . . . , tn−1 ≥ 0.

Given η1, . . . , ηn ≥ 0, we observe therefore that the following chain of

inequalities is verified

‖(eπT∆δ)
n‖∞ = |πT∆δe|‖(eπT∆δ)

n−1‖∞
≤ |πT∆δe|‖eΘt1∆δ . . . e

Θtn−1∆δ‖∞

indeed we have just employed (4.17). Hence, by choosing (t1, . . . , tn−1) =

(η2, . . . , ηn) we have that

‖(eπT∆δ)
n‖∞ ≤ |πT∆δe|‖V (η2) . . . V (ηn)‖∞

= ‖πT∆δeV (η2) . . . V (ηn)‖∞.

It is now possible to observe that there exists a constant C ∈ R such

that

0 ≤ πT∆δeIm ≤ eπT∆δ + CIm,

in particular this is verified as soon as

C ≥ max
j=1,...,m

{
m∑
i=1

πiδi − πjδj} > 0.

Therefore, by choosing C in this way, the proof can be completed by
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observing that

‖(eπT∆δ)
n‖∞ ≤ ‖πT∆δeV (η2) . . . V (ηn)‖∞
≤ ‖(eπT∆δ + CIm)V (η2) . . . V (ηn)‖∞
≤ ‖eπT∆δV (η2) . . . V (ηn)‖∞ + ‖CV (η2) . . . V (ηn)‖∞
≤ ‖eπT∆δV (η2) . . . V (ηn)‖∞
≤ ‖V (η1)V (η2) . . . V (ηn)‖∞,

where the last inequality is proved with an argument identical to the

one used in the step with n = 1 and by choosing t = η1.

This proposition leads directly to the following corollary which provides

us with new bounds for the parameter ψ.

Corollary 4.3.1. For each η1, η2, . . ., we define ψ as in (4.14) and the fol-

lowing chain of inequalities holds,

log(
m∑
i=1

πiδi) ≤ ψ ≤ log(δmax), (4.18)

where δmax = maxi=1,...,m δi.

Proof. The proof follows directly from Proposition 4.3.1 and from the mono-

tonicity of the function logarithm, indeed it holds that

lim
n→∞

1

n
log‖(eπT∆δ)

n‖ ≤ ψ ≤ lim
n→∞

1

n
log‖(∆δ)

n‖.

So that, due to the Gelfand’s formula, we have that

lim
n→∞

1

n
log‖(∆δ)

n‖ = log(ρ(∆δ)) = log(δmax),

and

lim
n→∞

1

n
log‖(eπT∆δ)

n‖ = log(ρ(eπT∆δ)) = log(
m∑
i=1

πiδi).
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We would like to give now a probabilistic intuition concerning the meaning

of the lower bound formula

ψ
(norm)
l = log(

m∑
i=1

πiδi) (4.19)

we just found.

We observe that by letting the time flow, for big values of t, the Markov

process of the phases {φ(t), t ≥ 0}, defined in (4.4), becomes stable. Once

the stability is reached, the process φ(t) is in a certain phase according to

the probability values given by the entries of the vector π.

Therefore the expected value of the probability to die in a catastrophe may

be approximated, for large values of t, by

δ̄ =
m∑
i=1

δiP[Phase of the process is i] '
m∑
i=1

δiπi.

So if we approximate ∆δ with δ̄I, we obtain an approximation for ψ given

by

ψ̄ = log(δ̄) = log(
m∑
i=1

πiδi) = ψ
(norm)
l ,

where the first equality holds thanks to Theorem 4.1.1.

It is very interesting to compare the newfound lower bound with ψl, defined

in (4.7). We observe that

ψ
(norm)
l = log(

m∑
i=1

πiδi) ≥
m∑
i=1

πi log δi = ψl. (4.20)

This inequality follows directly from the concavity of the log function and

from the fact that
∑m

i=1 πi = 1.
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Spectral radius formulation

We focus our attention now on the formulation for ψ involving the spectral

radius, see (4.15). We define the function

ρ(t) = ρ(V (t)), (4.21)

as the value of the spectral radius associated the matrix V (t) = eΘt∆δ. We

observe that the matrix eΘt is nonnegative for t ≥ 0 and turns out to be

irreducible for t > 0. In fact the irreducibility is guaranteed by the definition

of Θ, see (3.18), and by the assumed irreducibility of Ω, defined in (2.16).

Moreover, we observe that the condition δi > 0 for each i = 1, . . . ,m is

sufficient to assure the matrix V (t) to be nonnegative and irreducible for

every t > 0.

Under this mild hypotheses, it is possible to apply the Perron Frobenius

Theorem, see Theorem 2.1.2, to each matrix V (t). So that for every t > 0,

ρ(t) turns out to be the simple maximum modulus eigenvalue descending from

the Perron Frobenius Theorem and moreover there must exist two positive

vectors u(t) and v(t), such that

u(t)TV (t) = ρ(t)u(t)T , V (t)v(t) = ρ(t)v(t). (4.22)

Hence, we refer to Andrew et al., see [2, Theorem 2.1.], fitting their result to

our scenario by stating the following theorem

Theorem 4.3.1. If V (t) = eΘt∆δ is nonnegative and irreducible we have

that the scalar function ρ(t), defined in (4.21), is an analytic function on

the domain (0,∞). Moreover, given the positive eigenvectors u(t) and v(t),

defined in (4.22) and normalized as follow

u(t)Tv(t) = 1 u(t)Te = 1, (4.23)

we have that u(t) and v(t) are analytic vector functions on the domain

(0,∞).

This theorem is a corollary of [2, Theorem 2.1.], and is proved just by ob-
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serving that, under the hypotheses of Theorem 4.3.1, the maximum modulus

eigenvalue of V (t) is simple for t > 0.

We conjecture that the study of the function ρ(t) is of a certain interest since

we would like to compare the parameter ψ, defined in (4.15), to the func-

tion ρ(t) computed in some particular point. We state now some remarks

concerning the function ρ(t) with the target of obtaining some information

about its behavior in comparison with the parameter ψ.

Lemma 4.3.1. The value of the function ρ(t) is known in the cases wherein

t→∞ and t = 0, in particular

• We have that ρ(0) = δmax, where δmax = maxi=1,...,m δi.

Moreover, if we suppose δmax = δi and δj < δmax for each j 6= i the

functions u(t), v(t) and ρ(t) are analytic on the domain [0,∞) and

u(0) = v(0) = ei.

• The limit for t going to infinity of the function ρ(t) exists and we have

that

lim
t→∞

ρ(t) =
m∑
i=1

πiδi, (4.24)

where π is the steady state probability vector associated to the generator

matrix Θ.

Moreover, it holds that

lim
t→∞

v(t) = e, lim
t→∞

u(t)T =
1

ρ∞
πT∆δ, (4.25)

where ρ∞ =
∑m

i=1 πiδi.

Proof. • We observe that the function ρ(t) can be easily evaluated in

t = 0, in fact

ρ(0) = ρ(V (0)) = ρ(eΘ0∆δ) = ρ(∆δ) = δmax = δi. (4.26)

Moreover, the hypothesis δj < δmax for each j 6= i guarantees us that

the maximum modulus eigenvalue δmax of ∆δ is simple. Therefore it is

possible to extend the analyticity of the functions ρ(t), u(t) and v(t)
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even to t = 0, thanks to [2, Theorem 2.1.].

This leads to the uniqueness of the normalized left and right eigen-

vectors, and in particular it is possible to check trivially that u(0) =

v(0) = ei.

• We recall that, since Θ is a generator matrix,

lim
t→∞

eΘt = eπT .

Therefore it is possible to evaluate limt→∞ ρ(t), indeed

lim
t→∞

ρ(t) = lim
t→∞

ρ(V (t)) = lim
t→∞

ρ(eΘt∆δ) = ρ(eπT∆δ), (4.27)

So that limt→∞ ρ(t) is given by the spectral radius of a rank 1 matrix,

that can be easily computed

lim
t→∞

ρ(t) = ρ(eπT∆δ) = πT∆δe =
m∑
i=1

πiδi. (4.28)

Since limt→∞ V (t) is a rank 1 matrix, it is easy to check the statement

concerning the eigenvectors.

We focus now on the analysis of the first derivative of the function ρ(t),

which can be easily expressed as stated by the following lemma

Lemma 4.3.2. Under the hypotheses of Theorem 4.3.1, it is possible to ex-

press the derivative of the function ρ(t) for each t > 0 in the following way

ρ(t)′ = ρ(t)u(t)TΘv(t), (4.29)

where u(t) and v(t) are the eigenvectors of V (t) defined as in Theorem 4.3.1.

Proof. Firstly, we observe that due to Theorem 4.3.1, the first derivative of

the function ρ(t) is guaranteed to exist for t > 0 since an analytic function

is infinitely differentiable.
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We proceed by differentiating the equation

V (t)v(t) = ρ(t)v(t)

and by left multiplying both terms of the obtained equation by u(t)T , yielding

the following equation

u(t)T (V (t)′v(t) + V (t)v(t)′) = u(t)T (ρ(t)′v(t) + ρ(t)v(t)′).

Hence, expanding the products, it is verified

u(t)TV (t)Θv(t) + ρ(t)u(t)Tv(t)′ = ρ(t)′u(t)Tv(t) + ρ(t)u(t)Tv(t)′

u(t)TV (t)Θv(t) = ρ(t)′u(t)Tv(t)

and the proposition is proved since u(t)Tv(t) = 1 and u(t)TV (t) = ρ(t)u(t)T .

Hence it is possible to evaluate the derivative of the function ρ(t) in some

special point. We recall that if there exist δmax such that δi = δmax and

δj < δmax for each j 6= i, the function ρ(t) becomes analytic on the domain

[0,∞), and it is licit to to compute the derivative of ρ(t) also in t = 0.

Corollary 4.3.2. • If the function ρ(t) is analytic on the domain [0,∞),

it is possible to compute ρ(0)′, in fact

ρ(0)′ = δmaxΘii < 0, (4.30)

where Θ is defined in (3.18).

• The limit for t going to infinity of the derivative of the function ρ(t)

exists and we have that

lim
t→∞

ρ(t)′ = 0. (4.31)

Proof. • If the hypothesis of analyticity holds, we have in particular

that the function ρ(t)′ needs to be continuous on the domain [0,∞),

therefore it is possible to compute ρ(0)′ through the limit ρ(0)′ =
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limt→0+ ρ(t)′, so that

ρ(0)′ = lim
t→0+

ρ(t)′ = lim
t→0+

ρ(t)u(t)TΘv(t) = δmaxe
T
i Θei = δmaxΘii.

(4.32)

thanks to Lemma 4.3.2 and Lemma 4.3.1.

• We exploit Lemma 4.3.2 and Lemma 4.3.1 even in this case, in fact

lim
t→∞

ρ(t)′ = lim
t→∞

ρ(t)u(t)TΘv(t) = πT∆δΘe = 0, (4.33)

where the last equality descends from the fact that Θ is a rate matrix

and therefore Θe = 0.

We observe that the function ρ(t) is limited on the domain [0,∞), as it

is stated by the following Lemma

Lemma 4.3.3. For every t ≥ 0, it is verified that

ρ(0) ≥ ρ(t) ≥ lim
t→∞

ρ(t) (4.34)

Proof. In order to prove this result, we need to recall Gelfand’s formula,

stating that for every matrix norm and square matrix A, the spectral radius

of A can be computed as the following limit

ρ(A) = lim
N→∞

‖AN‖1/N . (4.35)

In particular it is true that

ρ(t) = ρ(V (t)) = lim
N→∞

‖V (t)N‖1/N
∞ , (4.36)
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and by means of Proposition 4.3.1 we can conclude, indeed

ρ(t) = lim
N→∞

‖V (t)N‖1/N
∞

≤ lim
N→∞

‖∆N
δ ‖1/N
∞

= lim
N→∞

‖V (0)N‖1/N
∞

= ρ(V (0)) = ρ(0),

and

ρ(t) = lim
N→∞

‖V (t)N‖1/N
∞

≥ lim
N→∞

‖(eπT∆δ)
N‖1/N
∞

= lim
N→∞

lim
t→∞
‖V (t)N‖1/N

∞

= lim
t→∞

ρ(V (t))

= lim
t→∞

ρ(t),

This results leads to the following Corollary, which explains what we

meant by comparing the function ρ(t) with the parameter ψ.

Corollary 4.3.3. There exists t̄ ∈ [0,∞) such that ψ = log ρ(t̄), where ψ is

defined in (4.15).

Proof. This corollary follows from the continuity of the function ρ(t), proved

in Theorem 4.3.1, by the monotony of the logarithmic function and by the

fact that

log ρ(0) = log(δmax) ≥ ψ ≥ log(
m∑
i=1

πiδi) = lim
t→∞

log ρ(t), (4.37)

which is guaranteed by Lemma 4.3.1 and by Corollary 4.3.1.

At this point, we strongly believe in the truth of the following conjecture,
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Conjecture 4.3.1. The function ρ(t), defined in (4.21), is a decreasing con-

vex function on the domain [0,∞).

If this conjecture turns out to be true, it could be guaranteed the unique-

ness of the t̄ ∈ [0,∞) such that ψ = log ρ(t̄), leading possibly to new methods

for bounding and approximating such a parameter. We report here some ex-

amples, showing the behavior of log ρ(t) in these cases:

• We suppose Θ of this form

Θ =


−1 1

1 −2 1

1 −2 1

1 −2 1

1 −1


and a random ∆δ. The behavior of log ρ(t) is shown in Figure 4.3.
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Figure 4.1: Behavior of log ρ(t), 1st example.

• We consider now two other examples, more similar to those we have to

deal with if we consider Θ given by (3.18). In both cases, we consider

Θ to be a full random generator matrix, and we generate δ1, . . . , δm in a

random way too. In these cases, the behaviors of log ρ(t) are illustrated

in Figure 4.3, wherein the expected interval between two consecutive
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Figure 4.2: Behavior of log ρ(t), 2nd and 3rd examples.

catastrophes is given by E[ξ] = 5 and E[ξ] = 15. We observe that

increasing E[ξ], it seems that ψ → limt→∞ log ρ(t), however this is just

an intuitive observation without an appropriate theoretical foundation.

Another interesting result is provided by adapting the mixing inequality

proved by Cohen et al. in [8, Theorem 4]. We introduce the diagonal matrix

∆log δ such that (∆log δ)ii = log δi ≤ 0, hence we have that

∆δ = e∆log δ .

Lemma 4.3.4. Given the function ρ(t) = ρ(V (t)) = ρ(eΘt∆δ), for every

t1, . . . , tn ≥ 0, the following chain of inequalities holds,

ρ(eTΘ+n∆log δ) ≤ ρ(et1Θ∆δ . . . e
tnΘ∆) ≤ ρ(eTΘ∆n

δ ), (4.38)

where T = t1 + . . .+ tn

This inequality can be exploited immediately in order to obtain another

couple of bounds for the parameter ψ defined by (4.15).

Corollary 4.3.4. Given an ergodic sequence η1, η2, . . . > 0, we have that

lim
n→∞

log ρ(en(E[η]Θ+∆log δ))1/n ≤ ψ ≤ lim
n→∞

log ρ(enE[η]Θ∆n
δ )1/n (4.39)

where E[η] = limn→∞
1
n

∑n
i=1 ηi.
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Unfortunately, numerical experiments seem to assert that these last bounds

are not as effective as the ones that we already have.
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Chapter 5
Numerical experimentation

In the previous chapter, we explained how the parameter ψ, defined in (3.19)

may be bounded. Although an exact computation for ψ is not available,

we hope these bounds to be sufficient for the deduction of the positivity or

negativity of the parameter ω, which can be computed as stated in Lemma

3.2.2. In fact, we recall that the sign of ω plays a discriminating role in de-

termining if a MBT subject to catastrophes is doomed to extinction or not,

see Theorem 3.1.2.

We briefly report here the bounds that we have at our disposal for the pa-

rameter ψ.

• In the work of Hautphenne et al., see [15], were proposed a couple of

bounds, that we quoted in Theorem 4.2.1. In particular we have

1. The upper bound

ψP
u = lim

n→∞
log P[T > θn, φn = j | φ0 = i], (5.1)

2. The lower bound

ψP
l =

m∑
i=1

uivi log δi. (5.2)

The superscript P reminds that these bounds are obtained through a

probabilistic approach.
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• It is of a certain interest to compare the function log ρ(t), where ρ(t)

is defined in (4.21), with the other bounds we possess. A particular

attention is given to ρE[ξ] = log ρ(E[ξ]), where E[ξ] represents the ex-

pected value of the time passing between two consecutive catastrophes.

We don’t have theoretical results concerning ρE[ξ], but perhaps its value

can favor the identification of t̄ defined in Corollary 4.3.3.

• By means of the function ρ(t), it is possible to rewrite the bounds

obtained through Proposition 4.3.1, indeed we have

1. The upper bound

ψM
u = log ρ(0) = log(δmax), (5.3)

2. The lower bound

ψM
l = lim

t→∞
log ρ(t) = log(

m∑
i=1

πiδi), (5.4)

where δmax = maxi=1,...,m δi and π is the steady state probability vector

associated to the generator matrix Θ. The superscript M reminds that

these bounds are obtained through a matrix approach.

In order to compare this bounds to the parameter ψ, we need to compute it

through simulation. This is possible when the data of the problem are suffi-

ciently small. Indeed we simulate 1000 processes of catastrophes generating

a sequence ξ(i) = (ξ
(i)
1 , . . . , ξ

(i)
50 ) for i = 1, . . . , 1000, then we compute

ψ(i) =
1

50
log‖V (ξ

(i)
1 ) . . . V (ξ

(i)
50 )‖∞. (5.5)

The parameter ψ we try to obtain is somehow approximated by the mean

value of ψ(1), . . . , ψ(1000).
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5.1 Right whale model

This example is taken from [15] and is inspired by real data concerning

North Atlantic right whales in the years 1980-81. In this model the different

typologies of the individuals, i.e. the whales, are given by the different life

stages. In particular the whales are differentiated among calf, immature,

mature, reproducing females and postbreeding female which are associated

to types 1, . . . , 5 in the same order. We consider a time unit of 1 year yielding

the following matrices governing the MBT and defined in (2.26),

D0 =


−1 0.93 · · ·
· −0.15 0.12 · ·
· · −0.41 · ·
· · · −1 0.97

· · 0.99 · −1

 (5.6)

and

D1 =


· · · · ·
· · · · ·
· · · 0.40 ·
· · · · ·
· · · · ·

 . (5.7)

Therefore the birth matrix, defined in (2.31), is given by B = D1 ⊗ eT1 and

the vector containing the death rates, see (2.29), is given by d = −D0e−Be.

In this first example, the catastrophes are supposed to happen according to

a Poisson process, with an expected interval between two catastrophes of

E[ξ] = 25, so that the upper bound ψP
u can be computed through formula

(4.9). The survival probabilities are set to be δ1 = δ3 = 0.2 and δ2 = δ4 =

δ5 = 0.8.

As can be seen in Table 5.1 the upper bound ψP
u turns out to be the

best upper bound we possess, on the other hand the lower bound ψM
l is very

close to the real solution and way better than the lower bound ψP
l . The

approximation ρE[ξ] results lower than ψ but approximates ψ not a lot better

that ψM
l .
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Value Difference

ψM
u - 0.223143551314210 + 0.42679

ψP
u - 0.638442689254770 + 0.01149

ψ - 0.649935440688771

ρE[ξ] - 0.653684273135562 - 0.00374

ψM
l - 0.653888127769856 - 0.00395

ψP
l - 0.870034855601116 - 0.22009

Table 5.1: Results for the right whale experiment

For the sake of completeness, we observe that, due to Lemma 3.2.2, we have

that ω = λE[ξ] + ψ, therefore

λE[ξ] + ψM
l ≤ ω ≤ λE[ξ] + ψP

u . (5.8)

Since λE[ξ] = 2.18879984044839, we obtain that

ω ∈ [1.53511, 1.55036]. (5.9)

Therefore, since ω > 0, there exist a positive probability for the right whales

to not become extinct.

We reproduce now the same experiment changing the survival matrix. We

consider in our second experiment, the case wherein the chances to survive

are roughly halved compared with the first example. In the third experiment,

we level the chances leading to a survival matrix having for diagonal elements

diag(∆δ) = (0.2, 0.3, 0.35, 0.35, 0.3), and moreover we double the frequency

of catastrophes, fixing E[ξ] = 12.5.

By means of (5.8) and observing the results illustrated in Table 5.1, we

deduce by computing λE[ξ] that in the second case

ω ∈ [0.84177, 0.85702], (5.10)
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2nd experiment 3rd experiment

Value Difference Value Difference

ψM
u - 0.916290731874155 + 0.42679 - 1.04982212449868 + 0.09030

ψP
u - 1.33178175544091 + 0.01130 - 1.13864252213307 + 0.00148

ψ - 1.34308275648623 - 1.14012759360271

ρE[ξ] - 1.34702755033161 - 0.00394 - 1.14017629343684 - 0.00005

ψM
l - 1.34703530832980 - 0.00395 - 1.14022317192362 - 0.00009

ψP
l - 1.56318203616106 - 0.22009 - 1.14930646648308 - 0.00918

Table 5.2: Results for the right whale experiment, second and third experi-
ment.

while in the third

ω ∈ [−0.04578,−0.04424]. (5.11)

Therefore in the second case the population of whales won’t become extinct

with a positive probability, despite the parameter ω in this case is smaller

than in the first because of the reduced survival probabilities. On the other

hand, in the third example we observe that the parameter ω is negative

implying the certain extinction of the whale population.

5.1.1 Insect model

Like the previous example, also this one is taken from [15]. We deal with

a particular species of insect, which doesn’t reproduce until its death. On

the other hand, there are various occasion for an insect of this kind to die

before reaching the reproductive stage. Once it reproduces, a geometrically

distributed number of offsprings is produced.
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We consider the following matrices governing the MBT and defined in (2.26),

D0 =



−α2 γ0

−α2 γ0

. . . . . .

−α2 γ0

−α1


(5.12)

and

D1 =



0

0
. . .

0

γ1


. (5.13)

As in the previous example, the birth matrix, defined in (2.31), can be com-

puted through B = D1 ⊗ eT1 and the vector containing the death rates, see

(2.29), is given by d = −D0e−Be = (γ2, . . . , γ2, γ0), where α2 = γ0 +γ2 and

α1 = γ0 + γ1. The stages of life of the insects are denoted by m.

These parameters can be chosen in order for the insects to have a certain ex-

pected life L = m/γ0 and to produce an expected number of eggs E = γ1/γ0

once reached its last stage of life. The number C = E(γ0/(γ0 + γ2))m−1

represents the expected number of eggs that an insect produces conditioned

that is still in its first stage of life.

In this batch of examples we fix m = 5, L = 12, E = 100, C = 2 and

consider three different Markovian arrival processes determining the process

of catastrophes:

• A renewal process with Erlang distributed intervals between renewals,

with order 6 and parameter equal to 0.5. So that

A0 =


−0.5 0.5

. . . . . .
. . . 0.5

−0.5

 , A1 =


0 · · · · · · 0
...

. . .
...

0
. . .

...

0.5 0 · · · 0

 , (5.14)
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where A0, A1 ∈ R6×6.

• An intermittent process, for which catastrophes are much more frequent

when the MAP is in its first phase. In particular

A0 =


−21a a

−2a
. . .
. . . a

−2a

 , A1 =


20a

a
. . .

a

 , (5.15)

where A0, A1 ∈ R6×6 and a = 0.02.

• A seesaw process, where the MAP is governed by the matrices

A0 =



−2b b

−4b b

−4b b

−8b b

−4b b

−4b b

b −2b


,

A1 =



b

3b

3b

7b

3b

3b

b


,

(5.16)

where b = 1/36.

Each of these catastrophic processes have the same expected value, more

precisely E[ξ] = 12 for all of them. The results are illustrated in Table 5.1.1.

It is clear that, also in this case, the best bounds that we can find for the

parameter ψ are given by ψM
l and ψP

u . A point that needs to be stressed
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1st MAP 2nd MAP 3rd MAP

Value Difference Value Difference Value Difference

ψM
u - 0.369164550813516 + 0.15549 - 0.369164550813516 + 0.14511 - 0.369164550813516 + 0.15154

ψP
u - 0.521050123191361 + 0.00360 - 0.510735670678260 + 0.00353 -0.517680367464709 + 0.00302

ψ - 0.524654893539577 - 0.514271614865039 - 0.520703216296654

ρE[ξ] - 0.524679369265143 - 0.00002 - 0.524679369265143 - 0.01041 - 0.524679369265143 - 0.00398

ψM
l - 0.524679320975098 - 0.00002 - 0.524679320975098 - 0.01041 - 0.524679320975098 - 0.00398

ψP
l - 0.552714098622790 - 0.02806 - 0.552714098622790 - 0.03844 - 0.552714098622790 - 0.03201

Table 5.3: Results for the insect experiments.

out is that the catastrophic process influences only the bound ψP
u , this fact

is evident if we observe the definitions of the various bounds. However this

remark tells us that other lower bounds, sensitive to the catastrophic process

need to be found. Moreover, we observe that ρE[ξ] is very similar to ψM
l ,

implying in these cases that t̄ ∈ [0,E[ξ]], where t̄ is defined in Corollary

4.3.3.
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ences, 2009.

[15] S. Hautphenne, G. Latouche, and G. T. Nguyen. Markovian trees sub-

ject to catastrophes: Would they survive forever? Springer Proceedings

in Mathematics & Statistics, 27:87–106, 2013.

[16] S. Hautphenne, G. Latouche, and M.-A. Remiche. Newton’s iteration

for the extinction probability of a markovian binary tree. Linear algebra

and its applications, 428(11):2791–2804, 2008.

[17] S. Hautphenne, G. Latouche, and M.-A. Remiche. Algorithmic approach

to the extinction probability of branching processes. Methodology and

Computing in Applied Probability, 13(1):171–192, 2011.

[18] S. Hautphenne and B. Van Houdt. On the link between markovian

trees and tree-structured markov chains. European journal of operational

research, 201(3):791–798, 2010.

90



[19] N. J. Higham. Functions of matrices: theory and computation. Society

for Industrial and Applied Mathematics, 2008.

[20] S. Karlin and H. Taylor. A First Course in Stochastic Processes. Elsevier

Science, 1975.

[21] E. Key. Computable examples of the maximal Lyapunov exponent.

Probab. Theory Related Fields, 75(1):97–107, 1987.

[22] E. S. Key. Lower bounds for the maximal lyapunov exponent. Journal

of Theoretical Probability, 3(3):477–488, 1990.

[23] B. J. Kim and G. H. Choe. High precision numerical estimation of the

largest lyapunov exponent. Communications in Nonlinear Science and

Numerical Simulation, 15(5):1378–1384, 2010.

[24] J. F. C. Kingman. Subadditive ergodic theory. The annals of Probability,

1:883–899, 1973.

[25] N. Kontoleon. The Markovian Binary Tree: a model of the macroevo-

lutionary process. PhD thesis, University of Adelaide, School of Mathe-

matical Sciences, Discipline of Applied Mathematics, 2006.

[26] G. Latouche and V. Ramaswami. Introduction to matrix analytic meth-

ods in stochastic modeling, volume 5. Society for Industrial and Applied

Mathematics, 1987.

[27] G. Latouche, M.-A. Remiche, and P. Taylor. Transient markov arrival

processes. Annals of Applied Probability, 13(2):628–640, 2003.

[28] R. Mainieri. Zeta function for the lyapunov exponent of a product of

random matrices. Phys. Rev. Lett., 68(13):1965–1968, 1992.

[29] B. Meini and F. Poloni. A perron iteration for the solution of a quadratic

vector equation arising in markovian binary trees. SIAM Journal on

Matrix Analysis and Applications, 32(1):248–261, 2011.

91



[30] C. Mode. Multitype branching processes: theory and applications. Amer-

ican Elsevier Pub. Co., 1971.

[31] J. Nielsen. Lyapunov exponents for products of random matrices, 1997.

[32] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear

equations in several variables. Number 30. Siam, 2000.

[33] V. I. Oseledec. A multiplicative ergodic theorem. lyapunov characteristic

numbers for dynamical systems. Trans. Moscow Math. Soc, 19(2):197–

231, 1968.

[34] E. Pollak. Stochastic Theory of Gene Frequencies in Subdivided Popu-

lations. Columbia University, 1964.

[35] J. H. Pollard. On the use of the direct matrix product in analysing cer-

tain stochastic population models. Biometrika, 53(3-4):397–415, 1966.

[36] M. Pollicott. Maximal lyapunov exponents for random matrix products.

Inventiones mathematicae, 181(1):209–226, 2010.

[37] F. Riesz and B. Nagy. Functional Analysis. DOVER PUBN Incorpo-

rated, 1990.

[38] B. Sevast’yanov. The theory of branching random processes. Uspekhi

Mat. Nauk, 6:47–99, 1951.

[39] D. Tanny. Limit theorems for branching processes in a random environ-

ment. The Annals of Probability, 5:100–116, 1977.

[40] D. Tanny. On multitype branching processes in a random environment.

Advances in Applied Probability, 13:464–497, 1981.

[41] J. N. Tsitsiklis and V. D. Blondel. The lyapunov exponent and joint

spectral radius of pairs of matrices are hard—when not impossible—to

compute and to approximate. Mathematics of Control, Signals and Sys-

tems, 10:31–40, 1997.

92


