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Abstract
We study the performance of alternative sampling methods for estimating multivariate

normal probabilities through the GHK simulator. The sampling methods are random-
ized versions of some quasi-Monte Carlo samples (Halton, Niederreiter, Niederreiter-Xing
sequences and lattice points) and some samples based on orthogonal arrays (Latin hyper-
cube, orthogonal array and orthogonal array based Latin hypercube samples). In general,
these samples turn out to have a better performance than Monte Carlo and antithetic Monte
Carlo samples. Improvements over these are large for low-dimensional (4 and 10) cases and
still signi…cant for dimensions as large as 50.
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1. Introduction

The Monte Carlo method for estimating high-dimensional integrals has received much
attention in the recent econometric literature, especially applied to integrals arising from
multivariate normal probabilities. This method replaced quadrature methods, which are
cumbersome if the integral has dimension higher than …ve (Geweke, 1996). In the econo-
metric literature the …rst attempt of estimating normal probabilities was by Lerman and
Manski (1981), who employed a simple frequency simulator of the probabilities. This was
followed by several improvements later on (e.g., McFadden, 1989 and Stern, 1992). In the
early 90’s Geweke, Hajivassiliou and Keane as well as researchers from other …elds (e.g.,
Genz, 1992) independently developed a simulator, known by econometricians as the GHK
simulator. Hajivassiliou et al. (1996), using Monte Carlo sampling, and Vijverberg (1997),
using antithetic Monte Carlo sampling, …nd this simulator to have the best performance
in comprehensive simulation studies. The performance is measured by the precision of the
integral estimate.

The GHK simulator is based on sampling recursively from the truncated normal distri-
bution, which on its turn implies sampling from the uniform distribution. Samples from the
uniform distribution are usually obtained by generating so-called pseudo-random numbers
on the computer. In the late 50’s, about one decade after the systematic development of the
Monte Carlo method started, some researchers turned to replacing pseudo-random numbers
by deterministic numbers. These deterministic numbers, called quasi-Monte Carlo samples,
were typically constructed using number theoretic methods (e.g., Korobov, 1959, Halton,
1960, Sobol’, 1967). Later, randomized versions of these were developed (e.g., Cranley and
Patterson, 1976, Owen, 1995), which made it possible to compare their performance directly
to the performance of pseudo-random numbers.

Parallel to the development of quasi-Monte Carlo sequences, samples generated with
semi-deterministic methods were developed in the statistical literature. A class of these
methods is based on orthogonal arrays, which are matrices with a certain combinatorial
structure. Some of the pioneering work was done by Patterson (1954), who developed lattice
sampling. While lattice samples are not exactly uniform, McKay et al. (1979) developed
Latin hypercube samples that are dependently uniformly distributed. Latin hypercube
sampling was generalized by Owen (1992) and Tang (1993) for orthogonal arrays. Owen
(1997a) reveals connections between sampling based on orthogonal arrays and randomized
versions of quasi-Monte Carlo samples, and shows the superiority of these over Monte Carlo
samples when applied for integration.

In spite of the work cited above and several other works in numerical mathematics and
computational statistics that show the superiority of quasi-Monte Carlo sampling in di¤erent
speci…c cases, its application to problems in econometrics is rather rare. Geweke (1996) and
Judd (1998) present some of the quasi-Monte Carlo methods at a descriptive level. Some
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published work employing quasi-Monte Carlo exists in the …eld of …nancial economics; we
refer to Boyle et al. (1997), who use deterministic, and Tan and Boyle (2000), who employ
randomized quasi-Monte Carlo samples. Other applications (Bhat, 2001a, 2001b, Train,
2000, 2002) employ the Halton sequence or its randomized version (described in section 2.4
below) for estimating probabilities arising in logit models with random coe¢cients (Revelt
and Train, 1998). In a more recent work Sándor and Train (2002) compare several di¤erent
quasi-Monte Carlo samples for these models.

No comprehensive analysis of these samples is available for estimating multivariate nor-
mal probabilities in cases of interest in econometrics. In this paper we attempt to …ll some of
the gap in the literature by studying the performance of samples based on orthogonal arrays
and randomized quasi-Monte Carlo samples for estimating integrals arising from multivari-
ate normal probabilities. We present these sampling methods in section 2. We also provide
comparisons and mention some existence and construction issues there. In section 3 we
present results on the variance of integral estimates for these samples. Here we also provide
intuitive arguments why these methods are expected to work well for integration. Section
4 describes the GHK simulator that estimates multivariate normal probabilities. The main
contribution of the paper is presented in section 5 as the outcome of a simulation study
of the samples applied to multivariate normal probabilities. The results show substantial
improvements in precision of the integral estimates over Monte Carlo and antithetic Monte
Carlo sampling for most of the samples presented. We compare the performance of the
di¤erent samples and make recommendations for their future use. We conclude the paper
and discuss topics of interest for future research in section 6.

2. Sampling methods

In this section we present sampling methods based on orthogonal arrays and quasi-Monte
Carlo sampling. After the …rst subsection containing some preliminaries, in the second
subsection we present orthogonal array, Latin hypercube and orthogonal array based Latin
hypercube sampling. Then in subsequent subsections we describe three randomized quasi-
Monte Carlo samples, namely, randomized (t;m; s)-nets, randomized Halton sequences and
randomly shifted lattice points. In the last subsection we provide some comparisons of the
samples and discuss some existence and construction issues.

2.1. Preliminaries

We introduce brie‡y the Monte Carlo (MC hereafter) method for integration formally.
Let

I =
Z

[0;1)s
f (x) dx: (2.1)

3



be the integral of the real-valued function f de…ned on [0; 1)s. An estimate of this integral
is

bI = 1
n

nX

i=1

f (xi) ; (2.2)

where (xi)
n
i=1 is a set of points from [0; 1)s. If the elements of the sequence have the uniform

distribution on [0; 1)s then, under the condition that the integral exists, we have E
³

bI
´
= I;

that is, the estimator is unbiased, no matter the elements of the sequence are independent or
not. The MC method uses such an estimate of I by taking the sequence (xi) independently
uniformly distributed on [0; 1)s.

Intuitively, the estimate is more precise the better the …nite sample (xi)
n
i=1 approximates

the continuous uniform distribution. We refer to the quality of this approximation as the
equidistribution property of the sample. In other words, we expect samples with a better
equidistribution property to estimate integrals more precisely. We illustrate this in Figure
1A.

[FIGURE 1 ABOUT HERE]

The …gure displays a random uniform sample of 9 points in the unit square. We can
estimate the integral of a function de…ned on this set by using this sample. Note, however,
that there is no point of the sample in the small squares [0; 1=3)2 and [2=3; 1)2. Therefore,
if the function in these small squares has values that are very di¤erent from the average,
then the estimate of the integral will not be precise. This de…ciency can be avoided by,
for example, using a sample that has one point in each of the small squares. Then we say
that this latter sample has a better equidistribution property than that from Figure 1A. In
section 2.3 we give a formal de…nition of the notion equidistribution property.

2.2. Samples Based on Orthogonal Arrays

In this subsection we present orthogonal array sampling introduced by Owen (1992)
that generalizes Latin hypercube sampling (McKay et al., 1979), which we also present,
and orthogonal array based Latin hypercube sampling introduced by Tang (1993). First
we need to introduce orthogonal arrays. Orthogonal arrays (OA’s hereafter) are matrices
whose elements are nonnegative integers with a certain combinatorial structure. They have
been used especially in designing computer experiments and are still intensively researched
(see, e.g., Hedayat, Sloane and Stufken, 1999).

Let A be an n£ s matrix with elements aij in the set f0; 1; :::; b¡ 1g. A is called an OA
of strength m · s if in every n £m submatrix of A the bm possible distinct rows appear
exactly once. Then obviously n = bm. Such an OA is denoted OA(n; s; b;m). The maximal
strength of A is the largest m for which A has strength m.
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An OA sample (Owen, 1992) constructed from the OA(n; s; b;m) with elements aij has
the elements

xij =
¼j (aij) + uij

b
; i = 1; :::; n; j = 1; :::; s; (2.3)

where ¼j is a uniform random permutation of 0; :::; b¡ 1; uij is a uniform random variable
on [0; 1); and the s permutations and ns random variables are mutually independent. So an
OA sample attaches a randomly determined permutation to the elements of each column.
All xij are in the interval [0; 1); have the uniform distribution and are mutually independent.
The permuted elements ¼j (aij) of the OA still form an OA(n; s; b;m). In practice often
one needs only one sample. In this case the random permutations can be omitted. An OA
sample constructed from an OA(9; 2; 3; 2) is presented in Figure 1B. Note that the criterion
for a 9-point sample to be an OA sample is that each small square of area 1/9 contains
exactly one point of the sample.

A Latin hypercube (LH hereafter) is an OA with maximal strength 1, that is, OA(b; s; b; 1).
Such a LH is a b £ s matrix whose columns are permutations of its symbols 0; 1; :::; b ¡ 1.
Then a LH sample (McKay et al., 1979) corresponding to this is given by

xij =
¼j (i) + uij

b
; i = 0; 1; :::; b¡ 1; j = 1; :::; s; (2.4)

where ¼j and uij are of the same type as in (2.3). Though the arguments of ¼j (¢) seem to
be di¤erent in the two formulas, they are in fact the numbers 0; 1; :::; b ¡ 1 in both. Thus
the uniform distribution and independence properties of the OA sample are also valid for
the LH sample. Figure 1C displays the points of a LH sample. The criterion for a 9-point
sample to be a LH sample is that each rectangle of sides with length 1 and 1/9 contains
exactly one point of the sample. Hence a LH sample has better equidistribution property
than a random sample. Still, as shown in Figure 1C, for a LH sample it is not guaranteed
that all small squares of volume 1/9 contain exactly one point of the sequence.

For the sample size n = bm, the elements of a LH take n values while the elements
of an OA(bm; s; b;m) take only b values. This implies that the LH sample has a better
equidistribution property than the OA sample along its one-dimensional components. So
even though the OA sample has attractive properties due to the combinatorial structure,
its rougher one-dimensional parts may weaken its equidistribution property.

This problem was addressed by Tang (1993) who developed a sampling scheme based
on OA’s transformed into LH’s while preserving their combinatorial structure. The new
structure obtained is called OA based LH. A description of the scheme follows. Let aij be
the elements of an OA of maximal strength m ¸ 1 with n = bm rows. First we apply a
random permutation ¼ to the elements of the OA in the sense that we replace each element
aij by ¼ (aij); then we randomly permute the s columns of the obtained matrix. Each column
j of this matrix contains each symbol a 2 f0; 1; :::; b¡ 1g exactly bm¡1 times. If a given a
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is the k’th among the bm¡1 pieces of a’s in column j then we replace a by abm¡1 + ¼ja (k),
where ¼ja is a random permutation of 0; 1; :::; bm¡1¡1. All the ¼ja permutations are assumed
to be mutually independent. Denote the elements of the obtained matrix by cij. Then each
cij takes each value 0; 1; :::; bm¡ 1 with the same probability and the elements belonging to
any column of the matrix (cij) take all these values. Hence (cij) is a LH with bm symbols.

An OA based LH sample is de…ned similarly to the samples above by adding a uniform
random variable to each element and dividing by n:

xij =
cij + uij
n

; i = 1; :::; n; j = 1; :::; s: (2.5)

Similarly to the other two samples, all xij are in the interval [0; 1] ; have the uniform dis-
tribution and are mutually independent. Figure 1D presents the points of a OA based LH
based on the OA

"
0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2

#0
;

where all permutations are the identical permutation. Note that the criterion for a sample
of 9 points to be an OA based LH sample is that it satis…es the criteria for both OA and
LH samples. Therefore, OA based LH samples have a better equidistribution property than
either of the other two samples.

2.3. Randomized (t;m; s)-nets

In this subsection we discuss (t;m; s)-nets and their randomization. The notion of
(t;m; s)-net was introduced by Niederreiter (1987) based on the previous work by Sobol’
(1967) and Faure (1982), while the methods of randomization we present were developed
by Owen (1995), Matoušek (1998) and Hong and Hickernell (2001).

(t;m; s)-nets. A (t;m; s)-net is a set of points from [0; 1)s that satisfy certain equidis-
tribution property, namely that all subintervals of [0; 1)s of a certain type contain a given
number of points of the sequence. This equidistribution property ensures that the sequence
approximates closely the continuous uniform distribution on [0; 1)s.

The subintervals considered by Niederreiter (1987) are of the type

E =
sY

j=1

·
tj
bkj
;
tj + 1
bkj

¶
; (2.6)

where b is a positive integer, kj are nonnegative integers and tj integers with 0 · tj < bkj .
Then E is a hyperrectangle of volume b¡(k1+:::+ks) and is called elementary interval in base
b.

Let t and m be nonnegative integers with t < m. A …nite sequence a1; :::; an 2 [0; 1)s

with n = bm is called a (t;m; s)-net in base b if every elementary interval in base b of volume

6



bt¡m contains exactly bt points of the sequence. Note that for the same m; s and b smaller
values of t imply a better equidistribution property of the net.

The equidistribution property of nets can be extended to in…nite sequences in the fol-
lowing way. Let t be a nonnegative integer. A sequence a1; a2::: 2 [0; 1)s is a (t; s)-sequence
in base b if for allm ¸ 0 and all k ¸ 0 the …nite sequence akbm+1; :::; a(k+1)bm is a (t;m; s)-net
in base b.

(t;m; s)-nets in base b are typically constructed through appropriate so-called generator
matrices C1; :::; Cs. Each generator matrix is of size m £m and its elements are from the
set f0; 1; :::; b¡ 1g. The elements of a (t;m; s)-net in base b are obtained in the following
way. We write each i 2 f0; 1; :::; bm ¡ 1g in base b representation

i = dm¡1:::d0 =
m¡1X

k=0

dkbk,

where dk 2 f0; 1; :::; b¡ 1g for k = 0; 1; :::;m¡1. Denote the i-th member of the (t;m; s)-net
in base b by ai = (ai1; :::; ais). The element of this corresponding to dimension j is de…ned
as

aij =
¡
b¡1; :::; b¡m

¢
Cj (d0; :::; dm¡1)

0 ; (2.7)

where the operations of vector and matrix multiplication are done in a special way. Namely,
if b is a prime number then the operations should be done modulo b, that is, the remainder
of the division by b should be computed. If b is not prime but the power of a prime then
the operations should be done in the …eld with b elements. This way, Cj (d0; :::; dm¡1)

0 is
a vector with elements in f0; 1; :::; b¡ 1g, and these elements be the digits of the base b
representation of aij. The de…nition of the element aij shows that the generator matrices
fully determine a (t;m; s)-net. Constructing the generator matrices is not an easy task, and
therefore, presenting it is beyond the scope of this paper. For constructions that we use in
this paper we refer to Niederreiter (1988) and Niederreiter and Xing (1996)

Randomization. We treat two methods for randomizing (t;m; s)-nets. The …rst was
developed by Owen (1995), while the second by Matoušek (1998) and Hong and Hickernell
(2001). Suppose that a1; :::; an is a (t;m; s)-net in base b. We can write each element aij
of each member ai of this sequence in base b representation, that is, aij =

P1
k=1 aijkb

¡k;
with the digits aijk 2 f0; 1; :::; b¡ 1g. The randomization should produce a sequence with
uniformly distributed elements that retain the (t;m; s)-net property.

We …rst describe the randomization procedure developed by Owen (1995), and we do so
for a generic point a = (a1; :::; as) 2 [0; 1)s. Suppose that aj =

P1
k=1 ajkb

¡k. A randomized
version of a is the vector x, whose elements have the following digits:

xj1 = ¼j (aj1) ; xj2 = ¼jaj1 (aj2) ; xj3 = ¼jaj1aj2 (aj3) ; :::;

xjm = ¼jaj1aj2:::ajm¡1 (ajm) ; (2.8)
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where ¼jaj1aj2:::ajk for k = 1; :::;m ¡ 1 is a uniform random permutation of f0; 1; :::; b¡ 1g.
So the permutation used for randomizing the k’th digits of the elements belonging to the
same dimension depends on whether the previous k ¡ 1 digits of these elements’ base b
representation are equal. We show below with a simple example why this is necessary.

We illustrate randomization in Figure 1D. Note that the sample in this …gure, besides
being an OA based LH, is also a (0; 2; 2)-net in base 3. Take the horizontal dimension
and let it correspond to j = 1. Since the …rst digits in base b representation determine
to which rectangle of size 1=3 £ 1 the points belong, permuting the …rst digits means that
we permute the places of the three large rectangles of size 1=3 £ 1 by a uniform random
permutation ¼1 of 0; 1; 2. The second digits in base b representation determine to which
rectangle of size 1=9 £ 1 within the large rectangle the point belongs. Hence permuting
the second digits means that we permute the three small rectangles of size 1=9 £ 1 within
the large rectangles, and we do so by using three independent random permutations ¼10,
¼11, ¼12. More precisely, the permutation ¼1a for a = 0; 1; 2 is used for the large rectangle£
a
3 ;
a+1
3

¢
£ [0; 1). Therefore, the permutations ¼1a of the second decimal digits depend on

the …rst decimal digit a.
The randomization de…ned above permutes the …rstm digits in base b representation of a

number. This way we obtain points whose coordinates are from the set
©
0; 1
bm ;

2
bm ; :::;

bm¡1
bm

ª
.

This is similar to cij
bm that we obtain in the OA based LH samples in (2.5). In order

to make these coordinates uniform random on [0; 1), similar to (2.5), we add to them
uij
bm , where uij is uniform random on [0; 1). This way we obtain randomized (t;m; s)-nets
that inherit the equidistribution property of the original nets and contain points that are
uniformly distributed. Due to the latter property the integral estimates are unbiased and
their standard deviations can be estimated. These properties, proved in Owen (1995), are
stated in the following propositions.

Proposition 1. Equidistribution of randomization: If (ai)
bm
i=1 is a (t;m; s)-net in base

b; then a randomized version (xi)
bm
i=1 of it is also a (t;m; s)-net in base b with probability 1.

The same is true for (t; s)-sequences.

Proposition 2. Uniformity of randomization: If a is a point in [0; 1)s then its ran-
domly permuted version x has the uniform distribution on [0; 1)s.

The second method for randomizing (t;m; s)-nets was motivated by the fact that Owen’s
method is fairly slow in practical applications. This is due to the feature that the random
permutations corresponding to a digit depend on the previous digits. Let L1; :::; Ls be
lower triangular m £ m matrices with random diagonal elements chosen uniformly from
f1; 2; :::; b¡ 1g and the other elements chosen random uniformly from f0; 1; :::; b¡ 1g. Let
e1; :::; es be random vectors m £ 1 with elements chosen uniformly from f0; 1; :::; b¡ 1g.
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Then the method developed by Matoušek (1998) and Hong and Hickernell (2001), called
random linear scrambling, de…nes

cij =
¡
b¡1; :::; b¡m

¢ £
LjCj (d0; :::; dm¡1)

0 + ej
¤
;

as the randomized version of aij, where the operations are done in the speci…c way explained
below equation (2.7). Hence cij 2

©
0; 1
bm ; :::;

bm¡1
bm

ª
, which can be made uniform by taking

xij = cij +
uij
bm with uij a uniform random number on [0; 1). Matoušek (1998) and Hong

and Hickernell (2001) show that random linear scrambling yields randomized (t;m; s)-nets
with the equidistribution property of the original nets and contain points that are uniformly
distributed. This type of randomization operates in a similar way as Owen’s randomization
but yields (t;m; s)-nets that are less random. This can be seen from the example of (0; 2; 2)-
nets in base 3 (Figure 1D) by noting that the second digits in base 3 representation are not
permuted by independent random permutations. In spite of the fact that linearly scrambled
(t;m; s)-nets are less random, they are likely to be as useful as (t;m; s)-nets randomized
by Owen’s method. This was shown for a particular subclass, that is, (0;m; s)-nets, by
Matoušek (1998, Proposition 3.1).

2.4. Randomized Halton sequences

In this subsection we present sequences proposed by Halton (1960) and their random-
ization developed by Wang and Hickernell (2000). Halton sequences are similar to (t; s)-
sequences in that they manipulate the digits of numbers in certain base representations.

Halton sequences. First we show how Halton sequences are de…ned in one dimension
and then extend it to several dimensions. We write any nonnegative integer i in base b as

i = dm:::d0 =
mX

k=0

dkbk,

where dk 2 f0; 1; :::; b¡ 1g for k = 0; 1; :::;m. The i-th member of the base b Halton sequence
is de…ned by

Hb (i) = 0:d0:::dm (in base b) =
mX

k=0

dkb¡k¡1.

That is, we write the base b representation of the number i, reverse the order of its digits
and put a decimal point in front of them. The result is a number between 0 and 1 that is
by de…nition the i-th member of the one-dimensional base b Halton sequence.

The multi-dimensional Halton sequence can be obtained by generating several one-
dimensional Halton sequences corresponding to bases that are prime numbers. More pre-
cisely, we take the …rst s prime numbers p1; :::; ps; generate the corresponding one-dimensional
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Halton sequence and use these to form the s-dimensional Halton sequence:

xi = (Hp1 (i) ; :::;Hps (i)) ; i = 0; 1; ::::

As noted by Niederreiter (1992, Remark 4.38), all one-dimensional components of this
sequence are (0; 1)-sequences in the corresponding bases. This makes them closely related
to LH samples. However, correlation between two one-dimensional components is not con-
trolled for in the latter. Since the one-dimensional Halton sequences are generated taking
bases that are prime numbers, and hence mutually relative primes, the Halton sequence is
expected to have lower correlations between its one-dimensional components.

Randomization. The randomization of Halton sequences as introduced by Wang and
Hickernell (2000) is based on a recursive relation that holds for the Halton sequence. This
relation translates the recursion from i to i+ 1 into Hb (i) and Hb (i+ 1) in a natural way.

Formally, let x0 2 [0; 1) with the base b representation x0 =
P1
k=0 dkb

¡k¡1. De…ne the
expression

Tb(x0) = (1 + dh) b¡h¡1 +
X

k¸h
dkb¡k¡1;

where h = min fk : dk 6= b¡ 1g. Then we can de…ne the sequence (T ib (x0)) by

T ib (x0) ´ Tb
¡
T i¡1b (x0)

¢
for i ¸ 1 and

T 0
b (x0) ´ x0:

Note that with x0 = 0 the above sequence is exactly the one-dimensional Halton sequence
in base b. Further, if the starting term can be written as a …nite sum x0 =

Pm
k=0 dkb

¡k¡1

yielding x0 = 0:d0:::dm (in base b) and denoting the corresponding integer i0 = dm:::d0 (in
base b) then x0 = Hb (i0) and T ib (x0) = Hb (i0 + i) for i ¸ 1. That is, if the starting term of
the sequence (T ib (x0)) can be written as a …nite sum, then the sequence is the same as the
Halton sequence of which …rst i0 elements are skipped.

Randomized Halton sequences are de…ned as the above sequences having their starting
point random. More precisely, let x0 2 [0; 1) have the uniform distribution. The randomized
one-dimensional Halton sequence in base b is de…ned by xi = T ib (x0) for i = 1; 2; :::. For
the s-dimensional Halton sequence let now x0 = (x01; :::; x0s) 2 [0; 1)s have the uniform
distribution. Then the randomized s-dimensional Halton sequence is de…ned by

xi =
¡
T ip1 (x01) ; :::; T

i
ps (x0s)

¢
for i = 1; 2; :::: (2.9)

Note that according to the remarks from the previous paragraph randomized Halton se-
quences can also be de…ned as the deterministic Halton sequences described above by skip-
ping randomly a number of initial terms. Wang and Hickernell (2000) show that the elements
of a randomized Halton sequence with a uniform random starting point are uniform.
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Proposition 3. If x0 2 [0; 1)s is a uniform random vector then xi de…ned by (2.9) has the
uniform distribution on [0; 1)s for any i ¸ 1.

In practice one cannot use a uniformly distributed starting point since its base b repre-
sentation generally has in…nite number of digits. However, if bm is su¢ciently large, wherem
is the number of digits used in base b representation, then truncating each starting uniform
random number by omitting its digits from m+1 on, we obtain numbers that approximate
uniform numbers fairly well. We return to this problem in section 5 and explain there how
we proceeded in practice.

2.5. Randomly shifted lattice points

Lattice points were introduced by Korobov (1959), Bakhvalov (1959) and Hlawka (1962)
and further developed to a systematic theory by Sloan and his collaborators (see the refer-
ences in Sloan and Joe, 1994). The randomization of the lattice points by random shifting
was proposed by Cranley and Patterson (1976).

Lattice points. The simplest type of lattice points (in the literature referred to as
rank-1 lattice points) are de…ned as

xi =
µ½
ig1
n

¾
; :::;

½
igs
n

¾¶
for i = 0; 1; :::; n¡ 1; (2.10)

where n is the number of lattice points, gj, j = 1; :::; s, are positive integers, typically taken
to be relative prime with n, and the symbol fxg means the fractional part of the number
x, that is, fxg = x¡ bxc. According to their de…nition, lattice points are easy to generate,
provided that we know g = (g1; :::; gs).

Procedures for obtaining appropriate g vectors are based on minimizing the integration
error. In this paper we treat two criteria regarding the integration error, the worst-case
integral error (see, e.g., Sloan and Joe, 1994), commonly denoted by P®, and the spectral
test (Entacher et al. 2000). Both criteria are based on the Fourier series representation
of the integrand. Fourier series are helpful in expressing the integration error of lattice
points because lattice points are especially suited for integrating periodic functions. We
give more detail on this in section 3.3. Since it is rather di¢cult to search for the minimum
in all s dimensions, it is useful to consider lattices of so-called Korobov type where g =
(1; q; q2; :::; qs¡1). In this situation the search is done with respect to only one variable. Since
carefully determined Korobov type lattice points are expected to have a good performance,
we are content to consider in this paper only this type of lattice points.

Randomization. Randomly shifted lattices play the role of randomized nets. A ran-
domly shifted lattice has the points

xi =
µ½
ig1
n

+ u1
¾
; :::;

½
igs
n

+ us
¾¶

for i = 0; 1; :::; n¡ 1; (2.11)
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where u1; :::; us are independent random uniform numbers on [0; 1). We note that if gj and
n are relative primes then

n
igj
n

o
for i = 0; 1; :::; n¡ 1 take all values of 0; 1n ; :::;

n¡1
n , though

probably in a di¤erent order. In other words, a one-dimensional lattice has the points of the
regular grid 0; 1n ; :::;

n¡1
n . When shifted by u 2 [0; 1) the lattice preserves its grid structure

but it is translated by a number c 2
£
0; 1n

¢
. That is, the points of the shifted lattice will

be c; 1n + c; :::;
n¡1
n + c. This argument shows that a random shift preserves the regular grid

structure of lattice points.
The randomly shifted lattice points de…ned in (2.11) can be regarded as having been

drawn from the uniform distribution if we replace i by ¼ (i) in (2.11), where ¼ is a random
uniform permutation of 0; 1; :::; n ¡ 1. To see that this statement is true consider the j’th
component xij =

n
¼(i)gj
n + uj

o
of xi. Following the ideas from the previous paragraph this

can be written as xij = $(i)
n + cj, where $ is a random uniform permutation of 0; 1; :::; n¡1

and cj 2
£
0; 1n

¢
is a random uniform number. Therefore, xij has the uniform distribution

on [0; 1) (there is some similarity to LH samples; see (2.4)). The fact that the lattice point
xi 2 [0; 1)s is uniform random follows from the independence of u1; :::; us. The reason that in
the de…nition of lattice points no random permutation is involved is that this only changes
the order of the lattice points randomly, and the Monte Carlo sum does not depend on the
order of the points. Due to the fact that the randomly shifted lattice points can be regarded
as uniformly distributed in [0; 1)s, the integral estimate using these points will be unbiased.

2.6. Properties, existence and construction

In section 2.2 while presenting LH, OA and OA based LH samples we also compared
them regarding their equidistribution property. Here we discuss further properties of Halton,
LH, OA based LH samples, randomized (t;m; s)-nets and randomly shifted lattice points.
We also provide some information on the existence and construction of (0;m; s)-nets.

Properties of the samples. As we mention in section 2.4, each one-dimensional
component of a Halton sequence is a (0; 1)-sequence in the prime number base in which it
was generated. This suggests that it is related to (0; 1; s)-nets. A one-dimensional base b
Halton sequence of size n; if b does not divide n; is a reunion (in the sense of reunion of
sets) of bn=bc pieces of (0; 1; 1)-nets in base b and a number of points that we refer to as
truncated net, where bxc is the largest integer not greater than x. If the dimension of the
Halton sequence is not very large then the prime numbers in which the one-dimensional
components are generated will not be very large and there will be many (0; 1; 1)-nets of
a moderate size in the reunion. Hence the truncated net has a small size and does not
play an important role in this component. Then we expect this Halton sequence to have a
good equidistribution property, better than (0; 1; s)-nets, due to the low correlation between
the components. This latter feature is a consequence of the fact that the components are
generated using bases that are mutually relative primes. If the dimension of the Halton
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sequence is large then the prime bases will be large and it is likely that the prime bases do
not divide the sample size. Moreover, the size of the truncated net becomes large relative
to the size of the component nets. For example, the 40’th prime number is 173. If n = 1000
then there will be b1000=173c = 5 pieces of (0; 1; 1)-nets, each of size 173, and a truncated
net of size 135. This large truncated net tends to destroy the attractive equidistribution
property of nets. Therefore, we expect Halton sequences with large dimension to have a
poorer equidistribution property than (0; 1; s)-nets.

There is a simple relationship between (0;m; s)-nets and OA’s. If aij are the elements
of a (0;m; s)-net in base b with m < s; then bbaijc are the elements of an OA of maximal
strength m. The reverse of this is true for m = 1 and 2. Any LH given as an OA(b; s; b; 1)
can be transformed into a (0; 1; s)-net in base b by dividing its elements by b. This is
because all elementary intervals corresponding to these nets have one component of the form
[tj=b; (tj + 1) =b) and the rest equal to [0; 1). Moreover, if one uses the same permutations
for randomizing the (0; 1; s)-net and for generating the sample from the corresponding LH,
then the two samples will be identical. In other words, randomization of a (0; 1; s)-net is
equivalent to generating a LH sample. For each OA(b2; s; b; 2) a (0; 2; s)-net in base b can
be constructed. One construction is shown by Owen (1997a). It is easy to show that the
method by Tang (1993) of OA based LH sampling o¤ers another way. To see this, take any
LH sample based on an OA(b2; s; b; 2). For this to be a (0; 2; s)-net in base b the criterion
is that any elementary interval in base b of volume b¡2 has exactly one point of the sample.
Any such elementary interval has either two components of the form [tj=b; (tj + 1) =b) with
0 · tj < b and the rest identical to [0; 1); called two-dimensional elementary intervals, or one
component of the form [tj=b2; (tj + 1) =b2) with 0 · tj < b2 and the rest identical to [0; 1),
called one-dimensional elementary intervals. The criterion is satis…ed for the latter type of
elementary intervals since the sample derives from a LH with b2 symbols. Two-dimensional
elementary intervals satisfy the criterion due to the fact that the sample is obtained from
an OA of strength 2 ensuring that each two-dimensional component contains each pair of
symbols exactly once. Hence the LH sample based on an OA(b2; s; b; 2) is a (0; 2; s)-net in
base b.

From the discussion above we draw the conclusion that from an equidistribution point
of view OA’s of strength m are equivalent to (0;m; s)-nets for m = 1 and 2. This property
does not remain true for m ¸ 3. It is easy to see that an OA based LH based on an
OA of strength 3 does not have the property implied by an elementary interval with one
component of type [tj=b2; (tj + 1) =b2), another component of type [tk=b; (tk + 1) =b) and
the rest equal to [0; 1). By de…nition, a (0; 3; s)-net satis…es the property that each such
elementary interval contains exactly one point of the net. Hence (0; 3; s)-nets have a better
equidistribution property than OA based LH based on an OA of strength 3. This feature
holds also for m > 3.

In this paper we employ two types of (t;m; s)-nets in base b, one developed by Niederre-
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iter (1988) and the other by Niederreiter and Xing (1996). Since the nets from the former
paper have an explicit equidistribution structure, here we provide some details about them.
The construction of the generator matrices by Niederreiter’s (1988) method is based on ir-
reducible polynomials having coe¢cients from the set f0; 1; :::; b¡ 1g with the coe¢cient of
the highest degree term equal to 1.2 Each generator matrix is constructed with a di¤erent
irreducible polynomial. Niederreiter shows that the (t; s)-sequence in base b constructed
with this method has

t =
sX

i=1

[deg (pi) ¡ 1] ; (2.12)

where deg (p) is the degree of the polynomial p. Since lower values of t yield (t; s)-sequences
with a better equidistribution property, one should take the lowest degree irreducible poly-
nomials. The above formula implies that the (t; s)-sequence has a better equidistribution
property in subcomponents corresponding to the …rst few dimensions than the last few
dimensions. For the b = 2 case we present the degrees of some irreducible polynomials in
Table 1. In the table the polynomials are ordered according to their degree and their coe¢-
cients. The upper row of the table gives the position of the polynomial in this ordering while
the lower row presents the degree of the polynomial. For example, the 19’th polynomial
has degree 6.

[TABLE 1 ABOUT HERE]

According to this table, the …rst two polynomials have degree 1 and hence their contribution
to t is zero. From the table it is possible to compute the t’s corresponding to any (t;m; s)-net
in base 2 constructed with Niederreiter’s (1988) method. For extensive tables of irreducible
polynomials for small prime bases we refer to Lidl and Niederreiter (1983).

Based on Table 1 we …nd that for s = 3 and s = 4 we have t = 1 and t = 3, respectively,
while for s ¸ 9 we have t ¸ 18. In this latter case we cannot obtain a (t;m; s)-net for
m · 10 because t is too high. Nevertheless, from Table 1 we can also obtain information
about the low-dimensional equidistribution property of these nets by computing the t-values
corresponding to lower-dimensional components of a net. For example, the t-value of the
2-dimensional component corresponding to dimensions 5 and 19 is t = 7. Proceeding in this
manner, we can see that the Niederreiter nets have a good low-dimensional equidistribution
property. In section 3.2 we explain in detail why the equidistribution property of lower-
dimensional components is important.

2A polynomial with coe¢cients from f0; 1; :::; b ¡ 1g is irreducible if it cannot be written as the product
of two polynomials with coe¢cients from f0; 1; :::; b ¡ 1g, where none of the two polynomials is constant.
The addition and multiplication operations of the polynomials’ coe¢cients are done in the special way
described in section 2.3. These irreducible polynomials in the set of polynomials with coe¢cients from
f0; 1; :::; b ¡ 1g are analogous to prime numbers in the set of integers.
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In Table 2 the t-values corresponding to the (t;m; s)-nets in base 2 constructed by the
Niederreiter-Xing method are presented for values m and s of interest in our simulation
study from section 5. These values are not as easy to compute as those corresponding to
the Niederreiter nets, but they are available on Gottlieb Pirsic’s home page.3 Apart from
those for s = 3; 4, these t-values are lower than those corresponding to the Niederreiter nets.
For example, for m = 10 and s = 9 we have t = 6, which is much lower than 18, the t-value
corresponding to the Niederreiter net. Still, for dimensions ¸ 14 (apart from m = 10) the
t-values corresponding to the Niederreiter-Xing nets are not useful since they are at least
as large as m. Moreover, we are not aware of any property of Niederreiter-Xing nets that
would imply that these nets have a good low-dimensional equidistribution property. Hence
we conclude that for m = 6; 8; 10 the Niederreiter-Xing nets have a better equidistribution
property for dimension 9, for dimension 3 the Niederreiter nets have a better equidistribution
property, while for the other dimensions from Table 2 it is not possible to make a judgement.

[TABLE 2 ABOUT HERE]

Randomly shifted lattice points, as de…ned in (2.11), can be viewed as (0; 1; s)-nets in
base n, provided that gj and n are relative primes. The arguments for showing this are
provided in section 2.5. However, this observation should not be taken as su¢cient for
comparing lattice points and versions of orthogonal arrays and (t;m; s)-nets. Besides being
(0; 1; s)-nets in base n, lattice points have a regular grid structure that makes them well
suited for integrating periodic functions. Due to this feature they are di¤erent from the
other samples discussed in this paper, and therefore, the equidistribution property in the
sense of elementary intervals does not serve as a tool for judging their performance for
integration.

We conclude this subsection by summarizing the hierarchy of the samples presented in
section 2 regarding their equidistribution property. We assume that each sample has the
same size. LH samples are equivalent to (randomized) (0; 1; s)-nets and to some extent to
Halton sequences since their one-dimensional components are parts of (0; 1)-sequences. Hal-
ton sequences are expected to have a better equidistribution property in lower dimensions
while in higher dimensions LH samples and (0; 1; s)-nets tend to have a better equidistri-
bution property for low sample sizes. OA’s of strength 2 have additional equidistribution
structure in two dimensions, hence OA samples and especially OA based LH samples and
(0; 2; s)-nets have a better equidistribution property. The latter two are essentially equiva-
lent. (t;m; s)-nets in base 2, both of the Niederreiter and the Niederreiter-Xing type, have
lower t-values for lower dimensions, so they have a better equidistribution property if s is
relatively low. In higher dimensions we expect (0; 2; s)-nets to have a better equidistribution
property than these. Lattice points should not be compared to the other samples on the
basis of the equidistribution property.

3http://www.dismat.oeaw.ac.at/pirs/niedxing.html
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Existence and construction. Here we present an existence and construction result
of (0;m; s)-nets. As we have shown previously, OA’s of strength m can be constructed from
(0;m; s)-nets. Even more, we have shown that for m = 2 the reverse of this is also true.
Hence the existence of OA(b2; s; b; 2) is equivalent to the existence of (0; 2; s)-nets in base
b. An existence result on (0;m; s)-nets is the following.

Proposition 4. If m ¸ 2 and b is a power of a prime number, then a (0;m; s)-net in base
b exists if and only if s · b+ 1 (proved in Niederreiter, 1992).

These (0;m; s)-nets in a prime power base b can be constructed by Niederreiter’s (1988)
construction method. There are exactly b linear irreducible polynomials X;X + 1; :::;X +
b ¡ 1, so these can be used to construct a (0;m; b)-net in base b. Then, as Niederreiter
shows, if we let the vector

¡
0; 1
bm ;

2
bm ; :::;

bm¡1
bm

¢0 be the (b+ 1)’th column of the net, then the
resulting set of points is a (0;m; b+ 1)-net in base b. In the simulation study we use this
construction method for obtaining a (0; 2; 17)-net in base 16 and a (0; 2; 9)-net in base 8.

We conclude this section with the remark that samples with a good equidistribution
property are not obtained easily. The better equidistributed a sequence, the more di¢cult
to construct it. LH samples are easy to construct and Halton sequences are just slightly
more di¢cult to obtain. More equidistributed sequences like samples based on OA’s and
(t;m; s)-nets are not trivial to construct. Lattice points are relatively easy to construct.

3. Properties of the estimates

In this section we discuss some properties of the integral estimates. For this we introduce
the ANOVA (analysis of variance) decomposition in the …rst subsection. We apply this in
the following subsection to show intuitively how the discussed samples work for estimating
integrals. Then, based on the Fourier series representation of a function, we provide intuitive
arguments that show why lattice points work well for periodic integrands. Here we also
describe the two selection criteria for lattice points mentioned in section 2.5. In the last
subsection we present some …nite sample and asymptotic results on the variance of the
integral estimates for di¤erent samples.

3.1. ANOVA decomposition

In order to be able to explain how the sampling methods work, we present the ANOVA
decomposition used by Owen (1992). ANOVA decomposes a function to a sum of mutually
uncorrelated functions that depend on di¤erent subsets of the variables. Hence it makes
it possible to express the variance of the function as the sum of the variances of these
functions.

Formally, denote S = f1; 2; ::; sg and let u µ S be a subset of the coordinates of [0; 1)s.
Let juj and u denote the cardinality of u and its complement f1; 2; ::; sg n u; respectively.
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For x 2 [0; 1)s let xu denote the coordinates of x indexed by elements of u and write [0; 1)u

for the domain of xu. For u µ [0; 1)s; de…ne the functions ®u recursively by

®u =
Z

[0;1)u

0
@f ¡

X

v$u

®v

1
A dxu; (3.1)

®; = I;

where I is de…ned by (2:1).
The resulting sequence of functions (®u) satis…es a number of appealing properties of

which some were mentioned at the beginning of this subsection, and that help to analyze
the variance of the integral estimates. These properties are the following.

1. f =
P
uµS ®u; that is, the integrand function can be written as the sum of all ®u’s,

where each ®u depends on xu.

2.
R 1
0 ®udx

j = 0 whenever j 2 u (where xj ´ xfjg).

3.
R
[0;1)s ®u®vdx = 0 whenever u 6= v; which, together with property 2 implies that two

di¤erent terms from the sum representing f are uncorrelated.

4.
R
[0;1)s (f ¡ I)2 dx =

P
juj¸1

R
[0;1)s ®

2
udx; that is, the variance of f is the sum of the

variances of the terms representing f .

Example 5. In order to illustrate the ANOVA components, we give their expressions in
the case s = 3. The univariate components are the following.

®1 =
Z

[0;1)2
f

¡
x1; x2; x3

¢
dx2dx3 ¡ I;

®2 =
Z

[0;1)2
f

¡
x1; x2; x3

¢
dx1dx3 ¡ I;

®3 =
Z

[0;1)2
f

¡
x1; x2; x3

¢
dx1dx2 ¡ I;

where ®j ´ ®fjg for j = 1; 2; 3. The bivariate components are:

®12 =
Z

[0;1)
f

¡
x1; x2; x3

¢
dx3 ¡ (I + ®1 + ®2) ;

®13 =
Z

[0;1)
f

¡
x1; x2; x3

¢
dx2 ¡ (I + ®1 + ®3) ;

®23 =
Z

[0;1)
f

¡
x1; x2; x3

¢
dx1 ¡ (I + ®2 + ®3) :

The three-variable component is

®123 = f ¡ (I + ®1 + ®2 + ®3 + ®12 + ®13 + ®23) :
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This last equality suggests why property 1 holds. Property 2 can be proved easily by
induction. Property 3 is a consequence of property 2, while property 4 is an implication of
the other three properties.

The ANOVA decomposition provides a fairly abstract way of dealing with the variance
of a function since generally it is di¢cult to give analytical expressions for the components.
Nevertheless, it is a useful tool as shown by Owen (1992) and as we also illustrate in the next
subsection. The essential fact about the ANOVA decomposition is that a decomposition
with such properties exists.

Note that property 4 has interesting implications for the integrand function f . It may
happen that some components ®u dominate the variance of f in the sense that the sum of
the corresponding variances amounts to a large fraction of the total variance. If it happens
that these components have low dimensions, we will say that the integrand has an inherent
low-dimensional structure. In the next subsection we present intuitive arguments that in
high dimensions the sampling methods presented above are most suitable for functions with
signi…cant inherent low-dimensional structure.

3.2. Intuitive arguments using lattice sampling

In section 2.2 when introducing OA based LH sampling we mention that the integrals
of functions that are the sum of univariate functions, or more formally, have the ANOVA
decomposition

f =
X

juj·1
®u; (3.2)

can be estimated very well with a LH sample. This is because integrating f implies inte-
grating each univariate component ®u; i.e.,

Z

[0;1)s
fdx = ®; +

X

juj=1

Z 1

0
®udxu

so the domain of f is decomposed into its one-dimensional components by the integral. Like-
wise, the LH sample is also decomposed into its one-dimensional components for estimating
the integral since the estimate

bI = 1
n

nX

i=1

f (xi) = I +
X

juj=1

1
n

nX

i=1

®u (xui ) ;

uses exactly these one-dimensional components xui for i = 1; :::; n, where (xi) is a LH sample
of size n. We can see from here that a LH sample does very well in these cases since its
one-dimensional components have a very good equidistribution property. In fact one can
say that the equidistribution property of the one-dimensional components of a LH sample
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are optimal (Niederreiter, 1992, p.23) and hence LH samples are optimal for this type of
f . We also note that in higher dimensions samples with a better equidistribution property
than LH samples would not do any better. Hence a richer combinatorial structure induced
by, for example, an OA based LH sample would not be exploited for this type of function.

Owen (1994) generalizes the intuition for LH samples to OA samples using lattice sam-
pling introduced by Patterson (1954). Lattice samples (although related to lattice points,
they should not be confused with them) are similarly generated as OA samples but the uni-
form random variables are replaced by 1/2. For illustration we present the strength 2 case
but the idea applies to OA’s of any strength. Let aij be the elements of an OA(b2; s; b; 2).
Then a lattice sample based on this is de…ned by

xij =
¼j (aij) + 1=2

b
; i = 1; :::; n; j = 1; :::; s; (3.3)

where ¼j is as in (2:3). This way each xij belongs to the setB = f1=2b; 3=2b; :::; (2b¡ 1) =2bg ;
each element of B appears exactly b times in each column of the matrix (xij) and each pair
of elements appears exactly once in any two columns of this matrix. This regularity of
the elements make it possible to write any two-dimensional integral as a combination of
one-dimensional integrals, as we show next.

Suppose that f can be written as a sum of at most bivariate functions. That is, f has
an ANOVA decomposition

f =
X

juj·2
®u = ®; +

X

juj=1

®u +
X

juj=2

®u: (3.4)

Hence a sample used for estimating the integral of f in fact estimates univariate and bivari-
ate functions ®u. Take a generic bivariate function ® (y; z). Then its integral is estimated by
bI® = 1=n

Pn
i=1 ® (yi; zi) where f(yi; zi)gni=1 is a sample of size n. If we use a lattice sample

as given in (3:3) for estimating the integral of f then n = b2 and f(yi; zi)g corresponds to
two columns of the sample and hence any pair of elements of B is taken exactly once by
(yi; zi). Therefore

bI® =
1
b2

bX

i=1

bX

j=1

®
µ
2i¡ 1
2b
;
2j ¡ 1
2b

¶
=

1
b

bX

i=1

"
1
b

bX

j=1

®
µ
2i¡ 1
2b
;
2j ¡ 1
2b

¶#
:

The expression from the brackets is an estimate of the integral I® (y) =
R 1
0 ® (y; z) dz for

y = 2i¡1
2b ; denoted bI® (y) ; using a lattice sample of size b. Similarly, the expression of bI® can

be interpreted as an estimate of the integral
R 1
0

bI® (y) dy using again a lattice sample of size
b. So estimation of a bivariate function ® (y; z) with a lattice sample of size b2 implies in
fact estimation of univariate functions with lattice samples of size b. Since lattice samples in
one dimension are deterministic analogs of LH samples, they are also optimal for univariate
functions, in the sense of their equidistribution property. Hence we expect lattice samples
obtained from OA’s of strength 2 to work well for bivariate functions.
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For f de…ned in (3:4) one needs to estimate also the univariate components with the
same lattice sample. Since an OA(b2; s; b; 2) is not a LH, the lattice sample based on this
is not optimal for the univariate components. Tang’s (1993) procedure of OA based LH
sampling avoids this problem but with this sampling it is di¢cult to illustrate intuitively
how estimation of integrals using samples based on OA’s of strength 2 works.

From the above discussion and the similarity of OA samples and lattice samples we
draw the conclusion that if a function has the ANOVA representation (3:4) then estimation
methods with samples based on OA’s of strength 2 (OA samples, OA based LH samples
and (0; 2; s)-nets) provide a very good way of estimating its integral. This idea generalizes
for functions with ANOVA decomposition

f =
X

juj·m
®u

and samples obtained from OA’s with strength m. Similarly as for the m = 2 case, it is
possible to reduce the integral of an m-variate function to integrals of univariate functions.
However, we note that the size of the sample bm should grow very large as m increases
in order to obtain reasonably precise estimates for the one-dimensional integrals estimated
with samples of size b.

Now we can argue that the inherent low-dimensional structure of the integrand is that
matters for high-dimensional integrals. We extend here the remarks from the previous
paragraphs along this idea. So if the integrand has an inherent structure such that ANOVA-
components up to m dimensions are dominating and if for estimating the integral we use
samples based on OA’s of strength m (OA samples, OA based LH samples and (0;m; s)-
nets) we expect to obtain good estimates of the integral. The sample works well for the
components of the ANOVA decomposition that are at most m-dimensional and the rest
of the components do not play an important role in evaluating the precision of the integral
estimate. This is exactly the idea why these sampling methods may be useful for high-
dimensional integrals since they may have substantial inherent low-dimensional structure.
If the integrands do not have low-dimensional structure, then the improvement over MC
will be marginal. If the integral is not high-dimensional, the above sampling methods are
expected to work well generally since the variance of low-dimensional components is likely
to represent a substantial part of the total MC variance.

3.3. Fourier series and lattice points

Though the inherent low-dimensional structure of the integrand also facilitates the per-
formance of lattice points in integrating functions, the Fourier series representation of the
integrand provides another intuitive argument. Lattice points are especially useful for es-
timating the integrals of periodic functions, that is, functions f de…ned on the whole Eu-
clidean space satisfying f (x) = f (x+ z) for all integer vectors z and real vectors x. If
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the integrand function f de…ned on the unit hypercube allows for a continuous extension
that is periodic, then the Monte Carlo sum de…ned in (2.2) using the lattice points (2.10)
computes exactly most of the Fourier series terms of the function f . This fact is stated in
the following result (for a proof see Sloan and Joe, 1994).

Proposition 6. If f has the absolutely convergent Fourier series

f (x) =
X

h2Zs

bf (h) e2¼ih0x;

where

bf (h) =
Z

[0;1)s
e¡2¼ih

0xf (x) dx; h 2 Zs;

then the integration error is

bI ¡ I =
X bf (h) ; (3.5)

where the summation is over h 2 Zs n f0g for which h0x 2 Z for all lattice points x from
(2.10).

Both integration error criteria mentioned in section 2.5 are based on this error expres-
sion. The worst-case error criterion P® considers a class of functions whose mixed partial
derivatives of order less than ®, for some ® > 1, are of bounded variation in the sense of
Hardy and Krause (e.g., Davis and Rabinowitz, 1984, p.352), and from this class it takes a
function that gives the highest integration error in absolute value P® = jbI¡Ij. P® obviously
depends on the lattice points, and through this on g and n de…ned in section 2.5, so we can
put P® (g; n). Then for a given n, P® should be minimized with respect to g. Presenting the
formula of P® is beyond the scope of this paper; it can be found in Sloan and Joe (1994).

The other integration error criterion is the spectral test, which is commonly used for
assessing uniform random generators with a lattice structure. For n and g de…ned in section
2.5 the spectral test is de…ned as

¾ (g; n) = min
h

khk ;

where k¢k is the Euclidean distance and the minimum is taken over h 2 Zs n f0g for which
h0x 2 Z for all lattice points x from (2.10). Then for a given n, g is determined by
maximizing ¾ (g; n). The intuition behind the spectral test is based on the integration error
formula (3.5). If f has the absolutely convergent Fourier series, that is,

P
h2Zs j bf (h) j <1,

then j bf (h) j converges to zero quickly as h gets farther away from the origin. So it is likely
that the largest values of j bf (h) j occur for those h’s that are closest to the origin. In other
words, the largest integration errors are likely to occur for those g’s for which the distance
from the origin of those h’s closest to the origin itself is the smallest. This means that
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¾ (g; n) is minimal. On the opposite, those g’s, for which ¾ (g; n) is maximal, will yield the
lowest integration error.

We have given some explanation above why lattice points are suited for integrating
periodic functions or functions that have a continuous periodic extension. Nevertheless,
most integrand functions, like those arising from multivariate normal probabilities, do not
have a continuous periodic extension. There are, however, ways of transforming the inte-
grand so that it satis…es this property. For this consider the function Ã de…ned on [0; 1)s

by Ã (t) = (' (t1) ; :::; ' (ts)), where ' maps [0; 1) into [0; 1), it is su¢ciently smooth and
' (0) = ' (1). In this case it is easy to see that f (Ã (¢)) is de…ned on [0; 1)s and it has
a continuous periodic extension. By using the transformation of variables x = Ã (t) the
integral of f becomes

I =
Z

[0;1)s
f (x) dx =

Z

[0;1)s
f (Ã (t))

¯̄
¯̄@Ã
@t

¯̄
¯̄ dt;

where j@Ã=@tj denotes the Jacobian of the variable transformation. Let now ' be the so-
called baker’s transformation, that is, ' (z) = 1 ¡ j2z ¡ 1j. Then the Jacobian, apart from
a negligible set of points, is equal to 1. Hence for the integral we obtain

I =
Z

[0;1)s
f (x) dx =

Z

[0;1)s
f (Ã (t)) dt:

The integrand expression on the right hand side can be estimated by

bI = 1
n

nX

i=1

f (Ã (ti)) ; (3.6)

and if (ti)
n
i=1 are lattice points then the estimator is expected to be e¢cient because f (Ã (¢))

has a continuous periodic extension. The above integral estimator can also be seen in a
di¤erent way, namely, as the estimator of the integral of f using the points (Ã (ti))

n
i=1.

These points are lattice points transformed by the baker’s transformation. Such points
have been used successfully in the numerical mathematics literature for estimating integrals
(e.g., Genz, 2001). Some theoretical justi…cation for the e¤ectiveness of these points has
been given more recently by Hickernell (2001).

3.4. Results on the variances

This subsection reviews theoretical results on the variance of the estimates for the sam-
ples presented above. As it is apparent from the results below, rather little is known about
the variances. However, some of the results have interesting connections with the intuitive
reasoning above. Besides upper bounds on the convergence rate of MC variance, there are
also results that compare …nite sample variances of MC and di¤erent samples. No result
is, however, available that states what the variance reduction is as compared to MC. Such
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a result should take into account the inherent low-dimensional structure of the integrand
function. This is, however, di¢cult to treat analytically.

We recall the well-known fact that the MC estimator given in (2:2) of the integral (2:1)
is unbiased and has the variance V

³
bI
´
= ¾2=n; where ¾2 is the variance of the integrand,

i.e.,

¾2 =
Z

[0;1)s
(f (x) ¡ I)2 dx: (3.7)

Hence, providing that it exists, the variance converges to 0 at the rate n¡1; so we have
V

³
bI
´
= O (n¡1). According to the results below all the samples used in this paper have a

better rate of convergence.

Proposition 7. If f is of bounded variation in the sense of Hardy and Krause and xi are
the …rst n points of a randomized Halton sequence then

V
³

bI
´
= O

¡
n¡2 (log n)2s

¢
:

This result is due to Wang and Hickernell (2000). It implies that, since n¡2 (log n)2s con-
verges faster to 0 than n¡1, for su¢ciently large samples, estimates using Halton sequences
are more precise than MC estimates.

The same result remains true if xi are the …rst n points of a randomized (t; s)-sequence.
This was shown by Owen (1998). He also shows that if one makes use of more structure
o¤ered by nets then the convergence rate of the variance will be lower.

Proposition 8. If f is of bounded variation in the sense of Hardy and Krause, and xi are
the points of a randomized (t;m; s)-net in base b with n = bm then

V
³

bI
´
= O

³
n¡2 (logn)2(s¡1)

´
:

A result similar to Proposition 7 is available for randomly shifted lattice points. Tu¢n
(1997) showed that for the same type of integrands the convergence rate of the variance
is n¡2 (log n)2s. Unfortunately, analogous results for the case when f has the additional
property of admitting a continuous periodic extension are only available for integrands with
further smoothness properties. The following result is due to Tu¢n (1998).

Proposition 9. If f is from the class of functions with a continuous periodic extension
whose mixed partial derivatives of order less than ®, for some ® > 1, are of bounded
variation in the sense of Hardy and Krause, and xi are randomly shifted carefully selected
lattice points then

V
³

bI
´
= O

³
n¡2® (logn)2®(s¡1)+1 (log log n)(2®¡1)(s¡1)

´
:
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This result implies that the smoother the integrand the more precisely it is integrated by lat-
tice points. If ® = 2 then the convergence rate of the variance is n¡4 (log n)4(s¡1)+1 (log logn)3(s¡1).
We can compare this with a result obtained by Owen (1997b) for randomized (0;m; s)-nets
in base b. According to this, if f is smooth (Owen’s de…nition of smoothness is stronger
than that from the proposition above for ® = 2) then the convergence rate of the variance
is O

³
n¡3 (log n)(s¡1)

´
. This convergence is slower than the one obtained for lattice points

for ® = 2. Hence for integrands that have a continuous periodic extension and additional
smoothness, for su¢ciently large samples, estimates using randomly shifted lattice points
are more precise than those using randomized (0;m; s)-nets.

These results show upper bounds on the convergence rate of the variance. They suggest
that in lower dimensions the convergence faster. Intuition from the previous subsection
supports this. The results are not able, however, to show how the convergence rate depends
on t for (t;m; s)-nets.

Tang (1993) and Owen (1994) proved results that compare the asymptotic variance of
OA based LH and OA sampling with MC. The essence of both results is that if xi are points
of an OA based LH sample based on OA(bm; s; b;m) (Tang, 1993) or of an OA sample based
on OA(bm; s; b;m) (Owen, 1994) with n = bm then

V
³

bI
´

' 1
n

X

juj>m
Var (®u) (3.8)

holds with increasing accuracy as n ! 1; where ®u is from the ANOVA decomposition
(3:1). Tang proves the result only for m = 2 and mentions that it should remain true for
higher m’s. Note that the variance from (3:8) is lower than the MC variance, which due to
Property 4 from section 3.1 is

¾2

n
=

1
n

X

u2S
Var (®u) :

Comparing directly the two variances we notice that they have in common variances of the
terms with juj > m but in (3:8) the variances of the terms with juj · m are missing. In
other words, OA based LH and OA sampling eliminate the terms with juj · m from the
variance. This is in line with the intuition from the previous subsection.

There are also some results available on …nite sample variance. Owen (1997a) proved
the following

Proposition 10. If f is square-integrable on [0; 1)s (i.e., f2 is integrable on [0; 1)s) and
xi; i = 1; :::; n = bm; are the points of a randomized (0;m; s)-net in base b ¸ max (s; 2) then

V
³

bI
´

· ¾
2

n

µ
b
b¡ 1

¶min(s¡1;m)

:
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Since a LH sample is a randomized (0; 1; s)-net, for this V
³

bI
´

· ¾2= (n¡ 1) holds. So
the variance when a LH sample is used is less than a slightly higher number than the MC
variance. For randomized (0; 2; s)-nets the same property remains true but the factor by
which the MC variance is multiplied, (b= (b¡ 1))2 ; is higher. Still for a sample size n = 1024
this factor is 1.066, which is rather close to 1. Consequently, the variance of the estimate
from using LH samples or randomized (0; 2; s)-nets is essentially smaller than the MC
variance. The same property is also expected to hold for OA based LH samples due to their
similarity to randomized (0; 2; s)-nets.

4. Multivariate normal probabilities

We apply the samples presented above to integrals obtained as multivariate normal
probabilities. This type of probabilities arise mainly in multinomial probit models as prob-
abilities of choices made from a number of alternatives where the random variables involved
are normally distributed (see, e.g., Börsch-Supan and Hajivassiliou, 1993). Such a proba-
bility has the form p = Pr (x < x0) with x a r-vector having the distribution N (¹;§) and
x0 a r-vector of real numbers. Denoting by T the lower triangular square root matrix of §
and putting v ´ x0 ¡ ¹ we obtain the formula

p = Pr (Te · v) with e » N (0; Ir) : (4.1)

We show below that, if we use the appropriate integrand function, this probability can be
expressed as an integral of the type (2.1). For this, we need to write out separately the
r inequalities from the probability and use a transformation of variables from truncated
normal to uniform distribution. Previous work (e.g., Börsch-Supan and Hajivassiliou, 1993,
Vijverberg, 1997) employed the same idea for sampling from the truncated normal distribu-
tion. While from an estimation point of view the two procedures are equivalent, we prefer
presenting the problem as the transformation to an integral of type (2.1), since it shows
exactly the nature of the problem.

Let

T =

2
66664

t11 0 : : : 0
t21 t22 : : : 0
...

...
...

tr1 tr2 : : : trr

3
77775
; and

v = (v1; :::; vr)
0 :

Then if the domain of events from the probability is denoted

D =
½
(e1; :::; er) 2 Rr : e1 · v1

t11
; e2 · v2 ¡ t21e1

t22
; :::; er · vr ¡ tr1e1 ¡ :::¡ trr¡1er¡1

trr

¾
;
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then

p =
Z

D
Á (e1) :::Á (er) de1...der (4.2)

where Á is the standard normal density function. Using the fact that the e’s have truncated
normal distribution, we can obtain a computationally more tractable version of the prob-
ability. Namely, if e · b and e » N (0; 1) then we can sample the e’s if we sample from u
uniform on [0; 1] and let e = ©¡1 (u ¢ ©(b)) ; where © is the standard normal distribution
function.

The integral from (4:2) can be transformed using this idea for the r-dimensional case.
For this we employ the following transformation

e1 = ©¡1
µ
u1©

µ
v1
t11

¶¶

e2 = ©¡1
µ
u2©

µ
v2 ¡ t21e1
t22

¶¶
(4.3)

...

er = ©¡1
µ
ur©

µ
vr ¡ tr1e1 ¡ :::¡ trr¡1er¡1

trr

¶¶

where u1; :::; ur 2 [0; 1] and ej are viewed as a functions of u1; :::; uj for j = 1; :::; r ¡ 1. So
the probability formula becomes

p = ©
µ
v1
t11

¶Z

[0;1]r¡1
©

µ
v2 ¡ t21e1
t22

¶
¢ ¢ ¢

¢ ¢ ¢©
µ
vr ¡ tr1e1 ¡ :::¡ trr¡1er¡1

trr

¶
du1:::dur¡1: (4.4)

The integral in this formula is of the form (2:1) with s = r ¡ 1. Hence it can be estimated
with Monte Carlo simulation by drawing a sample from the uniform random vector on
[0; 1)r¡1. The estimator obtained this way is called the GHK simulator or RIS (i.e., recursive
importance sampling) simulator based on truncated normal density (Vijverberg, 1997).
Vijverberg also discusses other RIS simulators. A number of other simulators are presented
in Hajivassiliou et al. (1996).

5. Simulation study

We have seen in section 3 that no exact results are available on the performance of
the samples. In order to analyze their performance, in a simulation study we apply the
samples to integrals arising from multivariate normal probabilities with di¤erent parameters
and of di¤erent dimensions. We opted for this class of integrals due to their popularity
in the econometric literature of recent years (e.g., Börsch-Supan and Hajivassiliou, 1993,
Hajivassiliou et al., 1996, Vijverberg, 1997).
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The approximation of integrals arising from multivariate normal probabilities has been
studied extensively also in the numerical mathematics literature (e.g., Genz, 1992, 1993).
These integrals are often used for testing the performance of new quasi-Monte Carlo samples
(e.g., Hong and Hickernell, 2001). These studies, nevertheless, are di¤erent from our study
since they follow other objectives. For example, they analyze the convergence rate of the
integral estimate, and therefore, use larger sample sizes and smaller dimensional integrand
functions.

In the simulation study we follow three objectives. The …rst is to …nd the improvement
from using the di¤erent sampling methods over MC, the second is to compare the di¤erent
methods with each other and determine the best in di¤erent cases, and the third is to
analyze if the results are in line with the intuition presented above. In the …rst subsection
we describe the simulation design. The second subsection treats some practical issues
regarding the samples used. In the third subsection we present the simulation results.

5.1. Simulation design

The simulation design we use is based on that of Vijverberg (1997). First we provide
details on the parameters of the probability p = Pr (Te · v) de…ned in (4:1). The covariance
matrix § =

¡
½ij

¢
; where § = TT 0; is of two types, namely, AR(1) de…ned as ½ij = ½ji¡jj;

and one-factor given by ½ij = ½ if i 6= j and ½ij = 1 for i = j. We refer to these covariance
matrices as AR and F, respectively. From these matrices we can obtain new covariance
matrices by multiplying the last r=2 rows and columns by -1 that we refer to as type AR1
and F1. Similarly, by multiplying the even-numbered rows and columns of the AR and F
type matrices by -1, we obtain other covariance matrices, referred to as AR2 and F2 type.
The parameter ½ takes the values -0.3, -0.2, -0.1, -0.05, 0.1, 0.3, 0.5, 0.7 and 0.9 for the
F, F1 and F2 type of covariance matrices, except in the cases when the covariance matrix
is not positive de…nite. For the AR, AR1 and AR2 type of matrices we consider only the
…ve positive values above for ½ since an AR type matrix for a given ½ is identical to the
corresponding AR2 matrix for -½.

The deterministic vector v, similarly to Vijverberg (1997), takes …ve di¤erent values:
(0; :::; 0)0 ; (1; :::; 1)0 ; -(1; :::; 1)0 ; (0; 2; 0; 2; :::)0 and -(0; 2; 0; 2; :::)0. The dimension of the prob-
lem, r; depends on the sample size. We use three di¤erent sample sizes: 1024 = 210,
256 = 28, 64 = 26. The sample size 1024 is useful for comparing the performance of the
samples presented in the paper with previous results from Vijverberg, who considered sam-
ples of size 1000. The sample sizes 256 and 64 are useful for practical reasons. For the
sample size 1024, in addition to the four dimension values 4, 10, 20 and 50 considered
by Vijverberg, takes also 30. We did so because, on the one hand, the OA we consider,
OA(1024; s; 32; 2) ; exists only for dimensions up to 33, and, on the other hand, generator
matrices for the Niederreiter-Xing sequence are available for dimensions between 4 and 32.
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For the sample sizes 256 and 64 we considered dimension values 5, 10, 18 and 5, 10, 15,
respectively.

When the sample size is 1024, the combination of all these parameters leads to a number
of 855 di¤erent cases, while for the sample sizes 256 and 64, we obtain 513 di¤erent cases for
each. For each case and each sampling method we estimated the corresponding probability
given in (4.1) 100 times and computed the standard deviation of the log of the probability
estimate. For di¤erent cases the estimates were computed using the same seed of random
numbers. In addition to the samples described in the next subsection, we also computed
the standard deviations corresponding to MC and antithetic MC. This latter method was
shown by Vijverberg (1997) to work well for the type of integral we deal with. We generated
antithetic MC samples of size n by generating a random uniform sample of size n=2 with
elements xij and adding a new sample with the elements 1 ¡ xij to it.

The main performance measure of a given sampling method in our analysis is the ratio
of standard deviations of the probabilities obtained from the MC and the given method.
Since in the case when the sample size is 1024, the probability ratios seem to be less stable
for probabilities very close to zero, we used the ratio of the corresponding log-probabilities.
The ratio turned out to be similar in the two cases. The similarity of the two and the fact
that the probability estimates are unbiased suggests that the bias of the log-probability
estimates is not signi…cantly large.

5.2. The samples

We construct the samples in the way described in section 2. Here we discuss prac-
tical issues related to the constructions. For the randomized Halton sequence we need
to truncate the prime base representation of the starting uniform variables. We did so
by taking the number of digits after the decimal point in base b representation equal to
b15 ¢ ln (10) = ln (b)c+1. This number is roughly equal to the number of digits in base b of a
15-digit integer in base 10. This way the starting uniform variables in a base less than 10 are
truncated at more than 15 decimals while those in a base greater than 10 are truncated at
less than 15 decimals. This procedure keeps the number of digits in di¤erent bases balanced
with respect to the 15 digits in base 10.

Construction of LH, OA and OA based LH samples is straightforward according to the
description from section 2. For the sample size 1024 the OA employed is an OA(1024; 33; 32; 2).4

We use this OA to construct (0; 2; s)-nets in base 32. For the sample sizes 256 and 64 we
construct (0; 2; s)-nets in base 16 and base 8 by the Niederreiter method described in sec-
tion 2.6. We also use Niederreiter nets in base 2. For the construction of both types
of Niederreiter nets we use the algorithm from Bratley et al. (1992). For constructing the

4Some OA’s and software for constructing them are available from the web site of the Statlib in the
Designs section (http://lib.stat.cmu.edu/designs/). The OA we use in this paper is taken from there.
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Niederreiter-Xing nets in base 2 we used the generator matrices from Gottlieb Pirsic’s home
page (see footnote 3).

We constructed two types of lattice points, both of Korobov type. For the …rst type we
minimized P2 (g; n). We obtained the parameters q = 323; 141; 141; 275; 19 for samples of
size 1024 corresponding to dimensions 4, 10, 20, 30, 50, q = 39; 45; 67 for samples of size 256
corresponding to dimensions 5, 10, 18, and q = 3; 11; 19 for samples of size 64 corresponding
to dimensions 5, 10, 15. For the second type of lattice points we chose the parameter value
q = 1571 from those given by Hickernell et al. (2000). We use this value for all sample
sizes and dimension values. These authors construct so-called extensible sequences of lattice
points having the property that certain subsets of them are also lattice points, analogously
to (t; s)-sequences and (t;m; s)-nets. This way a given parameter can be used for several
sample sizes. Hickernell et al. use various criteria for selecting the lattice points; this
parameter is based on the spectral test. The parameter value q = 1571 is recommended for
samples of size 2m with m = 6; 7; :::; 12 and dimensions up to 33.

Gauss-codes for generating the samples are available from the …rst author.

5.3. Results

The results from the simulation are presented in Tables 3, 4 and 5. The sampling meth-
ods are speci…ed in the top rows of the tables. The abbreviations need clari…cation. AMC
stands for antithetic MC sampling, Halt denotes the Halton sequence, OALH stands for OA
based LH sampling, (0,2,s) means (0; 2; s)-net in either base 32 (sample of size 1024), or base
16 (sample of size 256), or base 8 (sample of size 64), Nied and NX stand for Niederreiter
and Niederreiter-Xing sequences, respectively. Further, TKor denotes the lattice points of
Korobov type based on minimizing P2 (g; n) and transformed by a simpler version of the
baker’s transformation ' (z) = j2z ¡ 1j. Ext stands for the extensible lattice points (of
Korobov type) based on the parameter from Hickernell et al. (2000), and TExt stands for
the same lattice points transformed by the above mentioned baker’s transformation. For
the sample size 1024 we considered all these samples. For the sample sizes 256 and 64 we
selected the samples that perform the best for sample size 1024 and in addition we con-
sider AMC and Halt. Due to its simplicity to construct, Halt has been employed in several
applications of integral estimation (e.g., Bhat, 2001a, 2001b, Train, 2000, 2002)

Each entry of these tables is the geometric mean of ratios of standard deviations ¾bpMC=¾bp
(for sample sizes 256 and 64) and ¾ln(bpMC)=¾ln(bp) (for sample size 1024), where bpMC and bp
denote the estimates of the probability corresponding to MC and a certain sample, respec-
tively. Hence the square of each entry gives the average factor by which we have to increase
the size of the MC sample in order to achieve the same precision as with the respective
sample. The geometric means are computed over di¤erent ½ and v values. Some of the
probabilities, especially in larger dimensions, are very small, fact that may cause computa-
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tional inaccuracies. In the case of sample size 1024, in order to avoid presenting results that
may not be accurate, we decided to discard those cases in which the probability estimates
are less than e¡100. The number of cases that remain for our analysis are given in the
rightmost column of Table 3 in the numerator; the denominator represents the number of
feasible cases, that is, when the covariance matrix is positive de…nite. For the sample size
256 we discarded only two cases, which where of F1 type integrals in dimension 18, while
for the sample size 64 we did not discard any case.

[TABLE 3 ABOUT HERE]
[TABLE 4 ABOUT HERE]
[TABLE 5 ABOUT HERE]

We recall that in Tables 3, 4, 5, for each dimension the average ratios are computed
separately for the di¤erent type of covariance matrices. This is because certain type of
covariance matrices for certain samples (e.g., F and F2 for Halt and Nied) may show a
di¤erent pattern. Similarly, since all sampling methods analyzed in this paper are expected
to work better in low dimensions as compared to MC (see sections 3.2 and 3.4), we treat
each dimension separately.

The general impression from Tables 3, 4, 5 is that the samples presented in the paper
improve substantially over MC even in dimensions as high as 50. More exactly, in Table 3 the
sample with the best performance for this dimension is TKor, and this has the lowest ratio
equal to 2.11 (for AR1 integrals). This implies that on average one needs more than 4 (more
precisely, 2:112 = 4:45) times as large MC samples in order to achieve the same precision
as the integral estimate using TKor. A similar conclusion can be drawn for dimension 30
(due to 2.18 for F1 type integrals), where OALH and (0,2,s) tend to dominate the rest of
the samples. For smaller dimensions, like 4 or 10, the improvement in precision is rather
impressive. For example, for dimension 10, for TExt, which is slightly better than Nied
(apart from F and F2 type integrals; we will treat these type of integrals below in more
detail), MC samples with the same precision need to be 100 times as large (due to 9.99 for
AR1 type integrals). For dimension 4 the improvement in precision is even more impressive.

The results in Tables 4 and 5 are similarly remarkable. For samples of size 256, the best
performance is achieved by TExt. In order to yield the same precision, MC samples should
be at least 10 times as large in dimension 18 (3.21 for F1), 62 times as large in dimension
10 (7.9 for AR1) and 270 times as large in dimension 5 (16.44 for AR1). For samples of size
64, the best performance is achieved by TExt for dimensions 5 and 10, and by TKor for
dimension 15. In order to yield the same precision as the best of these, MC samples should
be approximately 6 times as large in dimension 15 (2.42 for F1), at least 15 times as large
in dimension 10 (3.88 for AR1) and 70 times as large in dimension 5 (8.38 for AR1).

In terms of the hierarchy of the samples, we observe that in the majority of the cases the
two samples of lattice points transformed by the baker’s transformation, TKor and TExt,
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tend to have better performance than the other samples. In a few cases, however, (0,2,s)
(and OALH) approximates their performance or even outperforms them. These are the
situations when the dimensions of the integrals are close to the base in which the (0; 2; s)-
net was generated (dimension 30 for samples of size 1024, dimension 18 for samples of size
256, dimension 10 for samples of size 64). Nied and NX perform well in small dimensions,
and in addition, Nied performs well in general for integrals of type F and F2 (see the
discussion below). The rest of the samples, though better than MC, have a more modest
performance. Apart from the largest dimensions, AMC has the poorest performance of all
the samples considered.

The results con…rm the intuition that the performance of the samples is getting poorer
with the increase of the dimension. The results in main lines also con…rm the intuition
provided by the equidistribution hierarchy of the samples from section 2.6. In this regard,
except for a few cases to which we return later, Halt tends to be better than LH in small
dimensions (4 and 10) and poorer in high dimensions (30 and 50). (0,2,s) (and OALH)
generally dominate Halt, LH and OA. Nied and NX perform well in small dimensions and
become poorer in larger dimensions. On the opposite, (0,2,s) are relatively poor in small
dimensions but get better as the dimensions get closer to the base in which they were
generated. The successive improvements from MC to the samples with one-dimensional
equidistribution property LH and Halt, as well as the further improvement to the samples
with two-dimensional equidistribution property OA, OALH and (0,2,s) suggest that inte-
grals arising from normal probabilities have substantial inherent low-dimensional structure,
in the sense discussed in section 3.2, even in large dimensions.

Below we make some speci…c remarks on the results from Tables 3, 4, 5. In Table 3
we can notice the similarity between the results obtained from OALH and (0,2,s). This
similarity is not surprising since, as we argue in section 2.6, both are in fact (0; 2; s)-nets in
base 32, the only di¤erence being that they are generated di¤erently.

Another remark concerns comparing the performance of Ext and TExt from Table 3.
TExt has a much better performance for dimensions 4 and 10, and still a signi…cantly
better performance for higher dimensions. This illustrates the usefulness of the baker’s
transformation, and, at the same time, the fact that lattice points work signi…cantly better
for functions that have a continuous periodic extension.

In section 2.6 we compared Nied and NX with respect to their equidistribution property
based on the quality parameter t. According to this, NX has a better equidistribution
property in dimension 9. This implies that, if the equidistribution property is the only
thing that matters for integration, then NX should have a better performance for dimension
10 (we recall that the dimension of the integral corresponding to a probability is less by
one than the dimension of the probability, see the end of section 4). In Tables 3, 4, 5 it
turns out that for dimension 10 in the majority of the cases Nied has a better performance
than NX. So we can draw the conclusion that the equidistribution property based on the
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quality parameter t does not tell the whole story about the performance of a sample for
estimating integrals. Rather, what appears to be more important is the low-dimensional
equidistribution property. In this regard, we note that Nied has a good equidistribution
property in its low-dimensional parts (we refer to section 2.6 for a discussion on this), and
we believe this explains its good performance compared to NX.

In some cases for F and F2 type integrals the results appear to be di¤erent from the other
types of integrals. Halt and Nied tend to have on average a signi…cantly better performance
for these integrals than for the others. We recall from section 2.6 that these two samples
have the property that their components corresponding to the …rst few dimensions have a
better equidistribution property than the components of the last dimensions. So the results
suggest that the integrand functions of type F and F2 have an inherent structure in which
the components of the ANOVA decomposition that contain the …rst few variables dominate
the total variance. For the case of dimension 20, we veri…ed whether this is so by reversing
the order of the one-dimensional components of the sequences and did the simulations using
the sequences obtained this way. The results con…rmed our intuition. The reversed Halt
for F and F2 type integrals yielded 1.11 and 0.94 as compared to 5.05 and 4.43 in the
case of the original Halt. For the reversed Nied the corresponding results are 2.13 and
2.23 as compared to 7.22 and 7.19 for the original Nied. The results for the other types of
integrals remained mainly unchanged. These results mean that the reversed sequences have
on average signi…cantly poorer performance for these integrals than the original sequences.
Since the reversed and original samples have globally the same equidistribution property,
the only reason that the results are so di¤erent is that the order of the variables in the
integrands is crucial.

A similar phenomenon is observed by Vijverberg (2000), who studies two-sided multi-
variate normal probabilities, that is, of the type p = Pr (x1 < x < x2). This author, using
Monte Carlo samples, …nds that if in the GHK simulator the component inequalities are
reversely ordered according to the length of the interval [x1; x2], then the precision of the
probability estimates tends to be better. It would be interesting to see whether this ordering
of the variables makes the integrands similar to F and F2 type integrands. If it happens
so, then further improvements in precision can be obtained if we replace the Monte Carlo
samples by samples from the Niederreiter sequence.

The examples above illustrate in practice the intuition from section 3.2. We draw the
conclusion that the original ordering of the Halton and Niederreiter sequences is better than
the reverse ordering. This, however, raises an interesting problem, namely, that for each
integrand there is an optimal ordering of these sequences. Hence with an optimal ordering
it may be possible to obtain even better results with the Niederreiter sequence. It is not
trivial to …nd an optimal ordering, hence we postpone it for future research. An alternative
to optimal ordering is regrouping the variables of the integrand in a convenient way. Ca‡ish
et al. (1997) show how to pack the most important variables of a function into the …rst few
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dimensions for integrals arising from valuation of mortgage backed securities.
An important practical aspect of integral estimation is the time needed for estimating

an integral by a certain sample. There are situations when we cannot load the sample into
the computer program that estimates the integral, but we have to generate a sample for
each integral evaluation. If the amount of time needed for generating a sample with a given
size and estimating the integral is larger than doing the same with an MC sample, then we
can generate a larger MC sample and obtain more precise estimates for the same amount
of time. Denote by t and tMC the amount of generation and estimation time for a given
sample and an MC sample, respectively, both of size n. Then the size of the larger MC
sample will be roughly nt=tMC, and therefore, the variance of the new MC estimate will
be lower by the factor tMC=t. So the gain in precision by using the larger MC sample in
terms of the standard deviation will be given by the factor

p
tMC=t. For samples of size 256

and 64 we measured tMC and t for each sample and computed averages of these using the
same grouping as in Tables 4 and 5. (For the GHK simulator we used the Gauss code from
Vassilis Hajivassiliou’s home page5 tailored to our needs.) Then we multiplied the results
from these tables by the corresponding values of

p
tMC=t. What we obtained should be

fair estimates of the ratios of standard deviations when we use MC samples of size nt=tMC.
Table 6 contains the results for samples of size 256 (the results for samples of size 64 are
similar and hence not presented).

[TABLE 6 ABOUT HERE]

We compare Table 6 to Table 4. As expected, the results for AMC are not a¤ected.
The results regarding the samples corresponding to the lattice points, TKor and TExt,
su¤er only minor modi…cations. This re‡ects the fact that random shifts do not take much
computing time. The results for Nied and NX are deteriorated to a larger extent. We
note that these samples are generated by random linear scrambling.6 The results for (0,2,s)
are a¤ected to an even larger extent, probably due to the fact that these samples were
generated by Owen’s randomization. Random linear scrambling turns out to be even less
e¤ective in this case because the special operations involved (see explanation below equation
(2.7)) slow down the procedure considerably. Finally, the results for Halt are rather severely
deteriorated. More e¤ective randomization techniques are available for Halton sequences
(e.g., Tu¢n, 1996, Wang and Hickernell, 2000), but we did not pursue this problem further
since Halt has anyway a poor performance.

So far we have discussed results based on averages over ½ and v values. In order to
show how the performance of the di¤erent sampling methods varies with ½ we present some

5http://econ.lse.ac.uk/sta¤/vassilis/
6Matoušek (1998) treats some other, more e¤ective randomization methods, but which yield samples

with less randomness. It would be interesting to study the performance of these methods with the aim of
applying them when fast generation of these samples is important.
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graphs. These graphs are presented in the six panels of Figure 2; the upper panels A) and
B) are for dimension 10, the middle panels C) and D) for 20 and the bottom panels E) and
F) for dimension 30; the left hand side panels A), C), E) are for AR type integrals, while
the right hand side panels B), D), F) are for F type integrals. In all cases v = (0; :::; 0)0

and the sample size is 1024. In the graphs we present the ratios of the standard deviations
relative to MC for the …ve positive values of ½ and link the obtained points. We selected
…ve samples for this purpose.

[FIGURE 2 ABOUT HERE]

The graphs from Figure 2 show a high dependence of the results on ½ for some of the
samples. For example, for AR type integrals the standard deviation ratios for (0,2,s) and
TKor decrease strongly as ½ increases. We notice a similar phenomenon for Nied for F
type integrals in dimensions 20 and 30, but here the standard deviation ratios increase.
TKor shows signi…cant variation for F type integrals especially in dimensions 10 and 30.
We notice also that, in general, LH and NX show relatively little variation than the rest
of the samples. These features allow us to draw some conclusions regarding the ANOVA
decomposition of the integrands for the various ½ values. In this respect we infer that the
AR type integrands have dominating 2-dimensional components for a small ½, but their
domination tends to diminish as ½ gets larger. In a similar way we conclude that the for
F type integrands the …rst few-dimensional ANOVA components become more dominating
as ½ increases. Due to the little variation of the standard deviation ratios corresponding to
LH, we conclude that the variances of the one-dimensional ANOVA components of the AR
and F type integrands do not vary much.

Based on the results we draw some conclusions regarding the estimation of multivariate
normal probabilities. In doing so we rely on the results for samples of size 256 and 64, since
these are more relevant for practical applications in econometrics. These results suggest that
extensible lattice points transformed by the baker’s transformation (TExt) have the best
performance in the majority of cases investigated. They are easy to construct and their
generation on computer is fast. Therefore, we recommend them for estimating integrals
arising from multivariate normal probabilities.

6. Conclusions and discussion

We have presented several sampling methods developed recently in the statistical liter-
ature. We have provided intuition in what circumstances they have good performance for
estimating integrals of functions on the unit cube. Then we have shown how the sampling
methods work in practice for multivariate normal probabilities. The improvement over
Monte Carlo and antithetic Monte Carlo methods is large for smaller dimensions and still
signi…cant for dimensions as high as 50.

34



In our study we found extensible lattice points transformed with the baker’s transfor-
mation to have the best performance for normal probabilities in cases of practical interest
in econometrics, that is, for sample sizes up to about 250. However, the other samples
with a good equidistribution property, like the Niederreiter-Xing sequence, or the samples
with a good low-dimensional equidistribution property, like the Niederreiter sequence and
(0;m; s)-nets, can be useful in other situations of integral estimation. We could see exam-
ples of this in the case of sample size 1024. So these samples are worthwhile to analyze in
future problems of integral estimation.

In the paper we have also provided examples that illustrate in practice the intuition
from theory. The results provide much information about how the di¤erent methods work
but, obviously, they do not show everything. Below we discuss some problems that deserve
further attention.

First we discuss some questions on the use of antithetic and importance sampling in
combination with the samples used in the paper. Regarding antithetic sampling …rst we
note that an antithetic Monte Carlo estimate of the integral (2.1) is equivalent to the Monte
Carlo estimate using a sample of size n=2 of the integral

R
[0;1)s g (x) dx; where

g (x) = f (x1; :::; xs) + f (1 ¡ x1; :::; 1 ¡ xs) :

Hence antithetic sampling combined with a sampling method is in fact the same as applying
the sampling method to the above integral with a sample of size n=2. In a simulation study
we looked at the performance of the antithetic Halton sequence. Table 7 contains the results.
The upper part of the table contains the ratios of standard deviations of the Monte Carlo
antithetic to the Halton antithetic estimates. The improvements are about 60-80% of the
improvements without antithetic sampling from Table 3. In the lower part of Table 7 we
present the absolute improvements, that is, the improvements over Monte Carlo. This way
we can compare the antithetic Halton sequence to the rest of the samples. We see substantial
improvement over the performance of the Halton sequence from Table 3 for dimensions 4
and 10. For higher dimensions the antithetic Halton sequence is not better than the Halton
sequence. We conclude that it is possible to obtain considerable improvement by combining
antithetic sampling with a sample used in the paper. The extent to which the improvement
occurs is not clear, however, and needs further investigation, which we postpone for the
future.

[TABLE 7 ABOUT HERE]

As mentioned in section 4, the simulator we use is the GHK simulator, which is also
a RIS simulator based on the truncated normal importance sampling density. One can,
obviously, use other importance sampling densities for the estimation as well, as shown by
Vijverberg (1997). Since for any importance sampling density the integral can be written
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in the form (2.1) for a suitable f , we can employ the sampling methods discussed. Then
the main question that arises is whether we can choose the importance sampling density so
that the obtained integrand has dominating low-dimensional components in the ANOVA
decomposition.

Integral estimation in econometrics is typically employed within iterative optimization
procedures for …nding extremum estimators. For each iteration the parameters of the in-
tegrals di¤er and for each iteration the integrals need to be estimated. The analysis from
this paper, due to the simpli…ed probabilities from which the integrals arise, is not able to
show how the di¤erent sampling methods work in these situations. We have seen in Fig-
ure 2 that the variation of one single parameter may cause huge di¤erences in the relative
performance of the di¤erent samples. Hence we think that an analysis of how the di¤er-
ent sampling methods in‡uence the e¢ciency of these extremum estimators would be very
useful. Such a study could make use of the simulation design from Geweke et al. (1994),
where the same problem is investigated using simulators based on Monte Carlo sampling.

The sampling methods discussed in the paper could also be applied in Bayesian models to
replace Monte Carlo sampling. One technique used in these models is importance sampling
for estimating integrals arising from moments of posterior distributions (Geweke, 1989).
Antithetic sampling in these models, similar to the multinomial probit, has been used
successfully to improve the precision of the estimates (Geweke, 1988). Shaw (1988) employed
lattice points in order to make the estimators of such integrals more precise. Another
technique employed in Bayesian models is Markov chain Monte Carlo for sampling from a
distribution (for an overview of these methods in econometrics, see Chib and Greenberg,
1996). It appears that quasi-Monte Carlo sampling has the potential of improving Monte
Carlo for these problems as well. In this regard we mention the work by Liao (1998), where
it is found that carefully selected lattice points speed up the convergence in the Gibbs
sampling algorithm. This result suggests that, indeed, quasi-Monte Carlo sampling can be
applied with success to these types of problems as well.

The construction of quasi-Monte Carlo samples is an important research problem also
currently. For integration problems in econometrics we can expect further developments
from the construction of samples that have a better low-dimensional equidistribution prop-
erty than the samples we discussed. Current research focuses on constructing (t;m; s)-nets
in a way similar to the Niederreiter-Xing method that instead of the quality parameter t
minimizes another parameter responsible for equidistribution in low-dimensional parts of
the sample (see Larcher, 1998 for more details). Along the same lines, lattice points with a
good low-dimensional equidistribution property can also be constructed based on a criterion
introduced by Hickernell (1996). This approach is even more general, because it allows to
construct lattice points that are suited for integrating functions with a certain ANOVA de-
composition. For integration problems where the ANOVA decomposition is known, or can
be estimated (Lemieux and Owen, 2001), lattice points constructed this way are potentially
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useful.
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TABLE 1 Degrees of irreducible polynomials

Polynomial 1 2 3 4 5 6...8 9...14 15...23 24...41 42...71

Degree 1 1 2 3 3 4 5 6 7 8

TABLE 2 t -values for Niederreiter-Xing (t,m,s)-nets in base 2

mns 3 4 9 14 17 19 29

6 2 2 5 6 6 6 6

8 2 3 6 8 9 9 9

10 3 4 6 9 10 10 11
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TABLE 3 Performance in terms of standard deviation ratios of the samples of size 1024

AMC Halt LH OA OALH (0,2,s) Nied NX TKor Ext TExt

dim = 4

AR 2.78 12.49 6.43 9.92 23.56 23.59 53.26 - 56.79 12.83 53.64 25/25

AR1 2.11 9.80 5.17 8.66 20.70 19.65 40.26 - 42.62 11.56 46.38 25/25

AR2 1.89 14.80 4.94 9.33 19.31 19.77 71.81 - 104.76 11.01 93.00 25/25

F 2.57 17.57 8.86 10.20 31.10 29.92 77.16 - 99.32 14.17 97.64 45/45

F1 2.20 12.34 7.27 10.12 26.81 25.76 55.60 - 61.87 13.42 67.01 45/45

F2 1.98 14.98 6.31 10.59 29.83 29.25 60.48 - 66.38 12.79 75.43 45/45

dim = 10

AR 2.05 4.77 3.11 5.26 8.16 7.94 9.98 8.46 9.27 5.52 12.26 25/25

AR1 1.55 3.87 2.72 4.52 6.61 6.25 7.35 6.82 7.64 4.48 9.99 25/25

AR2 1.50 4.46 2.77 5.02 7.64 6.96 9.39 9.62 7.45 4.99 13.61 23/25

F 1.91 8.08 3.12 5.41 8.33 8.38 17.78 10.89 12.82 6.68 15.37 35/35

F1 1.63 4.98 2.61 4.58 6.04 6.21 10.27 7.89 8.44 5.08 11.82 34/35

F2 1.56 8.72 2.82 7.44 10.45 10.04 22.37 13.37 11.98 7.09 17.30 35/35

dim = 20

AR 1.62 1.82 2.26 3.50 4.80 5.08 2.71 2.00 5.33 2.17 2.60 25/25

AR1 1.54 1.59 1.97 3.03 3.93 4.25 2.69 1.97 4.69 1.98 2.33 25/25

AR2 1.47 1.54 2.38 3.93 5.39 5.64 3.25 2.13 5.93 2.55 3.67 21/25

F 1.61 5.05 2.18 3.33 4.82 4.47 7.22 3.60 5.45 3.76 3.83 28/30

F1 1.21 1.92 1.47 2.20 2.42 2.35 2.09 1.59 2.44 1.80 2.11 28/30

F2 1.33 4.32 2.05 4.45 5.23 5.12 7.19 2.77 4.84 2.79 4.17 28/30

dim = 30

AR 1.63 1.24 1.99 3.26 3.96 3.99 0.77 1.15 3.01 2.15 2.44 25/25

AR1 1.46 1.14 1.78 2.98 3.63 3.61 0.79 1.11 2.89 2.19 2.44 25/25

AR2 1.38 1.01 2.01 3.24 4.61 4.28 0.56 0.93 3.31 2.13 3.01 19/25

F 1.59 4.29 2.04 2.92 3.60 3.59 5.52 1.67 3.06 3.21 3.07 25/25

F1 1.28 1.50 1.37 1.83 2.18 2.06 1.52 1.10 2.13 1.52 1.84 20/25

F2 1.30 4.06 2.07 4.35 4.78 4.56 4.77 1.36 3.66 2.38 3.53 21/25

dim = 50

AR 1.26 0.77 1.56 - - - 0.51 - 2.58 1.62 1.98 24/25

AR1 1.24 0.72 1.33 - - - 0.42 - 2.11 1.45 1.81 24/25

AR2 1.23 0.58 1.60 - - - 0.37 - 2.98 1.77 2.27 15/25

F 1.47 3.26 1.72 - - - 3.54 - 3.19 2.55 2.38 25/25

F1 1.13 1.17 1.34 - - - 0.66 - 2.35 1.44 1.56 16/25

F2 1.10 2.30 1.43 - - - 2.08 - 3.51 1.63 2.29 16/25
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TABLE 4 Performance in terms of standard deviation ratios of the samples of size 256

AMC Halt (0,2,s) Nied NX TKor TExt

dim = 5

AR 2.61 7.35 12.60 18.02 18.13 12.81 19.22

AR1 2.10 5.84 11.80 17.02 18.11 13.11 16.44

AR2 1.99 6.81 10.46 18.91 20.87 13.06 26.25

F 2.41 9.73 17.18 27.73 21.61 23.49 31.58

F1 2.11 6.13 13.12 18.23 17.36 15.20 19.62

F2 2.09 8.75 17.92 25.44 24.09 16.95 28.29

dim = 10

AR 1.82 2.89 6.19 5.29 3.72 3.90 9.79

AR1 1.79 2.87 5.46 4.69 3.87 3.25 7.90

AR2 1.74 2.81 5.50 4.22 3.72 4.30 8.97

F 1.72 4.84 6.60 9.40 3.58 4.67 11.63

F1 1.45 2.94 4.65 5.17 4.14 3.69 8.07

F2 1.63 5.52 8.55 10.12 5.57 6.59 14.13

dim = 18

AR 1.75 1.50 4.17 1.36 1.99 4.28 3.73

AR1 1.61 1.27 3.86 1.25 1.91 4.51 4.13

AR2 1.55 1.34 4.01 1.15 2.08 4.41 3.87

F 1.59 2.94 3.70 4.40 2.30 4.16 4.80

F1 1.19 1.33 2.44 1.45 1.62 3.09 3.21

F2 1.50 3.65 5.88 4.40 3.31 6.14 7.10
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TABLE 5 Performance in terms of standard deviation ratios of the samples of size 64

AMC Halt (0,2,s) Nied NX TKor TExt

dim = 5

AR 2.25 4.57 8.34 8.90 9.51 6.76 9.96

AR1 1.90 3.11 7.04 7.80 7.28 5.01 8.38

AR2 2.09 4.74 8.12 8.15 9.95 6.18 11.22

F 2.12 5.95 10.76 12.12 12.52 8.17 15.47

F1 2.09 4.07 9.39 10.79 10.23 6.20 10.42

F2 1.88 5.18 10.37 11.48 11.21 7.40 12.92

dim = 10

AR 1.94 1.73 4.47 2.81 3.16 5.15 5.45

AR1 1.81 1.83 4.20 2.66 3.39 4.25 3.88

AR2 1.61 1.78 4.00 2.28 3.11 4.74 5.45

F 2.00 3.05 4.73 5.27 3.84 5.25 6.28

F1 1.57 1.94 3.91 3.25 3.40 4.45 5.18

F2 1.65 2.98 5.33 4.80 3.94 5.70 5.97

dim = 15

AR 1.61 1.32 - 1.34 2.25 4.57 4.21

AR1 1.49 1.06 - 1.30 2.03 3.68 3.31

AR2 1.49 1.26 - 1.13 2.13 4.45 4.24

F 1.56 2.25 - 3.27 1.49 4.23 4.24

F1 1.22 1.31 - 1.38 1.50 2.42 2.31

F2 1.50 2.77 - 3.38 1.91 5.22 4.99
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TABLE 6 Performance of the samples of size 256 corrected for computing time

AMC Halt (0,2,s) Nied NX TKor TExt

dim = 5

AR 2.61 3.93 9.67 15.20 15.86 12.68 18.81

AR1 2.09 3.22 9.30 14.55 16.02 13.04 16.10

AR2 1.99 3.88 8.43 16.45 18.80 13.16 26.09

F 2.40 5.25 13.31 23.50 19.01 23.36 30.69

F1 2.11 3.35 10.39 15.63 15.42 15.17 19.31

F2 2.08 4.83 14.14 21.68 21.32 16.80 27.54

dim = 10

AR 1.82 1.66 4.74 4.53 3.25 3.87 9.60

AR1 1.79 1.66 4.23 4.03 3.39 3.22 7.74

AR2 1.74 1.74 4.48 3.76 3.38 4.34 8.95

F 1.72 2.79 5.08 8.07 3.14 4.64 11.41

F1 1.45 1.74 3.66 4.48 3.66 3.67 7.91

F2 1.62 3.31 6.78 8.79 4.95 6.53 13.79

dim = 18

AR 1.75 0.90 3.19 1.17 1.74 4.24 3.65

AR1 1.60 0.76 2.98 1.08 1.67 4.47 4.05

AR2 1.55 0.86 3.25 1.03 1.88 4.43 3.84

F 1.59 1.76 2.83 3.81 2.01 4.15 4.72

F1 1.19 0.83 1.92 1.26 1.43 3.07 3.14

F2 1.50 2.30 4.67 3.86 2.94 6.08 6.95

47



TABLE 7 Performance in terms of standard deviation ratios of the antithetic Halton sequence

Antithetic MC vs. antithetic Halton

dim = 4 dim = 10 dim = 20 dim = 30 dim = 50

AR 7.09 3.49 1.25 0.81 0.55

AR1 7.17 3.37 1.15 0.84 0.51

AR2 9.31 3.61 1.07 0.62 0.42

F 9.59 4.84 3.18 2.83 2.31

F1 7.75 3.70 1.48 1.16 0.90

F2 9.64 5.92 3.14 2.72 1.65

MC vs. antithetic Halton

AR 19.71 7.13 2.03 1.32 0.69

AR1 15.15 5.21 1.78 1.24 0.62

AR2 17.62 4.89 1.47 0.82 0.55

F 24.63 9.26 4.56 4.49 3.39

F1 17.09 5.71 1.71 1.36 1.00

F2 19.07 9.24 4.35 3.96 2.53
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Figure 1: Samples of 9 points in the unit square. A) random, B) orthogonal array, C) Latin
hypercube, D) orthogonal array based Latin hypercube.
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Figure 2: Ratios of MC standard deviations and standard deviations of di¤erent sampling
methods as a function of ½. A) AR type integrals, dimension 10; B) F type integrals,
dimension 10; C) AR type integrals, dimension 20; D) F type integrals, dimension 20; E)
AR type integrals, dimension 30; F) F type integrals, dimension 30.
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