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a b s t r a c t

A vehicle influences the concentration of penetrant within the membrane, affecting its diffusivity in the
skin and rate of transport. Despite the huge amount of effort made for the understanding and mod-
elling of the skin absorption of chemicals, a reliable estimation of the skin penetration potential from
formulations remains a challenging objective. In this investigation, quantitative structure–activity rela-
tionship (QSAR) was employed to relate the skin permeation of compounds to the chemical properties
of the mixture ingredients and the molecular structures of the penetrants. The skin permeability dataset
consisted of permeability coefficients of 12 different penetrants each blended in 24 different solvent
mixtures measured from finite-dose diffusion cell studies using porcine skin. Stepwise regression anal-
ysis resulted in a QSAR employing two penetrant descriptors and one solvent property. The penetrant
descriptors were octanol/water partition coefficient, log P and the ninth order path molecular connectiv-
ity index, and the solvent property was the difference between boiling and melting points. The negative
relationship between skin permeability coefficient and log P was attributed to the fact that most of the
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provided by Kent Academic 
drugs in this particular dataset are extremely lipophilic in comparison with the compounds in the com-
mon skin permeability datasets used in QSAR. The findings show that compounds formulated in vehicles
with small boiling and melting point gaps will be expected to have higher permeation through skin. The
QSAR was validated internally, using a leave-many-out procedure, giving a mean absolute error of 0.396.
The chemical space of the dataset was compared with that of the known skin permeability datasets and

uture
gaps were identified for f

. Introduction

Skin, the largest organ of the human body, is constantly exposed
o various compounds and chemical substances in everyday life.
ome of these pass the skin barrier ending in blood and hence
ffecting metabolism and health. Understanding the mechanism of
kin penetration, and therefore the level of toxicity and irritancy of
he chemicals may provide the knowledge to enhance transdermal
rug delivery, boost the cosmetic industry and increase the broad-
ess and reliability of the risk assessment on dermal exposure to
oxic substances (Barry, 2007).

In order for a substance to be absorbed into the body following
ermal exposure, first it must be dissolved-dissipated in the stra-
um corneum (SC)—the outermost sub-layer of the skin, and then

iffuse through the remaining sub-layers of the epidermis and into
he dermis, where it will finally diffuse into the blood capillaries.
he SC is the most important barrier of the skin. SC consists of layers
f tightly packed, flattened, keratin-enriched, anucleate corneo-

∗ Corresponding author. Tel.: +44 1634202952; fax: +44 1634883927.
E-mail address: t.ghafourian@kent.ac.uk (T. Ghafourian).

378-5173/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijpharm.2010.07.014
skin permeability measurements.
© 2010 Elsevier B.V. All rights reserved.

cytes that are embedded in an intercellular lipid matrix (Bouwstra
et al., 2002). Long chain ceramides, fatty acids, cholesterol and
triglycerides are lipid matrix’s main constituents (Monteiro-Riviere
et al., 2001). These lipids form long lamellae parallel to the cor-
neocyte surfaces. The lipids are arranged in bilayers consisting
of ordered, crystalline phases on both sides of a narrow, central
band of fluid lipids (Bouwstra et al., 2002; Monteiro-Riviere, 1986).
Lipophilicity of a compound dictates the partitioning behavior into
corneocytes. It can be postulated that hydrophilic compounds tend
to partition into the corneocyte proteins while more lipophilic com-
pounds into the SC lipids (Raykar et al., 1988; Van der Merwe and
Riviere, 2005). There is evidence in the literature (Anderson et al.,
1988) which is also supported by quantitative structure–activity
relationship (QSAR) studies (Ghafourian and Fooladi, 2001) which
indicates the higher partitioning of more lipophilic compounds
containing fewer heteroatoms into the lipid domain of SC, while
partitioning to protein domain is less sensitive to the size and num-
ber of heteroatoms of penetrants.
Permeation of chemicals through skin is not only dependent on
the chemical structure and properties of the penetrant itself, but
also it is affected by the other chemicals present in the mixture.
Solvents and other mixture ingredients can alter the permeation
profile of a chemical by changing the properties of the lipid and

https://core.ac.uk/display/19119244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.ijpharm.2010.07.014
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Table 1
Penetrants.

Atrazine Pentachlorophenol

Chlorpyrifos Phenol

2.3. Development and validation of QSARs

Stepwise regression analysis was used to develop the models
in MINITAB (version 15.1.0.0). The predictability of the models was

Table 2
Mean Composition of the 24 mixtures.

Mixture %EtOH %Water %PG %MNA %SLS

Et 99.67 0 0 0 0
Et + MNA 99.51 0 0 0.16 0
Et + SLS 62.59 26.53 0 0 10.61
Et + MNA + SLS 62.50 26.49 0 0.13 10.60
Et + Wa 42.66 55.86 0 0 0
Et + Wa + MNA 43.79 55.78 0 0.14 0
Et + Wa + SLS 39.44 50.25 0 0 10.05
Et + Wa + MNA + SLS 39.39 50.18 0 0.13 10.04
Wa 0 99.75 0 0 0
Wa + MNA 3.03 96.59 0 0.13 0
Wa + SLS 0 90.70 0 0 9.07
Wa + MNA + SLS 2.75 87.77 0 0.12 9.13
Et + PG 42.99 0 56.73 0 0
Et + PG + MNA 42.92 0 56.65 0.14 0
Et + PG + SLS 28.39 24.15 37.54 0 9.66
Et + PG + MNA + SLS 28.36 24.13 37.50 0.12 9.65
PG 0 0 99.75 0 0
PG + MNA 2.93 0 96.70 0.12 0
PG + SLS 0 22.13 68.79 0 8.85
PG + MNA + SLS 2.69 22.29 65.76 0.11 8.92
Wa + PG 0 48.99 50.76 0 0
T. Ghafourian et al. / International Jo

rotein domains of SC, solubility and therefore the thermody-
amic activity of the penetrant in the mixture, and partitioning of
he penetrant from the vehicle into the SC. Chemical enhancers,
or example, can cause a dynamic structural disorder in the SC
ipid domain that will lead to enhanced transdermal permeation
Bezema et al., 1996).

A problem that emerges at this stage is the difficulty of accu-
ately predicting the diffusivity and partitioning as they are both
ltimately dependent on the skin structure, changes to the skin
aused by various solvents and permeants, changes of the for-
ulation containing the permeant, and the effect of metabolizing

nzymes on permeants. From the above, given also the almost
nlimited possible combinations of solvent mixtures and perme-
nts, it can be assumed that the accurate prediction of diffusion
nd partition from permeant and solvent chemical data is uncer-
ain (Van der Merwe and Riviere, 2005). On the other hand large
ets of empirical data provide us with valuable certainty in the pro-
ess of identifying characteristics of permeant and vehicle systems
hat have consistent effects across a wide range of experimental
onditions.

Empirical data of permeant and solvent has been used exten-
ively with success in predicting skin permeability. This is often
arried out through the use of QSAR where skin permeation pro-
le is related to the molecular properties of compounds, given that
he skin permeation is measured at consistent experimental con-
itions. QSAR has been efficiently used to model skin permeation
f chemicals from simple systems such as saturated aqueous solu-
ions (El Tayar et al., 1991; Abraham et al., 1995, 1999; Ghafourian
nd Fooladi, 2001; Moss and Cronin, 2002). Potts and Guy (1992)
eveloped the first widely accepted QSAR model for predicting
kin permeability coefficient (kp), a linear regression model that
onsisted of lipophilicity measured by octanol/water partition coef-
cient and molecular weight. The Potts and Guy model is based on
he data collated by Flynn (1990) consisting in vitro skin perme-
bility coefficients of 94 compounds from aqueous solutions. On
he other hand, a systematic approach to investigate the effect of

ixture components is essential. This is not only due to the fact
hat most chemicals that the skin is exposed to are in mixtures,
ut also because of the impact of such mixture constituents on the
kin absorption. Despite the availability of QSAR models represent-
ng the effect of chemical enhancers on the permeation of drugs
Ghafourian et al., 2004; Pugh et al., 2005), due to the lack of suffi-
ient high quality data, such models for the effect of other mixture
ngredients such as solvents are not available in the literature.

In a recent work, Riviere and Brooks (2005, 2007) investigated
n vitro permeation of several chemicals from chemical mixtures
ontaining various concentrations of different solvents, a surfactant
sodium lauryl sulfate, SLS) and a vasodilator (methyl nicotinic acid)
Tur et al., 1991). This comprehensive dataset provides an oppor-
unity for understanding the effect of mixture components on the
kin permeation through QSAR modelling. The aim of this investi-
ation was to develop QSAR models to study the effect of mixture
omponents on skin absorption of penetrants. The model will help
dentify the mechanisms involved in the permeation through skin
nd the effect of formulation factors.

. Methods

.1. The dataset

Skin permeation data of 12 different penetrants (Table 1) each

lended in 24 different solvent mixtures (Table 2), were used in this

nvestigation. Experimental details are fully described in Riviere
nd Brooks (2005). The permeability data consisted of apparent
kin permeation rate constants (kp) in cm/h measured using finite-
ose in vitro porcine skin flow through diffusion cells. The skin was
Ethylparathion p-Nitrophenol
Fenthion Propazine
Methylparathion Simazine
Nonylphenol Triazine

perfused using a Krebs–Ringer bicarbonate buffer spiked with dex-
trose and bovine serum albumin, and topically dosed nonoccluded
with 20 �L of one of the 12 marker penetrant compounds (target
dose of 10–20 �g/cm2) formulated in one of the 24 specified mix-
tures (Table 2). Trace amounts of methanol and toluene were used
to solubilize radiolabelled penetrants before dilution with nonra-
diolabelled compounds.

This dataset was compared in terms of the chemical space of
the penetrants with the combined datasets of Flynn (1990) and
Wilschut et al. (1995). The combined dataset contains in vitro
human skin permeability data (log kp) for 112 compounds.

2.2. Structural descriptors

The predictors (descriptors) of penetrants included connectivity
indexes, quantum molecular descriptors, and group counts cal-
culated using TSAR 3D software (Accelrys Ltd. version 3.3). The
physicochemical properties of mixture components including boil-
ing point, melting point, solubility, vapour pressure and Henry’s law
constant were obtained through ChemBioFinder (CambridgeSoft,
2009) online software and the SRC PhysProp database (Syracuse
Research Corporation, 2009). Log P for solvent components and for
the penetrants was calculated by the ACD/labs log D Suite (7.0.5
release). Averages of physicochemical properties for solvent mix-
tures were calculated using the fractions of each component e.g.
boiling point of the mixture.
Wa + PG + MNA 2.98 47.46 49.18 0.13 0
Wa + PG + SLS 0 44.62 46.23 0 8.92
Wa + PG + MNA + SLS 2.71 43.20 44.76 0.11 8.98

EtOH, ethanol; PG, propylene glycol; MNA, methyl nicotinate; SLS, sodium lauryl
sulfate.
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xamined by a leave-many-out procedure. As such, chemicals were
orted according to the ascending log kp values; for each set of 4
olvents, the first compound was allocated to group a, the second
o group b, the third to group c and the fourth to group d. This
nsured that each group covered similar ranges of the skin per-
eation kinetics. The regression was carried for the chemicals in

roups a, b and c (as the training set), and the resulting equation was
sed to calculate the skin permeation parameter for the remaining
roup d (as the test set). The procedure was carried on to leave one
roup out at a time (all the possible combinations of groups making
he training set). The mean absolute error (MAE) of prediction was
alculated as a measure of the model accuracy.

The chemical space of the present dataset was compared with
hat of the skin permeability dataset drawn from Flynn (1990) and

ilschut et al. (1995). The comparison was made using descriptor
paces of Potts and Guy (1992) model (i.e. molecular weight and
ctanol/water partition coefficient), principal component analysis
PCA) scores plot with all the descriptors being included in the anal-
sis and PCA scores plot using the descriptors selected by stepwise
egression analysis for the Flynn (1990) and Wilschut et al. (1995)
ataset. PCA was carried out using MINITAB statistical software.

. Results and discussion

The combined effect of chemical structures of the penetrants
nd the properties of the mixture components on the permeation
ate through porcine skin was studied using QSAR. Stepwise regres-
ion analysis performed on the dataset of 288 penetrant/mixture
omponent combinations resulted in Eq. (1), in which the descrip-
ors were limited to two penetrant descriptors and one solvent

ixture descriptor.

Log kp = −0.909–0.610 log P + 2.62 9�p

−0.00917(SolBP − SolMP)

S = 0.438, r2 = 0.729, F = 255.2, P = 0.000, N = 288

(1)

In Eq. (1), log kp represents permeation rate constant of com-
ounds dissolved in various solvent mixtures from porcine skin,

og P is the octanol/water partition coefficient of the solute (the
enetrant), 9�p is the 9th order path molecular connectivity index
f the penetrant, and SolBP − SolMP is the difference between the
oiling point and the melting point of the solvent system.

Log P was the most significant descriptor of the equation (the
rst to be selected by the stepwise regression analysis). It can be
een in Eq. (1) that log P of penetrants has a negative effect on the
kin permeation rate. This is opposite to the common knowledge
hat lipophilic compounds have higher skin permeation profiles,
s evidenced also in Potts and Guy’s model (1992). The negative
elationship between log kp and log P could be due to the fact that
ost of the drugs in this particular dataset are more lipophilic than

he compounds in the datasets normally used in QSAR studies of
kin permeability. Fig. 1 shows a graph between log kp and log P for
he penetrants of this study and the penetrants of Wilschut et al.
1995) and Flynn (1990). The opposite trends of the relationships
etween log kp and log P for the two datasets are evident despite
he poor correlations. The figure also shows that compounds of
he present dataset have relatively higher log P values than com-
ounds in the combined datasets of Wilschut et al. (1995) and Flynn
1990). This follows the well established nonlinear relationship of
iological activity with lipophilicity described by parabolic (Hansch
nd Clayton, 1973) or bilinear (Kubinyi, 1977) models. Compounds

ith extreme lipophilicity can be expected to partition into the skin

nd remain there, with little permeation to the aqueous receptor
hase. This has been shown for example for tetrahydrocannabi-
ol (Challapalli and Stinchcomb, 2002), with extremely high log P
alue of 6.84 as calculated by ACD log D/Suite. López et al. (1998)
Fig. 1. Comparison of the lipophilicity of the drugs in the two datasets of Riviere’s
(solid circles) and Flynn (1990) and Wilschut et al. (1995) dataset (empty circles).

showed a bilinear relationship between lipophilicity of phenyl alco-
hols and the permeability coefficient through rat skin, where the kp

was reduced for compounds with log P values higher than around 5.
There are a number of other factors that may have contributed to

the observed negative relationship between log kp and lipophilic-
ity. One is the finite-dose nature of the experiments with skin dosed
with a limited amount of drug. The limited availability of the com-
pound could result in a large fraction of the lipophilic compounds
being concentrated in the skin according to their skin/water par-
tition coefficients. A second factor is the differing nature of the
receptor phase which contained albumin.

9�p is the second most significant descriptor of Eq. (2). This
molecular connectivity descriptor indicates the presence of nine-
atom chains in the molecules. The positive coefficient of this
descriptor indicates a better permeation of compounds contain-
ing long chain fragments. The penetrants with the highest 9�p

values were chlorpyrifos, fenthion and nonylphenol. These pen-
etrants have the maximum molecular weight of 350 Da which is
still smaller than the size expected to limit the absorption. Accord-
ing to Barry (2007) a molecule’s ideal molecular mass, in order to
penetrate the SC is less than 600 Da. In addition, according to Lipin-
ski’s rule of five, chemicals with molecular weight of above 500 Da
may have biological membrane penetration problems (Lipinski et
al., 1997).

The third descriptor of the equation, SolBP–SolMP, represents
the difference between melting and boiling points of the sol-
vent mixtures, where the higher the difference, the lower the
skin absorption of compounds from the vehicle. It is therefore
expected that compounds formulated in vehicles with small boiling
and melting point gaps will have better permeation through skin.
The difference between these two properties has been attributed
to the molecular symmetry, with highly symmetrical molecules
having much larger melting points and decreased boiling points
(Slovokhotov et al., 2007). In the solvents used in this study, the
biggest difference in the melting and boiling points is for propylene
glycol. Therefore the vehicles containing higher concentrations of
this solvent will lead to lower permeation of the penetrants studied
in this investigation.

In order to validate the reported QSAR, a leave-many-out pro-
cedure as explained in Section 2 was used and mean absolute error
calculated. Fig. 2 is the graph between observed and predicted
log kp. The r2 between observed and predicted log kp and the MAE
were 0.654 and 0.396, respectively.
The level of uncertainty in predictions made by any QSAR is char-
acterized by the validity tests, but it also depends on the diversity of
the training set which defines the domain of applicability. Any QSAR
model is expected to perform best for the chemicals that are similar
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Fig. 3. Plots comparing chemical diversity of the penetrants of the present dataset
(solid circles) with that of the combined dataset of Flynn (1990) and Wilschut et
al. (1995) (empty circles). (a) Plot between log P and molecular weight; (b) scores

connectivity indexes are topological descriptors of molecular struc-
tures indicating the frequencies of occurrence of certain fragments
Fig. 2. Plot of observed log kp against predicted log kp.

o those in the training set (Weaver and Gleeson, 2008). Applica-
ility of Eq. (1) will be limited to the prediction of log kp for new
olecules that are similar to those of our dataset. Therefore, the

hemical space of the penetrants included in this dataset was com-
ared to that of the combined datasets of Flynn (1990) and Wilschut
t al. (1995). Comparison of the physicochemical properties of the
enetrants in the two datasets above were made first by looking
t the molecular descriptors of the widely accepted Potts and Guy
odel (1992) consisting of log P and molecular weight (MW) as

n Fig. 3a. The figure shows that our dataset does not include any
ydrophilic chemicals and log P values are all above 1.5. The other

imitation of the dataset is the relatively low molecular weights of
he chemicals in comparison with datasets of Flynn and Wilschut
t al. Therefore, a few high molecular weight and low lipophilicity
hemicals can be identified for future measurements. Examples are
ydrocortisone octanoate, caffeine and methanol, as it can be seen

n the figure.
As a second strategy, the two datasets were compared using all

he calculated molecular descriptors, a total of 128. This was made
ossible through the use of principal component analysis (PCA).
CA is a data reduction method which takes the information from
riginal molecular descriptors and generates the same number of
ew descriptors (PCs), with the first PC containing the maximum

nformation of the original dataset, and the second PC being the
econd most informative. Therefore, the plot between PC1 and PC2
the scores plot) provides a good overview of the information con-
ent of the dataset. The first two principal component score vectors,
C1 and PC2, are plotted in Fig. 2b. The figure shows that the chem-
cals of the current dataset are located in the bottom left quarter of
he plot, with relatively low PC1 and PC2 values. By visual inspec-
ion of the graph, several groups of chemicals belonging to datasets
f Flynn and Wilschut et al. were identified in the plot to cover var-
ous ranges of PC1/PC2. These are chemicals with high PC1 and PC2
alues such as codeine and morphine, compounds with high PC1
nd varying values of PC2 including steroids such as testosterone
nd hydrocortisone octanoate, and compounds with very low PC1
nd PC2 values such as octanol.

The third method for comparison of the datasets involved the
se of a selection of molecular properties that are specifically

nvolved in the skin permeation of compounds. To this end, step-
ise regression analysis was used for the selection of molecular
escriptors affecting compounds’ absorption through skin. In this
nalysis, the dataset of Flynn and Wilschut et al. containing the
kin permeation rate constant through human skin using the satu-

ated aqueous solutions as the donor phase was used. In stepwise
egression analysis, the skin permeation rate constant (log kp) was
he dependent variable and all the molecular descriptors were the
ndependent variables. Stepwise regression analysis selected three
plot between the first and the second principal components of PCA using all the
descriptors; (c) scores plot between the first and the second principal components
of PCA using descriptors of Eq. (2).

descriptors and resulted in Eq. (2) below.

Log kp = −2.91 + 0.62 log P + 5.2110�v
p − 1.646�v

p
S = 0.548, r2 = 0.757, F = 140, P = 0.000, N = 139

(2)

In Eq. (2), log P is the octanol/water partition coefficient, 10�v
p

and 6�v
p are 10th and 6th order valence corrected path molecu-

lar connectivity indexes of the penetrants, respectively. Molecular
in the molecules. Path molecular connectivity indexes indicate
the frequency of non-branched chains of certain lengths, in this
case six-atom and ten-atom chains as shown in Scheme 1 below
(Todeschini and Consonni, 2000).
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cheme 1. Six-atom and ten-atom fragments for the calculation of path molecular
onnectivity indexes, 6�v

p and 10�v
p, respectively.

The three descriptors selected by stepwise regression analysis
ere used in PCA and the scores plot between the first and the

econd PCs (Fig. 3c) was used to compare the datasets. Fig. 3c is
imilar to Fig. 3b in identifying certain compounds from the dataset
f Flynn and Wilschut et al. such as steroids, narcotic analgesics and
mall polar molecules such as caffeine and methanol which are not
resent in the current dataset.

Therefore, an overview of Fig. 3a and b can identify several areas
f the chemical space that are missing from the present dataset.
rom these groups of chemicals, caffeine, 1-octanol, testosterone
nd codeine were selected for further studies and the in vitro mea-
urements are currently being undertaken.

. Conclusion

In conclusion skin permeation of drugs from different vehicle
ystems can be modelled using QSAR given the availability of an
ppropriate dataset containing diverse permeants and vehicles.
ehicle effects were well predicted in this work. However, rigor-
us validation of such models for estimation purposes will require
large volume of data. In this study, the negative relationship was
btained between log kp and log P. This was attributed to the fact
hat most of the drugs in this particular dataset are more lipophilic
han the compounds in the common permeability datasets used in
SAR studies of skin permeability. Therefore, it can be envisaged

hat these highly lipophilic agents concentrate in the SC with little
bility to partition into the aqueous receptor phase. This scenario is
elevant for many pesticides and lipophilic contaminants encoun-
ered in environmental exposure scenarios. For further validation of
his model, skin permeation of the compounds identified through
he comparison of the datasets is necessary to be determined in
imilar solvent mixtures.
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