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Abstract

A fundamental notion in metric graph theory is that of the interval func-
tion I : V × V → 2V − {∅} of a (finite) connected graph G = (V,E), where
I(u, v) = { w | d(u, w) + d(w, v) = d(u, v) } is the interval between u and v.
An obvious question is whether I can be characterized in a nice way amongst
all functions F : V × V → 2V − {∅}. This was done in [13, 14, 16] by axioms
in terms of properties of the functions F . The authors of the present paper,
in the conviction that characterizing the interval function belongs to the cen-
tral questions of metric graph theory, return here to this result again. In this
characterization the set of axioms consists of five simple, and obviously neces-
sary, axioms, already presented in [9], plus two more complicated axioms. The
question arises whether the last two axioms are really necessary in the form
given or whether simpler axioms would do the trick. This question turns out
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to be non-trivial. The aim of this paper is to show that these two supplemen-
tary axioms are optimal in the following sense. The functions satisfying only
the five simple axioms are studied extensively. Then the obstructions are pin-
pointed why such functions may not be the interval function of some connected
graph. It turns out that these obstructions occur precisely when either one of
the supplementary axioms is not satisfied. It is also shown that each of these
supplementary axioms is independent of the other six axioms. The presented
way of proving the characterizing theorem (Theorem 3 here) allows us to find
two new separate “intermediate” results (Theorems 1 and 2). In addition some
new characterizations of modular and median graphs are presented. As shown
in the last section the results of this paper could provide a new perspective on
finite connected graphs.

Keywords: organizing function, geometric function, interval function, geodetic be-
tweenness.

MCS: 05C12, 05C38, 05C75, 05C99.

1 Introduction

A graphic metric space (V, d) is a finite metric space that is derived from a finite
connected graph G = (V,E), where V is the vertex set of G and d is the distance
function ofG. In [6] Kay and Chartrand characterized the finite metric spaces that are
graphic: (V, d) has to have two simple properties, viz. integrality of distances and if
d(u, v) > 1 then there exists a w distinct from u and v with d(u,w)+d(w, v) = d(u, v).
In this sense, finite connected graphs and such finite metric spaces are just two
manifestations of the same discrete structure. But there is a striking difference when
these two manifestations are seen as a point of view on the structure. In a graph
not only the distance between two vertices u and v is relevant but also the set of
all shortest paths (geodesics) between u and v. This prominent distinction makes
metric graph theory an area of its own interest. Hence, within this area, one of the
fundamental notions is that of the interval function I : V × V → 2V − {∅} of a
connected graph G = (V,E). Here I(u, v) is the interval between u and v, that is,
the set of vertices that are on u, v-geodesics. For a first extensive study of the interval
function see [9].

An obvious question is, given some function F : V ×V → 2V−{∅}, what properties
should F have to make it the interval function of some connected graph with vertex
set V . In Proposition 1.1.2 of [9] some simple properties of the interval function were
listed. These were phrased in terms of the function only and without any reference
to graphs. They are given in the next section as the five so-called classical axioms. It
is obvious that, for F to be an interval function, it should satisfy these five axioms.
Below various simple examples are given of such functions that are not the interval
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function of a graph. So this Proposition posed the challenge to find additional axioms
that ‘characterize’ the interval function. In [13, 14, 16] such characterizations are
given. Two additional axioms were needed, which were more complicated than the
five classical ones. These two axioms seemed to be “heavy duty axioms”. So this
posed a new challenge: are there other, much simpler axioms that would do the trick.
This challenge turned out to be far from trivial. The aim of this paper is to find
the ‘optimal’, or, if one prefers, ‘minimal’ axioms that are needed besides the five
classical axioms to characterize the interval function. The main result of this paper
is that the two additional axioms in [13, 14, 16] are precisely the ‘minimal’ ones. But
along the way, our approach here provides us with some new results, and most of all,
new insight in the problem. Moreover, we apply the results on characterizations of
the interval function of special classes of graphs, e.g. modular and median graphs,
which are new.

So far, we have presented the metric point of view. But the area of such functions
F : V × V → 2V − {∅} has more perspectives. The set F (u, v) might signify the
possible ways to get from u to v. For instance, instead of shortest u, v-paths one
might use induced u, v-paths, or other types of paths, see e.g. [3]. Or F (u, v) might
signify the way how to get from one logical statement u to another logical statement v.
This is just to name a few examples of the possible use of such functions. Because of
this broader perspective, we have chosen a terminology that emphasizes that F (u, v)
is a set that leads us from u to v, either metrically, or logically, or otherwise. Therefore
we have chosen the term organizing function for F .

Another point of view is to say that x is between u and v if x lies in I(u, v). This
can be formulated in terms of a ternary algebra T ⊆ V ×V ×V . That x lies between
u and v is then algebraically denoted as (u, x, v) ∈ T . Now algebraic axioms are
needed. Our results can be phrased in these terms. The area of ternary algebras
is again a well-developed area, but we will touch it only in passing. The idea of x
being between u and v has been studied also in the guise of the notion of betweenness.
Various types of betweenness have been proposed defined by slightly different sets of
betweenness axioms, see e.g. [20, 9, 4, 19, 7]. Of these the geodetic betweenness may
present an alternative approach to the results below.

In Section 2 we introduce organizing functions, and present the five ‘classical’
axioms, the simple properties of the interval function from [9] that have been the
starting point for much related research. We collect some basic ideas and lemmata
from earlier papers of the second author that we need here. In Section 3 we focus on
organizing functions satisfying all the five classical axioms, which we call geometric
functions. We prove ‘as much as possible’ using the five classical axioms only. Thus
we try to find the obstructions why a geometric function might not be the interval
function of a graph. This requires quite some efforts, but finally we can pinpoint
these obstructions very precisely. The culmination of these efforts are the two new
Theorems 1 and 2, which are the main results of this paper. These theorems are in a
way ‘intermediate’ results on the way to the characterizing theorems in Section 4. In
Section 4 we deduce from Theorems 1 and 2 two immediate Corollaries, which provide
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us with two necessary, supplementary axioms that will overcome the obstructions.
Thus we get the characterizations of the interval function in Theorems 3 and 4 that
were already obtained in [13, 16] and in [14], respectively. Moreover, we discuss the
modular and median case. In the concluding section we make some observations
about the implications of our results.

2 Organizing functions

Throughout this paper V is a finite, nonempty set. Note that the assumption that
V is finite is essential for most of the results and proofs in this paper.

A mapping F : V × V → 2V −{∅} into the power set of V is called an organizing
function on V . Since our focus in this paper is on graphs, we call the elements of V
vertices. Two vertices u and v in V are adjacent in F if

u 6= v and F (u, v) = {u, v} = F (v, u).

Let F be an organizing function on V . The underlying graph GF of F has V as
its vertex set, and distinct vertices u and v are adjacent in GF if and only if they are
adjacent in F . By abuse of language we will sometimes say that F is an organizing
function on GF .

Let G be a connected graph with V as its vertex set, and let I denote the interval
function of G. Recall that I is defined by

I(u, v) = { w | d(u,w) + d(w, v) = d(u, v) },

see [9] for an extensive study of the interval function. Obviously, I is an organizing
function on V . Moreover, the underlying graph of I is G. By Proposition 1.1.2 in [9],
if F is the interval function of G, then F satisfies the five simple axioms (c1), . . . , (c5)
given below. So if an organizing function is going to be the interval function of a
connected graph, then it should at least satisfy axioms (c1) up to (c5). We will call
these essential axioms the classical axioms. Here u, v, x, y are variables in V .

(c1) u, v ∈ F (u, v) for all u, v,

(c2) F (v, u) = F (u, v) for all u, v,

(c3) if x ∈ F (u, v) and y ∈ F (u, x), then y ∈ F (u, v) for all u, v, x, y,

(c4) if x ∈ F (u, v), then F (u, x) ∩ F (x, v) = {x} for all u, v, x,

(c5) if x ∈ F (u, v) and y ∈ F (u, x), then x ∈ F (y, v) for all u, v, x, y.

Axiom (c3) has a slightly different form than in [9], where it was formulated as “if
x ∈ F (u, v) then F (u, x) ⊆ F (u, v)”. We have chosen the above form because now
all five axioms can be formulated in a language of first-order logic, which we need in
Section 5.

Note that axioms (c1) and (c4) imply the axiom

4



(c4)′ F (u, u) = {u} for all u ∈ V .

Under the assumption of axioms (c1), (c2) and (c5) axioms (c4)′ and (c4) are equiv-
alent, as is shown by the following lemma.

Lemma 1 Let F be an organizing function on a finite set V satisfying axioms (c1),
(c2), (c4)′, and (c5). Then F satisfies (c4).

Proof. Choose any x in F (u, v). By (c1), we have x ∈ F (u, x) ∩ F (x, v). Take
any y ∈ F (u, x) ∩ F (x, v). Since y lies in F (x, v), it follows from (c2) that y lies in
F (v, x). Moreover, x lies in F (v, u). Now (c5) implies that x lies in F (y, u), which
is F (u, y) by (c2). Recall that y lies in F (u, x). Now applying (c5) with y = v, we
deduce that x lies in F (y, y). Hence, by (c4)′, we conclude that x = y, so that (c4)
holds. 222

An organizing function satisfying axioms (c1) and (c2) is called an interval op-
erator in [21]; if it also satisfies (c4)′, then it is called a transit function in [?]. An
interval operator satisfying axioms (c3), (c4)′, and (c5) as well is called a geometric
interval operator in [22], see also [21]. Following this usage, we will call an organizing
function satisfying the above five classical axioms a geometric function, see the next
section. In [4] Hedĺıková studied ternary spaces. These are ternary algebras satisfying
certain algebraic axioms. This structure is equivalent to Verheul’s geometric inter-
val operator and our geometric function. The approach of ternary algebras allows
a completely algebraic treatment of the results below. We postpone this to the last
section. Finally, a geometric function that is the interval function of a graph is called
a graphic interval operator in [21].

As stated above, the interval function of a connected graph satisfies the five clas-
sical axioms. The ‘converse’ is not true as the following example shows. Recall that
the wheel Wn is the graph consisting of a cycle C of length n ≥ 4 and an additional
vertex a, called the axis, adjacent to all vertices of the cycle. Let the n-cycle be
v1 → v2 → . . . → vn → v1. We will write v0 = vn and vn+1 = v1. The spokes of
the wheel are the edges incident with the axis a. We call two spokes of the type
avi, avi+1 consecutive spokes. A broken wheel is obtained from a wheel by deleting
some non-consecutive spokes. By abuse of language, a wheel is also a broken wheel.
A special instance of a broken wheel is the cogwheel Mk: it is obtained from the wheel
W2k by deleting k non-consecutive spokes (so that there are no consecutive spokes
left). Note that the cogwheels are the only bipartite broken wheels. Now let B be a
broken wheel with axis a and cycle C. Let V = V (C) ∪ {a}. Let I be the interval
function of B and IC that of C. Then we define the organizing function F on V as
follows:

F (u, v) = IC(u, v) for any two vertices u, v on the cycle,

F (a, v) = F (v, a) = I(a, v) for the axis a and any vertex v.
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Trivially, F 6= I. Note that, for any two vertices u, v on C the classical axioms reduce
to statements on the interval function of the cycle C. If we take u to be the axis a,
then the classical axioms reduce to statements of the interval function of a K2 or a
4-cycle, which are easily verified. So F satisfies the five classical axioms.

Let F be an organizing function on V , and let u0, . . . , um, v be a sequence of
vertices in V , where m ≥ 1. We say that F leads us from u0 to v along u1, . . . , um

if
uk ∈ F (uk−1, v) for all k = 1, . . . ,m.

We denote this by u0 . . . um[F ]v. It is clear that, if u0 . . . um[F ]v, then ui . . . uj[F ]v,
for any 0 ≤ i < j ≤ m. Moreover, if F satisfies axiom (c1), then u0 . . . umv[F ]v. First
we collect some basic facts from [17] without proofs. The proofs of Lemmas A and
B are straightforward anyway.

Lemma A (Proposition 3 in [17]) Let F be an organizing function on V satisfying
(c2), (c3), and (c5). If u0, . . . , um−1[F ]um, then uj ∈ F (ui, uk), for 0 ≤ i < j < k ≤
m.

Lemma B (Corollary 4 in [17]) Let F be an organizing function on V satisfying
axioms (c2), (c3), and (c5), and let u0, u1, . . . un−1, un ∈ V . If u0u1 . . . un−1[F ]un,
then unun−1 . . . u1[F ]u0.

Note that if F is an organizing function satisfying (c2), (c3) and (C5), then, if u
and v are adjacent in F , the only sequences that can lead us from u to v are those
that consist of u’s and v’s only. Moreover, if F satisfies (c4)′, then the only sequences
that lead us from u to v are of the type u, u, . . . , u, v, v, . . . , v. Our main concern
will be sequences of a special type. Similarly as in [17], we define a u0, um-process in
F to be a sequence

π = (u0, . . . , um), m ≥ 1 with u0, . . . , um ∈ V

such that
ui−1 and ui are adjacent in F for i = 1, . . . ,m (1)

and
if m ≥ 2, then u0 . . . um−1[F ]um.

The length of the process π is m. Note that, for 0 ≤ i < j ≤ m, the sequence
ui, ui+1, . . . , uj is a ui, uj-process as well. If u is adjacent to u0 in F and u0 ∈
F (u, um), then (u, u0, . . . , um) is a u, um-process in F if and only if π is a u0, um-
process in F . The proof of the following lemma is easy.

Lemma C (Proposition 6 and Corollary 7 in [17]) Let F be an organizing function on
V , and let F satisfy axioms (c1), (c2), (c3), and (c4). Then there exists a u, v-process
in F for all u, v in V . Therefore, the underlying graph of F is connected.

Note that finiteness of V is essential in proving Lemma C.
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Lemma 2 Let F be an organizing function on V satisfying axioms (c2), (c3), and
(c5), let G be the underlying graph of F , let u0, . . . , um ∈ V , with m ≥ 1, and let
(u0, . . . , um) be a u0, um-process in F . Then (um, . . . , u0) is a um, u0-process in F . If
F satisfies axioms (c1) and (c4) as well, then (u0, . . . , um) is a path in G.

Proof. Obviously, u0 . . . um−1[F ]um. By Lemma B, we have um . . . u1[F ]u0 and
therefore (um, . . . , u0) is also a process in F .

Assume that F satisfies axioms (c1) and (c4) as well, so that F satisfies axiom
(c4)′. Suppose, to the contrary, that (u0, . . . um) is not a path in G. Then there exist
i and j, 0 ≤ i < j ≤ m, such that uj = ui. Then (ui, ui+1, . . . , uj) is a ui, uj-process
in F . Hence ui+1 ∈ F (ui, uj) = F (ui, ui). Then, by (c4)′, we get ui+1 = ui, which
contradicts the fact that in a process consecutive vertices should be adjacent in F ,
and hence distinct. This completes the proof. 222

Lemma 3 Let F satisfy axioms (c2), . . . , (c5), and let u0, . . . , um, um+1 ∈ V , with
m ≥ 1. Let (u0, . . . , um) be a process in F , and let um and um+1 be adjacent in F .
Then (u0, . . . , um, um+1) is a process in F if and only if um ∈ F (u0, um+1).

Proof. First note that if (u0, . . . , um, um+1) is a process in F , then, by Lemma A,
we have um ∈ F (u0, um+1).

Conversely, by (c3), we have F (u0, um) ⊆ F (u0, um+1). Take any i with 0 ≤ i < m.
Since π = (u0, . . . , um) is a process, it follows from Lemma A that ui ∈ F (u0, um).
So, by (c5), we have um ∈ F (ui, um+1). Hence, by (c3), we have F (ui, um) ⊆
F (ui, um+1). Since π is a process, we have ui+1 ∈ F (ui, um). So we conclude that
ui+1 ∈ F (ui, um+1). The condition on the adjacencies in (u0, . . . , um, um+1) is triv-
ially satisfied, so (u0, . . . , um, um+1) indeed is a process. 222

3 Geometric Functions and the Interval Function

of their Underlying Graph

Recall that V is a finite nonempty set. A geometric function on V is an organizing
function F on V satisfying all the five classical axioms (c1), . . . , (c5).

Let F be a geometric function on V . By Lemma C, the underlying graph of F
is connected. It is easy to see that, if F is the interval function of some connected
graph G, then G is the underlying graph of F . It was proved in [13] and [16] that
F is the interval function of the underlying graph of F if and only if F satisfies two
axioms equivalent to axioms (s1) and (s2) presented in the next section. (Note that it
was assumed in [13] that G is connected, whereas in this paper connectedness follows
from the chosen axioms). This characterization of the interval function was extended
in [14] (note that a simpler but stronger modification of axiom (s1) was used in [14]).
In the present paper we will give a new proof of the (extended) characterization:
axioms (s1) and (s2) will be used only at the very end of the proof. This is an

7



essential feature of the approach chosen in this paper, as is explained below. Note
that a characterizing theorem for the interval function of an infinite connected graph
can be found in [15].

In the rest of this section we assume that a geometric function F on the set V is
given. We denote by P the set of all processes in F and by G the underlying graph
of F . Recall that, by Lemma C, the graph G is connected. Moreover, we denote by
d, I, and G the distance function of G, the interval function of G, and the set of all
geodesics in G, respectively.

Recall that if (u0, . . . , um) is a process in F , with m ≥ 1 and u0, . . . , um ∈ V , and
if 0 ≤ i < j ≤ m, then both (ui, ui+1, . . . , uj) and (uj, uj−1, . . . , ui) are processes in
F .

Lemma 4 Let u,w ∈ V . If F (u,w)− I(u,w) 6= ∅, then there exists a u,w-process φ
in F such that the length of φ is greater than d(u,w).

Proof. Assume that there exists some v ∈ F (u,w) − I(u,w). Since v is not in
I(u,w), we have u 6= v 6= w. By virtue of Lemma C and axiom (c2), there exist j
and m with 0 < j < m, and y0, . . . , ym ∈ V such that y0 = u, yj = v, ym = w, and

(yj, . . . , y1, y0) and (yj, . . . , ym−1, ym)

are processes in F . This implies that yj . . . y1[F ]y0 and yj . . . ym−1[F ]ym, so that
consecutive vertices are adjacent. Recall that yj ∈ F (y0, ym). By axiom (c2), we have
yj ∈ F (ym, y0). Hence ymyj . . . y1[F ]y0. By Lemma B, we have y0y1 . . . yj[F ]ym. Since
yj . . . ym−1[F ]ym, we get y0 . . . yj . . . ym−1[F ]ym. Then (y0, . . . , yj, . . . , ym) is an u,w-
process in F , say a process φ of length m. Obviously, m ≥ d(u,w). If m = d(u,w),
then φ is a geodesic in G and therefore v ∈ I(u,w), which is a contradiction. Thus
m > d(u,w), which completes the proof. 222

So far, using only the five classical axioms, we have established that processes
are paths. But to obtain an axiomatic characterization of the interval function of a
connected graph this is not sufficient, as the example of the broken wheels in Section
2 shows. So we need more axioms. The question is then: how do we find the axioms
that serve this purpose? In search of such axioms we proceed as follows. We use freely
the classical axioms and try to get as close as possible to our goal of characterizing
the interval function by organizing functions. Then we hope to find ‘minimal’ axioms
that will do the trick to complete the proof. An essential step is that we would like
to prove that processes in the organizing function F and geodesics in the underlying
graph G coincide. The strategy to follow is, of course, induction on the lengths of
the geodesics, that is, the distance between vertices in G. An important tool in this
induction step is the following Lemma. To formulate the induction hypothesis and
the induction step more smoothly, we first introduce the following notation.

Let n ≥ 1. We will write S<n(F,=, I) if and only if the following statement holds:

F (r, s) = I(r, s) for all r, s ∈ V such that d(r, s) < n.
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It is easy to see that if n ≤ 2, then S<n(F,=, I).

Lemma 5 Let n ≥ 2, and let S<n(F,=, I). Consider u0, . . . , uk ∈ V , where k ≥ 1.
Assume that d(u0, uk) < n.

If (uk, . . . , u0) ∈ P ∪ G, then (uk, . . . , u0) ∈ P ∩ G.

Proof. The lemma can be easily proved by induction on k. The case when k = 1 is
obvious. Let k ≥ 2. Assume that (uk, . . . , u0) ∈ P ∪ G. Then (uk−1, . . . , u0) ∈ P ∪ G
and thus, by the induction hypothesis, (uk−1, . . . , u0) ∈ P ∩ G. Moreover, we get
uk−1 ∈ F (uk, u0) or uk−1 ∈ I(uk, u0). Since d(u0, uk) < n, it follows from S<n(F,=, I)
that uk−1 ∈ F (uk, u0) and uk−1 ∈ I(uk, u0). This implies that (uk, . . . , u0) ∈ P ∩ G.
222

In the next two lemmata and two theorems we search for the obstructions that
might prevent us from establishing the induction step, when we can only use the
five classical axioms. This will provide us with the insight what extra axioms we
actually need to obtain a full axiomatic characterization of the interval function
using organizing functions. After all this preliminary work has been done the actual
characterization in the next section is then relatively easy to obtain. To find these
obstructions we develop some further notation to facilitate the proofs. Basically, we
consider the situation that we have a geodesic and a process between two vertices
y0, ym, where the length of the process is at least the length of the geodesic. We
view the process as going from y0 to ym first up then down in a circular arc and the
geodesic from ym to ym+n = y0 first down then up in an inverted circular arc. The
underlying idea is that we choose y0 and ym as our initial positions (the first vertex of
the process and the geodesic, respectively), and then move clockwise simultaneously
along the two circular arcs to the two positions u1 and um+1, and so forth. We continue
until we arrive at some vertices yk and ym+k that together with their successors yk+1

and ym+k+1 provide us with an obstruction that is ‘minimal’. What this minimality
condition exactly comprises will be made clear below. The notation we use is as
follows.

Assume that there exist y0, y1, . . . , ym, ym+1, . . . , ym+n ∈ V , where m ≥ n ≥ 2
such that ym+n = y0,

(y0, y1, . . . , ym) ∈ P , and (ym, ym+1, . . . , ym+n) ∈ G.

Put
ym+n+1 = y1, . . . , ym+2n = yn. (2)

It follows from S<2(F,=, I) that yh−1 and yh are adjacent in F for each h, 1 ≤ h ≤
m+ n. Define

φi = (yi, yi+1, . . . , yi+m), φ−i = (yi+1, . . . , yi+m),
ψi = (yi+m, yi+m+1, . . . , yi+m+n), and ψ−i = (yi+m+1, . . . , yi+m+n)
for each i with 0 ≤ i ≤ n.

(3)
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Note that ψi contains a path between yi+m and yi+m+n, which is of length at most n,
so d(yi+m, yi+m+n) ≤ n, for each i with 0 ≤ i ≤ n.

We will be searching for some fixed integer k, 0 ≤ k < n, that will play a special
role. For this k we define

x = yk, x̄ = yk+1, z = yk+m and z̄ = yk+m+1. (4)

Note that yk = yk+m+n, so by the above observation we have d(x, z) ≤ n.
Let F1 and F2 be geometric functions on V , and let n ≥ 0. Assume that both the

underlying graph of F1 and the underlying graph of F2 is G. We write Sn(F1,⊆, F2)
if and only if

F1(r, s) ⊆ F2(r, s) for all r, s ∈ V such that d(r, s) = n.

Moreover, by ¬Sn(F1,⊆, F2) we denote the negation of Sn(F1,⊆, F2).
In the following lemma and theorem we search for the obstruction that causes

¬Sn(F,⊆, I).

Lemma 6 Let F be a geometric function with underlying graph G, and let I be the
interval function of G. If S<n(F,=, I) and ¬(Sn(F,⊆, I)), for some n ≥ 2, then there
exist x, x̄, z, z̄ ∈ V such that

x and x̄ are adjacent in F , and z and z̄ are adjacent in F , (5)

d(x, z) = n and d(x, z̄) = n− 1, (6)

d(x̄, z) ≥ n, (7)

x̄ ∈ F (x, z), (8)

and
z 6∈ F (x̄, z̄). (9)

Proof. Since ¬(Sn(F,⊆, I)) holds, there exist u,w ∈ V such that d(u,w) = n and
F (u,w) − I(u,w) 6= ∅. By virtue of Lemma 4, there exist y0, y1, . . . , ym ∈ V , such
that y0 = u, ym = w,

(y0, y1, . . . , ym) ∈ P and m > n.

Put φ∗ = (ym, . . . , y1, y0). Since d(u,w) = n, there exist ym+1, . . . , ym+n ∈ V such
that ym+n = y0 and

(ym, ym+1, . . . , ym+n) ∈ G.

We use conventions (2) and (3). Note that φ0 ∈ P . By Lemma 2, we have
φ∗ ∈ P . Assume that φn ∈ P , so that yn+1 ∈ F (yn, ym+n) = F (yn, y0). Since m > n
and φ∗ ∈ P , we also have yn ∈ F (yn+1, y0). By (c2) we have yn+1 ∈ F (y0, yn) and
yn+1 ∈ F (y0, yn+1). It follows from (c5) with u = y0, v = y = yn and x = yn+1
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that yn ∈ F (yn, yn). Hence, by (c4)′ we have yn+1 = yn, which is impossible. This
contradiction tells us that φn 6∈ P .

We conclude that there exists a k with 0 ≤ k < n such that φk ∈ P and φk+1 6∈ P .
Let x, x̄, z, and z̄ be defined as in (4). Clearly, we have (5).

As observed above, we have d(x, z) ≤ n. Suppose that d(x, z) < n. Since φk ∈ P ,
Lemma 5 would imply that φk ∈ G and therefore m < n, a contradiction. Hence
d(x, z) = n and therefore ψk ∈ G. Moreover, we have d(x, z̄) = n − 1, which settles
(6).

Suppose that d(x̄, z) ≤ n− 1. Since φ−k ∈ P , Lemma 5 would imply that φ−k ∈ G
and m− 1 ≤ n− 1, which is a contradiction. Thus we have (7).

Since φk ∈ P , we have x̄ ∈ F (x, z), so that (8) holds. Since φ−k ∈ P and φk+1 6∈ P ,
Lemma 3 implies that z 6∈ F (x̄, z̄), which settles (9). 222

Theorem 1 Let F be a geometric function with underlying graph G, and let I be
the interval function of G. If S<n(F,=, I), Sn(I,⊆, F ), and ¬(Sn(F,⊆, I)), for some
n ≥ 2, then there exist x, x̄, z, z̄ ∈ V such that (5), (6), (7), (8), (9),

z̄ ∈ F (x, z) (10)

and
x ∈ F (x̄, z̄). (11)

Proof. Lemma 6 implies that there exist x, x̄, z, z̄ ∈ V such that (5), (6), (7), (8)
and (9).

It follows from (6) that z̄ ∈ I(x, z). By Sn(I,⊆, F ), we have z̄ ∈ F (x, z). Thus
we have (10).

Since d(x, z̄) = n− 1, (5) implies that d(x̄, z̄) ≤ n. Suppose that d(x̄, z̄) ≤ n− 1.
By (7), we would have d(x̄, z) ≥ n. Thus we would get d(x̄, z) = n and d(x̄, z̄) = n−1.
Hence we would have z̄ ∈ I(x̄, z). By Sn(I,⊆, F ), we would get z̄ ∈ F (x̄, z). By (8),
we would have x̄ ∈ F (x, z). Axioms (c2) and (c5) would then imply that x̄ ∈ F (x, z̄).
By (6), we would have d(x, z̄) = n− 1. As follows from S<n(F,=, I), we would have
x̄ ∈ I(x, z̄) and therefore d(x̄, z̄) = n− 2, which is a contradiction. Thus we conclude
that d(x̄, z̄) = n. Since d(x, z̄) = n− 1, we get x ∈ I(x̄, z̄). Hence, by Sn(I,⊆, F ), we
have x ∈ F (x̄, z̄), by which we have settled (11). 222

In the following lemma and theorem we search for the obstruction that causes
¬Sn(I,⊆, F ).

Lemma 7 Let F be a geometric function with underlying graph G, and let I be the
interval function of G. If S<n(F,=, I), and ¬(Sn(I,⊆, F )), for some n ≥ 2, then
there exist x, x̄, z, z̄ ∈ V such that (5), (6), (8),

z̄ 6∈ F (x, z), (12)

z 6∈ F (x̄, z̄) or x ∈ F (x̄, z̄), (13)
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x̄ 6∈ F (x, z̄), (14)

and
if x ∈ F (x̄, z̄) then d(x̄, z̄) = n. (15)

Proof. Since ¬(Sn(I,⊆, F )) holds, there exist u,w ∈ V such that d(u,w) = n and
I(u,w) − F (u,w) 6= ∅. As follows from Lemma C, there exist y0, y1, . . . , ym ∈ V ,
m ≥ n, such that y0 = u, ym = w, and

(y0, y1, . . . , ym) ∈ P .

Since I(u,w)−F (u,w) 6= ∅, there exist ym+1, . . . , ym+n ∈ V such that ym+n = y0 and

(ym, ym+1, . . . , ym+n) ∈ G − P .

We use conventions (2) and (3). Note that φ0 ∈ P and ψ0 6∈ P . Suppose that
φn ∈ P . Then, if we compare ψ0 and φn, we see that we would also have ψ0 ∈ P ,
which yields a contradiction. Hence we have φn 6∈ P . This implies that there exists
a k, 0 ≤ k < n, such that φk ∈ P , ψk 6∈ P , and

φk+1 6∈ P or ψk+1 ∈ P . (16)

Let x, x̄, z, and z̄ be defined as in (4). Obviously, we have (5). Recall that
d(x, z) ≤ n. Suppose that d(x, z) < n. Then, similarly as in the proof of Lemma 6,
we would get m < n, which yields a contradiction. Hence d(x, z) = n, and therefore
ψk ∈ G. This implies that d(x, z̄) = n− 1, so that we have (6).

Recall that φk ∈ P . Hence we have φ−k ∈ P and x̄ ∈ F (x, z), so that we have (8).
Obviously, ψ−k ∈ G. Since d(x, z̄) = n − 1, Lemma 5 implies that ψ−k ∈ P . From

ψk 6∈ P it follows that z̄ 6∈ F (x, z), so that we have (12).
Since φ−k , ψ

−
k ∈ P , combining (16) with Lemma 3, we get z 6∈ F (x̄, z̄) or x ∈

F (x̄, z̄). This settles (13).
Suppose that x̄ ∈ F (x, z̄). Recall that, by (6), we would have d(x, z̄) = n − 1

and d(x, z) = n. Then it follows from S<n(F,=, I) that x̄ ∈ I(x, z̄) and therefore
d(x̄, z̄) = n − 2. This would imply that d(x̄, z) = n − 1, whence z̄ ∈ I(x̄, z). Then,
by S<n(F,=, I), we would have z̄ ∈ F (x̄, z). Recall that, by (8), this would imply
that x̄ ∈ F (x, z). Axioms (c2) and (c3) then imply that z̄ ∈ F (x, z), which is a
contradiction with (12). Hence x̄ 6∈ F (x, z̄), which settles (14).

Suppose that x ∈ F (x̄, z̄). Since ψ−k ∈ P , Lemma 3 implies that ψk+1 ∈ P .
Obviously, the length of ψk+1 is n. So d(x̄, z̄) ≤ n. Assume that d(x̄, z̄) < n. Then,
by Lemma 5, we would have ψk+1 ∈ G. Hence the length of ψk+1 would be d(x̄, z̄) < n,
which is impossible. Therefore d(x̄, z̄) = n, and we have (15), by which the proof is
complete. 222
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Theorem 2 Let F be a geometric function on a nonempty finite set V with un-
derlying graph G, and let I be the interval function of G. If S<n(I,=, F ), and
¬(Sn(F,=, I)), for some n ≥ 2, then

there exist x, x̄, z, z̄ ∈ V such that (5), d(x, z) = n,
x̄ ∈ F (x, z), x ∈ F (x̄, z̄), z̄ ∈ F (x, z), and z 6∈ F (x̄, z̄),

(17)

or
there exist x, x̄, z, z̄ ∈ V such that (5), d(x, z) = n,
x̄ ∈ F (x, z), z 6∈ F (x̄, z̄), z̄ 6∈ F (x, z), and x̄ 6∈ F (x, z̄).

(18)

Proof. Obviously, we have

Sn(I,⊆, F ) and ¬(Sn(F,⊆, I))

or
¬(Sn(I,⊆, F )).

It follows from Theorem 1 and Lemma 7 that we have (17) or that

there exist x, x̄, z, z̄ ∈ V such that (5), (15), d(x, z) = n, x̄ ∈ F (x, z),
z̄ 6∈ F (x, z), x̄ 6∈ F (x, z̄), and moreover z 6∈ F (x̄, z̄) or x ∈ F (x̄, z̄).

(19)

If (17) holds, then we are done. So assume that (17) does not hold. Then we have
(19). Suppose that z ∈ F (x̄, z̄). Then (19) would imply that x ∈ F (x̄, z̄). By (15)
we would have d(x̄, z̄) = n. Since (17) does not hold, we would have

if r and r̄ as well as s and s̄ are adjacent in F , d(r, s) = n,
r ∈ F (r̄, s̄), and r̄, s̄ ∈ F (r, s), then s ∈ F (r̄, s̄)

(20)

for all r, r̄, s, s̄ in V .
If we put r = x̄, r̄ = x, s = z̄, and s̄ = z, then (20) implies that z̄ ∈ F (x, z),

which creates a conflict with (19). Hence we have z /∈ F (x̄, z̄). Thus we get (18),
which completes the proof. 222

Now we are able to get a clear understanding of the obstructions that prevent an
organizing function F to be the interval function of a graph when we assume that F
satisfies the five classical axioms only. We formulate these obstructions in the next
section, where we use these to formulate additional axioms for geometric functions.

4 Characterizing the Interval Function

Again recall that V is a finite set. In this section we assume that a geometric function
F on V is given. We denote by G the underlying graph of F . By Lemma C, the
graph G is connected. We denote by d and I the distance function of G and the
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interval function of G respectively. Clearly, F is the interval function of a connected
graph if and only if F = I.

For two organizing functions F1 and F2 we write S(F1,⊆, F2) if and only if
F1(r, s) ⊆ F2(r, s) for all r, s ∈ V . So, in a characterization of the interval func-
tion using the organizing function F we would like to have both S(I,⊆, F ) and
S(F,⊆, I). The induction we use will be in the guise of a minimal counterexample.
This allows us to reformulate Theorems 1, and 2 in a much simpler form in the next
two Corollaries: we can eliminate the parameter n.

Corollary 1 Let F be a geometric function with underlying graph G, and let I be
the interval function of G. If S(I,⊆, F ), and F 6= I, then

there exist x, x̄, z, z̄ ∈ V such that (5), x̄ ∈ F (x, z),
x ∈ F (x̄, z̄), z̄ ∈ F (x, z), and z 6∈ F (x̄, z̄).

(21)

Proof. Obviously, there exists some n ≥ 2 such that

S<n(I,=, F ), Sn(I,⊆, F ) and ¬(Sn(F,⊆, I)).

By Theorem 1, there exist x, x̄, z, z̄ ∈ V such that (5), (8), (9), (10), and (11). Thus
we get (21), which completes the proof. 222

Corollary 2 Let F be a geometric function with underlying graph G, and let I be
the interval function of G. If F 6= I, then (21) holds or

there exist x, x̄, z, z̄ ∈ V such that (5), x̄ ∈ F (x, z),
z 6∈ F (x̄, z̄), z̄ 6∈ F (x, z), and x̄ 6∈ F (x, z̄).

(22)

Proof. Obviously, there exists n ≥ 2 such that

S<n(I,=, F ), and ¬Sn(I,=, F ).

Thus the result follows immediately from Theorem 2. 222

It is not difficult to show that if F = I, then neither (21) nor (22) holds. This
means that if F = I, then F satisfies the following supplementary axioms (s1) and
(s2). Here u, ū, v, v̄ are variables in V .

(s1) if u and ū are adjacent in F , v and v̄ are adjacent in F , u ∈ F (ū, v̄),
and ū, v̄ ∈ F (u, v), then v ∈ F (ū, v̄) for all u, ū, v, v̄.

(s2) if u and ū are adjacent in F , v and v̄ are adjacent in F , ū ∈ F (u, v),
v̄ 6∈ F (u, v), and v 6∈ F (ū, v̄), then ū ∈ F (u, v̄) for all u, ū, v, v̄.
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Note that the classical axioms can be described using simple Venn-type diagrams.
This is not so easily done for the supplementary axioms. The difference in character
between the classical axioms and the supplementary axioms is that in the supplemen-
tary ones there is a pairing of the four variables into two pairs, each of which consists
of vertices that are adjacent in F . This makes these axioms less ‘obvious’ than the
classical axioms.

It is straightforward to verify that the interval function of a graph satisfies (s1)
and (s2), cf. [13]. Consider the example given in Section 2 of the geometric function
F on a broken wheel B with axis a and cycle C of length at least 4. We consider the
two axioms with respect to the broken wheels.

First let avi be a missing spoke, so that a→ vi−1 → vi → vi+1 → a is an induced
4-cycle D in B. Now take v = a, take ū and v̄ to be the neighbors of v in D and
take u to be the fourth vertex in D. Then F does not satisfy (s1) on these four
vertices. Hence F does not satisfy axiom (s1) on any broken wheel missing a spoke.
It is straightforward to check that F on the wheel does satisfy axiom (s1).

Second, let avj−1, avj, avj+1 be three consecutive spokes in B. Now take v̄ = a,
u = vj−1, ū = vj, and v = vj+1. Then F does not satisfy (s2) on these four vertices.
So any broken wheel that is not a cogwheel does not satisfy axiom (s2). In particular,
F on the wheel does not satisfy axiom (s2). Consider the cogwheel Mk with k ≥ 4.
Now take u = v1, ū = v2, v = v5, v̄ = a. Then these four vertices violate axiom (s2).
So the supplementary axioms are really necessary.

After Theorem 4 we present an example of a geometric function satisfying (s2)
but not (s1). This shows that the two supplementary axioms are independent.

In view of the supplementary axioms we can reformulate Corollary 2 as follows:
Let F be a geometric function with underlying graph G, and let I be the interval
function of G. If F 6= I, then F does not satisfy (s1) or (s2) (or both). Thus we have
new proofs for the following characterizations of the interval function of a connected
graph from [13, 14, 16].

Theorem 3 Let F be a geometric function with underlying graph G, and let I be the
interval function of G. The following statements are equivalent:

(a) F = I,

(b) F satisfies axioms (s1) and (s2).

Due to new the approach that we took in this paper, we now understand why we
have no simpler supplementary axioms: if we assume that F satisfies the five classical
axioms, then precisely both the supplementary axioms in their full ‘complexity’ are
needed to overcome any possible obstruction to the induction step in proving that F
is indeed the interval function of a graph.

Using only Corollary 1 we get, as a bonus, the following characterization of the
interval function, cf. [14].
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Theorem 4 Let F be a geometric function with underlying graph G, and let I be the
interval function of G. The following statements are equivalent:

(a) F = I,

(c) S(I,⊆, F ) and F satisfies axiom (s1),

In a recent paper of the second author [18] Theorems 3 and 4 are derived from a
characterization of the set of geodesics in a connected graph, but this derivation is
not trivial.

In view of Theorem 4, one might wonder whether a similar theorem would hold
involving axiom (s2) together with either S(I,⊆, F ) or S(F,⊆, I). This is not the
case, as our next examples show. Let C be a cycle, let V = V (C), and let I be the
interval function of C. Now we define an organizing F on V , where we distinguish
between the even and the odd case.

First let C be the 2m-cycle v1 → v2 → . . .→ v2m → v1 with m ≥ 3. We define

F (v1, vm+1) = {v1, v2, . . . , vm, vm+1},
F (vi, vj) = I(vi, vj) for all i, j such that 1 ≤ i ≤ j ≤ 2m and (i 6= 1 or
j 6= m+ 1).

For this example we have S(F,⊆, I) and ¬S(F,=, I). It is straightforward to check
that F is geometric and satisfies (s2). Take ū = v1, u = v2, v̄ = vm+1, and v = vm+2.
Then F does not satisfy (s1) for these vertices.

Next let C be the odd 2m + 1-cycle v1 → v2 → . . . → v2m+1 → v1 with m ≥ 3.
We define

F (v1, vm+2) = V,

F (vi, vj) = I(vi, vj) for all i, j such that 1 ≤ i ≤ j ≤ 2m and (i 6= 1 or
j 6= m+ 2).

For this example we have S(I,⊆, F ) and ¬S(I,=, F ). It is straightforward to check
that F is geometric and satisfies (s2). Take u = v1, ū = v2, v = vm+2, and v̄ = vm+3.
Then F does not satisfy (s1) for these vertices.

In the characterization of the interval function of an arbitrary connected graph
we need the two rather complicated supplementary axioms, as we have shown above.
For special classes of graphs we need additional axioms on the organizing function to
achieve the same goal. But in the following instances it turns out that we can get rid
of the supplementary axioms so that only a set of relatively simple axioms remain.
Let G be a connected graph with interval function I. Then G is a modular graph if

I(u, v) ∩ I(v, w) ∩ I(w, v) 6= ∅
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for any three vertices u, v, w of G. These graphs were introduced in [5], see also [2].
If we require

|I(u, v) ∩ I(v, w) ∩ I(w, v)| = 1

for any three vertices u, v, w of G, then G is a median graph. These graphs were
introduced independently in [1, 12, 11], see also [8]. We consider two more axioms
for organizing functions, here u, v, w are variables in V .

(mo) F (u, v) ∩ F (v, w) ∩ F (w, v) 6= ∅,
(me) |F (u, v) ∩ F (v, w) ∩ F (w, v)| = 1.

Lemma 8 Let F be a geometric function on a finite nonempty set V . If F satisfies
(mo), then F satisfies (s1) and (s2).

Proof. Verification of (s1). Assume, to the contrary, that there exist vertices
u, ū, v, v̄ such that u and ū are adjacent in F , and v and v̄ are adjacent in F , and
moreover ū ∈ F (u, v), u, v ∈ F (ū, v̄), and v̄ /∈ F (u, v).

Obviously we have

F (u, v) ∩ F (u, v̄) ∩ F (v, v̄) ⊆ F (v, v̄) = {v, v̄}.

Since v̄ /∈ F (u, v), it follows from (mo) that

F (u, v) ∩ F (u, v̄) ∩ F (v, v̄) = {v}.

This implies that v ∈ F (u, v̄). Since u ∈ F (ū, v̄), it follows from (c2) and (c5) that
u ∈ F (ū, v). Since ū ∈ F (u, v), it follows from (c2) and (c5) that ū ∈ F (u, u) = {u},
which is impossible. Hence F satisfies (s1).

Verification of (s2). Consider arbitrary vertices u, ū, v, v̄ in V such that u and ū
are adjacent in F and v and v̄ are adjacent in F , and ū ∈ F (u, v). Clearly, we have

F (ū, v) ∩ F (v, v̄) ∩ F (ū, v̄) ⊆ F (v, v̄) = {v, v̄}.

Assume that v /∈ F (ū, v̄). Then (mo) implies that

F (ū, v) ∩ F (v, v̄) ∩ F (ū, v̄) = {v̄}.

Hence v̄ ∈ F (ū, v). Since ū ∈ F (u, v), it follows from (c2) and (c5) that ū ∈ F (u, v̄).
Thus we have v ∈ F (ū, v̄) or ū ∈ F (u, v̄). This implies that F satisfies (s2). 222

The following proposition is a simple corollary of Lemma 8.

Proposition 1 Let F be a geometric function on a finite nonempty set V with un-
derlying graph G. Then

(i) F satisfies (mo) if and only if G is a modular graph and F is the interval function
of G,

(ii) F satisfies (me) if and only if G is a median graph and F is the interval function
of G.

Clearly this proposition can be reformulated as a characterization of modular and
median graphs.
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5 A new view of connected graphs

The approach we have chosen in this paper provides us with a new view on the
notion of connectedness. Again let V be a nonempty finite set. Let GV be the family
of all connected graphs with vertex set V , and let FV be the family of all geometric
functions on V satisfying both supplementary axioms (s1) and (s2). As follows from
Lemma C, the underlying graph of any geometric function in FV belongs to GV .
Recall that we need finiteness in the proof of Lemma C. For F ∈ FV we define α(F )
to be the underlying graph of F , that is, the graph with F as its interval function.
Then the following proposition is a consequence of Theorem 3.

Proposition 2 For a finite set V , α : FV → GV is a bijection.

The essence of this proposition is that we can translate connectedness of a finite graph
into axioms on an organizing function. Note that each of the axioms (c1), . . . , (c5),
(s1) and (s2) could be formulated in a language of first-order logic. This suggests
a new perspective on the notion of a finite connected graph, which might promise a
new approach to the study of finite connected graphs.

As already observed above, an alternative view on organizing functions is that of
ternary algebras or relations. As usual, by a ternary relation on V we mean a subset
T of V × V × V . We say that T is a ternary relation onto V if for every u ∈ V there
exist v, w ∈ V such that (u, v, w) ∈ T or (v, u, w) ∈ T or (v, w, u) ∈ T .

Let T be a ternary relation onto V . If u, v ∈ V , then we say that u and v are
adjacent in T if u 6= v and the following condition holds for all w ∈ V :

if (u,w, v), (v, w, u) ∈ T , then w = u or w = v.

The underlying graph GT of T is the graph with vertex set V such that u and v are
adjacent in GT if and only if they are adjacent in T for all u, v ∈ V .

Let G be a connected graph with the vertex set V , and let d and I denote the
distance function of G and the interval function of G respectively. The geodetic
betweenness of G is the ternary relation T exactly on V defined as follows:

(u,w, v) ∈ T if and only if d(u,w) + d(w, v) = d(u, v) for all u, v, w ∈ V

or, equivalently, defined as follows:

(u,w, v) ∈ T if and only if w ∈ I(u, v) for all u, v, w ∈ V .

It is easy to see that, if T is the geodetic betweenness of a connected graph G, then
G is the underlying graph of T .

Let T be a geodetic betweenness of a connected graph whose vertex set is V . The
five classical axioms and the two supplementary axioms can be easily translated into
axioms for a geodetic betweenness. Moreover, it is easy to see that T satisfies these
axioms, that we can formulate a proposition analogous to Proposition 2, and that
these axioms can be formulated in a language of first-order logic. This is again a
different perspective on finite connected graphs.
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S. Klavžar, H.M. Mulder, A. Vijayakumar (Eds.), Convexity in Discrete Struc-
tures. RMS Lecture Notes Series 5. 2008, pp. 117–130.

[11] H.M. Mulder and A. Schrijver, Median graphs and Helly hypergraphs, Discrete
Math. 25 (1979), 41 – 50.
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