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1 Introduction 
1.1 Historical Perspective 

It is clearly evident from the literature that headache has troubled mankind from the 

dawn of civilization (Rapoport & Edmeads, 2000).  A variety of methods have been 

used throughout the ages in an attempt to alleviate or cure this pain; these may have 

been the most appropriate at that time, and were probably seen as “cutting edge”.  

Today they seem at best amusing, and at worst cruel and barbaric.  

The earliest concepts in migraine were those of the supernatural, with 

migraine believed to be due to malevolent beings within the head; treatment based on 

this idea included incantations and application to the head of substances intended to 

drive out the demons and spirits (Edmeads, 

1991).  These were also driven out physically, 

as in the Neolithic period (8500-7000 BC).  The 

people living in this time used the method of 

trepanation, a kind of neurosurgery, which 

involved removing circular chunks of skull so 

that the spirits causing the headache could 

escape.  Over 50% of the trepanned skulls have 

shown evidence of healing, indicating a high 

survival rate for this operation.  Although the 

scientific rationale behind trepanation is not 

understood, it is surprising that this procedure 

was performed as a treatment for migraine as 

late as the mid 17th century (Edmeads, 1991; 

Rapoport & Edmeads, 2000). 

The oldest known medical manuscript, the Ebers Papyrus (dating back to 

about 1200 BC and discovered in the necropolis of Thebes), contains an ancient 

Egyptian prescription for migraine based on earlier medical documents including an 

Egyptian papyrus of 2500 BC.  Believing the Gods could cure their ailments, a clay 

effigy of a sacred crocodile with herbs stuffed into its mouth was firmly bound to the 

head of the patient by a linen strip (Figure 1.1).  Admittedly, this process may have 

Figure 1.1. Egyptian papyrus 
(2500 BC), which describes 
bandaging a clay crocodile (with 
herbs stuffed into its mouth) to 
the head of the sufferer and 
praying
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relieved the headache by collapsing distended cranial blood vessels, which were 

causing the pain. 

Around 400 BC, the ancient Greek physician, Hippocrates, released migraine 

from the realms of the supernatural by attributing it to vapours rising from the 

stomach to the head and described, for the first time, the visual symptoms (“aura”) of 

migraine (Edmeads, 1991; Rapoport & Edmeads, 2000).  No further progress was 

reported, but in the 2nd century (AD) Galen wrote of “a painful disorder affecting 

approximately one-half of the head” (Critchley, 1967).  His term for this, 

“hemicrania”, was gradually transmuted into “migraine”.  Galen, like Hippocrates, 

believed that this headache was caused by vapours rising from the stomach to the head 

(Critchley, 1967).  The hippocratic/galenic concept of migraine survived into the 17th 

century, when Thomas Willis published in 1664 his hypothesis that “megrim” was 

due to dilatation of blood vessels within the head (the first enunciation of a vascular 

theory) (Edmeads, 1991; Rapoport & Edmeads, 2000).  In the years to follow, 

migraine intensity was decreased by a compression of the superficial temporal artery.  

In the 19th century, however, the vascular origin of migraine was undermined by a 

conflicting theory that the prime event was a neurological dysfunction.  Thus, in 1873, 

Edward Liveing proposed that migraine was due to “nerve storms evolved out of the 

optic thalamus” (Edmeads, 1991).  Like the vascular theory, there was nothing but 

conjecture to support this neurogenic theory (Edmeads, 1991; Rapoport & Edmeads, 

2000).  Towards the end of the 19th century attempts were made to reconcile both 

theories.  Thus, Moebius stated in 1898 that “parenchyma is the master, circulation the 

servant”, and that both brain and blood vessels dysfunctions were necessary to 

produce an attack of migraine (Edmeads, 1991).  Almost simultaneously, ergot (the 

product of the fungus Claviceps purpurea that grows upon rye) was introduced in 

1884 by W.H. Thomson as an effective remedy for migraine (Thompson, 1894); 

physicians, however, were aware of the intoxication risk when taken frequently 

(ergotism or St. Antony’s Fire), with descriptions dating back to the Middle Ages 

(Peroutka, 1995).  Ergotism is characterised by gangrene on the feet, legs, hands and 

arms due to a potent and long-lasting vasoconstriction.  Thus, the introduction of ergot 

and the subsequent isolation of the first pure ergot alkaloid, ergotamine, by Stoll in 

1920 (Stoll, 1920), represented a remarkable accomplishment as the beginning of an 

effective therapy for the treatment of migraine.  However, the wide array of 
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cardiovascular unwanted effects produced by this ergot (Villalón et al., 2002) 

prompted the search for more selective antimigraine agents.  These attempts 

ultimately led to the development of sumatriptan as the first selective 5-HT1 receptor 

agonist effective in the acute treatment of migraine (Feniuk et al., 1991; Humphrey & 

Feniuk, 1991).  However, its short half-life and low oral bioavailability stimulated the 

development of compounds with longer half-life and higher oral bioavailability, 

presently known as “second-generation triptans” (Goadsby et al., 2002b). 

1.2 Epidemiology  

Migraine is a public health problem that has major effects on the individual sufferer, 

his/her surrounding environment (including family and work) and society.  Moreover, 

the impact of migraine on health care utilisation is well marked and it has been 

reported that 1% of all visits to physicians (over 10 million visits a year in U.S.A. 

only) were for headache (Silberstein & Silberstein, 1990).  Migraine affects a 

substantial proportion (16%) of the population (Rasmussen et al., 1991) and is more 

prevalent in females than in males (15-18% vs. 6%) (Stewart et al., 1992).  The 

incidence of migraine begins earlier in males than in females, and Migraine With 

Aura begins earlier than Migraine Without Aura (Stewart et al., 1993).   

1.3 Co-morbidity 

Migraine is co-morbid with a number of neurological and psychiatric disorders, 

including, amongst others, stroke, epilepsy, depression and anxiety disorders (Low & 

Merikangas, 2003).  Understanding the co-morbidity related with migraine is 

important in diagnosing and treating this syndrome (Low & Merikangas, 2003).  For 

example, the association between migraine and stroke is well described, as strokes in 

younger age groups were attributed to migraine (Schwaag et al., 2003); moreover, 

stroke appears more often with migraine with aura than migraine without aura 

(Rothrock et al., 1993; Welch, 1994).  Analogous to stroke, the median prevalence of 

epilepsy in migraine patients (6%) exceeds the population prevalence (0.5%) 

(Andermann, 1987; Hauser et al., 1991).  The risk of getting migraine attacks is 

higher with partial and generalised seizures and highest in post-traumatic epileptics 

(Lipton et al., 1994; Petzold, 2003).  Migraine is also co-morbid with major 

depression, anxiety and panic disorders (Merikangas et al., 1990; Breslau et al., 
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1991).  The lifetime rates for affective and anxiety disorders are elevated in 

migraineurs and, in patients with psychiatric disorders, anxiety precedes the onset of a 

migraine attack, whereas the onset of depression usually follows migraine 

(Merikangas et al., 1990).  Moreover, migraine with aura was more strongly 

associated with various psychiatric disorders than migraine without aura (Breslau et 

al., 1991). 

1.4 Diagnostic criteria    

1.4.1 Based on clinical features 

Migraine is a neurovascular disorder, diverse in its expression, complex 

in manifestation and with an elusive pathophysiology (Villalón et al., 2002).   

Migraine is characterised by intense, throbbing and pulsatile headache, which is often 

unilateral in onset; and accompanied by anorexia, nausea, vomiting and photo-and/or 

phonophobia; in some are preceded by, or associated with, conspicuous sensory, 

motor and mood disturbances; and are often familial (Elkind & Friedman, 1962; 

Villalón et al., 2002).  Based on clinical features, migraine can be divided into three 

different phases namely, Premonitory phase (Phase I: occurs hours or days before the 

headache), Main attack phase (Phase II: an aura phase precedes or occurs with the 

headache and headache phase) and Post-drome (resolution) phase (Phase III) 

(Goadsby et al., 2002b). 

(I) PHASE I: PREMONITORY (PRODROME) PHASE 

A trigger, usually unknown, can bring about migraine attacks if an individual is 

susceptible to migraine (Villalón et al., 2002).  About 25% of the patients suffering 

from migraine have reported symptoms like elation, irritability, depression, hunger, 

thirst or drowsiness during 24 hours preceding headache, indicating a hypothalamic 

site for their origin (Goadsby et al., 2002b).  The premonitory phenomena occur hours 

to days before the onset of headache and about 60% of the migraineurs experience 

these premonitory symptoms.  These symptoms are seen both in patients with aura or 

without aura (Goadsby et al., 2002b).  
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(II) PHASE II: MAIN ATTACK PHASE 

(i) Phase IIA: aura phase  

The migraine aura is a complex of focal neurological symptoms that precedes or 

accompanies migraine in about 30% of patients (Ziegler & Hassanein, 1990).  Most 

aura symptoms develop over 5-20 min and last about 60 min.  This type of attack is 

also termed as migraine with aura or classical migraine.  The aura symptoms may 

consist of the following characteristics: 

• Visual (flashing jagged lights (photopsia) or visual loss), 
• Sensory (pins and needle feeling or numbness),  
• Motor (weakness or incoordination), 
• Language problems (difficulty in finding or using words), 
• Brainstem disturbances (vertigo or double vision). 

 

Almost any symptom and sign of brain dysfunction may be a feature of the aura, but 

the most common aura is a visual, followed by sensory, aphasic and motor symptoms 

(Russell & Olesen, 1996).  However, the majority of migraineurs do not experience 

the above associated symptoms: this is generally known as migraine without aura or 

common migraine (Ferrari, 1998).   

(ii) Phase IIB: Headache Phase 

The typical migraine headache is unilateral in onset (bilateral in 40% of cases), 

throbbing in type, pulsatile in nature, 

moderate to severe in intensity and 

aggravated by physical activity 

(Goadsby et al., 2002b).  The pain may 

occur at any time of the day, but most 

frequently in the early morning, gradual 

in onset and peaks, then subsides 

(Goadsby et al., 2002b).  It usually lasts 

between 4 to 72 hours in adults and 2 to 

48 hours in children.  If the migraine 

attack persists more than 3 days, the 

term “status migrainous” is applied. 

Figure 1.2. Frequency of migraine
attacks experienced by migraineurs per
month (Silberstein, 1995). 
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Frequency varies among individuals from a few in a lifetime to several times in a 

week, with an average of 1-3 a month (Figure 1.2) (Silberstein, 1995; Goadsby et al., 

2002b). 

PHASE III: POST-DROME (RESOLUTION) PHASE 

As the pain lessens, patients feel tired, washed out, irritable and may have impaired 

concentration, scalp tenderness or mood changes.  Some patients feel unusually 

refreshed or euphoric after the attack while others experience depression and malaise 

(Goadsby et al., 2002b). 

1.4.2 Formal Classification and Diagnostic Criteria for Migraine 

The International Headache Society (IHS) formally classified the headaches in order 

to improve clinical practise and research.  In 1988, IHS published the first edition of 

the International Classification of Headache Disorders (ICHD-I) and it was later 

redefined in 2004 (ICHD-II) (Olesen et al., 2003b).  Migraine was grouped under the 

primary headaches based on their symptoms, as true aetiological classification is not 

possible like secondary headaches.  This scheme stipulates that certain characteristic 

features are necessary to establish a diagnosis of migraine. 

The IHS system recognises six subtypes of migraine with two major 

varieties, namely, migraine without aura and migraine with aura.  Tables 1.1 and 1.2 

show the classification for migraine and diagnostic criteria for migraine with or 

without aura proposed by the International Headache Society (IHS' 2004) (Olesen et 

al., 2003b). 
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Table 1.1. The international classification of migraine (ICHD’2004) 

Migraine 

1. Migraine without aura 

2. Migraine with aura 
2.1 Typical aura with migraine headache 
2.2 Typical aura with non-migraine headache 
2.3 Typical aura without headache 
2.4 Familial hemiplegic migraine (FHM) 
2.5 Sporadic hemiplegic migraine  
2.6 Basilar-type migraine 

3. Childhood periodic syndromes that are common precursors of migraine 
3.1 Cyclical vomiting 
3.2 Abdominal migraine 
3.3 Benign paroxysmal vertigo of childhood 

4. Retinal migraine 

5. Complications of migraine 
5.1 Chronic migraine 
5.2 Status migrainosus 
5.3 Persistent aura without infarction 
5.4 Migrainous infarction 
5.5 Migraine-triggered seizure 

6. Probable migraine 
6.1 Probable migraine without aura 
6.2 Probable migraine with aura 
6.3 Probable chronic migraine 
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Table 1.2. Diagnostic criteria proposed by the International Headache society 
(ICHD' 2004) 

Migraine with aura (Previously used terms: Classic, ophthalmic, 
hemiparaesthetic, hemiplegic or aphasic, complicated migraine) 
A.  At least two attacks fulfilling B. 
B.  At least following three of the following four characteristics 
• One or more fully reversible aura symptoms indicating focal cerebral cortical and/or 

brain stem dysfunction. 
• At least one aura symptom develops gradually over more than 4 min, or two or more 

symptoms occur in succession. 
• No aura symptom last more than 60 min. 
• Headaches follow aura with a free interval of less than 60 min. 
C. At least one of the following 
• History, physical and neurological examinations do not suggest secondary headache 

disorders. 
• History and/or physical and/or neurological examinations do suggest such disorder, 

but it is ruled out by appropriate investigations. 
• Such disorder is present, but migraine attacks do not occur for the first time in close 

temporal relation to the disorder. 
 
Migraine without aura (Previously used terms: Common migraine, hemicrania 
simplex) 
A. At least five attacks fulfilling B-D. 
B. Headache attacks lasting 4 to 72 hours (untreated or unsuccessfully treated). 
C. Headache has at least two of the following characteristics: 
• Unilateral location. 
• Pulsatile quality. 
• Moderate or severe intensity (inhibits or prohibits daily activities). 
• Aggravation by or causing avoidance of routine physical activity (e.g., walking stairs

or similar routine physical activity). 
D. During headache at least one of the following 
• Nausea and/or vomiting. 
• Photophobia and phonophobia. 
E. At least one of the following 
• History, physical and neurological examinations do not suggest secondary headache 

disorders.   
• History and/or physical and/or neurological examinations do suggest such disorder, 

but it is ruled out by appropriate investigations. 
• Such disorder is present, but migraine attacks do not occur for the first time in close 

temporal relation to the disorder. 
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1.5 Pathophysiology of Migraine 

A migraine attack is believed to be an inherited instability in the brain sensory control 

system (i.e., hyperexcitable brain); when this system malfunctions either due to 

accumulation of unknown triggers or other mechanisms, results in migraine headache 

(Bigal et al., 2002).  Based on its clinical features, three distinct phases of migraine 

can be discerned, namely, a trigger, an aura and a headache phase.  

1.5.1 Trigger phase including premonitory symptoms 

Although limited information regarding the trigger is available, there is a better 

conception about the pathophysiology of migraine (Ferrari, 1998; Villalón et al., 

2002).  Moreover, it is believed that an initiating trigger arises from the brain stem 

known as "migraine generator" and may also be due to a genetic predisposition 

(Ophoff et al., 1996; Ferrari, 1998).  The subsequent events following the trigger 

phase leading to the symptoms observed during the aura and headache phases can be 

explained on the basis of the neurovascular hypothesis (Ferrari & Saxena, 1993b; 

Villalón et al., 2002). 

1.5.2 Aura Phase  

As mentioned in the Figure 1.3 (Tfelt-Hansen et al., 2000), once the brain stem gets 

activated (i.e., the brain generator has been switched on), there is a decrease in the 

regional cerebral blood flow, possibly following a wave of cortical spreading 

depression (Goadsby et al., 2002b).  When the cerebral blood flow decreases beyond a 

critical level, the corresponding aura symptoms occur.  Most clinicians believe that 

the migraine aura is due to a neuronal dysfunction rather than ischaemia and it is 

probably the clinical manifestation of a cortical spreading depression (Olesen, 1991a).  

The majority of migraine patients do not experience aura, but the following 

disturbances: (i) scintillating scotoma, flashing of lights that move across the visual 

field, etc.; (ii) paraesthesias; or (iii) other neurological signs (Goadsby et al., 2002b).  

The decrease in the cerebral blood flow begins usually in the occipital lobe, but this 

reduction enlarges and may involve the whole hemisphere.  This spreading oligemia 

does not respect the vascular territories and it is unlikely due to vasoconstriction 

(Olesen, 1991a).  
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1.5.3 Headache Phase 

The cerebral oligemia is subsequently followed by a reflex vasodilatation of the 

cranial blood vessels and arteriovenous anastomoses, probably due to changes in the 

neuronal activity that innervates the cranial extracerebral blood vessels and 

arteriovenous anastomoses (e.g., dura mater, base of the skull and scalp region).  

Tracing studies have shown that the fibres innervating the cerebral blood vessels arise 

from within the trigeminal ganglion containing several vasoactive neurotransmitters 

including substance P, calcitonin-gene related peptide (CGRP), 5-hydroxytryptamine 

(5-HT), vasoactive intestinal peptide (VIP), nitric oxide (NO) and neurokinin A 

(Goadsby et al., 2002b).  This profuse cranial vasodilatation leads to an enhanced 

blood volume following each cardiac stroke and rapid diastolic run off, with a 

consequent augmentation in carotid pulsations within the affected blood vessels.  

These augmented pulsations can then be sensed by so-called "stretch" receptors in the 

vessel wall thereby activating the perivascular (trigeminal) sensory nerves (De Vries 

et al., 1999a; De Vries et al., 1999b).  This nociceptive information is conveyed to 

central neurons in the trigeminal sensory nucleus that in turn relays the pain signals to 

higher centers where headache pain is perceived (Williamson & Hargreaves, 2001; 

Edvinsson, 2003).  In addition, stimulation of trigeminal nerves may also release 

neuropeptides, thus reinforcing vasodilatation and perivascular nerve activity 

(Villalón et al., 2002).  

Acutely-acting antimigraine compounds constrict dilated cranial 

extracerebral blood vessels (Saxena & Ferrari, 1989; Feniuk et al., 1991; Ferrari & 

Saxena, 1993a) and inhibit neuropeptide release, plasma protein extravasation across 

dural blood vessels (Buzzi et al., 1992) and impulse transmission within the 

trigeminovascular system (Goadsby et al., 2002b). 
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1.6 Experimental models for acutely-acting antimigraine drugs 

The experimental models currently known for the discovery and development of 

antimigraine drugs are based on the vascular or neurogenic involvement in migraine 

(De Vries et al., 1999a): (i) vasoconstriction of the dilated extracranial blood vessels 

including carotid arteriovenous anastomoses (e.g., carotid vasculature or isolated 

blood vessels; vascular hypothesis); (ii) inhibition of the trigeminal system (e.g., 

blockade of plasma protein extravasation and/or central trigeminal inhibition; 

neurogenic hypothesis); and  (iii) combination of both (e.g., inhibition of neurogenic 

vasodilatation). 

1.6.1 Experimental models based on the vascular involvement 

(i)  Constriction of carotid arteriovenous anastomoses (Figure 1.4) in 
anaesthetised animals 

Although a complete understanding of the migraine pathogenesis remains elusive, 

there seems to be little doubt that the dilatation of cranial blood vessels, including 

carotid arteriovenous anastomoses, is involved in the headache phase of migraine (De 

Vries et al., 1999a).  In addition to 

headache, migraine patients also 

experience facial paleness, reduction in 

the facial temperature, increase in the 

temporal artery pulsations and swelling 

of the frontal vein on the side of the 

headache (Drummond & Lance, 1983; 

Drummond & Lance, 1984).  Based on 

these findings, Heyck (Heyck, 1969) 

investigated the potential underlying 

mechanisms involve in migraine, by 

measuring the oxygen saturation 

difference between the arterial 

(femoral) and venous (external jugular) blood samples (A-V SO2 difference) during 

and after the headache phase of migraine and compared it with the healthy control 

groups (Heyck, 1969).  Interestingly, he observed that the A-V SO2 difference was 

Figure 1.4. A schematic representation
of an arteriovenous anastomosis 
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abnormally decreased during the headache phase of migraine, likely due to dilatation 

of the carotid arteriovenous anastomoses, and this decrease was normalised after 

spontaneous or drug-induced (ergotamine) alleviation of the headache (Heyck, 1969).  

Arteriovenous anastomoses are precapillary communications between the 

arteries and veins (Figure 1.4); they are predominantly located in the head skin, ears, 

nasal mucosa, eyes and dura mater in several species, including humans and pigs 

(Saxena, 1995).  In conscious pigs, the arteriovenous anastomoses are constricted 

being under a strong influence of the sympathetic neuronal tone, thereby shunting 

only a small (<3%) fraction of the total carotid blood flow (Hales, 1974).  In contrast, 

under pentobarbital anaesthesia, ~80% of the total carotid blood flow is shunted via 

arteriovenous anastomoses into the jugular venous circulation (Den Boer et al., 1993).  

Consequently, opening of the carotid arteriovenous anastomoses during migraine 

shunts a large quantity of oxygenated blood directly into the veins thereby resulting in 

facial pallor, lowering of skin temperature and increase in vascular pulsations 

(Saxena, 1995).  This increase in vascular pulsations stimulate the so-called ‘stretch 

receptors’ present in the wall of blood vessels, with ensuing activation of perivascular 

trigeminal nerves containing peptides  (e.g. CGRP) (De Vries et al., 1999a; De Vries 

et al., 1999b).  The fifth cranial nerve conveys nociceptive information to central 

trigeminal nuclei that in turn relay the pain signals to higher centres where headache 

pain is perceived (Williamson & Hargreaves, 2001; Edvinsson, 2003). 

 In line with the above findings, it is reasonable to assume that the 

constriction of dilated carotid arteriovenous anastomoses may abort migraine.  

Therefore, we developed an animal experimental model using radioactive 

microspheres to determine carotid arteriovenous anastomostic blood flow and the 

effects of antimigraine drugs on carotid arteriovenous anastomoses (Saxena, 1990; 

Saxena, 1995).  Over the years, this model has proven predictive of antimigraine 

activity in the clinic (Saxena, 1995).  Another major advantage of this model is that 

one can simultaneously study different vascular beds in order to evaluate the 

cranioselectivity of current or prospective antimigraine drugs (De Vries et al., 1999a; 

De Vries et al., 1999b).  Based on this notion, we have previously shown that 

conventional antimigraine agents like ergotamine and sumatriptan as well as second-

generation triptans potently constrict the porcine carotid arteriovenous anastomoses 

(Willems et al., 1998; De Vries et al., 1999a; Tom et al., 2002).  Moreover, we have 
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recently demonstrated that α1- and α2-adrenoreceptors mediate porcine carotid 

vasoconstriction and suggested that selective agonists at these receptors might provide 

a promising novel avenue for the development of acute antimigraine drugs (Willems 

et al., 2003). 

 Several lines of evidence indicate that CGRP, a potent vasodilator released 

from the trigeminal sensory nerves may play an important role in the pathophysiology 

of migraine (Goadsby et al., 2002b).  Indeed, CGRP receptors are widely distributed 

in several vascular beds including the carotid vasculature (Gardiner et al., 1990; Van 

Gelderen et al., 1995; Shen et al., 2001).  Moreover, triptans abort migraine not only 

by constricting the dilated cranial blood vessels via 5-HT1B receptors, but also by 

inhibiting CGRP release by activation of 5-HT1D receptors (Goadsby et al., 2002b).  

Therefore, it is admissible to propose that CGRP receptors may be involved in the 

vascular tone of the carotid circulation, which may provide a novel target for 

developing new antimigraine compounds (Edvinsson, 2003).  The recently introduced 

potent and selective CGRP receptor antagonist, BIBN4096BS (Doods et al., 2000), 

may be a useful as a pharmacological tool to evaluate the potential role of CGRP 

receptors in migraine (Edvinsson, 2003).  The following chapters (Chapters 2 and 3) 

will discuss the effects of BIBN4096BS on porcine carotid haemodynamics as well as 

its cardiac output distribution. 

(ii) Contraction of isolated cranial blood vessels 

Several in vitro studies using a number of isolated blood vessels have shown that the 

acute antimigraine compounds contract these blood vessels via 5-HT1 receptors, (De 

Vries et al., 1999a; Villalón et al., 2002).  This contractile effect is more marked in 

cranial blood vessels than in peripheral blood vessels where 5-HT2 receptors are 

predominant (Longmore et al., 1997).  It is noteworthy that the pharmacological 

profile of the above contractile 5-HT1 receptors correlates with the 5-HT1B, but not the 

5-HT1D or 5-ht1F receptor subtypes (De Vries et al., 1998; Verheggen et al., 1998; 

Cohen et al., 1999).  In addition, dipeptide CGRP receptor antagonists, such as 

BIBN4096BS and compound 1, potently antagonise CGRP-induced vasorelaxations 

in cerebral arteries (Edvinsson, 2001a; Edvinsson, 2002; Moreno et al., 2002; 

Verheggen et al., 2002). 
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1.6.2 Experimental models based on the neurogenic involvement 

The basic perception behind the development of neurogenic models for migraine is 

that migraine pain is due to a sterile neurogenic inflammation within the meninges 

and consequent activation of trigeminal nerve terminals (Williamson & Hargreaves, 

2001).  The activated trigeminal nerves release several neuropeptides (including 

substance P, neurokinin A and CGRP), which cause subsequent features of migraine 

rather than merely dilatation of cranial blood vessels (Goadsby et al., 2002b).  

Therefore, the efficacy of an antimigraine drug is believed to be due to a presynaptic 

action on sensory nerves thereby inhibiting the neuropeptide release and the process 

and/or consequences of "neurogenic inflammation" (Buzzi et al., 1991; Buzzi et al., 

1992).  Moreover, mechanisms, which do not seem to be mediated solely by the 5-

HT1B receptor have also been implicated in migraine relief (Goadsby, 1998).  These 

mechanisms include inhibition of the trigemino-vascular system peripherally and/or 

centrally (Goadsby, 1998; May et al., 1998). 

(i)  Inhibition of plasma protein extravasation after trigeminal stimulation 

Migraine pain is believed to be a form of sterile neurogenic inflammation, which is 

characterised by plasma proteins extravasation across the dura mater and associated 

structural changes in the dura mater, such as increases in endothelial permeability and 

mast cell degranualation (Williamson & Hargreaves, 2001).  The concept of plasma 

protein extravasation gained importance in migraine pathogenesis following a study 

demonstrating plasma protein extravasation following antidromic stimulation of 

trigeminal ganglion/sensory nerve in rats and guinea pigs (Moskowitz, 1993).  

Clinically effective antimigraine agents, such as ergots, triptans, opioids and 

valporate, inhibited this sterile neurogenic inflammation, suggesting that plasma 

protein extravasation inhibition could be predictive of antimigraine therapeutic 

activity (Moskowitz, 1993).  

Based on this finding, the compounds inhibiting plasma protein extravasation 

were investigated as new approaches in migraine treatment.  The conventional 

antimigraine drug, sumatriptan, inhibits plasma protein extravasation and this effect 

was attenuated by the 5-HT1B/1D receptor antagonist GR127935 in both rats and 

guinea pigs, implying the involvement of 5-HT1B/1D receptor subtypes (Williamson & 

Hargreaves, 2001).  However, in mice this effect resembles 5-HT1B receptors whereas 
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in guinea pigs and rats, it is a 5-HT1D-mediated effect (Shepheard et al., 1997; Yu et 

al., 1997; Williamson & Hargreaves, 2001).  Although triptans have high affinity for 

both 5-HT1B and 5-HT1D receptor subtypes, they may also act on other subtypes 

(Williamson & Hargreaves, 2001).  In this respect, plasma protein extravasation 

inhibition can also be induced by 5-carboxamidotryptamine and CP122288 in 5-HT1B 

receptor knockout mice and this effect is not prevented by GR127935 in guinea pigs 

(Yu et al., 1996; Yu et al., 1997).  Moreover, CP122288 shows a higher potency than 

sumatriptan in rats and this did not correlate with its affinity for 5-HT1B or 5-HT1D 

receptors, suggesting that at least part of the CP122288 action may be via 5-ht1F 

receptors, where it displays a high affinity (Shepheard et al., 1997; Williamson & 

Hargreaves, 2001).  Moreover, a number of 5-HT1 receptor agonists that inhibit 

plasma protein extravasation in guinea pig dura mater displaying a rank order of 

potency that correlates with their affinity towards 5-ht1F rather than 5-HT1B or 5-HT1D 

receptor subtypes (Williamson & Hargreaves, 2001).  Based on this finding, a 

selective 5-ht1F receptor agonist, LY344864, was developed (Johnson et al., 1997).  

This compound, besides proving effective in inhibiting plasma protein extravasation 

produced by trigeminal ganglion stimulation in rats, was apparently effective in acute 

migraine treatment (Goldstein et al., 2001b).  Despite the clinical effectiveness of 

LY344864, it was not clear whether plasma protein extravasation inhibition was 

responsible for its antimigraine properties.  Moreover, LY344864 inhibits the 

activation of brainstem neurons in response to the stimulation of dura mater as well as 

the c-fos expression in trigeminal nucleus caudalis; this suggests that the primary 

mechanism of LY344864 is central (i.e. interruption of the ascending pain pathways) 

rather than peripheral (inhibition of plasma protein extravasation) (Williamson & 

Hargreaves, 2001).  Similarly, the selective 5-HT1D receptor agonist PNU-142633F, 

which blocks plasma protein extravasation in guinea pigs (Cutrer et al., 1999), was 

ineffective in migraine treatment (Cutrer et al., 2000).  Furthermore, other studies 

have shown that plasma protein extravasation can be inhibited by the CGRP receptor 

antagonist CGRP (8-37) (O'Shaughnessy & Connor, 1994; Brandli et al., 1996).  

 Importantly, plasma protein extravasation models do not always predict 

antimigraine efficacy (Goadsby, 2000) as clearly evidenced by the failure of several 

compounds in clinical trials, including: (i) the NK1 receptor antagonist, lanipetant 

(Goldstein et al., 1997); (ii) specific plasma protein extravasation inhibitors such as 
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CP122,288 and 4991W93 (Roon et al., 2000); (iii) the ETA/B receptor antagonist 

bosentan (May et al., 1996); and (iv) the neurosteroid ganaxolone (Data et al., 1998).  

Moreover, the clinical antimigraine predictability of plasma protein extravasation 

assays became questionable following an elegant clinical study in migraine showing 

no increases in retinal or choroid permeability (May et al., 1998); this contrasts with 

the increase in retinal or choroid permeability following trigeminal ganglion 

stimulation in rats (Williamson & Hargreaves, 2001). 

(ii)  Inhibition of cranial vasodilatation (carotid, dural and cortical) induced by 
trigeminal stimulation 

Electrical stimulation of the trigeminal nerve in humans evokes the release of CGRP 

in cranial venous blood (Goadsby et al., 2002b).  Moreover, during the headache 

phase of migraine, plasma levels of CGRP, but not substance P, were elevated in the 

jugular venous blood (Goadsby et al., 2002b).  Therefore, CGRP released from 

trigeminal sensory nerves that innervate cranial blood vessels produces vasodilatation 

thereby causing headache (Williamson & Hargreaves, 2001).  Based on this, several 

animal models were developed to demonstrate cranial vasodilatation associated to 

CGRP release produced by trigeminal stimulation as well as to study the effects of 

antimigraine drugs on it (Williamson & Hargreaves, 2001).  It is known that triptans 

attenuate cranial vasodilatation induced by trigeminal stimulation as well as CGRP 

release in rats (Williamson & Hargreaves, 2001). However, carotid vasodilatation in 

guinea pigs following trigeminal ganglion stimulation is mediated by vasoactive 

intestinal peptide, which was not amenable to blockade by antagonists at CGRP or 

tachykinin receptors (Beattie & Connor, 1994; Raval et al., 1999). 

Therefore, another model was developed in which trigeminal sensory 

Aδ-fibres were stimulated following short, low intensity electrical stimulation (which 

releases CGRP only); the dural blood vessel diameter was measured by an intravital 

microscope through a closed cranial window (Williamson & Hargreaves, 2001; 

Akerman et al., 2003).  Electrical stimulation of this cranial window as well as 

intravenous infusion of substance P and α-CGRP in rats evoked an increase (80%) in 

dural blood vessel diameter (Shepheard et al., 1997; Williamson & Hargreaves, 

2001).  Interestingly, the NK1 receptor antagonist, RP 67580 clearly antagonised 

substance P-induced vasodilatation, but not the neurogenic vasodilatation (Williamson 
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& Hargreaves, 2001).  However, the CGRP receptor antagonist CGRP(8-37) completely 

antagonised the vasodilatation induced by both α-CGRP and neurogenic stimulation 

(Akerman et al., 2003); this suggests that the neurogenic vasodilatation is mediated by 

endogenous CGRP released from trigeminal sensory nerves.  This observation is 

consistent with clinical data showing that CGRP, but not substance P, levels are 

elevated during the headache phase of migraine (Goadsby et al., 1990). 

 Significantly, triptans attenuated the neurogenic dural vasodilatation 

following trigeminal stimulation, probably via presynaptic inhibition of CGRP release 

(Williamson & Hargreaves, 2001).  This observation mimicked clinical situations 

since sumatriptan normalised elevated plasma CGRP levels with resolution of the 

headache (Williamson & Hargreaves, 2001).  It was suggested that the above 

inhibitory effect of sumatriptan is mediated via prejunctional 5-HT1B receptors in rats 

and 5-HT1D receptors in guinea pigs, cats and humans (Williamson & Hargreaves, 

2001). 

(iii)  Central trigeminal neuronal inhibition  

The importance of brainstem in the pathogenesis of migraine was emphasised 

following its activation during migraine attacks (Bahra et al., 2001).  During migraine, 

blood flow was increased in the cerebral hemispheres (cingulate, auditory and visual 

cortex) as well as in brain stem (Bahra et al., 2001).  Sumatriptan relieved the 

headache and other symptoms as well as reversed the increase in cerebral blood flow, 

but not in brain stem; this indicates that persistent brain stem activation is due to other 

factors including increased activity of the endogenous antinociceptive system (Bahra 

et al., 2001). Moreover, the brain stem activation may be inherent of the migraine 

process itself, and continuous activation of brain stem (despite symptom resolution by 

sumatriptan) may account for the headache recurrence (Bahra et al., 2001).  

 Based on this finding, animal migraine models were developed to study c-fos 

activation of the trigeminal nucleus caudalis; interestingly, this effect was not altered 

by sumatriptan (Goadsby, 1997a; Goadsby, 1997b; Goadsby & Hoskin, 1997; 

Goadsby & Knight, 1997).  However, the second generation triptans, such as 

zolmitriptan (Goadsby & Boes, 2001), naratriptan (Donaldson et al., 2002) and 

eletriptan (Donaldson et al., 2002; Lambert et al., 2002) inhibited the action potentials 

generated in the trigeminal nucleus caudalis after superior saggital sinus stimulation in 
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cats and dural stimulation in rats (Cumberbatch et al., 1997).  This difference in 

effects could be due to the poor central penetrating effects of sumatriptan (Ferrari & 

Saxena, 1993a; Ferrari & Saxena, 1993b; Saxena & Tfelt-Hansen, 1993) as compared 

to second generation triptans, which are known to have central inhibitory effects 

(Saxena & Tfelt-Hansen, 2000; Goadsby et al., 2002b).  Consequently, it has been 

argued that the blood brain barrier may be disrupted during migraine (Harper et al., 

1977); indeed, under experimental disruption of the blood brain barrier by 

hyperosmolar mannitol, sumatriptan produced central inhibitory effects (Shepheard et 

al., 1995).  However, there is little or no evidence for a disrupted blood brain barrier 

based on computerised tomography or MRI findings in migraine patients (Alvarez-

Cermeno et al., 1986; Hamalainen et al., 1996).  

 Several lines of pharmacological evidence indicate that potent antimigraine 

agents act on the second order trigeminal neurons to reduce cell activity, suggesting 

that trigeminocervical complex neurons in the caudal brain stem could be a possible 

target for antimigraine activity (Bahra et al., 2001).  It is likely that this central 

inhibitory effect is mediated by 5-HT1B/1D receptors since the central inhibitory effect 

of eletriptan in cats is amenable to blockade by GR127935.  In addition, the 

involvement of 5-HT1D receptors rather than 5-HT1B receptors is crucial for this effect 

(Donaldson et al., 2002; Lambert et al., 2002).  Moreover, CGRP mediates sensory 

nerve transmission between the first and second order afferent input from the cranial 

blood vessels, and CGRP receptor antagonists may attenuate sensory nerve 

transmission (Gulbenkian et al., 2001; Williamson & Hargreaves, 2001; Conner et al., 

2002; Goadsby et al., 2002b; Poyner et al., 2002; Smith et al., 2002).  Recently, 

adenosine A1 receptors were localised in human trigeminal ganglia, suggesting a 

potential usage of adenosine A1 receptor agonists to inhibit trigeminal nociception 

(Welch, 2003). 

1.7 Management of migraine 

The drugs used in the treatment of migraine can be divided into two groups: agents 

that abolish the acute migraine headache (acute antimigraine drugs; e.g. ergotamine 

and sumatriptan) and agents aimed at its prevention (prophylactic drugs; e.g. 

methysergide). Patients who experience frequent headaches may require both forms 

of treatment. 
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1.7.1 Acute treatment  

Though several acutely acting antimigraine drugs are available, administration of 

these drugs depends upon: (i) severity; (ii) frequency of the attacks; (iii) associated 

symptoms; and (iv) co-morbid conditions interrelated with a migraine attack (Villalón 

et al., 2002).  Acutely acting antimigraine drugs attempt to abort the headache and 

they can be specific or non-specific in action.  Non-specific medications control the 

pain and associated symptoms of migraine or other pain disorders; in contrast, the 

specific medications control the headache attack, but are not useful for non-headache 

pain disorders (Goadsby et al., 2002b). 

(I) NON-SPECIFIC MEDICATIONS 

Non-specific medications are prescribed for mild to moderate headaches; the most 

commonly used drugs include non-steroidal antiinflammatory drugs (NSAIDs; e.g. 

aspirin or acetaminophen) either alone or combination with caffeine.  NSAIDs are the 

most popular agents because, in addition to being cheap, effective and easy to 

administer, they allow a control over own therapy.  Unfortunately, they produce 

headache after a long-term use (Villalón et al., 2002).  For associated symptoms (e.g. 

nausea or vomiting), antiemetics such as domperidone or metoclopromide are 

administered (Goadsby et al., 2002b).  

(II) SPECIFIC-MEDICATIONS 

Specific antimigraine drugs abort the migraine headache by constricting the dilated 

extracranial blood vessels, including the external carotid bed (Olesen, 1991a; Olesen, 

1991b; Rasmussen et al., 1991; Saxena & Den Boer, 1991).  The most commonly 

used specific antimigraine compounds are ergot alkaloids and triptans. 

a. Ergot alkaloids 

Ergotamine and its derivative dihydroergotamine are used to treat moderate to severe 

migraine attacks, particularly if NSAIDs fail to alleviate the headache (Saxena & Den 

Boer, 1991).  Dihydroergotamine has fewer side effects than ergotamine and they are 

effective in most of the patients with low recurrence rate.  Ergot and its derivatives are 

contraindicated in patients with uncontrolled hypertension, hepatic or renal failure, 

vascular disease (coronary, cerebral and/or peripheral) and in pregnancy (Villalón et 

al., 2002).  
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b. Selective 5-HT agonists 

Based on the vascular involvement in migraine and with the supporting role of 5-HT 

in the migraine pathogenesis (Saxena & Tfelt-Hansen, 2000), a new tryptamine 

derivative was synthesised to achieve selectivity at the craniovascular 5-HT1 like 

receptors; this search culminated in the design and development of sumatriptan, a 

selective 5-HT1B/1D receptor agonist (Humphrey et al., 1989).  Sumatriptan constricts 

cranial arteries and displays much less activity in other vascular systems (Dahlöf & 

Saxena, 2000; MaassenVanDenBrink et al., 2000a; MaassenVanDenBrink et al., 

2000b; Saetrum Opgaard et al., 2000; Saxena & Tfelt-Hansen, 2000; Tfelt-Hansen et 

al., 2000; Villalón et al., 2002).  Sumatriptan relieves headache, nausea, vomiting and 

restores the persons back to normal situations (Goadsby et al., 2002b).  Sumatriptan is 

available in subcutaneous or nasal spray forms; they are used for immediate relief of 

headache, while the oral form is used in patients with gradual onset of headache 

(Goadsby et al., 2002b).  Despite its advantage over other conventional antimigraine 

compounds, it has low oral bioavailability, short half-life and high headache 

recurrence (up to 40%) and is contraindicated in patients suffering from coronary 

arterial disease (Maassen VanDenBrink et al., 1999; Goadsby et al., 2002b).  

Therefore, in order to overcome these limitations, several new 5-HT1B/1D receptor 

agonists (referred to as second-generation triptans) have been developed with an 

action similar to that of sumatriptan, but different in their pharmacokinetic properties 

(particularly higher oral bioavailability, longer half-life, low headache recurrence, 

etc.). 

1.7.2 Preventive (prophylactic) treatment 

Patients who experience migraine attacks that are frequent, severe, long lasting, 

unresponsive to acute antimigraine agents and that cause substantial disability are the 

candidates for preventive therapy (Villalón et al., 2002).  Preventive antimigraine 

drugs are taken every day (whether or not the headache is present), to reduce the 

frequency and severity of migraine attacks (Villalón et al., 2002).  The mechanism by 

which the preventive antimigraine drugs work is still unclear, but they are believed to 

modify the sensitivity of the brain that underlies migraine pathogenesis (Goadsby et 

al., 2002b).  The commonly used preventive antimigraine agents include, β-adrenergic 

antagonists, calcium channel blockers, antidepressants, serotonin antagonists, 
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anticonvulsants and NSAIDs (Goadsby et al., 2002b).  Moreover, botulinum toxin 

(type A) appears to be safe, tolerable and possibly effective drug for migraine 

prevention, with almost no systemic adverse events (Ashkenazi & Silberstein, 2003).  

Interestingly, angiotensin converting enzyme receptor blocker candesartan appears to 

be effective and highly tolerable in the prevention of migraine, but needs to be further 

evaluated (Ashkenazi & Silberstein, 2003).  If preventive medication is indicated, the 

drug should be chosen from one of the above categories based on side-effect profiles 

and co-existent morbidities (Silberstein & Lipton, 1994; Silberstein, 1995).  It has 

been reported that on average, about two-thirds of the patients with the above 

preventive medications had a significant reduction (50%) in the frequency and 

severity of the attacks (Goadsby et al., 2002b).  Natural products such as riboflavin 

(Vitamin B2: used for mitochondrial dysfunction), niacin, magnesium and leukotriene 

antagonists (montelukast) have shown some promising results in reducing the 

frequency and severity of migraine attacks (Bigal et al., 2002; Velling et al., 2003). 

 

In conclusion, though the pathophysiological basis of migraine still remains elusive, 

the development of migraine models has remarkably contributed to the understanding 

of migraine pathophysiology and to the development of more effective antimigraine 

drugs. Hopefully, the advent of novel antimigraine compounds and the introduction of 

molecular biology techniques will shed further light on this complex scenario. 
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1.8 Calcitonin gene-related peptide 

1.8.1 Introduction  

The calcitonin family of peptides comprises five members, namely calcitonin, amylin, 

calcitonin gene-related peptide (CGRP; two forms α-CGRP and β-CGRP), and 

adrenomedullin (Poyner & Marshall, 2001).  They all have a six-aminoacid ring 

structure (seven for calcitonin) close to their N-terminal, formed by an intermolecular 

disulfide bond.  This is followed by a region of potential amphipathic α-helix and 

C amidated terminals (Poyner & Marshall, 2001).  These peptides are widely 

distributed and induce multiple biological effects, such as potent vasodilatation 

(CGRP and amylin), reduction in nutrient intake (amylin) and decrease in bone 

resorption (calcitonin) (Poyner & Marshall, 2001).  Due to their similarities in 

structure and biological activities, it is suggested that these peptides interact with 

similar G-protein coupled receptors (Poyner & Marshall, 2001). 

CGRP was first identified in 1983 in rats, where serially transplanted rat cells 

from a medullary thyroid carcinoma showed a spontaneous ability to switch from a 

high to a low calcitonin (calcitonin) producing state, by increasing the size of the 

mRNA (Rosenfeld et al., 1983); this was later determined to be an “altered mRNA” 

derived from the calcitonin/CGRP gene (Wimalawansa, 2001).  The alternative 

splicing of this primary mRNA transcript of the calcitonin/CGRP gene, which is 

encoded on the short arm of chromosome 11p14, will lead to the translation of CGRP 

and calcitonin gene in a tissue specific manner (Wimalawansa, 2001).  For example, 

in the central nervous system (CNS), splicing of the calcitonin/CGRP gene mRNA 

transcript will produce CGRP, whereas in the C cells of the thyroid gland, calcitonin 

is predominantly formed (Hoppener et al., 1985).   

In 1984, based on the sequence of rat α-CGRP, a similar peptide (human 

CGRP-α; hα-CGRP) from a human medullary carcinoma was demonstrated (Morris 

et al., 1984).  Subsequently, a second CGRP gene (β-CGRP), also located in 

chromosome 11 and thought to have arisen by the exon duplication, was identified by 

further analysis of the rat and human cDNA clones (Amara et al., 1985; 

Wimalawansa, 1996).  The r-α-CGRP differs from r-β-CGRP by one aminoacid and 

the h-β-CGRP differs by three aminoacids from homologous h-α-CGRP (Steenbergh 
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et al., 1984; Amara et al., 1985); both α-form and β-form of CGRP are very similar in 

their biological activities (Poyner & Marshall, 2001).  

1.8.2 Molecular genetics  

A schematic representation of the human α-calcitonin/CGRP gene is illustrated in 

Figure 1.5.  The α-calcitonin/CGRP gene (located in chromosome 11) contains six 

exons of which first three exons are constitutively spliced in both mRNAs (calcitonin 

and CGRP).  The exon I is untranslated, whereas the exons II and III code for the 

signal peptide and N-terminal propeptide, respectively.  The calcitonin and CGRP 

sequences are localised in exons IV and V, respectively; exon VI is a part of α-CGRP 

mRNA, but untranslated (Wimalawansa, 1996).  The primary mRNA transcript 

includes all six exons, and the calcitonin or CGRP mRNA is formed subsequently (see 

Figure 1.1) (Steenbergh et al., 1984).  The splicing of the first three exons with exons 

V and VI produces CGRP containing mRNA.  The exon V encodes CGRP, while the 

exon VI encodes the 3’-untranslated region of the CGRP mRNA and polyadenylation 

(poly A) signal (Wimalawansa, 1996).  This mRNA is translated to generate the pro-

CGRP peptide, which is subsequently cleaved at the paired dibasic aminoacids to 

release the 37-aminoacid CGRP (Amara et al., 1985).  

The organization of the β-CGRP gene in the chromosome 11 is similar to that 

of α-calcitonin/CGRP gene (Steenbergh et al., 1984).  While exon I is untranslated, 

exon II encodes for the signal peptide and exon III, which is 92% homologous to exon 

II of the α-calcitonin/CGRP gene, encodes for the N-terminal propeptide.  The exon 

IV of the β-CGRP gene is 67% homologous to the same region of the 

α-calcitonin/CGRP gene that gives rise to calcitonin.  The exon IV lacks 

polyadenylation, thereby preventing the alternative splicing.  Consequently, the 

transcript from this gene produces only CGRP; therefore it is considered as a 

pseudogene for calcitonin (Proudfoot & Brownlee, 1976; Alevizaki et al., 1986).  
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1.8.3 Structure  

All species variants of CGRP have 37 aminoacids, constituted as a single polypeptide 

chain (Bell & McDermott, 1996).  The structure of α-CGRP (Figure 1.6) comprises a 

N-terminal disulfide bridge between the positions 2 and 7 (Cys2 and Cys7), a well-

defined α-helix between the residues 8 and 18.  This is followed by either a β- or a γ-

turn in the region of residues 19 to 21 and phenylalanylamide C-terminus in the 

regions of residues 28 and 30, and also in 32 and 34 (Conner et al., 2002).  The β-

CGRP differs from the α-form by one and three aminoacids in rats and humans, 

respectively.  CGRP shares ~50% homology in their sequence of aminoacids with 

amylin and some homology with amylin (Chantry et al., 1991; Kitamura et al., 1993). 

1.8.4 Structure-activity relationships 

It has been suggested that an intact peptide is required for the full biological activity 

of a CGRP molecule (Zaidi et al., 1990).  The N-terminal loop (disulphide-bonded 

loop) is principally involved in triggering the signal transduction and receptor 

activation (Conner et al., 2002).  The α-helix plays an important role in the interaction 

of the molecule with the receptor (receptor binding) and its deletion causes 

approximately 100 fold loss of affinity, (Conner et al., 2002).  The residues of 19-27 

are necessary as a spacer or hinge region.  The C-terminal region (residues 28-37) 

shows a weak binding to CGRP receptors.  However, by making a few more 

aminoacid substitutions, a high affinity antagonist such as CGRP(8-37) can be generated 

(Conner et al., 2002).  The C-terminal region is probably necessary for the peptide to 

assume the right conformation in the interaction with its receptor (Conner et al., 

2002). 
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1.8.5 Distribution and localisation  

CGRP and its receptors are widely distributed in the peripheral and central nervous 

systems as well as in the cardiovascular system (Wimalawansa, 2001).  In the 

periphery, CGRP is abundantly present in the posterior horn cells.  In primary sensory 

ganglia, CGRP is often co-stored with substance P (Lundberg et al., 1985) and in 

motor neurons CGRP is co-stored with acetylcholine (Gibson et al., 1988; Roa & 

Changeux, 1991).  In most neurons, the α-and β-forms of CGRP co-exist, but the β-

CGRP form is predominantly seen in the enteric nervous system (Mulderry et al., 

1988) and in the human pituitary gland (Jonas et al., 1985).  

In the cardiovascular system, CGRP-containing nerve fibres are more 

abundant around the arteries than around the veins (Bell & McDermott, 1996); in the 

arterial system, they are predominantly seen in the junction of the adventia and media 

(Wimalawansa, 2001).  Moreover, CGRP-containing nerve fibres are seen more in the 

atria than in ventricles; within the atria, they are localised in the sino-atrial node, the 

atrio-ventricular node and the specilaised conduction system (Wimalawansa, 2001).  

In addition, the myocardium is less densely innervated than the epicardium, 

endocardium and pericardium (Wimalawansa, 2001).  In the periphery, 

CGRP-containing nerve fibres are often associated with vascular smooth muscle such 

as: (i) most parts of gastrointestinal tract, including the excretory ducts of the parotid 

gland, over the epithelium of the fundic glands of stomach, endocrine cells of the 

duodenum and ileum and some myenteric ganglia; (ii) lung; (iii) thyroid gland  (close 

to C cells); (iv) splenic vein and sinusoids; (v) human skin; and (vi) pituitary gland 

(Hagner et al., 2002a; Hagner et al., 2002b; Hagner et al., 2002c).  Moreover, i-CGRP 

has been found in the plasma of some patients with medullary thyroid and lung 

carcinoma and also in normal human beings (Girgis et al., 1985; Takami et al., 1985).  

1.9 CGRP receptors 

1.9.1 Classification  

Based on functional studies (by using the C-terminal fragment of α-CGRP, α-

CGRP(8-37) and linear CGRP analogues, [Cys(Acm)2,7]- and [Cys(Et)2,7]h-α-CGRP), 

CGRP receptors are classified into CGRP1 and CGRP2 subtypes (Table 1.3) (Conner 

et al., 2002; Poyner et al., 2002).  Experimental evidence has shown that α-CGRP(8-37) 
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behaved as a more potent antagonist on CGRP-induced responses in guinea pig atria 

(high affinity pA2=7-8) than in those induced in rat vas deferens (lower affinity pA2 = 

5.5-6.5) (Poyner et al., 2002).  In contrast, linear CGRP analogues, such as 

[Cys(Acm)2,7]- and [Cys(Et)2,7] hα-CGRP, have higher affinity for the rat vas deferens 

(EC50 = 234, 8.32 nM, respectively) than for the guinea pig atria (Conner et al., 2002; 

Poyner et al., 2002).  Based on this evidence, it was proposed that the CGRP-induced 

responses in the guinea pig atria are mediated via CGRP1 receptors and in the rat vas 

deferens by CGRP2 receptors (Conner et al., 2002; Poyner et al., 2002).  Furthermore, 

cell lines have now been characterised as uniquely enriched with the CGRP1  (e.g. 

human SK-N-MC cells and rat L6 skeletal myocytes) and CGRP2 receptors (e.g. 

COL-29 and HCA-7 colonic epithelium cells) (Juaneda et al., 2000).  Moreover, a 

potent and selective CGRP receptor antagonist, BIBN4096BS (Table 1.3), showed a 

10-fold higher affinity for CGRP receptors in rat left atrium compared to than in rat 

vas deferens, supporting the existence of CGRP receptor subtypes in these two tissues.  

Interestingly, this study evidenced the presence of two CGRP-like receptor subtypes 

in rat vas deferens namely: (i) the CGRP2 receptor; and (ii) a "novel" receptor that 

displays low efficacy for CGRP and that is selectively stimulated by [Cys(Et)2,7]h-

α-CGRP or amylin and which can be blocked with high affinity by BIBN4096BS 

(Wu et al., 2000; Wu et al., 2002).  Moreover, BIBN4096BS also revealed additional 

functional differences between the actions of α-CGRP and β-CGRP in the pig left 

anterior descending coronary artery and in the cerebral basilar artery, indicating the 

existence of different CGRP receptor subtypes (Wu et al., 2002).  Notwithstanding the 

above findings, the molecular nature of both CGRP receptor subtypes remains far 

from clear and final demonstration must come from their respective cloning and the 

development of fully selective agonists and antagonists. 
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Table 1.3. Proposed classification of CGRP receptor subtypes (Juaneda et al., 2000) 

Parameter Receptor subtype 

 CGRP1 CGRP2 

Potency of endogenous 
homologues 

CGRPα, CGRPβ 

>ADM>amylin 

CGRPα, CGRPβ 
>ADM>amylin 

Preferential agonist None Cys(Acm)2,7 hα-CGRP  

Antagonist *BIBN4096BS: pA2 = 8-11; 
SK-N-MC cells 

*Compound 1: pA2 = 7.7; 
SK-N-MC cells 

*SB-(+)-273779: pA2 = 6.4; 
SK-N-MC cells 

**CGRP(8-37): pA2 = 7-8 

*BIBN4096BS: pA2 = 6.5-7 

**CGRP(8-37): pA2 = 5.5-6.5 

Second messenger Gs (cAMP production) Gs 

Prototypical bioassays Atrium, pulmonary artery, 
spleen, SK-N-MC cells 

Vas deferens, urinary bladder, 
liver, COL-29 and HCA-cells 

Receptor associated 
proteins 

CRLR, RAMP1, RCP Unknown 

Abbreviations: CGRP, calcitonin gene related peptide; COL-29 and HCA-7 cells, human colonic 
epithelium-derived cell line; CRLR, calcitonin receptor like receptor; RAMP, receptor activity 
modifying protein; RCP, receptor component protein; Cys(Acm)2,7hα-CGRP, [acetamidomethyl-
cysteine2,7]CGRPα; Gs (cAMP production), G-protein-coupled receptors that interact with Gsα to 
stimulate adenylate cyclase production; SK-N-MC cells, human neuroblastoma cell line; *, non-
peptide CGRP receptor antagonist;  **, peptide antagonist 

1.9.2 Structure  

The calcitonin receptor like receptor (CRLR), a G-protein coupled receptor (GPCR; 

family B) forms the basic receptor protein for CGRP and amylin receptors (Conner et 

al., 2002; Poyner et al., 2002).  The evidence of CGRP functioning on the CRLR was 

based on the binding of CGRP and the accumulation of CGRP-dependent cAMP in a 

single subclone of HEK293 cells stably transfected with the human cloned receptor 

encoding cDNA (Aiyar et al., 1996).  Though CGRP and amylin bind with CRLR, the 

receptor specificity is being determined by a single transmembrane domain protein, 
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termed as the receptor activity modifying protein (RAMP) (McLatchie et al., 1998; 

Mallee et al., 2002).  The RAMPs (150-177 aminoacids in size) are cleavable signal 

peptides, with a relatively large N-terminal extracellular domain, one transmembrane 

spanning domain and nine aminoacid intracellular C-terminal domains (Fitzsimmons 

et al., 2003).  The RAMPs have been 

localised in the endoplasmic reticulum 

and they are required to facilitate the 

intracellular translocation of the CRLR-

maturing protein and its insertion into 

plasma membranes (McLatchie et al., 

1998; Hilairet et al., 2001; Mallee et al., 

2002).  Moreover, RAMPs can alter the 

pharmacology of the given CRLR by 

providing a mechanism whereby a cell 

could dynamically change its sensitivity 

from one receptor to another (McLatchie et al., 1998; Mallee et al., 2002).  Three 

RAMPs have been identified in the human tissues namely, RAMP1, RAMP2 and 

RAMP3 (McLatchie et al., 1998; Mallee et al., 2002).  Co-expression of CRLR with 

RAMP1 reveals CGRP receptors (Figure 1.7), whereas co-expression of CRLR with 

RAMP2 and RAMP3 forms adrenomedullin receptors (McLatchie et al., 1998; Mallee 

et al., 2002).  The mechanism of action of RAMPs in CGRP/adrenomedullin binding 

is not clear, but in chimaeric RAMPs, it has been shown that the N-terminus of 

RAMP1 is the key determinant for CGRP binding, which could be due to the 

interaction of CRLR with N-terminus (Foord et al., 1999).  Similarly, in the human 

RAMP1, the extracellular domain of RAMP1 is sufficient for normal CRLR 

association and efficacy, while the specific sequences of the transmembrane domain 

contribute to CGRP affinity and specificity.  The tail domain of RAMP1 is 

unnecessary for CRLR function (Fitzsimmons et al., 2003).  Moreover, in the human 

RAMP1, substitution of tryptophan at position 74 with lysine (as found in rat RAMP1) 

confers low affinity and vice-versa suggesting important determinants for small 

molecule antagonists (Mallee et al., 2002).  In addition to RAMPs, the CGRP receptor 

complex requires another chaperone protein named as the receptor component protein 

(RCP) to function optimally (McLatchie et al., 1998).  The RCP is a 148-aminoacid, 

Figure 1.7.  Schematic representation of
CGRP1 receptor showing interactions of
RAMP1 protein with CRLR and a receptor
component protein (RCP).  This complex is
tightly coupled to Gs to promote cAMP
production.
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intracellular protein that is required for G-protein-coupled signal transduction at the 

CGRP receptors (Prado et al., 2002).  The RCP is well expressed in CGRP responsive 

tissues and RCP expression correlates to the biological efficacy of CGRP in vivo 

(Evans et al., 2000). 

 The structure of CGRP2 receptor subtypes is unclear and little has been done 

so far to characterise the structural requirements for the CGRP binding to CGRP2 

receptors (Poyner & Marshall, 2001).  The linear CGRP analogue 

Cys(Acm)2,7hα-CGRP has been used to classify CGRP2 receptor subtypes, but an 

agonist may not definitively characterise a receptor (Poyner & Marshall, 2001).  The 

mRNA for the CRLR receptor is present in the rat vas deferens as well as in other 

tissues showing pharmacological properties similar to those of the putative CGRP2 

receptor subtypes, e.g. the porcine coronary artery (Conner et al., 2002; Hay et al., 

2002; Poyner et al., 2002).  Moreover, other studies have demonstrated that, in 

general, the affinity of ligands for CGRP1 receptors is higher than for CGRP2 

receptors, which could be attributable to tissue factors such as proteases (Rorabaugh 

et al., 2001) and/or to a deficiency of one or more ligand-binding contacts (Conner et 

al., 2002).  However, further work is necessary to confirm CGRP2 receptors structure, 

activity and effects in the tissues.  

1.9.3 Distribution and binding  

CENTRAL NERVOUS SYSTEM 

The distribution of CGRP receptors has been well documented and they generally 

match with CGRP binding studies (Wimalawansa, 1996).  In the CNS, both high and 

low binding sites for CGRP have been reported (Wimalawansa, 1996; Morara et al., 

2000; Segond von Banchet et al., 2002).  For example, moderate to high density of 

CGRP receptors was found in the piriform-insular cortex complex, while low to 

moderate receptors were seen in the medial preoptic area (Wimalawansa, 1996).  In 

contrast, very high levels of CGRP receptors are seen in the solitary, vagus, 

hypoglossus, dorsal medullary reticular nuclei and in the area postrema 

(Wimalawansa, 1996).  The highest density of CGRP receptors is found in the 

cerebellum and dorsal spinal cord (Wimalawansa, 1996).  In cerebellum, its molecular 

layer contains the highest density of CGRP receptors, whilst the Purkinje cell layer 

contains a moderate number; in contrast, its granular layer is devoid of CGRP 



General Introduction Chapter 1 

40 
 
 

receptors (Morara et al., 1998; Morara et al., 2000; Ueda et al., 2001).  In dorsal root 

ganglion and other neurons, CGRP receptors co-exist with receptors for other 

neurotransmitters and neuromodulators such as, substance P, noradrenaline, 

neuropeptide Y, vasoactive intestinal peptide, histidine (van Rossum et al., 1997; 

Ohtori et al., 2002).  Moreover, in the nonadrenergic and noncholinergic (NANC) 

fibres and in the coronary vessels, CGRP receptors co-exist with receptors for 

tachykinins (Ursell et al., 1991) and substance-P, respectively (Wiesenfeld-Hallin et 

al., 1984).  

CARDIOVASCULAR SYSTEM 

The highest density of CGRP binding sites is present in the heart and in the blood 

vessels (intima and media layers) (Sigrist et al., 1986; Wimalawansa, 2001).  

Moreover, in the heart, high affinity binding sites for CGRP are found in the atrial and 

ventricular preparations (Wimalawansa, 2001).  Regardless of the species, the density 

of the CGRP binding sites in atria invariably exceeds that of ventricles (Chang et al., 

2001).  Autoradiographic studies in the hearts of rats (Chang et al., 2001), guinea pigs 

and humans (Coupe et al., 1990; Hasbak et al., 2003) have shown the highest density 

of CGRP binding sites in the coronary arteries, coronary veins and in the heart valves, 

while a lower density is found in the coronary arterioles and endocardium 

(Wimalawansa, 2001).   

CGRP receptors are also abundantly present in the thyroid gland, 

gastrointestinal tract, parotid gland, adrenals, pituitary, exocrine pancreas, kidneys, 

bones, skin and skeletal muscles (Wimalawansa, 1996; Hagner et al., 2002a; Hagner 

et al., 2002b; Hagner et al., 2002c; Irie et al., 2002; Rossi et al., 2003).  

1.9.4 Signal transduction mechanisms  

The CGRP-induced vascular responses are mediated by both endothelium-dependent 

and endothelium-independent mechanisms (Marshall, 1992; Wimalawansa, 1996) 

(Figure 1.8).  In many blood vessels including the thoracic aorta, renal, pulmonary 

and cerebral arteries, the endothelium is absolutely required for CGRP-induced 

vasodilatory responses (Wimalawansa, 1996).  This endothelium-dependent pathway 

begins with CGRP binding to its receptors in the endothelial cells, activating adenylyl 

cyclase thereby increasing cAMP levels.  This increase in cAMP levels may then 

activate the enzyme nitric oxide synthase (NOS), leading to an increase level of nitric 
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oxide (NO) (Lincoln, 1989).  However, CGRP may also elevate NO directly without 

the involvement of adenlycyclase.  This elevated NO acts on the smooth muscle cells 

by activating guanylate-cyclase with an ensuing production of cGMP leading to 

smooth muscle relaxation (Wimalawansa, 1996). 

 In the endothelium-independent pathway, CGRP bypasses the endothelium 

and directly binds to CGRP receptors on the smooth muscle cells, activating adenylyl 

cyclase; this, in turn, will increase cAMP levels leading to vascular relaxation 

(Wimalawansa, 1996).  This endothelium-independent vasorelaxation has been 

demonstrated in several arteries, including the (i) feline cerebral artery; (ii) porcine 

splenic artery; (iii) human skeletal muscle artery; (iv) rabbit mesenteric artery; (v) rat 

gastric, splenic and hepatic arteries; and (vi) guinea pig pulmonary artery 

(Wimalawansa, 1996; van Rossum et al., 1997).   Interestingly, blood vessels such as 

the rat basilar and superior mesenteric arteries require both endothelium-dependent 

and endothelium-independent mediated mechanisms. CGRP also act indirectly by 

stimulating protein kinase A that activates K+
ATP channels (in rabbit arterial smooth 

muscle) (van Rossum et al., 1997). 

Evidently, CGRP-induced responses involve multiple second messengers, 

including cAMP, nitric oxide-cGMP and K+ channels (van Rossum et al., 1997).  

Notwithstanding, irrespective of second messengers involved, the final common 

pathway for CGRP-induced vasorelaxation depends ultimately upon the decrease in 

intracellular calcium (Wimalawansa, 1996). 
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1.10 CGRP peptide Assay  

The CGRP levels in the circulation are rather low (average 2 to 35 pM); its half-life is 

about 10-12 min.  The target cells contain cell surface enzymes (neutral 

endo-peptidase) that cleave CGRP (Wimalawansa, 1996).  The plasma CGRP levels 

can be measured by several in vitro assays, namely: (i) radioreceptor assay (RRA) and 

(ii) radioimmunoassay (RIA).  The bioassays used to measure the potency of CGRP 

includes: (i) cAMP generation, (ii) rat aortic strip relaxation assay, (iii) the inotrophic 

and chronotrophic effects on the rat heart, and (iv) the assay for cardiovascular 

functions, such as change in the mean blood pressure (Wimalawansa, 1996). 

Electrical or chemical stimulation (capsaicin) of sensory nerves ensue the 

release of endogenous CGRP (Goadsby et al., 1990; Kapoor et al., 2003a).  Moreover, 

the administration of capsaicin during the neonatal period of the rats will destroy 

CGRP containing sensory C fibres; this indicates that the circulating CGRP levels is 

due to its overspill from the perivascular nerves (Medeiros et al., 2003).  Furthermore, 

receptors for bradykinin and histamine (present on the sensory nerves) modulate the 

release of CGRP (de Hoon et al., 2003; Sato et al., 2003).   

1.11 Physiological functions of CGRP 

CARDIOVASCULAR SYSTEM 

The wide distribution of CGRP and its receptors in the cardiac tissue (sinoatrial node, 

coronary arteries, atrial and ventricular musculature) correlates well with its 

postulated functions, such as increases in: (i) heart rate, (ii) force of contraction, (iii) 

coronary blood flow, and (iv) microvascular permeabilty.  Moreover, several studies 

have demonstrated that these chronotropic and inotropic responses are mediated via 

CGRP receptors (Bell & McDermott, 1996; Kaygisiz et al., 2003).  Furthermore, 

CGRP is believed to play a notable role in the regulation of the vascular tone and 

angiogenesis (Bell & McDermott, 1996).   

Infusion of CGRP decreases the perfusion pressure in isolated hearts, 

indicating its vasodilating action on coronary vasculature (Bell & McDermott, 1996; 

Hasbak et al., 2003).  In addition, CGRP: (i) has a cardioprotective effect through 

mediation of the preconditioning induced by brief ischaemia (Yallampalli et al., 
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2002); and (ii) directly affects the capacitance blood vessels thereby producing 

peripheral vasodilatation (Wimalawansa, 1996). 

 CGRP receptors are abundantly present on renal blood vessels 

(Wimalawansa & MacIntyre, 1988), where they have several functions, namely: (i) to 

increase the renal blood flow and glomerular filtration rate; (ii) to relax the afferent 

arterioles in the glomeruli; (iii) to increase the renin production; and (iv) to stimulate 

the release of atrial naturetic peptide (Wimalawansa, 1996). 

CENTRAL NERVOUS SYSTEM 

In the CNS, CGRP plays an important role in various functions including the motor, 

sensory and integrative systems (van Rossum et al., 1997).  Moreover, CGRP 

modulates several senses including audition, olfaction, vision, feeding and 

behavioural effects (van Rossum et al., 1997).  The wide distributions of i-CGRP in 

the parabrachial area (a relay centre for autonomic-related functions) indicate its role 

in regulating the cardiovascular, respiratory and sleep functions (van Rossum et al., 

1997).  Consistent with this anatomical distribution, microinjection of CGRP into the 

central nucleus of amygdala increased the heart rate and mean arterial blood pressure; 

this is due to catecholamines release following sympathetic stimulation via CGRP 

receptors in the CNS (Kuo et al., 1994; Oh-hashi et al., 2001). 

The CGRP receptors are widely distributed in the parabrachial nucleus and in 

the nucleus tractus solitarii; this suggests that CGRP receptors may be involved in 

relaying the visceral sensory information from the vagus and glossopharyngeal nerves 

(Sykes et al., 1994).  Moreover, the association of CGRP receptors with the vagus and 

glassopharyngeal nerves may be responsible for the CGRP-induced responses on the 

cardiovascular functions including baroreceptor reflexes (Sykes et al., 1994; van 

Rossum et al., 1997). 

Amongst other effects, CGRP seems to regulate: (i) growth hormone 

secretion; (ii) hyperthermia; (iii) catalepsy; (iv) motor activity; and (v) nociceptive 

responses (van Rossum et al., 1997).  Furthermore, CGRP potentiates excitatory 

actions by enhancing the release of substance P as well as of excitatory aminoacids 

from the primary afferent fibres (Oku et al., 1987; Kangrga et al., 1990), hence the 

possibility of leading to an increased activity of these transmitters. 
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 In efferent nerve fibres, CGRP co-exists with acetylcholine-containing 

neurons.  These nerve fibres innervate the motor end plate, where CGRP modulates 

the release of acetylcholine and potentiates the response to acetylcholine (Rossi et al., 

2003).  Moreover, CGRP also acts as a neurotrophic factor by increasing the synthesis 

of acetylcholine receptors (Rossi et al., 2003). 

OTHER FUNCTIONS  

Additional biological functions mediated by CGRP include: (i) regulation of the 

pituitary hormone secretion; (ii) release of pancreatic enzymes; (iii) control of gastric 

acid secretion; (iv) thermoregulation; (v) decrease in food intake; (vi) antagonism 

some actions of insulin; and (vii) growth-factor like functions (Wimalawansa, 1996).   

In bones, CGRP induces its effect via calcitonin receptors, thereby 

producing: (i) hypocalcemia; (ii) proliferation of osteoclasts; and (iii) inhibition of 

both basal and stimulated resorption of the intact bone (Villa et al., 2003).  Moreover, 

several studies have shown that CGRP containing nerve fibres are widely distributed 

in bone tissues (periosteum and bone marrow); this apparent distribution suggests that 

CGRP may be involved in bone remodelling (Irie et al., 2002). 

Several lines of evidence have shown that an increase in plasma CGRP levels 

is produced during pregnancy, menstruation and following oral contraception.  This 

significant increase in plasma CGRP levels may be specific (17β-estradiol-mediated 

increase of CGRP synthesis) and/or due to a compensatory mechanism evoked by an 

increase in blood volume.  Moreover, CGRP inhibits spontaneous contractions in the 

uterus and fallopian tubes; therefore, any defect in the CGRP synthesis might lead to 

complications during pregnancy (Gangula et al., 2002; Yallampalli et al., 2002). 

CGRP increases microvascular permeability, thereby resulting in: 

(i) inflammatory hyperaemia; (ii) neutrophil accumulation; and (iii) localised oedema 

(Brain & Williams, 1985; Brain et al., 1985; Brain et al., 1986).  Moreover, in a 

neurogenic inflammation model, CGRP produces vascular leakage; this response to 

CGRP was completely attenuated by CGRP(8-37) (Escott & Brain, 1993).  In contrast, 

CGRP also mediates antiinflammatory effects, such as maintaining mucosal blood 

flow in the gastric mucosal injury model (Gennari & Fischer, 1985; van Rossum et 

al., 1997). 
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CGRP may induce angiogenesis by promoting migration of the endothelial 

cells during physiological and pathological conditions such as ischaemia, 

inflammation and wound healing (Bell & McDermott, 1996; Ackermann et al., 2002). 

1.12 Therapeutic potentials of CGRP receptor ligands  

1.12.1 CGRP agonists 

Several studies have shown that CGRP receptor agonists are under consideration for 

many clinical conditions (Wimalawansa, 1996).  Because of its potent vasodilatory 

effects, it is now being considered that CGRP receptor agonists may be used in 

vascular diseases, such as coronary heart disease and myocardial ischaemia (CGRP 

relieves arterial vasospasm) (Wimalawansa, 1996).  Infusions of CGRP: (i) improve 

exercise tolerance; (ii) increase the diameter of epicardial coronary artery (at the site 

of atheromatous stenoses); and (iii) delay the onset of myocardial ischaemia (Bell & 

McDermott, 1996).  Moreover, in patients with congestive cardiac failure, CGRP 

increases cardiac output and decreases blood pressure, without altering the heart rate 

(Bell & McDermott, 1996). 

It has been suggested that during myocardial infarction, there is: (i) an 

upregulation of CGRP receptors in sympathetic ganglia; and (ii) an increase in plasma 

CGRP levels.  These findings indicate that CGRP may be involved in the regulation 

of heart ischaemia (Bell & McDermott, 1996; Roudenok & Schmitt, 2001).  

Moreover, infusions of CGRP reduce markers of myocardial ischaemia, such as 

creatinine phosphokinase and glutamine-oxaloacetic transaminase (Bell & 

McDermott, 1996; Roudenok & Schmitt, 2001).  Furthermore, CGRP agonists can be 

used as antiarrhythmic agents, because they reduce the degree of arterioventricular 

blockade and protect against ventricular fibrillation (Bell & McDermott, 1996). 

The clinical application of CGRP agonists for hypertension is of great 

interest; as an experimental rat model for hypertension demonstrated a significant 

decrease in: (i) plasma CGRP levels; (ii) CGRP contents in perivascular nerves; and 

(iii) the vascular sensitivity to CGRP (Wimalawansa, 2001).  Moreover, infusions of 

β-CGRP in the hypertensive patients significantly decrease the blood pressure 

(Wimalawansa, 2001). 

Other clinical applications of CGRP agonists are: (i) Raynaud’s syndrome; 

(ii) peripheral vascular diseases (thrombo-embolism or diabetic vascular disease); 
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(iii) subarchanoid haemorrhage; (iv) nerve and neuromuscular regeneration; (v) 

erectile dysfunction; (vi) pulmonary hypertension; (vii) pre-eclamptic toxaemia and 

preterm labour; and (viii) venous stasis ulcer (Bivalacqua et al., 2001; Wimalawansa, 

2001; Ackermann et al., 2002; Ellington et al., 2002; Knerr et al., 2002; Qing & 

Keith, 2003). 

In view of wide variety of effects produced by CGRP, its systemic 

administration would produce an array of side effects.  Therefore, oral and long acting 

CGRP-mimetics may be useful in disorders where CGRP administration has been 

shown to be beneficial.  Some known CGRP mimetics are capsaicin/vanilloid receptor 

agonists and gene transfer of an adenoviral vector that encodes prepro-CGRP 

(Doggrell, 2001).  Examples include, capsiate (a capsaicin-like ingredient of a non-

pungent cultivar of red pepper,), anandamide, etc. 

1.12.2 CGRP receptor antagonists 

Several lines of evidence have shown that an inappropriate release of CGRP is a 

potential causative factor in several diseases, including: (i) migraine (discussed 

below); (ii) inflammation (as meningitis); (iii) cardiogenic shock associated with 

sepsis; and (iv) thermal injury (Wimalawansa, 1996; Hoffmann et al., 2002).  

Moreover, other studies have demonstrated that CGRP receptor antagonists can be 

used in treating insulin resistant type II diabetes mellitus. (Miyamoto et al., 2001). 

 The role of CGRP in inflammation, pain and nociception is well established; 

CGRP potentiates oedema formation by stimulating mediators of vascular 

permeability and chemotactic factors leading to neutrophil accumulation 

(Wimalawansa, 1996; de Hoon et al., 2003; Jarvikallio et al., 2003; Kawasaki et al., 

2003; Low & Merikangas, 2003; Ma et al., 2003; Sato et al., 2003).  Other findings in 

arthritic rats suggest a marked increase in i-CGRP in the dorsal horn (Wimalawansa, 

1996); this indicates that CGRP may be involved in the nociception associated with 

cutaneous inflammation (Sun et al., 2003).  Furthermore, CGRP and substance P 

containing nerve fibres are abundantly seen in atopic dermatitis and nummular 

eczema (Jarvikallio et al., 2003).  Therefore, CGRP receptor antagonists may dampen 

an inflammatory response, neurogenic inflammation and/or pain transmission (de 

Hoon et al., 2003; Jarvikallio et al., 2003; Kawasaki et al., 2003; Low & Merikangas, 

2003; Ma et al., 2003; Sato et al., 2003). 
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1.13 CGRP and migraine; potential targets for migraine therapy  

Several studies have shown that the stimulation of trigeminal ganglia/sensory nerves 

releases CGRP, which dilates cranial blood vessels and stimulates sensory nerve 

transmission (Goadsby et al., 2002b; Edvinsson, 2003).  Interestingly, during the 

headache phase of migraine, plasma concentrations of CGRP, but not other 

neuropeptides, are elevated.  Hence, trigeminal CGRP release is considered as a 

marker for migraine that can be measured in a venous blood sample; the decrease in 

this marker seems to be highly predictive of antimigraine activity in humans (Goadsby 

et al., 2002b; Edvinsson, 2003; Hasbak et al., 2003).  In line with this finding, CGRP 

is believed to play a central role in migraine pathophysiology.  Therefore, it is 

reasonable to assume that a substance capable of inhibiting trigeminal CGRP release 

or antagonising vascular CGRP receptors may be an effective antimigraine strategy 

(Goadsby et al., 2002b; Edvinsson, 2003; Hasbak et al., 2003).  Either strategy would 

ultimately result in the prevention of cranial vasodilatation, as clearly demonstrated 

for essentially all acute antimigraine agents, such as the triptans and ergot derivatives 

(Villalón et al., 2002).  In this respect, it is noteworthy that the acute antimigraine 

agents have been reported to abort migraine attacks by at least two main mechanisms, 

namely: (i) constriction of dilated cranial arteries and arteriovenous anastomoses via 

the stimulation of 5-HT1B receptor (De Vries et al., 1999b; Villalón et al., 2002); and 

(ii) inhibition of CGRP release as well as of nociceptive transmission on peripheral 

and central trigeminal sensory nerves via 5-HT1B/1D receptors (Bigal et al., 2002; 

Goadsby et al., 2002b; Tepper et al., 2002) 

1.13.1 Inhibition of CGRP release 

Cerebral blood vessels are innervated by sensory nerves that store several 

neuropeptides of which CGRP is the most abundant (Williamson & Hargreaves, 

2001).  As discussed above, it has been proposed that triptans alleviate migraine by:  

normalising the elevated plasma CGRP levels (Goadsby et al., 2002b).  Though 

triptans represent a significant advance in migraine therapy, they are ineffective in 

some patients and have limitations due to their potential side effects (Maassen 

VanDenBrink et al., 1999; MaassenVanDenBrink et al., 2000a).  Therefore, the 

crucial improvement in antimigraine therapy would seem to be the development of an 

antimigraine agent with no (cardio) vascular side effects (Goadsby et al., 2002b), but 



General Introduction Chapter 1 

49 
 
 

still capable of inhibiting the trigeminal release of CGRP.  In this context, selective 

agonists at 5-HT1D (e.g. PNU-109291) (Ennis et al., 1998) and 5-ht1F  (e.g. LY344864, 

LY334370) (Johnson et al., 1997; Phebus et al., 1997; Ramadan et al., 2003) 

receptors are devoid of contractile effects on coronary and cerebral blood vessels 

(Bouchelet et al., 2000; Villalón et al., 2002).  However, PNU-142633 proved to be 

ineffective in the acute treatment of migraine (Gómez-Mancilla et al., 2001), whilst 

LY334370 did show some efficacy when used in doses, which interact with 5-HT1B 

receptors (Ramadan et al., 2003). 

On the basis of the above, the potential role of α2-adrenoceptor subtypes and 

adenosine A1 receptors in inhibiting the CGRP release may prove vital in developing 

a potent antimigraine compound (Goadsby et al., 2002a; Willems et al., 2003).  

Indeed, several experimental studies have shown that a selective adenosine A1 

receptor agonist, GR79236, inhibits trigeminal nociception and CGRP release 

(Goadsby et al., 2002a; Giffin et al., 2003).  Other inhibitors of CGRP release include 

antagonists at capsaicin/vanilloid receptors and CGRP receptor (see below) (Doggrell, 

2001). 

1.13.2 Antagonism of CGRP receptors 

Truncated fragments of CGRP, such as CGRP(8-37), function as CGRP receptor 

antagonists (Juaneda et al., 2000).  However, CGRP(8-37) proved ineffective in 

migraine treatment due to its low potency and shorter half-life (Chiba et al., 1989; 

Rist et al., 1998).  An important breakthrough in the field of CGRP is the 

development of potent CGRP receptor antagonists (Figure 1.9), namely: 

(i) BIBN4096BS (Doods et al., 2000); (ii) compound 1 (Hasbak et al., 2001; Hasbak 

et al., 2003); and (iii) SB-(+)-273779 (Aiyar et al., 2001).  Both BIBN4096BS and 

compound 1 are 2-3 log units more potent in human tissues than in those of other 

animals (Edvinsson, 2003; Hasbak et al., 2003).  BIBN4096BS demonstrates 

extremely high affinity for human CGRP receptors expressed in SK-NM-C cells (Ki = 

14.4±6.3 pM) (Hay et al., 2002; Schindler & Doods, 2002; Wu et al., 2002).  Several 

studies have shown that BIBN4096BS clearly attenuates: (i) the vasodilatation 

induced by trigeminal stimulation in marmosets (Doods et al., 2000); and (ii) 

capsaicin and α-CGRP-induced porcine carotid vasodilator responses (Kapoor et al., 

2003a; Kapoor et al., 2003b).  Moreover, in human cerebral vessels, BIBN4096BS 
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behaves as a potent antagonist than in peripheral arteries (Edvinsson, 2003; Hasbak et 

al., 2003).  

Similar to BIBN4096BS, compound 1: (i) displaced 125I-CGRP from SK-N-

MC cells; (ii) antagonised the CGRP-induced increase in cAMP production with pA2 

values of ∼8 nM; and (iii) produced a parallel rightward shift of the 

concentration-response curve of CGRP in human cerebral arteries with a pA2 value of 

10nM (Hasbak et al., 2001; Edvinsson, 2003; Hasbak et al., 2003). 

Figure 1.9.  Chemical structure of BIBN4096BS, compound 1 
and SB-(+)-273779 
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A third CGRP1 receptor antagonist, SB-(+)-273779, inhibited the CGRP 

binding to SK-N-MC cells and reduced CGRP-induced adenylate cyclase activity 

(Aiyar et al., 2001).  Moreover, SB-(+)-273779 has no significant affinity for other 

receptors including those for calcitonin, endothelin, angiotensin-II and 

catecholamines.  Therefore, SB-(+)-273779 can be a useful tool for studying 

CGRP-mediated functional responses in several experimental models as it does not 

appear as selective for human CGRP receptors as compared to BIBN4096BS and 

compound 1 (Edvinsson, 2003; Hasbak et al., 2003).  Table 1.4 shows the apparent 

pKB values for various CGRP receptor antagonists on different cell lines and different 

tissues. 

In conclusion, the potential correlation between CGRP release and migraine has 

pointed out a need for a compound that counteracts CGRP-induced responses.  

Preliminary clinical results with BIBN4096BS given intravenously have shown that 

the compound is effective in treating migraine with no significant side effects 

(Edvinsson, 2003; Olesen et al., 2003a).  It remains to be seen if it is equally effective 

by the oral route and whether its efficacy is comparable to that of triptans.  Moreover, 

there is no direct evidence on contractile effects of this CGRP receptor antagonist, 

which may provide an advantage over triptans, provided that they have similar 

efficacy (Edvinsson, 2003).  
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1.14 Aims of this thesis 

 
• To study in anaesthetised vagosympathectomised pigs, the effects of 

BIBN4096BS (a potent and selective CGRP receptor antagonist) and 

sumatriptan (a 5-HT1B/D receptor agonist with established antimigraine 

properties) on capsaicin-induced: (i) carotid haemodynamic responses; and 

(ii) plasma CGRP concentrations.  

 

• To investigate, in anaesthetised vagosympathectomised pigs, the effects of 

BIBN4096BS on: (i) α-CGRP induced changes in carotid haemodynamics; 

and (ii) cardiac output distribution, in order to establish BIBN4096BS 

cardiovascular safety. 

 

• To examine the cardiovascular distribution of CGRP receptors in 

anaesthetised rats by investigating the effects of BIBN4096BS on 

α-CGRP-induced changes in cardiac output distribution and regional 

haemodynamics.



 

 
 
 

 

 

CHAPTER 2 

Effects of the CGRP receptor antagonist BIBN4096BS on 

capsaicin-induced carotid haemodynamic changes in 

anaesthetised pigs 

 
 

Based on: Kapoor, K., Arulmani, U., Heiligers, J.P.C., Garrelds, I.M., Willems, E.W., 

Doods, H., Villalon, C.M & Saxena, P.R. (2003).  Effects of the CGRP receptor 

antagonist BIBN4096BS on capsaicin-induced carotid haemodynamic changes in 

anaesthetised pigs. Br. J. Pharmacol., 140, 329-338 
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2 Effects of the CGRP receptor antagonist BIBN4096BS 
on capsaicin-induced carotid haemodynamic changes 
in anaesthetised pigs 

Abstract: Calcitonin gene-related peptide (CGRP), a potent vasodilator 
released from capsaicin-sensitive trigeminal sensory nerves, seems to be 
involved in the pathogenesis of migraine.  Hence, CGRP receptor 
antagonists may serve as a novel treatment for migraine.  This study was 
therefore designed to investigate the effects of BIBN4096BS (100, 300 
and 1000 µg kg-1, i.v.), a potent and selective CGRP receptor antagonist, 
on capsaicin-induced carotid haemodynamic changes in anaesthetised 
pigs.  Both vagosympathetic trunks were cut and phenylephrine was 
infused into the carotid artery (i.c.) to support carotid vascular tone. 
Infusions of capsaicin (0.3, 1, 3 and 10 µg kg-1 min-1, i.c.) did not alter 
heart rate, but dose-dependently increased mean arterial blood pressure.  
This moderate hypertensive effect was not modified by BIBN4096BS. 
Capsaicin infusion (10 µg kg-1 min-1, i.c.) increased total carotid, 
arteriovenous anastomotic and tissue blood flows and conductances as 
well as carotid pulsations, but decreased the difference between arterial 
and jugular venous oxygen saturations.  These responses to capsaicin were 
dose-dependently blocked by BIBN4096BS. Capsaicin infusion 
(10 µg kg-1 min-1, i.c.) more than doubled jugular venous plasma 
concentration of CGRP.  This effect was not blocked, but rather increased, 
by BIBN4096BS. The above results show that BIBN4096BS behaves as a 
potent antagonist of capsaicin-induced carotid haemodynamic changes that 
are mediated via the release of CGRP.  Therefore, this compound may 
prove effective in the treatment of migraine. 

2.1 Introduction 

Although a complete understanding of the pathogenesis of migraine remains elusive 

thus far, there seems little doubt that dilatation of cranial blood vessels, including 

carotid arteriovenous anastomoses, is involved in the headache phase (De Vries et al., 

1999a).  Moreover, evidence is accumulating that a release of vasoactive 

neuropeptides from the trigeminal sensory nerves may be an important factor in the 

genesis of migraine (Goadsby et al., 2002b).  In this respect, a high circulating plasma 

concentration of calcitonin gene related peptide (CGRP) has been demonstrated 

during migraine headache (Goadsby et al., 1990) and these concentrations can be 

normalised by triptans in parallel with alleviation of headache (Goadsby et al., 1990; 

Ashina et al., 2000).  Indeed, CGRP is widely distributed in the body, including the 

central and peripheral parts of the trigeminovascular system (Brain et al., 1985; van 

Rossum et al., 1997; Juaneda et al., 2000; Poyner & Marshall, 2001), where it is 

co-localised with substance P, neurokinin A and/or 5-HT1D receptors (Gulbenkian et 
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al., 1995; Gulbenkian et al., 2001; Smith et al., 2002).  CGRP can mediate neurogenic 

dilatation of cranial blood vessels as well as sensory nerve transmission between the 

first and second order afferent input from these vessels during migraine headache 

(Gulbenkian et al., 2001; Williamson & Hargreaves, 2001; Goadsby et al., 2002b; 

Smith et al., 2002).  Thus, it follows that inhibition of CGRP-mediated cranial 

vasodilatation and sensory nerve transmission with a potent and selective CGRP 

receptor antagonist may prove a novel strategy in treating migraine. 

The recent discovery of a di-peptide CGRP receptor antagonist BIBN4096BS 

(1-piperidinecarboxamide, N-[2-[[5-amino-1[[4-(4-pyridinyl)-1-piperazinyl]carbonyl] 

pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4 dihydro-

2-oxo-3(2H)-quinazolinyl)-, (Doods et al., 2000; Doods, 2001) represents a 

significant advance in exploring the pathophysiological role of CGRP in migraine.  

BIBN4096BS displays a very high affinity for human CGRP receptors (Doods et al., 

2000; Wu et al., 2000; Edvinsson et al., 2002; Moreno et al., 2002).  This compound 

is undergoing clinical trials for aborting migraine headache and the clinical results are 

awaited with great interest. 

Using an animal model that seems to be predictive of antimigraine activity 

(Spierings & Saxena, 1980; Villalón & Terrón, 1994; Saxena, 1995; Saxena et al., 

1998; De Vries et al., 1999a; Tfelt-Hansen et al., 2000), the present study in 

anaesthetised pigs was designed (i) to investigate the effects of capsaicin (pungent 

substance in red chilli pepper), which releases neuropeptides, including CGRP 

(Alving et al., 1991; Jansen-Olesen et al., 1996; Szallasi & Blumberg, 1999; Eltorp et 

al., 2000), on systemic and carotid haemodynamics, and (ii) to establish if 

BIBN4096BS is able to attenuate the responses induced by capsaicin.  A preliminary 

account of this investigation was presented at the XIVth World Congress of 

Pharmacology (Kapoor et al., 2002). 

2.2 Materials and methods 

2.2.1 General 

After an overnight fast, a total of 22 pigs (Yorkshire x Landrace, females, 10-14 kg; 

n=11 each for vehicle and BIBN4096BS) were sedated with azaperone (120 mg, i.m.) 

and midazolam hydrochloride (10 mg, i.m.) and then anaesthetised with sodium 

pentobarbital (600 mg, i.v.).  After tracheal intubation, the animals were connected to 
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a respirator (BEAR 2E, BeMeds AG, Baar, Switzerland) for intermittent positive 

pressure ventilation with a mixture of room air and oxygen.  Respiratory rate, tidal 

volume and oxygen supply were adjusted to keep arterial blood gas values within 

physiological limits (pH: 7.35-7.48; pCO2: 35-48 mmHg; pO2: 100-120 mmHg).  

Anaesthesia was maintained with a continuous i.v. infusion of sodium pentobarbital 

(12-20 mg kg-1 h-1).  This anaesthetic regimen, together with bilateral 

vagosympathectomy (see below), increases heart rate and markedly dilates carotid 

arterioles and arteriovenous anastomoses due to a loss of parasympathetic and 

sympathetic tone, respectively.  Consequently, carotid blood flow, particularly its 

arteriovenous anastomotic fraction, is considerably higher in these pigs than in 

conscious or thiopental-anaesthetised pigs (Den Boer et al., 1993). 

Heart rate was measured with a tachograph (CRW, Erasmus University, 

Rotterdam, The Netherlands) triggered by electrocardiogram signals.  Both common 

carotid arteries were dissected free and the accompanying vagosympathetic trunks 

were cut between two ligatures to prevent any possible influence via baroreceptor 

reflexes on the carotid vascular responses produced by capsaicin.  Pulsatile and mean 

carotid blood flows were measured in the right common carotid artery with a flow 

probe (internal diameter: 2.5 mm) connected to a sine-wave electromagnetic flow 

meter (Transflow 601-system, Skalar, Delft, The Netherlands).  The amplitude of 

carotid blood flow signals provided an index of carotid flow pulse.  Subsequently, 

three hub-less needles, connected to a polyethylene tube, were inserted into the right 

common carotid artery for the administration of capsaicin, radioactive microspheres 

and the α1-adrenoceptor agonist phenylephrine.  The use of phenylephrine is 

necessitated by the fact that the carotid arterioles and arteriovenous anastomoses are 

already in a dilated state under the present anaesthetic regime (Den Boer et al., 1993) 

and, therefore, to study the effects of vasodilator agents (in the present case capsaicin) 

one has to constrict them first.  As described earlier (Willems et al., 1999), 

phenylephrine decreases total carotid conductance exclusively by constricting carotid 

arteriovenous anastomoses, which results in an increase in the difference between 

arterial and jugular venous oxygen saturations (A-V SO2 difference) (Saxena, 1987). 

Lastly, catheters were placed in the right external jugular vein for the 

withdrawal of venous blood samples to measure blood gases (ABL-510; Radiometer, 

Copenhagen, Denmark) and plasma concentrations of CGRP (see below), inferior 
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vena cava (via the left femoral vein) for the administration of the vehicle or 

BIBN4096BS and aortic arch (via the left femoral artery) for the measurement of 

arterial blood pressure (Combitrans disposable pressure transducer; Braun, 

Melsungen, Germany) as well as withdrawal of arterial blood samples to measure 

blood gases. 

Heart rate and systolic, diastolic and mean arterial blood pressures as well as 

mean and pulsatile carotid artery blood flows were continuously monitored on a 

polygraph (CRW, Erasmus University, Rotterdam, The Netherlands).  Vascular 

conductances were calculated by dividing respective blood flows (ml min-1) by mean 

arterial blood pressure (mmHg), multiplied by one hundred and expressed as 

10-2 ml min-1 mmHg-1.  During the experiment, body temperature was maintained at 

37±1°C by a heating pad and the animal was infused with physiological saline to 

compensate for fluid losses. 

2.2.2 Distribution of carotid blood flow 

The distribution of common carotid blood flow into tissue (capillary) and 

arteriovenous anastomotic fractions was determined in 13 pigs (later receiving 

vehicle, n=7 or BIBN4096BS, n=6) with radioactive microspheres (diameter: 

15.5±0.1 µm; S.D.), labelled with 141Ce, 113Sn, 103Ru, 95Nb or 46Sc (NEN Dupont, 

Boston, USA).  For each measurement, a suspension of about 200,000 microspheres, 

labelled with one of the isotopes, was mixed and injected into the carotid artery.  At 

the end of the experiment, the animal was killed using an overdose of pentobarbital 

and the heart, kidneys, lungs and different cranial tissues were dissected out, weighed 

and put in vials.  The radioactivity in these vials was counted for 5 min in a 

γ-scintillation counter (Packard, Minaxi autogamma 5000), using suitable windows 

for discriminating the different isotopes (141Ce: 120-167 KeV, 113Sn: 355-435 KeV, 
103Ru: 450-548 KeV, 95Nb: 706-829 KeV and 46Sc: 830-965 KeV).  All data were 

processed by a set of specially designed computer programs (Saxena et al., 1980). 

The distribution of total carotid blood flow to different tissues (Qtis) was 

calculated by the formula: Qtis = (Itis/Itotal) x Qcarotid, where Itis is tissue radioactivity, 

Itotal is the sum of radioactivity counted in tissues and Qcarotid is the total common 

carotid blood flow at the time of microsphere injection.  Since little or no radioactivity 

was detected in the heart or kidneys, it can be assumed that all microspheres trapped 
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in lungs reach the lungs from the venous side after escaping via carotid arteriovenous 

anastomoses.  Therefore, the amount of radioactivity in the lungs can be used as an 

index of the arteriovenous anastomotic fraction of carotid blood flow (Saxena et al., 

1980; 1982). 

2.2.3 Determination of plasma concentration of CGRP 

Jugular venous blood samples were obtained from 12 pigs, receiving vehicle or 

BIBN4096BS (n=6 each).  Four of these animals (2 each for vehicle and 

BIBN4096BS) had been used for carotid haemodynamic experiments, while the other 

8 were separate experiments using the same protocol except that the radioactive 

microspheres were not used.  Blood was transferred immediately into a polypropylene 

tube containing ethylene dinitro-tetraacetic acid (1 mg ml-1 of blood) and aprotinin 

(500 KIU ml-1 of blood).  Aprotinin was used to inhibit endogenous plasma proteases, 

since we observed that CGRP is not detectable in biological samples without aprotinin 

(unpublished).  After centrifugation at 1600 g for 15 min, plasma samples were coded 

and stored at -80°C until CGRP measurements were performed.  The person 

measuring CGRP concentrations remained blind to the treatments, until all data had 

been collated. 

CGRP was extracted from plasma using a C18 SEP-COLUMN, dried by 

lypholisation, and measured by radioimmunoassay (Dwenger, 1984), as per protocol 

of the Peninsula Laboratories, Inc (Belmont, CA, U.S.A.).  The recovery of CGRP 

from the extraction procedure was ascertained by assaying control samples paired 

with a duplicate sample spiked with known quantities of CGRP.  The column 

recovery values were 85, 79, 81, 89 and 92% (Mean=85.2; Standard deviation=5.4; 

Coefficient of variation=6.3%).  The CGRP concentrations measured in the actual 

samples were, however, not corrected for the loss in the extraction procedure. 

2.2.4 Experimental protocol 

Following surgery and after haemodynamic condition of the animals (n=22) had been 

stable for 15-20 min (heart rate: 107±4 beats min-1, mean arterial blood pressure: 

95±2 mmHg, mean carotid blood flow: 120±12 ml min-1 and A-V SO2 difference: 

7.6±1.1%), phenylephrine was infused into the right common carotid artery at a rate 

of 10 µg kg-1 min-1 for 10 min, followed by 3-6 µg kg-1 min-1
 throughout the rest of 

the experiment.  The latter dose of phenylephrine was chosen so that the external 
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jugular venous oxygen saturation was between 60-70% and mean carotid blood flow 

was about 40% of the original value.  After a period during which haemodynamic 

variables remained constant for at least 60 min (heart rate: 130±4 beats min-1, mean 

arterial blood pressure: 105±2 mmHg, mean carotid blood flow: 48±5 ml min-1 and 

A-V SO2 difference: 31±2.3%; n=22), the animals received consecutive infusions 

(0.15, 0.45, 1.5 and 4.5 ml, i.c. during 3 min each) of capsaicin vehicle (see 

Compounds and kits section).  It is important to mention that the vehicle of capsaicin 

was devoid of any systemic and carotid haemodynamic responses (data not shown). 

Five to 10 min after the last infusion of capsaicin vehicle, blood samples 

were obtained for the measurements of blood gases and CGRP concentration and 

values of heart rate, arterial blood pressure and total carotid blood flow and 

conductance were collated (baseline values; 11 pigs each for vehicle and 

BIBN4096BS).  In 12 of the 22 pigs (6 each for vehicle and BIBN4096BS) the first 

batch of radioactive microspheres was injected for determining the baseline 

distribution of carotid blood flow.   The animals then received consecutive infusions 

of capsaicin (0.3, 1, 3 and 10 µg kg-1 min-1, i.c. for 3 min each) and heart rate, arterial 

blood pressure and total carotid blood flow were determined at the end of each 

infusion.  In addition, after the last infusion of capsaicin (10 µg kg-1 min-1), blood 

gases, plasma CGRP concentration and carotid blood flow distribution were measured 

as described above (control values).  Subsequently, a recovery period of 20 min was 

allowed until all haemodynamic parameters had returned to baseline levels.  At this 

point, the animals were divided into two groups, which were treated with i.v. 

infusions (rate: 0.5 ml min-1 for 10 min) of either vehicle (three times 5 ml of acidified 

distilled water) or BIBN4096BS (100, 300 and 1000 µg kg-1).  Ten min after each 

infusion, capsaicin was given and haemodynamic and biochemical variables were 

measured again, as described above. 

2.2.5 Data presentation and statistical analysis 

All data are presented as mean±s.e.mean, unless stated otherwise.  The statistical 

analysis was performed using the SPSS package for windows (version 10.0; SPSS 

Inc., Chicago, IL, USA).  The significance of changes within one group (vehicle or 

BIBN4096BS) was analysed with repeated-measures ANOVA, followed by 

Greenhouse-Geisser correction for serial autocorrelation (Ludbrook, 1994) and 
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Bonferroni correction for multiple comparisons (Overall & Doyle, 1996).  The 

significance of the between-group changes (vehicle versus BIBN4096BS treatments) 

was first analysed with repeated-measures ANOVA, including baseline measurements 

as a covariate (Overall & Doyle, 1994) and the Greenhouse-Geisser correction.   If the 

two groups differed significantly, pairwise comparisons of corresponding values in 

the vehicle- and BIBN4096BS-treated groups were performed using univariate 

analysis (Overall & Atlas, 1999), followed by Bonferroni correction.  Statistical 

significance was accepted at P<0.05 (two-tailed). 

2.2.6 Ethical approval 

The Ethics Committee of the Erasmus MC, Rotterdam, dealing with the use of 

animals in scientific experiments, approved the protocols for this investigation. 

2.2.7 Compounds and kits 

The following compounds were used: aprotinin (5850 KIU mg-1; Roth, Karlsruhe, 

Germany), azaperone (Stresnil®; Janssen Pharmaceuticals, Beerse, Belgium), 

BIBN4096BS (gift from Boehringer Ingelheim Pharma KG, Biberach, Germany), 

capsaicin, tween 80, ethanol and phenylephrine hydrochloride (all from Sigma-

Aldrich Chemie b.v., Zwijndrecht, The Netherlands), ethylene dinitro-tetraacetic acid 

(Merck, Darmstadt, Germany), heparin sodium (to prevent blood clotting in catheters; 

Leo Pharmaceutical Products, Weesp, The Netherlands), midazolam hydrochloride 

(Dormicum®; Hoffmann La Roche b.v., Mijdrecht, The Netherlands), phenylephrine 

hydrochloride (Sigma-Aldrich Chemie b.v., Zwijndrecht, The Netherlands) and 

sodium pentobarbital (Sanofi Sante b.v., Maasluis, The Netherlands).  The 

radioimmunoassay kit for CGRP was purchased from Peninsula Laboratories, Inc. 

(Belmont, CA, U.S.A.). 

Capsaicin was initially dissolved in tween 80, ethanol and physiological 

saline in the ratio of 0.5:1:8.5 ml, respectively.  Phenylephrine was dissolved in 

distilled water, while BIBN4096BS was initially dissolved in 0.5 ml of 1N HCl, then 

diluted with 4 ml of distilled water and adjusted to pH 6.5 by 1N NaOH. 
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2.3 Results 

2.3.1 Baseline values 

Baseline values in the 22 pigs used were: heart rate, 126±3 beats min-1; mean arterial 

blood pressure, 105±3 mmHg; total carotid blood flow, 40±5 ml min-1; total carotid 

vascular conductance, 39±5 10-2 ml min-1 mmHg-1 and A-V SO2 difference, 38±2%.  

No significant differences in baseline values were found between the two groups of 

animals (n=11 each) that later received vehicle or BIBN4096BS. 

2.3.2 Effect of different doses of capsaicin on heart rate, blood pressure and 

carotid blood flow 

Figure 2.1 depicts heart rate, mean arterial blood pressure and total carotid blood flow 

and conductance changes produced by the infusions of capsaicin (0.3, 1, 3 and 10 

µg kg-1 min-1, i.c.) before (control response) and after treatments with 

BIBN4096BS (100, 300 and 1000 µg kg-1 min-1, i.v.) or the corresponding volumes of 

vehicle.  In both groups of animals, capsaicin elicited dose-dependent increases in 

mean arterial blood pressure as well as total carotid blood flow and conductance, 

without significantly affecting heart rate.  These effects of capsaicin remained 

essentially unchanged after the administration of vehicle (0.5 ml), except that a slight 

attenuation was noticed in the increases in carotid blood flow and conductance after 

the third dose of vehicle.  In contrast, BIBN4096BS produced a dose-dependent 

attenuation of capsaicin-induced increases in total carotid blood flow and 

conductance, but not in blood pressure (Figure 2.1). 
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Figure 2.1.  Heart rate (HR), mean arterial blood pressure (MAP) and
total carotid blood flow (TCBF) and vascular conductance (TCC)
values at baseline (B) and following infusions of capsaicin (0.3, 1, 3,
10 µg kg-1 min-1, i.c.) in anaesthetised pigs before (Control) and after
i.v. administrations of vehicle (V, 5 ml three times; n=11) or 
BIBN4096BS (100, 300 and 1000 µg kg-1, n=11). 
All values are expressed as mean±s.e.mean.  #, P<0.05 vs. response 
after the corresponding volume of vehicle. 
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2.3.3 Carotid haemodynamic changes following capsaicin infusion 

The carotid haemodynamic effects observed after the highest infusion 

(10 µg kg-1 min-1) of capsaicin were examined in more detail in animals receiving 

vehicle or BIBN4096BS. 

2.3.4 Effect on carotid blood flow and pulsations 

As shown in Figure 2.2, i.c. infusions of capsaicin (10 µg kg-1 min-1) clearly 

increased carotid blood flow and conductance (both depicted as maximum absolute 

changes) as well as pulsations.  In animals treated with vehicle, there was some 

decrease in the responses to capsaicin, but these responses were significantly more 

attenuated in animals treated with BIBN4096BS, particularly the two highest doses. 

2.3.4 Fractionation of carotid blood flow and vascular conductance 

In both vehicle and BIBN4096BS groups, capsaicin (10 µg kg-1 min-1, i.c.) 

significantly increased total carotid blood flow and conductance as well as those 

distributed to arteriovenous anastomoses and capillaries.  The increases from baseline 

values in blood flows and vascular conductances were, respectively: total carotid, 

494±59% and 362±40%; arteriovenous anastomotic fraction, 726±282% and 

505±188% and capillary fraction, 526±48% and 389±32% (n=13 in each case). 

The effects of BIBN4096 as well as of its vehicle on the carotid 

haemodynamic responses to capsaicin are illustrated in Figure 2.3.  Compared to the 

corresponding volumes of vehicle, the increases in total, arteriovenous anastomotic as 

well as capillary blood flows and vascular conductances were clearly antagonised 

after the two highest infusions (300 and 1000 µg kg-1 min-1) of BIBN4096BS. 

Figure 2.4 shows that capsaicin (10 µg kg-1 min-1, i.c.) increased vascular 

conductances to the different cranial tissues, including the skin, ear, skeletal muscles, 

fat, bone, eye, tongue and dura mater, but not in the brain or salivary glands.  As has 

been described with 5-hydroxytryptamine (Saxena & Verdouw, 1982), the increase in 

skin blood flow was most likely responsible for the redness of skin on the side of 

capsaicin infusion (not shown in the Figure). These effects of capsaicin were 

significantly and dose-dependently antagonised by BIBN4096BS (100, 300 and 

1000 µg kg-1 min-1, i.v.), but not by the corresponding volumes of vehicle. 
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Figure 2.2.  Maximum changes in carotid blood flow, vascular conductance and
pulsations measured at baseline and following infusions of capsaicin (10
µg kg-1 min-1, i.c.) given in anaesthetised pigs before (Control) and after i.v.
administrations of vehicle (V, 5 ml three times; n=11) or BIBN4096BS (100, 300
and 1000 µg kg-1, n=11).  All values are expressed as mean±s.e.mean.  a.u., 
Arbitrary units.  *, P < 0.05 vs. baseline values;   #, P<0.05 vs. response after the
corresponding volume of vehicle. 
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Figure 2.3.  Total carotid, arteriovenous anastomotic (AVA) and capillary
blood flows (left panel) and vascular conductances (right panel) measured 
at baseline and following infusions of capsaicin (10 µg kg-1 min-1, i.c.) 
given in anaesthetised pigs before (Control) and after i.v. administrations
of vehicle (V, 5 ml three times; n=7) or BIBN4096BS (100, 300 and 1000
µg kg-1, n=6).  All values are expressed as mean±s.e.mean.  *, P < 0.05 vs. 
baseline values;   #, P<0.05 vs. response after the corresponding volume of
vehicle. 
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Figure 2.4.  Distribution of carotid vascular conductances to head tissues measured
at baseline (Bas) and following infusions of capsaicin (10 µg kg-1 min-1, i.c.) given
in anaesthetised pigs before (Con) and after i.v. administrations of vehicle (V, 5 ml
three times; n=7) or BIBN4096BS (100, 300 and 1000 µg kg-1, n=6).
All values are expressed as mean±s.e.mean.  *, P < 0.05 vs. baseline values;
#, P<0.05 vs. response after the corresponding volume of vehicle. 
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2.3.5 Difference between arterial and jugular venous oxygen saturations 

(A-V SO2 difference) 

Consistent with the increase in arteriovenous anastomotic blood flow, capsaicin 

(10 µg kg-1 min-1, i.c.) significantly decreased A-V SO2 difference from baseline 

values of 38±2% to 4.5±0.4% (n=22).  This response remained unaffected in animals 

treated with vehicle, but was dose-dependently antagonised by BIBN4096BS 

(Figure 2.5). 

2.3.6 Jugular venous plasma concentrations of CGRP 

In the 12 pigs used for this purpose, the baseline value of CGRP concentration in 

jugular venous plasma was 27±2 pg ml-1 and following capsaicin infusion (10 

µg kg-1 min-1, i.c.) it increased by 119±17% to 58±5 pg ml-1.  Figure 2.6 shows the 

effects of capsaicin (10 µg kg-1 min-1, i.c.) on jugular venous plasma concentration of 

CGRP in pigs receiving either three i.v. infusions of vehicle (5 ml each) or 

Figure 2.5.  Differences between arterial and jugular venous oxygen saturations
(A-V SO2

 difference) measured at baseline and following infusions of capsaicin (10
µg kg-1 min-1, i.c.) given in anaesthetised pigs before (Control) and after i.v.
administrations of vehicle (V, 5 ml three times; n=11) or BIBN4096BS (100, 300
and 1000 µg kg-1, n=11).  All values are expressed as mean±s.e.mean.  *, P < 0.05
vs. baseline values;   #, P<0.05 vs. response after the corresponding volume of
vehicle. 
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BIBN4096BS (100, 300 and 1000 µg kg-1).  Capsaicin increased plasma CGRP 

concentration in both animal groups by a similar magnitude and this increase was not 

attenuated in either vehicle- or BIBN4096BS-treated group of animals.  Interestingly, 

following the two highest doses of BIBN4096BS (300 and 1000 µg kg-1, i.v.) there 

was even a potentiation of capsaicin-induced increases in plasma CGRP 

concentrations (control response: 138±29%; response after BIBN4096BS: 211±30% 

and 211±38%, respectively; n=6). 

 

Figure 2.6.  Jugular venous plasma CGRP concentrations
measured at baseline and after infusions of capsaicin (10
µg kg-1 min-1, i.c.) given in anaesthetised pigs before (Control) 
and after i.v. administrations of vehicle (V, 5 ml three times;
n=7) or BIBN4096BS (100, 300 and 1000 µg kg-1, n=6). 
All values are expressed as mean±s.e.mean.  *, P < 0.05 vs. 
baseline values;   #, P<0.05 vs. response after the 
corresponding volume of vehicle. 
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2.4 Discussion 

2.4.1 General 

Although there is much debate about the pathogenesis of migraine, there seems to be a 

general agreement regarding its neurovascular nature (Goadsby & Edvinsson, 1993; 

De Vries et al., 1999a; Goadsby et al., 2002b; Villalón et al., 2002).  Thus, there is a 

release of vasoactive peptides producing intense cranial vasodilatation, increased 

arterial pulsations and a sterile inflammatory reaction with pain (Moskowitz et al., 

1989; De Vries et al., 1999a).  Amongst these neuropeptides, CGRP is considered as a 

biological marker in migraine pathogenesis (van Rossum et al., 1997; Goadsby et al., 

2002b; Hagner et al., 2002c).  Moreover, stimulation of trigeminal sensory neurones 

with electrical procedures or chemical substances, like capsaicin, releases 

endogenously-stored CGRP (Buzzi et al., 1995; Eltorp et al., 2000) that, in turn, 

dilates cranial vessels (Williamson & Hargreaves, 2001), including carotid 

arteriovenous anastomoses (Van Gelderen et al., 1995).  In addition, CGRP may also 

facilitate sensory nerve transmission between the first and second order afferent input 

from these vessels during migraine headache (Gulbenkian et al., 2001; Goadsby et al., 

2002b; Smith et al., 2002).  On this basis, it is reasonable to assume that CGRP 

receptor antagonists can be a novel approach to antimigraine therapy.  In this respect, 

recent in vitro studies have shown that, BIBN4096BS, a potent and ‘silent’ CGRP 

receptor antagonist (Doods et al., 2000), inhibits CGRP-induced dilatation of isolated 

cranial blood vessels (Edvinsson et al., 2002; Verheggen et al., 2002).  BIBN4096BS 

can also effectively antagonise CGRP-induced carotid vasodilatation in anaesthetised 

pigs (Kapoor et al., 2003b).  Therefore, it seems important to investigate the effects of 

BIBN4096BS on the carotid haemodynamic responses produced by endogenous 

CGRP released by capsaicin in a porcine model predictive of antimigraine activity 

(Saxena, 1995; De Vries et al., 1999a; Tfelt-Hansen et al., 2000).  Our results show 

that: (i) i.c. administration of capsaicin increased blood pressure, but dilated carotid 

arteriovenous anastomoses and arterioles, together with an increase in carotid 

pulsations and a narrowing of A-V SO2 difference as well as an elevation of jugular 

venous plasma CGRP concentration; and (ii) BIBN4096BS dose-dependently 

antagonised the changes in carotid haemodynamics and A-VSO2 difference caused by 
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capsaicin, but it enhanced the capsaicin-induced increase in jugular venous plasma 

CGRP concentration. 

2.4.2 Systemic haemodynamic responses to capsaicin 

The widespread distribution of CGRP immunoreactivity in cardiovascular tissues 

suggests that CGRP may play a role in the regulation of systemic and regional 

haemodynamics (Bell & McDermott, 1996; Hagner et al., 2002c).  In fact, several 

in vivo studies have evidenced a hypotensive response to CGRP due to its potent 

vasodilator action (Bell & McDermott, 1996; Shen et al., 2001).  In contrast, our 

study shows a significant increase in mean blood pressure following i.c. capsaicin, 

and this increase was not abolished by BIBN4096BS.  Despite the absence of clear 

tachycardic responses to i.c. capsaicin, the simplest interpretation of these findings 

may be that the vasopressor response to capsaicin is not mediated via CGRP 

receptors, but is rather due to an interaction with vasoconstrictor mechanisms.  

Indeed, not only do high subcutaneous doses (50 mg kg-1) of capsaicin increase 

plasma CGRP concentrations, but also plasma catecholamines, neurokinin A and 

neuropeptide Y concentrations (Alving et al., 1991). 

2.4.3 Carotid haemodynamics 

Stimulation of the trigeminal ganglion increases cerebral blood flow and releases 

endogenous vasoactive neuropeptides, including CGRP (Goadsby et al., 1988).  

Vasoactive neuropeptides are also released from sensory afferent nerves by capsaicin, 

but its relaxant effect on isolated cerebral blood vessels is mediated by CGRP, rather 

than by substance P or neurokinin A (Jansen et al., 1990; O'Shaughnessy et al., 1993; 

Jansen-Olesen et al., 1996).  These findings are in full agreement with our results in 

anaesthetised pigs showing dose-dependent vasodilator responses to capsaicin in the 

carotid circulation, including arteriovenous anastomoses and arterioles.  Admittedly, 

as reported earlier (Szallasi & Blumberg, 1999), vasodilator responses to capsaicin 

tended to wear off in vehicle-treated animals, suggestive of tachyphylaxis.  This 

tachyphylaxis was rather limited, possibly due to a neuronal reuptake of released 

CGRP into capsaicin-sensitive perivascular nerves (Sams-Nielsen et al., 2001).  

However, compared to the vehicle-treated animals, the carotid haemodynamic effects 

of capsaicin were clearly much more attenuated by the potent and selective CGRP 

receptor antagonist BIBN4096BS (Doods et al., 2000; Wu et al., 2000; Doods, 2001; 
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Wu et al., 2002).   BIBN4096BS has also been demonstrated to effectively block the 

relaxation of blood vessels by CGRP, both in vitro (Doods et al., 2000; Edvinsson, 

2002; Moreno et al., 2002; Verheggen et al., 2002; Wu et al., 2002) and in vivo 

(Doods et al., 2000), including the porcine carotid vascular bed (Kapoor et al., 

2003a).  Therefore, it is clear that carotid vasodilatation by capsaicin in the present 

investigation is mediated by the release of CGRP. 

2.4.4 A-V SO2 difference 

During the headache phase of migraine, the A-V SO2 difference is abnormally low, 

presumably due to an opening of arteriovenous shunts (Heyck, 1969).  Thus, a 

reduction of carotid arteriovenous anastomotic blood flow, with a consequent 

normalisation of the A-V SO2 difference, makes our porcine vascular model highly 

predictive of antimigraine activity (Saxena, 1987; Saxena, 1995; De Vries et al., 

1999a).  In the present study, i.c. infusions of capsaicin significantly decreased 

A-V SO2 difference together with dilatation of carotid arteriovenous anastomoses.  

Since both these effects of capsaicin were effectively blocked by BIBN4096BS, it 

confirms that capsaicin-induced responses are mediated via the release of CGRP.  

Indeed, CGRP also decreases A-V SO2 difference and this effect is antagonised by 

BIBN4096BS (Kapoor et al., 2003b). 

2.4.5 Plasma concentrations of CGRP 

The release of CGRP by capsaicin is mediated by selective activation of the Aδ- and 

C-fibre sensory neurones via vanilloid receptors (Caterina et al., 1997; Ebersberger et 

al., 1999; Eltorp et al., 2000).  Our results showing an increase in plasma 

concentrations of CGRP after capsaicin (see Figure 2.6) are consistent with the above 

observations.  Interestingly, not only did BIBN4096BS fail to block capsaicin-induced 

CGRP release, but also there was a modest enhancement of CGRP release.  There is 

evidence for uptake of CGRP into perivascular, capsaicin-sensitive neurones in the 

guinea pig isolated basilar artery (Sams-Nielsen et al., 2001).  Therefore, it may well 

be that blockade of prejunctional ‘inhibitory’ CGRP autoreceptors by BIBN4096BS 

led to increased release of CGRP by capsaicin, similar to the modulation of 

sympathetic neurotransmission by presynaptic α-adrenoceptors (Langer, 1980). 

It may be noted that plasma CGRP concentrations measured by us at baseline 

(27±2 pmol ml-1, n=12) as well as after capsaicin treatment (58±5 pmol ml-1, n=12) 
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are in agreement with those previously reported in pigs (Table 2.1) (Alving et al., 

1991; Arden et al., 1994; Kallner et al., 1998). 

 

Table 2.1.  Plasma CGRP concentration range (pg ml-1) in pigs 

Baseline Capsaicin Sampled from Reference 

10 36 Femoral artery Alving et al. (Alving et 

al., 1991) 

11-16 Not measured Femoral artery and 

interventricular vein 

Kallner et al. (Kallner 

et al., 1998) 

4-12 Not measured Carotid artery Arden et al. (Arden et 

al., 1994) 

14-38 27-88 External jugular vein Present investigation 

 

2.4.6 Possible clinical implications 

Lastly, we would like to consider the possible clinical implications of our results with 

BIBN4096BS within the context of antimigraine therapy.  Indeed, the 

trigeminovascular system, a functional network of cranial blood vessels and their 

trigeminal innervation, seems to be activated during migraine (Goadsby et al., 2002b), 

thereby provoking CGRP release and cranial blood vessel dilatation.  Thus, a 

blockade of the release and/or the effects of CGRP are likely to provide novel avenues 

for developing antimigraine drugs without associated vasoconstriction.  BIBN4096BS 

may be such a compound and the present findings demonstrating that it effectively 

antagonises the carotid vasodilator responses elicited by capsaicin are indeed 

encouraging.  Obviously, the results of currently undergoing clinical trials with 

BIBN4096BS are awaited with great interest; these would be crucial in determining 

not only the role of CGRP in the pathophysiology of migraine, but also of such 

compounds as therapeutic agents. 



 

 
 

 
CHAPTER 3 

 
Effects of BIBN4096BS on cardiac output distribution 

and on CGRP-induced carotid haemodynamic responses 
in the pig 
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distribution and on CGRP-induced carotid haemodynamic responses in the pig  
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3 Effects of BIBN4096BS on cardiac output distribution 
and on CGRP-induced carotid haemodynamic 
responses in the pig 

Abstract: Calcitonin gene related peptide (CGRP) seems to be involved in 
the pathogenesis of migraine, since plasma CGRP levels increase during 
the headache phase.  In the present study, we investigated the effects of a 
novel CGRP receptor antagonist, BIBN4096BS 
(1-piperidinecarboxamide, N-[2-[[5-amino-1-[[4-(4-pyridinyl)-1-pipera-
zinyl]carbonyl] pentyl] amino]-1-[(3,5-dibromo-4-hydroxyphenyl) 
methyl]- 2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl) (Kapoor 
et al., 2003b), on the regional cardiac output distribution and on the 
carotid haemodynamic changes induced by α-CGRP in anaesthetised pigs.  
Treatment with BIBN4096BS (100, 300 and 1000 µg.kg-1, i.v.) did not 
affect heart rate, mean arterial blood pressure or systemic vascular 
conductance, but a small decrease in cardiac output was noticed; the latter 
was, however, not significantly different from that in vehicle-treated 
animals.  The highest dose of BIBN4096BS moderately decreased 
vascular conductance in the lungs, kidneys, spleen and adrenals. Vascular 
conductance in other tissues, including the brain, heart, gastrointestinal 
system, skin and skeletal muscles remained unchanged.  Intracarotid artery 
infusions of α-CGRP (10, 30 and 100 pmol.kg-1.min-1 during 3 min) 
increased total carotid blood flow and conductance, but decreased arterial 
blood pressure.  These responses were dose-dependently blocked by 
BIBN4096BS.  The above results show that BIBN4096BS is a CGRP 
receptor antagonist in the porcine carotid and systemic circulations, but the 
endogenous CGRP does not seem to play an important physiological role 
in regulating basal vascular tone.  These findings suggest that 
BIBN4096BS may have therapeutic usefulness in migraine. 

 

3.1 Introduction 

Calcitonin gene related peptide (CGRP), a 37 amino acid neuropeptide generated by 

alternative splicing of the calcitonin gene (Amara et al., 1982), is widely distributed in 

the body, including in trigeminal sensory nerve fibres innervating central and 

peripheral blood vessels, where it is co-localised with other vasoactive neuropeptides, 

such as substance P and neurokinin A (Gulbenkian et al., 1995; Gulbenkian et al., 

2001).  CGRP is a potent vasodilator agent in a wide variety of tissues (Brain & 

Williams, 1985; van Rossum et al., 1997; Juaneda et al., 2000; Poyner & Marshall, 

2001) and, although exogenous α-CGRP has potent systemic and regional 

haemodynamic effects (Gardiner et al., 1990), the physiological role of endogenous 

CGRP is not clear (Shen et al., 2001).  This is mainly due to the unavailability of 

potent and selective CGRP receptor antagonists; the most widely used CGRP receptor 
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antagonist thus far, CGRP-(8-37) is not very potent and displays partial agonist 

properties (Wisskirchen et al., 1998; Waugh et al., 1999).  Clearly, the advent of 

‘silent’, selective and potent non-peptide CGRP receptor antagonists would be 

valuable in this regard. 

Interestingly, CGRP has been implicated in the pathogenesis of migraine 

(Goadsby et al., 1990; Ashina et al., 2000; Edvinsson, 2001b; Durham & Russo, 

2002), and it can mediate neurogenic dilatation of cranial blood vessels as well as 

sensory nerve transmission between the first and second order afferent input from 

these vessels during migraine headache (Gulbenkian et al., 2001; Williamson & 

Hargreaves, 2001; Goadsby et al., 2002b; Smith et al., 2002).  Significantly, plasma 

levels of CGRP, but not of other neurotransmitter (e.g., neuropeptide Y, vasoactive 

intestinal peptide or substance P), are elevated during migraine and, after sumatriptan, 

these levels are normalised paralleling the resolution of headache (Goadsby et al., 

1990; Goadsby & Hoskin, 1999).  Therefore, inhibition of α-CGRP release or 

blockade of α-CGRP-induced vasodilatation may be a novel approach in the 

management of acute migraine headache. 

Doods and colleagues (2000) have recently described a small molecule 

CGRP receptor antagonist, BIBN4096BS (1-piperidinecarboxamide, N-[2-[[5-amino-

1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl]pentyl] amino]- 1-[(3,5-dibromo-4-

hydroxyphenyl) methyl]- 2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl) 

(Kapoor et al., 2003b), which possesses over 200 fold higher affinity for human (SK-

N-MC cells; Ki: 14 pM) than for rat (spleen; Ki: 3.4 nM) CGRP receptors.  

BIBN4096BS as well as the endogenous ligand CGRP and its analogues 

concentration-dependently displace (Kawasaki et al., 1990; Bard et al., 1993; 

Goadsby & Knight, 1997; Yu et al., 1997; Bhalla et al., 2002)BIBN4096BS from SK-

N-MC cell membranes with the rank order of affinity: BIBN4096BS > 

human α-CGRP = human β-CGRP > [Cys(Et)2,7] human α-CGRP > adrenomedullin 

(high affinity site) = human α-CGRP8-37 = human β-CGRP8-37 >> calcitonin = amylin 

(Schindler & Doods, 2002).   The compound inhibits vasodilatation evoked by 

trigeminal ganglion stimulation in marmosets (Doods et al., 2000) and by CGRP in 

several human isolated blood vessels (Edvinsson et al., 2002; Moreno et al., 2002; 

Verheggen et al., 2002).  The purpose of the present study in anaesthetised pigs was to 

investigate the effects of BIBN4096BS on: (i) the complete distribution of cardiac 
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output to assess the potential role of endogenous CGRP in regulating basal vascular 

tone and thereby the cardiovascular safety of BIBN4096BS, and 

(ii) the haemodynamic responses produced by intracarotid arterial (i.c.) infusion of 

α-CGRP in a model predictive of antimigraine activity (Saxena, 1995; De Vries et al., 

1999a). 

3.2 Materials and methods 

3.2.1 General 

After an overnight fast, 25 domestic pigs (Yorkshire x Landrace, females, 10-14 kg) 

were sedated with intramuscular injections of azaperone (120 mg) and midazolam 

hydrochloride (10 mg) and then anaesthetised with sodium pentobarbital (600 mg, 

i.v.).  After tracheal intubation, the animals were connected to a respirator (BEAR 2E, 

BeMeds AG, Baar, Switzerland) for intermittent positive pressure ventilation with a 

mixture of room air and oxygen.  Respiratory rate, tidal volume and oxygen supply 

were adjusted to keep arterial blood gas values within physiological limits 

(pH: 7.35-7.48; pCO2: 35-48 mmHg; pO2: 100-120 mmHg).  Anaesthesia was 

maintained with a continuous i.v. infusion of sodium pentobarbital 

(12-20 mg.kg-1.h-1).  Heart rate was measured with a tachograph (CRW, Erasmus 

University, Rotterdam, The Netherlands) triggered by electrocardiogram signals.  A 

catheter was placed in the inferior vena cava via the right femoral vein for the 

administration of vehicle and BIBN4096BS.  Another catheter was placed in the 

aortic arch via the left femoral artery for the measurement of arterial blood pressure 

(Combitrans disposable pressure transducer; Braun, Melsungen, Germany) and 

arterial blood withdrawal for the measurement of blood gases (ABL-510; Radiometer, 

Copenhagen, Denmark).  During the experiment, body temperature was kept around 

37°C and the animal was continuously infused with physiological saline to 

compensate for fluid losses. 

Heart rate and systolic, diastolic and mean arterial blood pressure as well as 

the pulsatile and mean carotid artery blood flows (see later) were continuously 

monitored on a polygraph (CRW, Erasmus University, Rotterdam, The Netherlands). 
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3.2.2 Cardiac output and its distribution 

Cardiac output was measured by the thermodilution method using a 6F Swan-Ganz 

catheter (Braun Melsungen AG, Melsungen, Germany) introduced into the pulmonary 

artery via the left femoral vein. 

The distribution of cardiac output was determined with 15.5±0.1 (S.D.) µm 

diameter microspheres labelled with 141Ce, 113Sn, 103Ru, 95Nb or 46Sc (NEN Dupont, 

Boston, USA).  For each measurement, a suspension of about 1,000,000 

microspheres, labelled with one of the isotopes, was injected into the left ventricle via 

a catheter guided by way of the left carotid artery.  Starting 15 s before microsphere 

injection and lasting 70 s, a reference arterial blood sample was withdrawn 

(Withdrawal pump, Harvard Apparatus Company, Southnatick, Mass, USA; rate: 

6 ml.min-1) via a catheter placed into the right femoral artery.  An infusion of the 

corresponding volume of Haemaccel compensated blood loss during this procedure. 

At the end of the experiment, the animal was killed using an overdose of 

pentobarbital.  Subsequently, a number of tissues (lungs, kidneys, heart, stomach, 

small intestine, spleen, liver, adrenals, brain, skin and skeletal muscles) were dissected 

out, weighed and put into vials.  The radioactivity in these vials was counted for 5 min 

in a γ-scintillation counter (Packard, Minaxi autogamma 5000), using suitable 

windows for the discrimination of the different isotopes (141Ce: 120-167 KeV, 
113Sn: 355-435 KeV, 103Ru: 450-548 KeV, 95Nb: 706-829 KeV and 46Sc: 830-965 

KeV).  All data were processed by a set of specially designed computer programs 

(Saxena et al., 1980), using a personal computer.  Tissue blood flows were calculated 

by multiplying the ratio of tissue and reference blood sample radioactivities by the 

blood withdrawal rate (6 ml.min-1) and normalised to 100 g tissue weight.  Systemic 

and tissue vascular conductances were calculated by dividing cardiac output (ml.min-

1) and tissue blood flows (ml.min-1/100 g tissue), respectively, by mean arterial blood 

pressure (mmHg).  Radioactivity in the lungs mainly represents peripheral 

arteriovenous anastomotic blood flow (the non-nutrient part of the cardiac output), 

although a small part (1-1.5% of cardiac output) is derived from the bronchial arteries 

(Baile et al., 1982). 
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3.2.3 Carotid haemodynamic responses to CGRP 

Both common carotid arteries and the external jugular veins were dissected free and 

the accompanying vagosympathetic trunks were cut between two ligatures in order to 

prevent a possible influence of CGRP via baroreceptor reflexes.  Pulsatile and mean 

blood flows were measured in the right common carotid artery with a flow probe 

(internal diameter: 2.5 mm) connected to a sine-wave electromagnetic flow meter 

(Transflow 601-system, Skalar, Delft, The Netherlands).  The amplitude of carotid 

blood flow signals provided an index of carotid flow pulse.  Carotid vascular 

conductance was calculated by dividing carotid blood flow  (ml.min-1) by mean 

arterial blood pressure (mmHg). 

The right external jugular vein was catheterised for obtaining jugular venous 

blood samples to determine blood gases.  Two hub-less needles, connected to 

polyethylene tubes, were inserted into the right common carotid artery and used for 

intracarotid (i.c.) infusions of phenylephrine (α1-adrenoceptor agonist) and α-CGRP, 

respectively.  It should be noted that under pentobarbital anaesthesia carotid 

arteriovenous anastomoses are dilated (Den Boer et al., 1993) and, therefore, to elicit 

vasodilator responses to CGRP, a continuous infusion of phenylephrine was used 

throughout the experiment.  We have previously reported that phenylephrine 

decreases total carotid blood flow and conductance exclusively due to constriction of 

carotid arteriovenous anastomoses (Willems et al., 1999), resulting in an increase in 

the difference between arterial and jugular venous oxygen saturations (A-V SO2 

difference) (Saxena, 1987). 

3.2.4 Experimental protocols 

In the case of cardiac output distribution experiments (n=12), baseline values of heart 

rate, mean arterial blood pressure, cardiac output and its distribution to the various 

tissues (see above) were determined after a stabilisation period of at least 90 min.  The 

animals were then divided into two groups (n=6 each) receiving three i.v. infusions 

(rate: 0.5 ml.min-1) of either BIBN4096BS (100, 300 and 1000 µg.kg-1) or its vehicle 

(5 ml of acidified distilled water); each dose was given over 10 min with an 

intervening period of 10 min before the next dose.  At the end of each infusion, the 

above mentioned haemodynamic variables were collated again.  Lastly, the final 
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measurements were made 40 min after the third dose of vehicle or BIBN4096BS 

(recovery). 

In the case of the carotid artery experiments (n=13), phenylephrine 

(10 µg.kg-1.min-1 for 10 min, followed by 3-6 µg.kg-1.min-1
 throughout the rest of the 

experiment) was infused into the right common carotid artery to maintain carotid 

blood flow at a constant low level.  After a stabilisation period of at least 90 min, 

values of heart rate, arterial blood pressure, total carotid blood flow and A-V SO2 

difference were collated.  The animal was then given three sequential i.c. infusions 

(rate: 0.083-1 ml.min-1, depending on the weight of the animal) of CGRP (10, 30 and 

100 pmol.kg-1.min-1) for 3 min and the above variables (except the A-V SO2 

difference, which was determined only after the highest dose) were collated again.  

After the highest dose of α-CGRP, a recovery period of 20 min was allowed to elapse 

when all haemodynamic parameters returned to baseline levels.  At this point, the 

animals were divided into two groups receiving three i.v. infusions (rate: 0.5 ml.min-1) 

of either BIBN4096BS (100, 300 and 1000 µg.kg-1; n=7) or its vehicle (5 ml of 

acidified distilled water; n=6); each dose was given over a period of 10 min with an 

intervening period of about 10 min before the next dose.  Ten min after each 

treatment, the values of mean arterial blood pressure, heart rate, total carotid blood 

flow and A-V SO2 difference were collated.  CGRP was infused as above after each 

treatment and data were collated again. 

It may be mentioned that the vehicle of α-CGRP (distilled water) was devoid 

of any systemic and carotid haemodynamic responses (data not shown). 

3.2.5 Data presentation and statistical analysis 

All data have been expressed as mean±s.e.mean, unless stated otherwise.  The 

significance of changes from baseline values within one group (vehicle or 

BIBN4096BS) was evaluated with Duncan's new multiple range test, once an analysis 

of variance (randomised block design) had revealed that the samples represented 

different populations (Saxena et al., 1980; Steel & Torrie, 1980).  The differences in 

baseline haemodynamic values and percent change (from baseline values) in 

haemodynamic variables by corresponding doses of the vehicle and BIBN4096BS 

(between group comparisons) were evaluated by Student's unpaired t-test.  Student's 

unpaired t-test was also applied to compare the changes in the effects of CGRP 
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observed after different corresponding doses of the vehicle and BIBN4096BS.  

Statistical significance was accepted at P<0.05 (two-tailed). 

3.2.6 Ethical approval 

The Ethics Committee of the Erasmus MC, Rotterdam, dealing with the use of 

animals in scientific experiments, approved investigation protocols, which adhere to 

EEC guidelines. 

3.2.7 Compounds 

The following compounds were used: azaperone (Stresnil®; Janssen Pharmaceuticals, 

Beerse, Belgium), BIBN4096BS and human α-CGRP (Boehringer Ingelheim Pharma 

KG, Biberach, Germany), heparin sodium (to prevent blood clotting in catheters; 

Leo Pharmaceutical Products, Weesp, The Netherlands), midazolam hydrochloride 

(Dormicum®; Hoffmann La Roche b.v., Mijdrecht, The Netherlands), phenylephrine 

hydrochloride (Sigma-Aldrich Chemie b.v., Zwijndrecht, The Netherlands) and 

sodium pentobarbital (Sanofi Sante b.v., Maasluis, The Netherlands). 

Phenylephrine and α-CGRP were dissolved in distilled water, while 

BIBN4096BS was initially dissolved in 0.5 ml of 1N HCl and subsequently diluted 

with 4 ml of distilled water, and then adjusted to pH 6.5 with 1N NaOH. 

3.3 Results 

3.3.1 Effect of BIBN4096BS on cardiac output and its distribution 

BASELINE VALUES 

Baseline values of heart rate, mean arterial blood pressure, cardiac output (expressed 

as cardiac index) and systemic vascular conductance in anaesthetised pigs (n=12) 

were: 108±3 beats.min-1, 102±2 mmHg, 133±4 ml.min-1.kg-1 and 1491±54 

ml.min-1.mmHg-1, respectively.  Baseline values of regional vascular conductances 

(ml.min-1.mmHg-1/100 g tissue) were: brain, 31±3; heart, 104±10; liver, 34±8; 

stomach, 24±2; lungs (mainly systemic arteriovenous anastomoses), 229±37; adrenals, 

138±10; kidneys, 263±14; spleen, 126±15; skeletal muscles, 3.3±0.3; and skin, 11±2. 
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SYSTEMIC AND REGIONAL HAEMODYNAMIC CHANGES 

Systemic haemodynamic values collated at baseline, after vehicle or BIBN4096BS 

(100, 300 and 1000 µg.kg-1, i.v.) and after a 40-min recovery period are shown in 

Figure 3.1.  There were no statistically significant differences (P>0.05) in baseline 

values in the vehicle and BIBN4096BS groups.  Except for small decreases in heart 

rate by the vehicle (maximum change: 4±1%) and cardiac index by BIBN4096BS 

(maximum change: 19±8%), no other changes were observed.  The changes in cardiac 

index by BIBN4096BS did not differ significantly (P>0.05) from those in the vehicle-

treated animals (maximum change: 7±3%). 

Figure 3.2 presents regional vascular conductances in a number of tissues in 

animals treated with either vehicle or BIBN4096BS (100, 300 and 1000 µg.kg-1, i.v.).  

Baseline values in the two groups were not significantly different (P>0.05) in any of 

the tissues, including the liver, lungs and skin.  Apart from decreases in liver 

conductance, no other changes in regional vascular conductances were noticed in the 

vehicle-treated group.  BIBN4096BS produced small decreases in vascular 

conductance to liver, and with the highest dose (1000 µg.kg-1) in lungs, adrenals, 

kidneys and spleen.  Only the latter changes were significant when compared with the 

corresponding changes in the vehicle-treated animals. 
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Figure 3.1.  Heart rate (HR), mean arterial blood pressure (MAP), cardiac
index (CI) and systemic vascular conductance (SVC) measured at baseline,
after i.v. treatments with either vehicle (V, three times 5 ml; n=6) or
BIBN4096BS (BIBN; 100, 300 and 1000 µg.kg-1; n=7) and after 40 min 
recovery.  All values are presented as mean±S.E.Mean.  *, P<0.05 vs. 
baseline.  The changes after BIBN4096BS are not significantly different
from those in the corresponding vehicle group. 
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Figure 3.2.  Regional vascular conductances at baseline (Bas), after i.v.
treatments with either vehicle (V, three times 5 ml; n=6) or BIBN4096BS (100,
300, and 1000 µg.kg-1, i.v.; n=6) and after 40 min recovery (Rec).  All values
are presented as mean±s.e.mean.  *, P<0.05 vs. baseline.  #, P<0.05 vs. the
corresponding change in animals treated with vehicle.
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3.3.2 Effect of BIBN4096BS on the haemodynamic responses to i.c. infusions 

of α-CGRP 

BASELINE VALUES 

Baseline values in anaesthetised pigs (n=13) were: heart rate, 129±5 beats.min-1; mean 

arterial blood pressure, 122±4 mmHg; carotid flow pulse, 1.7±0.1 arbitrary units 

(a.u.); total carotid blood flow, 67±7 ml.min-1; total carotid vascular conductance, 

56±5 10-2 ml.min-1.mmHg-1 and A-V SO2 difference, 26±3%.  Baseline values in the 

two groups of animals (vehicle and BIBN4096BS) did not differ significantly. 

SYSTEMIC AND CAROTID HAEMODYNAMIC RESPONSES 

Figure 3.3 shows the original tracings illustrating the systemic (blood pressure and 

heart rate) and carotid (flow pulse and total carotid blood flow) haemodynamic 

responses in anaesthetised pigs obtained with α-CGRP (10, 30 and 

100 pmol.kg-1.min-1, i.c.) before and after i.v. treatments with three doses of vehicle 

(5 ml each time; upper panel) or BIBN4096BS (100, 300 and 1000 µg.kg-1; lower 

panel).  The infusions of α-CGRP did not affect heart rate, but decreased arterial 

blood pressure and increased carotid flow pulse and blood flow.  These changes were 

accompanied by a redness of head skin and ears on the side of infusion (not shown in 

the Figure).  The effects of α-CGRP were clearly attenuated in the animals receiving 

BIBN4096BS, but not in the ones treated with vehicle. 

 The effects of α-CGRP (10, 30 and 100 pmol.kg-1.min-1, i.c.) in the animals 

treated with vehicle or BIBN4096BS (100, 300 and 1000 µg.kg-1, i.v.) were quantified 

as percent changes from baseline values (Figure 3.4).  In both groups, infusions of 

α-CGRP before treatments with vehicle or BIBN4096 (control infusions) produced 

dose-dependent decreases in mean arterial blood pressure and increases in total 

carotid blood flow (data not shown) and conductance; heart rate was not affected (data 

not shown).  These responses to α-CGRP remained unaffected after vehicle, but, in 

contrast, were dose-dependently antagonised by BIBN4096BS (Figure 3.4). 

As shown in Figure 3.5, infusions of α-CGRP (100 pmol.kg-1.min-1, i.c.) 

clearly increased carotid blood flow (depicted as the maximum changes) and carotid 

blood flow pulsations (compare baseline and control values).  While there was little 
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change in animals treated with vehicle, BIBN4096BS (100, 300 and 1000 µg.kg-1, 

i.v.) dose-dependently antagonised the responses to α-CGRP. 

CHANGES IN THE A-V SO2 DIFFERENCE 

α-CGRP (100 pmol.kg-1.min-1, i.c.) produced a significant reduction in the A-V SO2 

difference in both groups of animals (Figure 3.6; compare baseline and control 

values).  The response to CGRP remained largely unaffected after treatments with 

vehicle, but BIBN4096BS (100, 300 and 1000 µg.kg-1, i.v.) dose-dependently blocked 

the reduction in the A-V SO2 difference by α-CGRP.  In fact, the CGRP-induced 

decrease in the A-V SO2 difference was enhanced after the highest dose of 

BIBN4096BS (Figure 3.6). 
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Figure 3.3.  Original tracings from experiments in anaesthetised pigs
illustrating systemic and carotid haemodynamic responses to infusions of
α-CGRP (•; 10, 30 or 100 pmol.kg-1.min-1, i.c.) given before and after i.v.
treatments with either vehicle (three times 5 ml; upper panel) or
BIBN4096BS (BIBN, 100, 300 and 1000 µg.kg-1; lower panel).  BP;
systolic and diastolic arterial blood pressures; MAP, mean arterial blood
pressure; HR, heart rate; FP, carotid blood flow pulse; TCBF, total carotid
blood flow. 
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Figure 3.4.  Changes in mean arterial blood pressure and total carotid
vascular conductance from baseline values by i.c. infusion of α-CGRP 
in anaesthetised pigs given before (Control) and after i.v. treatments
with vehicle (three times 5 ml; n=6) or BIBN4096BS (100, 300 and 
1000 µg.kg-1, n=7).  All values are expressed as mean±s.e.mean.  The 
two highest doses of α-CGRP significantly decreased mean arterial 
blood pressure and increased total carotid 
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Figure 3.5.  Maximum carotid blood flow changes and carotid blood
flow pulsations measured at baseline and following infusions of α-CGRP 
(100 pmol.kg-1.min-1, i.c.) given in anaesthetised pigs before (Control) 
and after i.v. treatments with vehicle (V, 5 ml three times; n=6) or
BIBN4096BS (100, 300 and 1000 µg.kg-1, n=7). 
All values are expressed as mean±s.e.mean.  a.u., Arbitrary units.  *, 
P < 0.05 vs. baseline values;  #, P<0.05 vs. response after the 
corresponding volume of vehicle. 
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3.4 Discussion 

3.4.1 General 

Undoubtedly, a remarkable progress has been achieved in acute antimigraine therapy 

(De Vries et al., 1996a).  Notwithstanding, the exact pathophysiological mechanisms 

underlying migraine remain unclear.  There is, however, evidence supporting the 

involvement of the trigeminovascular system in migraine pathophysiology (Goadsby, 

1997b; Goadsby, 1999; Hargreaves et al., 1999; Williamson & Hargreaves, 2001).  

Thus, activation of the trigeminovascular system leads to neuropeptide release, 

including that of CGRP, and neurogenic dural vasodilatation (Williamson & 

Figure 3.6.  Differences between arterial and jugular venous oxygen saturations
(A-V SO2

 difference) measured at baseline and after infusions of α-CGRP
(100 pmol.kg-1.min-1, i.c.) given in anaesthetised pigs before (Control) and after
i.v. treatments with vehicle (Veh, 5 ml three times; n=6) or BIBN4096BS (100,
300 and 1000 µg.kg-1, n=7).  All values are expressed as mean±s.e.mean.  *,
P < 0.05 vs. baseline values;  #, P<0.05 vs. response after the corresponding
volume of vehicle. 
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Hargreaves, 2001).  Of particular relevance is the finding that plasma concentration of 

CGRP is elevated during the headache phase of migraine, and this is normalised after 

treatment with sumatriptan (Goadsby et al., 1990; Goadsby, 1997b; Goadsby, 1999).  

Hence, it is reasonable to assume that a potent CGRP receptor antagonist, such as 

BIBN4096BS (Doods et al., 2000), might be useful in migraine therapy.  

BIBN4096BS behaves as a ‘silent’ competitive antagonist at CGRP receptors 

mediating relaxation of human temporal, cranial and coronary arteries (Edvinsson et 

al., 2002; Moreno et al., 2002; Verheggen et al., 2002).  The present study in 

anaesthetised pigs was designed: (i) to analyse, using BIBN4096BS, the potential role 

of endogenous CGRP in regulating vascular tone in vivo; and (ii) to investigate the 

effects of BIBN4096BS on the systemic and carotid haemodynamic responses 

produced by α-CGRP.   

3.4.2 Systemic and regional haemodynamic effects of BIBN4096BS 

It is well known that CGRP-immunoreactive nerve fibres are widely distributed in the 

cardiovascular system, with a higher preponderance in arteries than in veins (Bell & 

McDermott, 1996).  CGRP decreases blood pressure and has positive inotropic and 

chronotropic effects on the heart (Wimalawansa, 1996), which are mainly mediated 

via CGRP1 receptors (Bell & McDermott, 1996; Saetrum Opgaard et al., 1999; 

Saetrum Opgaard et al., 2000).  Though CGRP has diverse biological actions within 

the cardiovascular system, our experiments showing few systemic haemodynamic 

changes with BIBN4096BS do not support a major role for CGRP in the regulation of 

cardiovascular function in the anaesthetised pig. 

As far as regional haemodynamics is concerned, a moderate decrease 

(compared to vehicle) in vascular conductances in the lungs, adrenals, kidneys and 

spleen was observed with the highest dose (1000 µg.kg-1) of BIBN4096BS 

(Figure 3.2).  Similarly, renal vasoconstriction was noticed in conscious rats with a 

high (300 nmol.kg-1.min-1), but not with a low (30 nmol.kg-1.min-1) dose of CGRP- (8-

37) (Gardiner et al., 1990).  Since both BIBN4096BS and CGRP8-37 caused renal 

changes only in doses that were considerably higher than those needed for CGRP 

antagonism, it does not appear that endogenous CGRP regulates renal vascular tone.  

Also, Shen et al. (Wu et al., 2001) recently reported that 30 µg.kg-1.min-1 

(~10 nmol.kg-1.min-1) of CGRP-(8-37) which antagonised CGRP-induced 



BIBN4096BS on cardiac output… Chapter 3 

90 
 
 

haemodynamic responses, caused little regional haemodynamic effects in conscious 

dogs as well as anaesthetised rats, thereby not supporting an important physiological 

role for endogenous CGRP in regulating vascular tone.  Although we cannot rule out 

the involvement of CGRP in certain other circumstances, for example, cardiac 

preconditioning or coronary artery disease (Lu et al., 1999; Peng et al., 2000; Wu et 

al., 2001), the present results imply cardiovascular safety of BIBN4096BS.  

Nevertheless, one will have to explore the role of CGRP in cardiovascular 

pathophysiology before establishing whether or not CGRP receptor antagonists are 

completely safe in patients afflicted with cardiovascular disorders. 

3.4.3 CGRP-induced haemodynamic responses and antagonism by 

BIBN4096BS 

Activation of CGRP receptors elicits dilatation in different vascular beds in several 

species (Gardiner et al., 1990; Van Gelderen et al., 1995; Shen et al., 2001).  

Consistent with these studies, our experiments show that i.c. infusions of α-CGRP 

produced a marked vasodilatation in the porcine carotid circulation, with 

accompanying fall in arterial blood pressure.  The fact that the animals were 

systematically vagosympathectomised may explain why the hypotension was not 

accompanied by a baroreflex-mediated tachycardia, as reported earlier (Van Gelderen 

et al., 1995).  Interestingly, the ipsilateral skin redness, together with the marked 

decrease in A-V SO2 difference by CGRP, indicates that porcine carotid arteriovenous 

anastomoses dilated in response to α-CGRP (Saxena, 1987).  However, we previously 

reported that i.c. infusions of α-CGRP failed to increase porcine arteriovenous 

anastomotic blood flow, despite a marked increase in the total carotid and capillary 

blood flows (Van Gelderen et al., 1995).  Admittedly, arteriovenous anastomotic 

blood flow was not directly measured in these experiments, but we have recently 

observed that i.c. infusions capsaicin, which released CGRP, did increase carotid 

arteriovenous anastomotic blood flow with a concomitant decrease in the A-V SO2 

difference (Tom et al., 2002).  Thus, it appears that the discrepancy between the two 

investigations may be due to different anaesthetic regimens employed (pentobarbital 

and fentanyl/thiopental, respectively) and, particularly, the use of phenylephrine in the 

present experiments.  Phenylephrine potently constricts arteriovenous anastomoses 

(Willems et al., 1999). 
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In the present experimental study in anaesthetised pigs, BIBN4096BS proved 

to be an effective antagonist at the CGRP receptors mediating the systemic 

(hypotension) as well as the carotid (increased blood flow, pulsations and skin 

redness) haemodynamic responses to α-CGRP.  The fact that BIBN4096BS also 

abolished α-CGRP-induced decreases in the A-V SO2 difference suggests its action 

on carotid arteriovenous anastomoses; for further considerations, see Saxena (1987). 

Interestingly, BIBN4096BS also antagonised the capsaicin-induced increases in 

carotid arteriovenous anastomotic blood flow as well as decreases in the A-V SO2 

difference, but not the plasma CGRP concentrations (Kapoor et al., 2003a). 

One cannot be certain about the nature of CGRP receptors that mediate 

porcine carotid vascular responses, but cardiac inotropic and vasodilator responses are 

mediated predominantly by CGRP1 receptors (Saetrum Opgaard et al., 1999), where 

BIBN4096BS has a very high affinity (Doods et al., 2000; Poyner & Marshall, 2001). 

3.4.4 Potential therapeutic efficacy of BIBN4096BS in the treatment migraine 

Considering that plasma CGRP levels are elevated during the headache phase of 

migraine (Goadsby, 1997b) and that BIBN4096BS dose-dependently blocked 

α-CGRP-induced carotid haemodynamic responses, it is likely that BIBN4096BS 

may be effective in migraine.  The compound is presently under clinical investigation 

for the acute treatment of migraine and the results are awaited with great interest. 

 

In conclusion, our study clearly demonstrates that BIBN4096BS is an effective 

antagonist at vascular CGRP receptors in anaesthetised pigs, but has little 

haemodynamic effects of its own, a finding that negates a major physiological role for 

CGRP in cardiovascular regulation.  The potent blockade of the carotid 

haemodynamic effects of CGRP does suggest that BIBN4096BS may be effective in 

migraine treatment. 

 



 

 
 
 

 



 

 
 

 

CHAPTER 4 

Effects of sumatriptan on capsaicin-induced 
carotid haemodynamic changes and CGRP release 

in anaesthetised pigs 
 
 

Based on: Arulmani, U., Heiligers, J.P.C., Garrelds, I.M., Sánchez-López, A, 

Willems, E.W., Villalón, C.M & Saxena, P.R. (2004).  Effects of sumatriptan on 

capsaicin-induced carotid haemodynamic changes and CGRP release in anaesthetised 

pigs. Cephalalgia (in press) 

 



Sumatriptan on capsaicin induced carotid haemodynamics Chapter 4 

94 
 
 

4 Effects of sumatriptan on capsaicin-induced carotid 
haemodynamic changes and CGRP release in 
anaesthetised pigs 

Abstract: It is suggested that during a migraine attack capsaicin-sensitive 
trigeminal sensory nerves release calcitonin gene related peptide (CGRP), 
resulting in cranial vasodilatation and central nociception.  Hence, 
inhibition of trigeminal CGRP release may prevent the above 
vasodilatation and, accordingly, abort migraine headache.  Therefore, this 
study investigated the effects of sumatriptan (100 and 300 µg kg-1, i.v.) on 
capsaicin-induced carotid haemodynamic changes and on CGRP release.  
Intracarotid (i.c.) infusions of capsaicin (10 µg kg-1 min-1, i.c.) increased 
total carotid, arteriovenous anastomotic and capillary conductances as well 
as carotid pulsations, but decreased the difference between arterial and 
jugular venous oxygen saturations.  Except for some attenuation of 
arteriovenous anastomotic changes, the capsaicin-induced responses were 
not affected by sumatriptan.  Moreover, i.c. infusions of capsaicin (0.3, 1, 
3 and 10 µg kg-1 min-1, i.c.) dose-dependently increased the jugular venous 
plasma concentrations of CGRP, which also remained unaffected by 
sumatriptan. The above results support the contention that the therapeutic 
action of sumatriptan is mainly due to cranial vasoconstriction rather than 
trigeminal (CGRP release) inhibition. 

 

4.1 Introduction 

Migraine is a neurovascular disorder characterised by vasodilatation of cranial blood 

vessels with activation of perivascular trigeminal sensory nerves (Edvinsson, 2003).  

Thus, activation of trigeminal sensory nerves results in the release of several 

neuropeptides, including neuropeptide Y, vasoactive intestinal peptide, substance P 

and calcitonin gene related peptide (CGRP).  Interestingly, plasma concentrations of 

CGRP, but not of other neuropeptides, are elevated during the headache phase of 

migraine and these levels are normalised by triptans in parallel with alleviation of 

headache (Goadsby et al., 2002b).  CGRP, the most potent endogenous vasodilator 

described thus far, is predominantly located on sensory neurons and perivascular 

nerves surrounding blood vessels, where it is co-localised with other vasoactive 

neuropeptides, such as substance P and neurokinin A (Brain et al., 1985; van Rossum 

et al., 1997).  In view that an increase in circulating CGRP levels is considered as a 

biological marker for migraine headache, it is reasonable to assume that a substance 

capable of inhibiting the release of CGRP from trigeminal sensory nerves may be 

effective in migraine therapy (Goadsby et al., 2002b). 
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CGRP can be released from the sensory nerves by electrical or chemical 

(capsaicin) stimuli (Edvinsson, 2001b; Hou et al., 2002).  In this respect, electrical 

stimulation of trigeminal sensory nerves evokes the release of CGRP in the cranial 

venous blood of rats and cats, which was attenuated by sumatriptan (Goadsby & 

Edvinsson, 1993; Buzzi et al., 1995).  However, to the best of our knowledge, there is 

no comprehensive in vivo evidence to show that capsaicin-induced CGRP release is 

inhibited by triptans.  Therefore, the main objective of this study in anaesthetised 

vagosympathectomised pigs was to investigate the effects of sumatriptan on 

capsaicin-induced: (i) carotid haemodynamic changes, and (ii) increase in plasma 

CGRP release. 

4.2 Materials and methods 

4.2.1 General 

After an overnight fast, 28 domestic pigs (Yorkshire x Landrace, female, 10-14 kg), 

divided into two groups (n=15 and n=13 for vehicle and sumatriptan, respectively), 

were sedated with azaperone (120 mg, i.m.), midazolam hydrochloride (10 mg, i.m.) 

and then anaesthetised with sodium pentobarbital (600 mg, i.v.).  After tracheal 

intubation, the animals were connected to a respirator (BEAR 2E, BeMeds AG, Baar, 

Switzerland) for intermittent positive pressure ventilation with a mixture of room air 

and oxygen.  Respiratory rate, tidal volume and oxygen supply were adjusted to keep 

arterial blood gas values within physiological limits (pH: 7.35-7.48, pCO2: 35-48 

mmHg, pO2: 100-120 mmHg).  Anaesthesia was maintained with a continuous i.v. 

infusion of sodium pentobarbital (12-20 mg kg-1 h-1).  This anaesthetic regimen, 

together with bilateral vagosympathectomy (see below), increases heart rate and 

markedly dilates carotid arterioles and arteriovenous anastomoses.  Consequently, 

carotid blood flow, particularly its arteriovenous anastomotic fraction, is considerably 

higher in these pigs than in conscious or thiopental-anaesthetised pigs (Den Boer et 

al., 1993). 

Heart rate was measured with a tachograph (CRW, Erasmus University, 

Rotterdam, The Netherlands) triggered by electrocardiogram signals.  Both common 

carotid arteries were dissected free and the accompanying vagosympathetic trunks 

were cut between two ligatures to prevent any possible influence via baroreceptor 

reflexes on the carotid vascular responses produced by capsaicin.  Pulsatile and mean 
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carotid blood flows were measured in the right common carotid artery with a flow 

probe (internal diameter: 2.5 mm) connected to a sine-wave electromagnetic flow 

meter (Transflow 601-system, Skalar, Delft, The Netherlands).  The amplitude of 

carotid blood flow signals provided an index of carotid flow pulse.  Subsequently, 

three hub-less needles, connected to a polyethylene tube, were inserted into the right 

common carotid artery for the administration of capsaicin, radioactive microspheres 

and the α1-adrenoceptor agonist phenylephrine.  The use of phenylephrine is 

necessitated by the fact that the carotid arterioles and arteriovenous anastomoses are 

in a dilated state under the present anaesthetic regimen (Den Boer et al., 1993); 

therefore, to study the effects of vasodilator agents (in the present case, capsaicin), 

one has to constrict these shunt vessels first.  As described earlier (Willems et al., 

1999), phenylephrine decreases the total carotid conductance exclusively by 

constricting carotid arteriovenous anastomoses, which results in an increase in the 

difference between arterial and jugular venous oxygen saturations (A-V SO2 

difference) (Saxena, 1987). 

Lastly, catheters were placed in: (i) the right external jugular vein for the 

withdrawal of venous blood samples to measure blood gases (ABL-510; Radiometer, 

Copenhagen, Denmark) and plasma concentrations of CGRP (see below); (ii) the 

inferior vena cava (via the left femoral vein) for the administration of vehicle or 

sumatriptan; and (iii) the aortic arch (via the left femoral artery) for the measurement 

of arterial blood pressure (Combitrans disposable pressure transducer; Braun, 

Melsungen, Germany) as well as withdrawal of arterial blood samples to measure 

blood gases. 

Heart rate and systolic, diastolic and mean arterial blood pressures as well as 

mean and pulsatile carotid artery blood flows were continuously monitored on a 

polygraph (CRW, Erasmus University, Rotterdam, The Netherlands).  Vascular 

conductances were calculated by dividing the respective blood flows (ml min-1) by 

mean arterial blood pressure (mmHg), multiplied by one hundred and expressed as 

10-2 ml min-1 mmHg-1.  During the experiment, body temperature was maintained at 

37±1°C by a heating pad and each animal was infused with physiological saline to 

compensate for fluid losses. 
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4.2.2 Distribution of carotid blood flow 

The distribution of common carotid blood flow into tissue (capillary) and 

arteriovenous anastomotic fractions was determined in 14 pigs later receiving vehicle 

(n=8) or sumatriptan (n=6) with radioactive microspheres (diameter: 15.5±0.1 µm; 

S.D.), labelled with 141Ce, 103Ru, 95Nb or 46Sc (NEN Dupont, Boston, USA).  For each 

measurement, a suspension of about 200,000 microspheres, labelled with one of these 

isotopes, was mixed and injected into the right carotid artery.  At the end of the 

experiment, the animal was killed using an overdose of sodium pentobarbital and the 

heart, kidneys, lungs and different cranial tissues were dissected out, weighed and put 

in vials.  The radioactivity in these vials was counted for 5 min in a γ-scintillation 

counter (Packard, Minaxi autogamma 5000 for 5 min), using suitable windows for 

discriminating the different isotopes (141Ce: 120-167 KeV, 103Ru: 450-548 KeV, 
95Nb: 706-829 KeV and 46Sc: 830-965 KeV).  All data were processed by a set of 

specially designed computer programs (Saxena et al., 1980). 

The distribution of total carotid blood flow to the different tissues (Qtis) was 

calculated by the formula: Qtis = (Itis/Itotal) x Qcarotid, where Itis is tissue radioactivity, 

Itotal is the total radioactivity injected and Qcarotid is the total common carotid blood 

flow at the time of microsphere injection.  Since little or no radioactivity was detected 

in the heart or kidneys, it can be assumed that all microspheres trapped in lungs reach 

this tissue from the venous side after escaping via carotid arteriovenous anastomoses.  

Therefore, the amount of radioactivity in the lungs can be used as an index of the 

arteriovenous anastomotic fraction of carotid blood flow (Saxena et al., 1980; Saxena 

& Verdouw, 1982). 

4.2.3 Determination of plasma levels of CGRP 

Jugular venous blood samples were obtained from the 28 pigs, receiving either vehicle 

(n=15) or sumatriptan (n=13).  Fourteen of these animals (8 and 6 animals from 

vehicle and sumatriptan groups, respectively) were used for carotid haemodynamic 

experiments, while the other fourteen were separate experiments using the same 

protocol, except that the radioactive microspheres were not used.  Blood was 

transferred immediately into a polypropylene tube containing ethylene dinitro-

tetraacetic acid (1 mg ml-1 of blood) and aprotinin (500 KIU ml-1 of blood).  Aprotinin 

was used to inhibit endogenous plasma proteases, since our unpublished studies have 
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shown that CGRP is not detectable in biological samples without aprotinin.  After 

centrifugation at 1600 g for 15 min, plasma samples were coded and stored at -80°C 

until CGRP measurements were performed.  The person measuring CGRP 

concentrations remained blind to the treatments, until all data had been collated. 

CGRP was extracted from plasma using a C18 SEP-COLUMN, dried by 

lypholisation, and measured by radioimmunoassay (Dwenger, 1984), as per protocol 

of the Peninsula Laboratories, Inc. (Belmont, CA, U.S.A.).  The recovery of CGRP 

from the extraction procedure was ascertained by assaying control samples paired 

with the same sample spiked with known quantities of CGRP.  The column recovery 

values were 85, 79, 81, 89 and 92% (mean=85.2; standard deviation=5.4; coefficient 

of variation=6.3%).  The CGRP concentrations measured in the actual samples were, 

however, not corrected for the loss in the extraction procedure. 

4.2.4 Experimental protocol 

Following surgery and after the haemodynamic condition of the animals (n=28) had 

been stable for 15-20 min (heart rate: 109±3 beats min-1; mean arterial blood pressure: 

101±2 mmHg; mean carotid blood flow: 108±5 ml min-1; and A-V SO2 difference: 

7.6±1.3%) phenylephrine was infused into the right common carotid artery at a rate of 

10 µg kg-1 min-1 for 10 min, followed by 3-6 µg kg-1 min-1
 throughout the rest of the 

experiment to maintain carotid blood flow at a constant low level.  The latter dose of 

phenylephrine was chosen so that the external jugular venous oxygen saturation was 

between 60-70% and mean carotid blood flow was about 40% of the original value.  

After a period during which the haemodynamic variables remained constant for at 

least 60 min (heart rate: 151±4 beats min-1; mean arterial blood pressure: 

110±2 mmHg; mean carotid blood flow: 63±5 ml min-1; and A-V SO2 difference: 

23±1.7%; n=28), the animals received consecutive infusions (0.15, 0.45, 1.5 and 4.5 

ml, i.c. for 3 min each) of capsaicin vehicle (see Compounds and kits section).  It is 

important to mention that the vehicle of capsaicin was devoid of any systemic and 

carotid haemodynamic responses (see Results section). 

Five to ten min after the last infusion of capsaicin vehicle, blood samples 

were obtained for the measurements of blood gases and CGRP concentrations; 

moreover, the values of heart rate, mean arterial blood pressure and total carotid blood 

flow and conductance were collated (baseline values; 15 and 13 pigs for vehicle and 
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sumatriptan, respectively).  In 14 out of the 28 pigs (8 for vehicle and 6 for 

sumatriptan) the first batch of radioactive microspheres was injected for determining 

the baseline distribution of carotid blood flow.  The animals then received 4 

consecutive infusions of capsaicin (0.3, 1, 3 and 10 µg kg-1 min-1, i.c. for 3 min each) 

and heart rate, arterial blood pressure and total carotid blood flow were determined at 

the end of each infusion.  In addition, after the last infusion of capsaicin 

(10 µg kg-1 min-1), blood gases, plasma CGRP concentration and carotid blood flow 

distribution were measured as described above (control values).  Subsequently, a 

recovery period of 20 min was allowed until all haemodynamic parameters had 

returned to baseline levels.  At this point, the animals were divided into two groups, 

which were treated with i.v. infusions (rate: 0.5 ml min-1 for 10 min) of either vehicle 

(two times 5 ml of acidified distilled water; n=15) or sumatriptan (100 and 

subsequently 300 µg kg-1; n=13).  Ten min after each infusion, capsaicin was given 

and the haemodynamic and biochemical variables were measured again, as described 

above.   

In the remaining fourteen animals, subdivided into two subgroups (n=7 each; 

for vehicle and sumatriptan, respectively), apart from determining the variables 

described above, venous blood samples (for plasma CGRP concentration) were 

withdrawn after each dose of capsaicin (0.3, 1 and 3 and 10 µg kg-1 min-1) given 

before and after treatment with vehicle (n=7) or sumatriptan (300 µg kg-1; n=7). 

4.2.5 Data presentation and statistical analysis 

All data are presented as mean±s.e.mean.  The statistical analysis was performed 

using the SPSS package for windows (version 10.0; SPSS Inc., Chicago, IL, USA).  

The significance of changes within one group (vehicle or sumatriptan) was analysed 

with repeated-measures ANOVA, followed by Greenhouse-Geisser correction for 

serial autocorrelation (Ludbrook, 1994) and Bonferroni correction for multiple 

comparisons (Overall & Doyle, 1996).  The significance of the between-group 

changes (vehicle vs. sumatriptan treatments) was first analysed with repeated-

measures ANOVA, including baseline measurements as a covariate (Overall & Doyle, 

1994).   If the two groups differed significantly, pairwise comparisons between the 

corresponding values in the vehicle- and sumatriptan-treated groups were performed 
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using univariate analysis (Overall & Atlas, 1999), followed by Bonferroni correction.  

Statistical significance was accepted at P<0.05 (two-tailed). 

4.2.6 Ethical approval 

The Ethics Committee of the Erasmus MC, Rotterdam, dealing with the use of 

animals in scientific experiments, approved the protocols for this investigation. 

4.2.7 Compounds and kits 

The following compounds were used: aprotinin (5850 KIU mg-1; Roth, Karlsruhe, 

Germany), azaperone (Stresnil®; Janssen Pharmaceuticals, Beerse, Belgium), 

sumatriptan succinate (gift from Dr. H.E. Connor, Glaxo Group Research, Stevenage, 

Hertfordshire, UK), capsaicin, tween 80, ethanol and phenylephrine hydrochloride (all 

from Sigma-Aldrich Chemie b.v., Zwijndrecht, The Netherlands), ethylene dinitro-

tetraacetic acid (Merck, Darmstadt, Germany), heparin sodium (to prevent blood 

clotting in catheters; Leo Pharmaceutical Products, Weesp, The Netherlands), 

midazolam hydrochloride (Dormicum®; Hoffmann La Roche b.v., Mijdrecht, 

The Netherlands) and sodium pentobarbital (Sanofi Sante b.v., Maasluis, 

The Netherlands).  The radioimmunoassay kit for CGRP was purchased from 

Peninsula Laboratories, Inc. (Belmont, CA, U.S.A.). 

Capsaicin was initially dissolved in tween 80, ethanol and physiological saline in the 

ratio of 0.5:1:8.5 ml, respectively.  Phenylephrine was dissolved in distilled water, 

while sumatriptan was dissolved in physiological saline. 

4.3 Results 

4.3.1 Baseline values 

Baseline values (i.e.,, after capsaicin vehicle infusion) in the 28 pigs used were: heart 

rate, 133±3 beats min-1; mean arterial blood pressure, 108±2 mmHg; total carotid 

blood flow, 47±4 ml min-1; total carotid conductance, 44±3 10-2 ml min-1 mmHg-1; A-

V SO2 difference, 36±2%; and plasma CGRP concentration, 13±1 pg ml-1.  No 

significant difference in the baseline values were found between the two groups that 

subsequently received vehicle (n=15) or sumatriptan (n=13). 
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4.3.2 Effect of different doses of capsaicin on heart rate, blood pressure and 

total carotid blood flow and conductance 

Figure 4.1 depicts heart rate, mean arterial blood pressure and total carotid blood flow 

and conductance changes produced by different doses of capsaicin (0.3, 1, 3 and 

10 µg kg-1 min-1, i.c.) before (control response) and after treatment with sumatriptan 

(100 and 300 µg kg-1, i.v.) or the corresponding volumes of vehicle.  In both groups, 

capsaicin infusion dose-dependently increased the heart rate (last two doses), mean 

arterial blood pressure and total carotid blood flow and conductance.  These changes 

to capsaicin remained essentially unmodified following vehicle or sumatriptan 

treatment.  However, a small, but significant, attenuation in capsaicin-induced 

increase in total carotid conductance was observed following the highest dose of 

sumatriptan treatment (300 µg kg-1, i.v.; P<0.05; Figure 4.1). 
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Figure 4.1.  Heart rate (HR), mean arterial blood pressure (MAP), total carotid blood
flow (TCBF) and total carotid vascular conductance (TCC) values at baseline (B) and
following infusions of capsaicin (0.3, 1, 3, 10 µg kg-1 min-1, i.c.) in anaesthetised pigs
before (Control) and after i.v. administrations of vehicle (V, 5 ml two times; n=15) or
sumatriptan (S100 and S300, 100 and 300 µg kg-1, respectively; n=13).
All values are expressed as mean±s.e.mean.  #, P<0.05 vs. response after the
corresponding volume of vehicle. 
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4.3.3 Capsaicin-induced carotid haemodynamic changes 

The effects of capsaicin (10 µg kg-1 min-1, i.c.) on carotid haemodynamics were 

investigated in detail in animals receiving vehicle or sumatriptan. 

CAROTID BLOOD FLOW, CONDUCTANCE AND PULSATIONS  

The effects of capsaicin (10 µg kg-1 min-1, i.c.) on total carotid blood flow and 

conductance (depicted as maximum absolute changes) as well as pulsations 

(represented as arbitrary units; a.u.), before (control response) and after treatment with 

sumatriptan (100 and 300 µg kg-1 min-1, i.v.) or the corresponding volumes of vehicle 

are shown in Figure 4.2.  In both treatment groups, the capsaicin infusion significantly 

increased the carotid blood flow and conductance as well as pulsations.  While vehicle 

and sumatriptan (100 µg kg-1, i.v.) were devoid of any significant effect on capsaicin-

induced increases in carotid haemodynamics, a small, but significant, decrease in the 

carotid vascular conductance was observed in the animals treated with the highest 

dose of sumatriptan (300 µg kg-1, i.v.; P<0.05; Figure 4.2). 

FRACTIONATION OF CAROTID VASCULAR CONDUCTANCE 

As shown in Figure 4.3, the capsaicin infusion significantly increased total carotid, 

arteriovenous anastomotic and capillary conductances.  The capsaicin-induced 

increases in conductances from baseline values (maximal percent changes) were, 

respectively: total carotid, 329±39; arteriovenous anastomoses, 554±406; and 

capillary fraction, 340±30.  While vehicle as well as sumatriptan treatment did not 

affect capsaicin-induced changes in total carotid and capillary fractions, the increase 

in arteriovenous anastomotic conductance was markedly attenuated by sumatriptan.  

Moreover, following the highest dose of sumatriptan (300 µg kg-1, i.v.), a small 

decrease in capsaicin-induced increase in total carotid conductance was observed (#, 

P<0.05; see Figures 4.1 and 4.3). 

Furthermore, capsaicin infusion significantly increased the vascular 

conductance to the different cranial tissues, including skin, ear, skeletal muscles, fat, 

bone, salivary glands, eye, tongue and dura mater, but not that to brain.  These 

vasodilator responses to capsaicin remained unaltered after sumatriptan (100 and 

300 µg kg-1, i.v.) or the corresponding volumes of vehicle (Figure 4.4). 
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4.3.4 Difference between arterial and jugular venous oxygen saturations 

(A-V SO2 difference) 

Consistent with the increase in arteriovenous anastomotic conductance, capsaicin 

infusion (10 µg kg-1 min-1, i.c.)  significantly decreased the A-V SO2 difference from 

baseline values from 39±4% to 4±0.6% (control response; n=28).  This response to 

capsaicin remained unaffected after treatment with vehicle or sumatriptan (Figure 

4.5). 

 

 

Figure 4.2.  Maximum changes in carotid blood flow, vascular conductance and
pulsations measured at baseline and following infusions of capsaicin (10 µg kg-1 min-1, 
i.c.) given in anaesthetised pigs before (Control) and after i.v. administrations of vehicle
(V, 5 ml two times; n=15) or sumatriptan (S100 and S300, 100 and 300 µg kg-1, 
respectively; n=13).  All values are expressed as mean±s.e.mean.  a.u., Arbitrary units. 
*, P < 0.05 vs. baseline values; #, P<0.05 vs. response after the corresponding volume of
vehicle. 
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Figure 4.3.  Total carotid, arteriovenous anastomotic (AVA) and capillary vascular
conductances measured at baseline and following infusions of capsaicin
(10 µg kg-1 min-1, i.c.) given in anaesthetised pigs before (Control) and after i.v.
administrations of vehicle (V, 5 ml, two times) or sumatriptan (S100 and S300, 100 
and 300 µg kg-1, respectively). All values are expressed as mean±s.e.mean. 
*, P < 0.05 vs. baseline values;   #, P<0.05 vs. response after the corresponding
volume of vehicle. 
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Figure 4.4.  Distribution of carotid vascular conductances to head tissues
measured at baseline (Bas) and following infusions of capsaicin (10
µg kg-1 min-1, i.c.) given in anaesthetised pigs before (Con) and after i.v.
administrations of vehicle (V, 5 ml, two times; n=8) or sumatriptan (S100 and
S300, 100 and 300 µg kg-1, respectively; n=6).  All values are expressed as
mean±s.e.mean.  *, P < 0.05 vs. baseline values. 
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4.3.5 Capsaicin-induced jugular venous plasma concentration of CGRP 

Figure 4.6 depicts the plasma CGRP concentrations at baseline (i.e.,, after capsaicin 

vehicle infusion) and following capsaicin infusion (10 µg kg-1 min-1, i.c.) before 

(control response) and after sumatriptan (100 and 300 µg kg-1, i.v.) or the 

corresponding volumes of vehicle.  The capsaicin infusion significantly increased 

plasma CGRP concentrations from a baseline value of 11±1 pg ml-1 to 28±4 pg ml-1 

(maximal percent change from baseline: 155±38).  These responses to capsaicin were 

not attenuated by either vehicle or sumatriptan.   

Furthermore, capsaicin infusions (0.3, 1,3 and 10 µg kg-1 min-1, i.c.) dose-

dependently increased plasma CGRP concentrations (a significant increase was 

observed during the last two doses of capsaicin; Figure 4.7).  These responses 

Figure 4.5.  Differences between arterial and jugular venous oxygen
saturations (A-V SO2

 difference) measured at baseline and after infusions of
capsaicin (10 µg kg-1 min-1, i.c.) given in anaesthetised pigs before (Control)
and after i.v. administrations of vehicle (V, 5 ml, two times; n=15) or
sumatriptan (S100 and S300, 100 and 300 µg kg-1, respectively; n=13).
All values are expressed as mean±s.e.mean.  *, P < 0.05 vs. baseline values. 
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remained unaffected after treatment with either vehicle or sumatriptan (300 µg kg-1, 

i.v.). 

Finally, it is noteworthy that even with further increasing the dose of 

sumatriptan (i.e., 1000 µg kg-1 min-1, i.v.), the above responses to capsaicin (carotid 

haemodynamic changes as well as increased plasma CGRP concentrations) did not 

significantly differ from the vehicle-treated animals (data not shown). 

Figure 4.6.  Jugular venous plasma CGRP concentrations
measured at baseline and after infusions of capsaicin (10
µg kg-1 min-1, i.c.) given in anaesthetised pigs before (Control)
and after i.v. administrations of vehicle (V, 5 ml, two times; n=8)
or sumatriptan (S100 and S300, 100 and 300 µg kg-1, 
respectively; n=6).  All values are expressed as mean±s.e.mean. 
*, P < 0.05 vs. baseline value. 
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Figure 4.7.  Jugular venous plasma CGRP concentrations measured
at baseline (B) and after different doses of capsaicin infusion (0.3, 1,
3 and 10 µg kg-1 min-1, i.c.) given in anaesthetised pigs before 
(Control) and after i.v. administrations of vehicle (Veh, 5 ml, two
times; n=7) or sumatriptan (S300, 300 µg kg-1; n=7). 
All values are expressed as mean±s.e.mean.  *, P < 0.05 vs. baseline 
values. 
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4.4 Discussion 

4.4.1 General 

Migraine headache is a neurovascular syndrome in which the neural events seem to 

involve stimulation of the trigeminal system and an ensuing release of CGRP from 

perivascular trigeminal nerves (Goadsby et al., 2002b; Edvinsson, 2003). 

The introduction of triptans (5-HT1B/1D/1F receptor agonists) in migraine 

therapy has focussed on the role of serotonin receptors in migraine (Tfelt-Hansen et 

al., 2000; Villalón et al., 2002).  Triptans abort migraine attacks by several 

mechanisms, including: (i) constriction of dilated cranial blood vessels and carotid 

arteriovenous anastomoses via the stimulation of 5-HT1B receptors (De Vries et al., 

1998; De Vries et al., 1999c); and (ii) inhibition of CGRP release as well as of 

nociceptive transmission on peripheral and central trigeminal sensory nerves via 5-

HT1B/1D receptors (Goadsby et al., 2002b; Tepper et al., 2002).  Since trigeminal 

inhibition of CGRP release may reduce cranial vasodilatation and nociception, the 

present study set out to investigate the effects of sumatriptan on capsaicin-induced 

porcine carotid haemodynamic changes and the associated increase on plasma CGRP 

concentrations.  Our results in anaesthetised pigs show that i.c. administration of 

capsaicin: (i) increased total carotid (including arteriovenous anastomoses and 

capillary) blood flows and conductances, carotid pulsations as well as jugular venous 

plasma CGRP concentrations; and (ii) narrowed the A-V SO2 difference.  

Interestingly, sumatriptan failed to modify capsaicin-induced: (i) carotid 

haemodynamic changes, except carotid arteriovenous anastomoses; and (ii) increase 

in plasma CGRP concentrations. 

4.4.2 Systemic haemodynamic effects of capsaicin 

The systemic haemodynamic effects of capsaicin have been investigated extensively 

(Alving & Franco-Cereceda, 1993; Kapoor et al., 2003a).  Indeed, the significant 

increases in heart rate and mean arterial blood pressure observed in our study with 

capsaicin are in accordance with these findings, which are due to a central activation 

of the sympathetic outflow. 
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4.4.3 Carotid haemodynamic changes to capsaicin 

Several studies have shown that sensory nerves innervating the cerebral vasculature 

contain substance P and CGRP (Asari et al., 2001; Edvinsson, 2001b).  However, 

capsaicin-induced vasorelaxation of guinea pig isolated basilar artery is mediated by 

CGRP rather than by substance P (Jansen et al., 1990; O'Shaughnessy et al., 1993).  

Moreover, BIBN4096BS, a potent CGRP receptor antagonist, abolished capsaicin-

induced porcine carotid haemodynamic responses (Kapoor et al., 2003a), a finding 

which shows the involvement of CGRP in the responses to capsaicin. 

Apart from some attenuation of arteriovenous anastomotic changes, the 

capsaicin-induced responses were not affected by sumatriptan (Figures 4.1-4.4).  

These results are in keeping with other findings showing that sumatriptan failed to 

block capsaicin-induced relaxation of guinea pig isolated basilar artery 

(O'Shaughnessy et al., 1993) as well as carotid vasodilatation induced by trigeminal 

ganglion stimulation (Spokes & Middlefell, 1995; Lambert & Michalicek, 1996; 

Raval et al., 1999). 

It is noteworthy that the decrease in total carotid conductance by sumatriptan 

is predominantly due to the decrease in carotid arteriovenous anastomotic 

conductance, even when all triptans slightly increase the nutrient conductance (Den 

Boer et al., 1992; De Vries et al., 1996b).  Considering this, it is most likely that the 

above apparent inhibition by sumatriptan on capsaicin-induced responses (Figure 4.3) 

is due to physiological antagonism (i.e., vasoconstriction by sumatriptan) rather than 

inhibition of CGRP release, since sumatriptan failed to modify this variable (see 

Figures 4.6 and 4.7).  In contrast, the apparent failure of sumatriptan to attenuate 

capsaicin-induced increase in carotid conductance may have been due to:  (i) massive 

bursts of CGRP release produced by capsaicin; and/or (ii) an insufficient dose of 

sumatriptan.  However, the latter possibility can be excluded as treatment with an 

even higher dose of sumatriptan (1000 µg kg-1 min-1, i.v.) did not modify capsaicin-

induced carotid haemodynamic changes (unpublished data); thus, the involvement of 

5-HT1B/1D receptors, if any, seems to be rather limited under the present experimental 

conditions. 
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4.4.4 A-V SO2 difference 

The dilatation of carotid arteriovenous anastomoses with an associated decrease in the 

A-V SO2 difference is a characteristic feature observed during migraine headache 

(Heyck, 1969).  Consistent with the above finding, our study shows that capsaicin 

decreased the A-V SO2 difference, which is presumably due to a CGRP-mediated 

dilatation of carotid arteriovenous anastomoses (Kapoor et al., 2003b).  As expected, 

sumatriptan decreased the carotid arteriovenous anastomotic conductance in our study 

(Figure 4.3); however, its failure to normalise the capsaicin-induced A-V SO2 

difference may be explained in terms that capsaicin-induced increase in capillary 

conductance may lead to oxygen saturation in the cranial tissues.  Therefore, these 

tissues cannot extract oxygen further, thereby shunting the oxygenated blood via 

capillaries rather than via carotid arteriovenous anastomoses. 

4.4.5 Plasma levels of CGRP 

Several lines of evidence have shown that stimulation of the trigeminal system with 

electrical or chemical (capsaicin) stimuli releases the endogenously stored CGRP 

(Buzzi et al., 1991; Goadsby, 1993; O'Shaughnessy et al., 1993; Knight et al., 1999; 

Eltorp et al., 2000; Limmroth et al., 2001; Kapoor et al., 2003a), which produces 

cranial vasodilatation (Goadsby & Edvinsson, 1993; Akerman et al., 2003; Kapoor et 

al., 2003a).  Interestingly, triptans have been reported to attenuate CGRP release 

elicited by both electrical (Buzzi et al., 1991; Goadsby, 1993; Williamson et al., 1997; 

Knight et al., 1999; Limmroth et al., 2001) and chemical (capsaicin) (Eltorp et al., 

2000) stimulation; the latter effect was barely significant and observed with 

sumatriptan in a concentration (50 µM) that may be considered far beyond the 

therapeutic range (Eltorp et al., 2000).  Indeed, this inhibitory effect on CGRP release 

in cats has been associated with a blockade of the resulting cranial vasodilatation 

(Goadsby & Edvinsson, 1993) although, admittedly, this may also reflect a 

physiological antagonism produced by the triptans-induced vasoconstriction (De Vries 

et al., 1999a).  Considering these findings, it would seem reasonable to suggest that 

trigeminal (CGRP release) inhibition may be an additional mechanism behind the 

antimigraine action of triptans. 

Notwithstanding, other lines of evidence seem to show just the opposite, 

namely, that triptans do not modify the cranial vasodilatation produced by either 
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trigeminal stimulation (Lambert & Michalicek, 1996; Raval et al., 1999) or capsaicin 

(O'Shaughnessy et al., 1993). Admittedly, in these studies CGRP concentrations were 

not measured in parallel and, consequently, no categorical conclusion can be drawn 

regarding the antimigraine action of triptans.  Our in vivo study sheds further light on 

this matter by showing that: (i) sumatriptan failed to modify the capsaicin-induced 

increases in plasma CGRP levels and the associated carotid vasodilatation; and (ii) the 

carotid arteriovenous anastomotic vasoconstriction to sumatriptan is not associated 

with a corresponding change in CGRP levels. 

Admittedly, there is no clear-cut explanation why sumatriptan seems to 

attenuate CGRP release upon electrical stimulation but not by capsaicin.  It is known 

that capsaicin activates a subset of small sensory fibres that cover a major proportion 

of C and some Aδ fibres (Dray, 1992a; Dray, 1992b; Urban & Dray, 1992; Akerman 

et al., 2003), while low intensity electrical stimulation recruits Aδ fibres alone 

(Akerman et al., 2003).  Thus, one explanation for the differential effect of 

sumatriptan may be that, compared to electrical stimulation, capsaicin releases high 

quantities of CGRP that can be potently antagonised by selective vanilloid VR1 

antagonists (Caterina et al., 1997), but not by a presynaptic mechanism involving 

sumatriptan.  Another possibility is that, in contrast to the capsaicin-sensitive C and 

δ fibres, the δ fibres recruited by electrical stimulation possess 5-HT1B/1D/1F receptors 

stimulated by sumatriptan (Tfelt-Hansen et al., 2000; Goadsby et al., 2002b).  We 

have indeed shown that the mRNAs for 5-HT1B and 5-ht1F receptors are expressed in 

the porcine trigeminal ganglia (Bhalla et al., 2001; Bhalla et al., 2002).  Finally, 

sumatriptan does not easily penetrate the blood brain barrier (Tfelt-Hansen et al., 

2000) and, should CGRP be mainly released from intracerebral sources, it will inhibit 

such a release only if the blood brain barrier is disrupted. 

4.4.6 Possible clinical implications 

Finally, the possible clinical implications of our results with sumatriptan within the 

context of antimigraine therapy must be considered.  Therefore, based on our findings, 

the blockade of the postjunctional effects of CGRP (with BIBN4096BS) (Kapoor et 

al., 2003a) would seem to be a better therapeutic strategy to prevent neurogenic 

vasodilatation rather than trigeminal inhibition of CGRP release (via the activation of 
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prejunctional 5-HT1B/1D receptors by sumatriptan).  Moreover, in view of the putative 

pathophysiological role of arteriovenous anastomotic dilatation in migraine (Heyck, 

1969; Saxena, 1995), the constriction of these non-nutrient vessels by sumatriptan in 

our study may be responsible for the therapeutic action of this drug in migraine. 

 

In conclusion, our results imply that prejunctional 5-HT1B/1D receptors (activated by 

sumatriptan) do not inhibit capsaicin-induced: (i) vasodilatation of the porcine carotid 

circulation; and (ii) increase in plasma CGRP concentrations.  Therefore, the primary 

mechanism behind the clinical efficacy of sumatriptan in migraine may be due to 

vasoconstriction of cranial blood vessels rather than neurogenic inhibition of CGRP 

release. 

 



 

 
 

 

CHAPTER 5 

Effects of the CGRP receptor antagonist BIBN4096BS on 

α-CGRP-induced regional haemodynamic changes in 

anaesthetised rats 

 
 

Based on: Arulmani, U., Schuijt, M.P., Heiligers, J.P.C., Willems, E.W., 

Villalon, C.M & Saxena, P.R. (2004).  Effects of the CGRP receptor antagonist 

BIBN4096BS on α-CGRP-induced regional haemodynamic changes in 

anaesthetised rats.  Pharmacology & Toxicology (in press). 
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5 Effects of the CGRP receptor antagonist BIBN4096BS 
on α-CGRP-induced regional haemodynamic changes 
in anaesthetised rats 

Abstract:  Several studies have suggested that a calcitonin gene-related 
peptide (CGRP) receptor antagonist may have antimigraine properties, 
most probably via the inhibition of CGRP-induced cranial vasodilatation.  
We have previously shown that BIBN4096BS, a potent and selective 
CGRP receptor antagonist, attenuated the CGRP-induced porcine carotid 
vasodilatation in a model predictive of antimigraine activity.  In order to 
evaluate the potential safety of BIBN4096BS in migraine therapy, this 
study was designed to investigate the effects of intravenous (i.v.) 
BIBN4096BS on α-CGRP-induced systemic and regional haemodynamic 
changes in anaesthetised rats. In vehicle-pretreated animals, 
consecutive i.v. infusions of α-CGRP (0.25, 0.5 and 1 µg kg-1 min-1) 
dose-dependently decreased mean arterial blood pressure with an 
accompanying increase in heart rate and systemic vascular conductance 
whereas cardiac output remained unchanged.  α-CGRP also increased the 
vascular conductance to the heart, brain, gastrointestinal tract, adrenals, 
skeletal muscle and skin, whilst that to the kidneys, spleen, 
mesentery/pancreas and liver remained unaltered.  The above systemic and 
regional haemodynamic responses to α-CGRP were clearly attenuated in 
BIBN4096BS (3000 µg kg-1 min-1; i.v.)-pretreated animals.  These lines of 
evidence indicate that exogenously administered α-CGRP dilates regional 
vascular beds via CGRP receptors on the basis of the antagonism produced 
by BIBN4096BS.  Moreover, the fact that BIBN4096BS did not alter 
baseline haemodynamics suggests that endogenously produced CGRP 
does not play an important role in regulating the systemic and regional 
haemodynamics under resting conditions. 

 

5.1 Introduction 

Migraine is a neurovascular syndrome thought to be associated with profound dilation 

of cranial blood vessels and activation of the trigeminovascular system (Saxena & 

Tfelt-Hansen, 2000; Goadsby et al., 2002b).  Several studies have shown that 

vasoactive neuropeptides (e.g., neuropeptide Y, substance P, calcitonin gene-related 

peptide; CGRP) may be involved in the aetiology of this disorder (Edvinsson, 2001b; 

Goadsby et al., 2002b).  Interestingly, circulating plasma levels of α-CGRP (a 37-

amino acid neuropeptide), but not of other neuropeptides, are significantly elevated 

during the headache phase of a migraine attack (Ashina et al., 2000; Goadsby et al., 

2002b) and these elevated α-CGRP levels are normalised by antimigraine agents, such 

as sumatriptan, with complete resolution of headache (Goadsby & Edvinsson, 1993).  



BIBN4096BS on α-CGRP-induced regional….  Chapter 5 

117 
 
 

These findings suggest that CGRP may play a predominant role in migraine 

pathogenesis, possibly by dilating large cranial blood vessels (Williamson & 

Hargreaves, 2001; Goadsby et al., 2002b).  Therefore, compounds inhibiting either the 

CGRP release or its effects, particularly cranial vasodilatation, may be efficacious in 

migraine therapy.  In this context, BIBN4096BS, a potent and selective CGRP 

receptor antagonist (Doods et al., 2000), completely attenuated carotid vasodilatation 

by endogenously released (by capsaicin) and exogenously administered CGRP 

(Kapoor et al., 2003a; Kapoor et al., 2003b) in an experimental animal model 

predictive of antimigraine activity (Saxena, 1995; De Vries et al., 1999a).  Besides its 

potential efficacy, the therapeutic effectiveness of BIBN4096BS in acute migraine 

treatment will also depend on its pharmacokinetic properties and potential side effects 

in humans.  With respect to the latter, it has been shown that BIBN4096BS attenuates 

CGRP-induced dilatation of human isolated coronary arteries (Edvinsson et al., 2002), 

a vascular bed that is largely affected by the currently used antimigraine agents 

(Maassen VanDenBrink et al., 1999). 

On the basis of the above, the present study set out to analyse in 

anaesthetised rats, the effects produced by i.v. administration of BIBN4096BS on: (i) 

baseline systemic haemodynamics (to investigate its the potential cardiovascular side 

effects); and (ii) the systemic and regional haemodynamic responses to α-CGRP (to 

ascertain CGRP receptor distribution). 

5.2 Materials and methods 

5.2.1 General 

Experiments were carried out in 13 male Wistar rats (body weight: 356±35 g) 

obtained from Harlan, Zeist, The Netherlands.  The animals were initially 

anaesthetised with an intraperitoneal (i.p) injection of sodium pentobarbitone 

(60 mg kg-1, i.p), and additional i.v. bolus injections (5 mg kg-1, i.v.) were provided 

every 20-30 min to maintain the anaesthesia.  A catheter was placed in the trachea for 

intermittent positive pressure ventilation with a mixture of oxygen and room air, using 

a respiratory pump (small animal ventilator, Harvard Apparatus, Natick, MA, USA).  

The ventilation rate was adjusted (40 strokes min-1) to keep the arterial blood gases 

within the physiological range.  The right common carotid artery was exposed and a 

catheter connected to a pressure transducer (Combitrans disposable pressure 
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transducer, Braun, Melsungen, Germany) was guided through the carotid artery into 

the left ventricle.  The presence of the catheter tip in the left ventricle was confirmed 

by the observation of a sudden switch from an arterial to a ventricular pressure profile.  

The right femoral artery was catheterised and connected to a pressure transducer 

(Combitrans disposable pressure transducer, Braun, Melsungen, Germany) for 

recording the blood pressure, while the left femoral artery was catheterised for the 

withdrawal of reference blood samples.  The heart rate was measured with a 

tachograph (CRW, Erasmus Medical Centre, Rotterdam, The Netherlands) triggered 

by electrocardiogram signals.  Both blood pressure and heart rate were recorded 

simultaneously on a polygraph (CRW, Erasmus Medical Centre, Rotterdam, 

The Netherlands).  The right external jugular vein was catheterised for the 

administration of compounds (α-CGRP and BIBN4096BS or the corresponding 

volume of vehicle). 

5.2.2 Distribution of cardiac output 

The distribution of cardiac output was determined with radioactive microspheres 

(diameter: 15.5± 0.1 µm; S.D.), labelled with 141Ce, 103Ru, 95Nb or 46Sc (NEN Dupont, 

Boston, USA).  For each measurement, about 200,000 microspheres, suspended in 0.2 

ml of physiological saline and labelled with one of the isotopes, was mixed and 

injected into the left ventricle over a period of 15 s; the catheter was thoroughly 

flushed with 0.5 ml of saline.  Starting 10 s before each microsphere injection and 

lasting 70 s, an arterial reference blood sample was drawn from the left femoral artery 

at a constant rate of 0.5 ml min-1, using a withdrawal pump (Model 55, Harvard 

apparatus, Natick, USA).  At the end of the experiment, the animal was killed using 

an overdose of sodium pentobarbitone and all tissues were dissected out, weighed and 

put in vials.  The following tissues were studied: skeletal muscle; carcass (consisting 

of bone with skeletal muscle residue, fat, tail, eyes, and urogenital tract); 

mesentery/pancreas (for practical reasons, these two tissues were not studied 

separately); adrenals; lungs; kidneys; skin; heart; liver; brain; gastrointestinal tract and 

spleen.  Lungs were not evaluated further, because the amount of radioactivity in 

these organs represents the microspheres that bypassed the peripheral vascular beds 

(via arteriovenous anastomoses), rather than pulmonary blood flow (Baile et al., 

1982).  The radioactivity in the reference blood samples and in the tissues was 
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counted for 5 min in a γ-scintillation counter (Packard, Minaxi Auto-Gamma 

5000 series), using suitable windows for the discrimination of the different isotopes 

(141Ce: 120-167 KeV, 103Ru: 450-548 KeV, 95Nb: 706-829 KeV and 
46Sc: 830-965 KeV).  All data were processed by a set of specially designed computer 

programs (Saxena et al., 1980). 

The cardiac output was calculated by multiplying the ratio of total and 

arterial blood sample radioactivity by the withdrawal rate of the arterial reference 

blood sample (0.5 ml min-1).  Accordingly, tissue blood flow was calculated by 

multiplying the ratio of the tissue and total radioactivity by cardiac output (Saxena et 

al., 1980).  Systemic and regional vascular conductances (i.e., cardiac output and 

regional blood flow corrected for mean arterial blood pressure) were calculated, 

multiplied by hundred and expressed as 10-2 ml mmHg-1 min-1. 

5.2.3 Experimental protocol 

The experiments were started after a stabilisation period of about 30 min.  At this 

point, the animals were divided into two groups.  The first group (n=6) was pre-

treated with the vehicle of BIBN4096BS (0.5 ml of acidified distilled water; 

0.05 ml min-1 for 10 min; i.v.; see Compounds section), while the second group (n=7) 

was pre-treated with BIBN4096BS (3000 µg kg-1, i.v.; also at a rate of 0.05 ml min-1 

for 10 min).  After a waiting period of 10 min, the baseline values of heart rate, mean 

arterial blood pressure, cardiac output and its distribution to the various tissues (see 

above) were determined and both groups received sequential i.v. infusions of α-CGRP 

(0.25, 0.5 and 1 µg kg-1 min-1; each dose for 10 min).  After each dose of α-CGRP 

infusion, the above mentioned haemodynamic variables were reassessed. 

5.2.4 Data presentation and statistical analysis 

All data are presented as mean±s.e.mean.  The statistical analysis was performed 

using the SPSS package for windows (version 10.0; SPSS Inc., Chicago, IL, USA).  

The significance of changes within one group (vehicle or BIBN4096BS) was analysed 

with repeated-measures ANOVA, followed by Greenhouse-Geisser correction for 

serial autocorrelation (Ludbrook, 1994) and Bonferroni correction for multiple 

comparisons (Overall & Doyle, 1996).  The significance of the between-group 

changes (vehicle vs. BIBN4096BS treatments) was first analysed with repeated-

measures ANOVA, including baseline measurements as a covariate (Overall & Doyle, 
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1994).   If the two groups differed significantly, pairwise comparisons of the 

corresponding values in the vehicle- and BIBN4096BS-treated groups were 

performed using univariate analysis (Overall & Atlas, 1999), followed by Bonferroni 

correction.  Statistical significance was accepted at P<0.05 (two-tailed). 

5.2.5 Ethical approval 

The Ethics Committee of the Erasmus MC, Rotterdam, The Netherlands, dealing with 

the use of animals in scientific experiments, approved the protocols for the present 

investigation. 

5.2.6 Compounds 

The following compounds were used: sodium pentobarbitone (Sanofi Sante b.v., 

Maasluis, The Netherlands), heparin sodium (to prevent clotting of blood in the 

catheters; Leo Pharmaceutical Products, Weesp, The Netherlands), α-CGRP and 

BIBN4096BS (both gifts from Dr. H. Doods, Boehringer Ingelheim Pharma KG, 

Biberach, Germany). 

α-CGRP was dissolved in distilled water, while BIBN4096BS was initially dissolved 

in 0.5 ml of 1N HCl, then diluted with 4 ml of distilled water, and then adjusted to pH 

6.5 by 1N NaOH. 

5.3 Results 

5.3.1 Baseline values of systemic and regional haemodynamic variables  

Baseline values of systemic haemodynamic variables in the 13 anaesthetised rats used 

in this investigation were: heart rate, 266±10 beats min-1; mean arterial blood 

pressure, 108±3 mmHg; cardiac output, 68±4 ml min-1 and systemic vascular 

conductance, 64±4 10-2 ml min-1 mmHg-1.  Baseline values of regional vascular 

conductances (10-2 ml min-1 mmHg-1/100g tissue) were: brain, 32±4; heart, 409±58; 

liver, 35±3; gastrointestinal tract, 124±24; mesentery/pancreas, 32±4; adrenals, 

257±52; kidneys, 417±38; spleen, 92±24; skeletal muscle, 5±0.4; and skin, 5±1.  

These values were similar to those reported earlier from our laboratories (Schuijt et 

al., 1999). 

The baseline values in the animals pre-treated with vehicle (n=6) and 

BIBN4096BS (n=7) did not differ significantly: heart rate (275±19 vs. 259±8 

beats min-1); mean arterial blood pressure (108±3 vs. 108±5 mmHg); cardiac output 
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(68±6 vs. 69±6 ml min-1); systemic vascular conductance (63±6 vs. 65±7 10-

2 ml min-1 mmHg-1) and regional vascular conductances (10-2 ml min-1 mmHg-1/100g 

tissue) in brain (32±5 vs. 33±6), heart (393±101 vs. 423±72), liver (33±6 vs. 36±2), 

gastrointestinal tract (103±16 vs. 141±43), mesentery/pancreas (33±7 vs. 32±4), 

adrenals (282±96 vs. 235±58), kidneys (445±56 vs. 394±54), spleen (100±50 vs. 

85±16), skeletal muscle (5±0.5 vs. 4±0.5) and skin (6±1 vs. 4±0.7). 

5.3.2 Systemic haemodynamic responses to α-CGRP 

The absolute changes in systemic haemodynamics following consecutive i.v. 

infusions of α-CGRP (0.25, 0.5 and 1 µg kg-1 min-1; i.v.) in the animals pre-treated 

with BIBN4096BS (3 mg kg-1, i.v.) or the corresponding volume of vehicle (acidified 

distilled water, 0.05 ml; i.v) are shown in Figure 5.1.  The infusions of α-CGRP 

dose-dependently decreased mean arterial blood pressure (maximum percent change 

from baseline: 55±5) with an increase in systemic vascular conductance (maximum 

percent change from baseline: 56±21) and heart rate (maximum percent change from 

baseline: 17±3).  BIBN4096BS pre-treatment produced an attenuation of the systemic 

haemodynamic responses produced by α-CGRP.  Under these conditions, the highest 

dose of α-CGRP still elicited small, though significant, decreases (maximum percent 

changes from baseline) in: (i) mean arterial blood pressure (28±4 vs. 51±7 in vehicle 

pre-treated animals); and (ii) systemic vascular conductance (16±6 vs. 27±8 in vehicle 

pre-treated animals). 

5.3.3 Regional haemodynamic responses to α-CGRP 

Figure 5.2 depicts absolute changes in regional vascular conductance following 

consecutive i.v. infusions of α-CGRP (0.25, 0.5 and 1 µg kg-1 min-1; i.v.) in the 

animals pre-treated with BIBN4096BS (3 mg kg-1, i.v.) or the corresponding volume 

of vehicle.  α-CGRP increased the vascular conductances (maximal percent change 

from baseline) to brain (124±45), gastrointestinal tract (80±35), heart (74±31), 

adrenals (87±37), muscle (79±27) and skin (154±37), whilst that to the 

mesentery/pancreas, liver, spleen and kidneys remained unchanged.  BIBN4096BS 

attenuated the above regional haemodynamic changes induced by α-CGRP.  The 

vascular conductance to the kidneys decreased significantly in vehicle-pretreated 
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animals following the highest dose of α-CGRP (1 µg kg-1 min-1; i.v.) infusion, but this 

was not the case in the animals pre-treated with BIBN4096BS. 

Figure 5.1. Absolute values of heart rate (HR), mean arterial blood
pressure (MAP), cardiac output (CO) and systemic vascular conductance (SVC)
before (α-CGRP, 0 µg kg-1 min-1; baseline) and following infusions of α-CGRP (0.25,
0.5 and 1 µg kg-1 min-1; i.v.) in anaesthetised rats pre-treated with BIBN4096BS
(3 mg kg-1, i.v.; n=7) or the corresponding volume of vehicle (0.05 ml; i.v.; n=6).  All
values are expressed as mean±s.e.mean.  *, P < 0.05 compared to baseline values;
#, P<0.05 compared to the corresponding dose in vehicle-pretreated animals. 
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Figure 5.2.  Absolute values of regional vascular conductances before (α-CGRP, 0 
µg kg-1 min-1; baseline) and following infusions of α-CGRP (0.25, 0.5 and 1 
µg kg-1 min-1; i.v.) in anaesthetised rats pre-treated with BIBN4096BS (3 mg kg-1, i.v.; 
n=7) or the corresponding volume of vehicle (0.05 ml; i.v.; n=6). 
GIT: gastrointestinal tract.  All values are expressed as mean±s.e.mean. 
*, P < 0.05 compared to baseline values; #, P<0.05 compared to the corresponding dose 
in vehicle-pretreated animals. 
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5.4 Discussion 

5.4.1 General 

CGRP receptors are widely distributed throughout the body and are predominantly 

expressed in the nervous system including perivascular nerves (Okimura et al., 1987; 

Sternini et al., 1992).  Therefore, CGRP may play an important role in regulating 

peripheral vascular tone and in controlling blood flow to various organs (Poyner et al., 

2002).  Several lines of evidence suggest that an increase in the release of CGRP is a 

potential causative factor in some pathological conditions including 

migraine (Wimalawansa, 1996).  Hence, the advent of BIBN4096BS may represent an 

important headway in treating migraine. 

Apart from the implications discussed below, our study in anaesthetised rats 

shows that BIBN4096BS: (i) had no effect on baseline systemic and regional 

haemodynamics, confirming its cardiovascular safety; and (ii) antagonised α-

CGRP-induced changes in systemic and regional haemodynamics, demonstrating the 

wide distribution of CGRP receptors. 

5.4.2 Systemic haemodynamic changes to α-CGRP 

The potential role of CGRP in regulating the systemic haemodynamics has been 

studied extensively in several species, including humans (Franco-Cereceda et al., 

1987; Ventura et al., 2000; Rasmussen et al., 2001).  Accordingly, CGRP decreases 

systemic blood pressure through its potent vasodilator effect on the peripheral 

vasculature (van Rossum et al., 1997).  The fact that BIBN4096BS blocked the 

hypotensive responses to α-CGRP (Figure 5.1) confirms a CGRP receptor-mediated 

response.  Interestingly, the hypotensive response to the highest dose of α-CGRP 

(1 µg kg-1 min-1; i.v.) was just partly blocked by BIBN4096BS; this may be attributed, 

at least in part, to the lower affinity of BIBN4096BS for rat CGRP receptors (Doods 

et al., 2000).  Consistent with our findings, it has been reported that BIBN4096BS is 

more potent than CGRP8-37 at rat CGRP receptors (Poyner et al., 2002).  However, a 

non-specific vasodilatation to CGRP via the production of nitric oxide cannot be 

categorically excluded in our experiments (Akerman et al., 2002; de Hoon et al., 

2003). 
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On the other hand, with respect to the tachycardic responses to α-CGRP 

observed in the present study, it is worthy of note that cardiac CGRP receptors are 

more abundant in the sinoatrial node and atria than in the ventricles (Du et al., 1994; 

Bell & McDermott, 1996; Wimalawansa, 1996; Saetrum Opgaard et al., 2000).  Most 

importantly, other lines of evidence have shown that this response is resistant to 

β-adrenoceptor antagonists, suggesting a direct chronotropic action of α-CGRP in the 

rat heart (Marshall et al., 1986).  However, a baroreceptor reflex mechanism (which 

cannot be entirely ruled out in our experimental set-up) may also be involved.   

Noteworthily, CGRP is a potent inotropic agent in rabbits, pigs as well as 

humans (Van Gelderen et al., 1995; Bell & McDermott, 1996), but not in rats 

(Ishikawa et al., 1987; Bratveit et al., 1991).  This may explain the lack of effect of α-

CGRP on cardiac output in our study (Figure 5.1). 

5.4.3 Regional haemodynamic changes by α-CGRP 

The regional haemodynamic responses to α-CGRP observed in our study clearly 

demonstrate the vasodilator properties of CGRP in different vascular beds.  

Furthermore, the CGRP-induced increases in vascular conductances in the heart, 

brain, gastrointestinal tract, adrenals, skin and skeletal muscle were attenuated by 

BIBN4096BS (Figure 5.2), indicating that these responses are mediated via CGRP 

receptors.  However, tissues such as liver, spleen, mesentery/pancreas and kidneys did 

not apparently show any changes to CGRP.  Several possible explanations for this lack 

of effect of CGRP may include, amongst others: (i) tissue-dependent factors such as the 

density of CGRP receptors and coupling efficiency; and/or (ii) a blunting effect via the 

activation of compensatory pressor mechanisms triggered by the prominent reduction 

in systemic blood pressure (DiPette et al., 1989; Gardiner et al., 1990). 

5.4.4 Clinical implications of CGRP antagonism by BIBN4096BS 

Lastly, we would like to consider the possible clinical implications of BIBN4096BS 

safety in antimigraine therapy.  BIBN4096BS, which is effective in antagonising 

CGRP-induced responses in both in vivo and in vitro studies (Edvinsson et al., 2002; 

Kapoor et al., 2002; Moreno et al., 2002; Verheggen et al., 2002; Kapoor et al., 

2003b), has been shown effective in a phase II clinical trial for acute antimigraine 

therapy (Edvinsson, 2003; Olesen et al., 2003a).  In this context, our study shows that 
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BIBN4096BS did not compromise the blood flow in a number of tissues, even in a 

dose that may be considered relatively higher than that used in the clinic.  Thus, 

BIBN4096BS does not show any unwanted cardiovascular effects in our experiments. 

 

In conclusion, the present investigation demonstrates that: (i) exogenously 

administered α-CGRP dilates several regional vascular beds in a dose-dependent 

manner; and (ii) endogenous CGRP does not play an important role in regulating 

systemic and regional haemodynamics. 
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6 DISCUSSION 
6.1 General 

Though the precise mechanism behind migraine pathogenesis is still far from clear, 

some lines of evidence suggest an involvement of extracranial arterial vasodilatation, 

extracranial neurogenic inflammation and/or a decreased inhibition of central pain 

transmission (Spierings, 2003).  It is undeniable that the cranial vasoconstrictor 

activity of the triptans, mediated by 5-HT1B receptors, is associated with antimigraine 

efficacy (De Vries et al., 1999a; De Vries et al., 1999b).  Unfortunately, the 5-HT1B 

receptor, being not exclusively confined to cranial blood vessels, is most likely also 

responsible for the moderate hypertension and coronary constriction noticed with 

these drugs (Villalón et al., 2002). 

In an attempt to avoid coronary vasoconstriction, some new avenues are 

being explored for the development of novel antimigraine agents, including the 

antagonism of receptors for CGRP and the inhibition of trigeminal CGRP release.  

Hence, the discovery and development of an antimigraine agent capable of inhibiting 

trigeminal CGRP release (and the associated cranial vasodilatation) or of antagonising 

selectively cranial CGRP receptors without producing vasoconstriction would be a 

tremendous achievement in the clinical treatment of migraine (Goadsby et al., 2002b; 

Villalón et al., 2002). 

 Several findings support the potential role of CGRP in migraine 

pathogenesis, including its ability to dilate cranial blood vessels and to stimulate 

central nociception transmission (Edvinsson, 2001b; Olesen & Lassen, 2001; Goadsby 

et al., 2002b).  With this in mind, the CGRP receptor antagonist, BIBN4096BS, which 

has the highest selectivity for human CGRP receptors, was developed as an agent with 

potential therapeutic usefulness in the acute treatment of migraine.  Indeed, preclinical 

studies demonstrated its efficacy as a potent and selective CGRP receptor antagonist 

(Doods et al., 2000; Olesen et al., 2003a).  

In view that vasoconstriction of porcine carotid arteriovenous anastomoses is 

an experimental model highly predictive of antimigraine activity (Saxena, 1995; De 

Vries et al., 1999a), the present thesis was, in principle, conducted to explore the role 

of CGRP receptors in producing vasodilatation in the (cranial) carotid circulation, 

which is one of the main features of migraine headache pathophysiology (Saxena, 1995).  
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Therefore, we investigated the effects of BIBN4096BS (Doods et al., 2000) on both 

the capsaicin (which releases endogenously stored CGRP- and α-CGRP-induced 

porcine carotid haemodynamic changes.  In addition, we explored the effects of 

sumatriptan on capsaicin-induced trigeminal CGRP release (see below).  

6.2 Capsaicin-induced carotid haemodynamic responses and 

CGRP release  

Several studies have shown that stimulation of trigeminal ganglia/nerve fibres, which 

innervate cranial blood vessels, release endogenous CGRP (Asari et al., 2001).  It is 

known that capsaicin, a pungent substance from red chilli pepper, can release several 

neuropeptides, including: (i) CGRP; (ii) substance P; (iii) neuropeptide Y; 

(iv) neurokinin A; and (v) catecholamines (Alving et al., 1991).  Therefore, we 

administered intracarotid infusions of capsaicin in anaesthetised pigs to stimulate the 

release of endogenous CGRP. 

Indeed, as described in Chapter 2, capsaicin-induced increase in plasma 

CGRP concentration are in complete agreement with previously published studies 

(Alving et al., 1991; Alving & Franco-Cereceda, 1993).  Moreover, the increase in 

plasma CGRP concentrations in our study is clearly associated with the vasodilatation 

of carotid blood vessels including arteriovenous anastomoses.  The use of 

phenylephrine in our experiments is necessitated by the fact that the carotid arterioles 

and arteriovenous anastomoses are in a dilated state under pentobarbital anaesthesia 

(Den Boer et al., 1993); therefore, to study the effects of vasodilator agents 

(e.g., capsaicin-induced CGRP release) one has to constrict them first.  Thus, 

phenylephrine was infused to decrease the total carotid conductance exclusively by 

constricting carotid arteriovenous anastomoses (Willems et al., 1999). Moreover, 

capsaicin was infused in increasing doses to construct dose-response curves and to 

avoid desensitisation of sensory nerves to capsaicin (Szallasi, 2002).  

6.3 Effects of BIBN4096BS on capsaicin-induced carotid 

haemodynamic responses 

As described in Chapter 2, capsaicin-induced carotid haemodynamic responses were 

dose-dependently attenuated by BIBN4096BS; these findings clearly suggest that the 

above responses are mediated via CGRP receptors.  Interestingly, not only did 
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BIBN4096BS fail to block capsaicin-induced plasma CGRP release, but also there 

was a modest enhancement of CGRP release.  It is known that presynaptic CGRP 

receptors are likely to be involved in neuronal CGRP uptake into perivascular and 

capsaicin-sensitive neurones (Sams-Nielsen et al., 2001).  Our findings clearly show 

that following the blockade of presynaptic ‘inhibitory’ CGRP autoreceptors with 

BIBN4096BS, a further increase in the capsaicin-induced CGRP release was 

observed.  This effect is similar to the modulation of sympathetic neurotransmission 

by presynaptic α2-adrenoceptors (Langer, 1980).  Therefore, these results imply that 

BIBN4096BS behaves as a potent antagonist of capsaicin-induced carotid 

haemodynamic changes that are mediated via the release of CGRP.   

6.4 Effects of sumatriptan on capsaicin-induced carotid 

haemodynamic responses 

Furthermore, we investigated the effects of sumatriptan on capsaicin-induced carotid 

haemodynamics and on CGRP release (see Chapter 4).  Several studies have reported 

that triptans inhibit trigeminal CGRP release via the activation of presynaptic 5-HT1D 

receptors (Tfelt-Hansen et al., 2000; Goadsby et al., 2002b).  However, this finding 

was observed following electrical stimulation of the trigeminal system (Buzzi et al., 

1991; Moskowitz & Buzzi, 1991; Goadsby, 1993; Goadsby & Edvinsson, 1993; 

Knight et al., 1999), but not by chemical (capsaicin) (O'Shaughnessy et al., 1993) 

stimulation.  To the best of our knowledge, our study (Chapter 5) seems to be the first 

to show in vivo the failure of sumatriptan to inhibit capsaicin-induced carotid 

vasodilatation (except a small reduction in carotid conductance and arteriovenous 

anastomoses) and CGRP release.  These findings are in complete agreement with 

in vitro studies (O'Shaughnessy et al., 1993; Zimmermann et al., 2003).  Therefore, 

our study implies that the primary mechanism behind the clinical efficacy of 

sumatriptan in migraine may be vasoconstriction of cranial blood vessels rather than 

trigeminal inhibition of CGRP release.  

6.5 Effects of BIBN4096BS on α-CGRP-induced carotid 

haemodynamic responses 

It has previously been shown that CGRP is a potent vasodilator in several vascular 

beds, including the (cranial) carotid vasculature (Wimalawansa, 1996; Wimalawansa, 
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2001).  Noteworthily, administration of α-CGRP in migraineurs causes a 

migraine-like headache (Lassen et al., 2002).  Therefore, we mimicked the above 

pathophysiological feature of migraine in our porcine model by infusing α-CGRP and 

investigated the effects of BIBN4096BS on α-CGRP-induced carotid haemodynamic 

responses.  

Our results (Chapter 3) reconfirm and extend previous findings observed in 

anaesthetised pigs (Van Gelderen et al., 1995) and show that: (i) the carotid 

circulation is markedly dilated in response to α-CGRP infusions; and (ii) 

BIBN4096BS behaves as a “silent” antagonist of the carotid vasodilator responses to 

α-CGRP.  On this basis, the involvement of CGRP receptors is clearly established, as 

previously demonstrated in isolated cranial blood vessels (Edvinsson et al., 2002; 

Moreno et al., 2002).  Significantly, the capability of BIBN4096BS to elicit a 

complete blockade of the carotid vasodilator responses to α-CGRP in our study makes 

the involvement of other receptors highly unlikely. 

Considering the above findings in anaesthetised pigs, we finally decided to 

evaluate in anaesthetised rats (Chapter 4) the potential cardiovascular safety of i.v. 

BIBN4096BS on: (i) systemic and regional haemodynamics under resting conditions, 

in order to ascertain the potential role of CGRP receptors in regulating these variables; 

and (ii) α-CGRP-induced systemic and regional haemodynamic changes in order to 

analyse the distribution of CGRP receptors in the cardiovascular system. 

The fact that BIBN4096BS antagonised the increases in regional vascular 

conductances to the different tissues indicates that CGRP receptors are widely 

distributed in the cardiovascular system (Chapter 4).  These findings are similar to 

previously reported results in conscious dogs and anaesthetised rats (Shen et al., 

2001), although, admittedly, the peptide antagonist CGRP(8-37) (rather than 

BIBN4096BS) was used; since this antagonist, unlike BIBN4096BS, possesses partial 

agonist properties on CGRP receptors (Wimalawansa, 1996), no categorical 

conclusion can be drawn regarding the distribution of CGRP receptors in the above 

study. 

Relevantly, in vitro findings have shown that BIBN4096BS possesses a 

higher affinity for human and marmoset CGRP receptors than for rat CGRP receptors.  

Our study carried out in anaesthetised rats is in complete agreement with these 
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findings as the α-CGRP-induced vasodepressor responses were just partly blocked by 

BIBN4096BS.  

6.6 Role of endogenous CGRP in regulating basal vascular tone 

Several lines of evidence have shown that endogenous CGRP might be actively 

released from primary afferent nerves that innervate the cardiovascular system; these 

are activated in response to appropriate stimuli such as heating, ischaemia, pH 

changes, etc (Bell & McDermott, 1996).  Therefore, it is reasonable to assume that 

endogenous CGRP might participate in the regulation of basal vascular tone.  

Interestingly, our studies in anaesthetised pigs and rats (Chapters 3 and 5, 

respectively) show that the baseline systemic and regional haemodynamics remained 

unaltered after i.v. administration of BIBN4096BS.  These findings suggest that under 

normal resting conditions, endogenous CGRP does not play a significant role in the 

regulation of vascular tone.  Nevertheless, in anaesthetised pigs, the highest dose of 

BIBN4096BS (1000 µg kg-1) moderately decreased vascular conductance in the lungs, 

kidneys, spleen and adrenals (Chapter 3).  These changes to BIBN4096BS may not be 

due to blockade of CGRP receptors, which was clearly evident with lower doses of 

BIBN4096BS (100 and 300 µg kg-1). 

As described in Chapter 1, the plasma concentrations of CGRP are quite low 

(Wimalawansa, 1996) and this may explain the lack of effects of BIBN4096BS on 

systemic and regional haemodynamics with BIBN4096BS; alternatively, it could be 

proposed that CGRP does not tonically regulate the (cardio) vascular tone.  Moreover, 

it has been reported that the potent vasodilatory responses to endogenous CGRP may 

depend upon the innervation by nerve fibres containing high concentrations of CGRP 

(Bell & McDermott, 1996).  For example, in rats, the superior mesenteric artery 

exhibits a dense network of CGRP-immunoreactive nerve fibres compared with the 

femoral artery (Bell & McDermott, 1996); therefore, the superior mesenteric artery 

may be more responsive to endogenous CGRP than the femoral artery (Bell & 

McDermott, 1996).  However, in in vivo situations, the endogenous feedback 

mechanisms regulate the synthesis and release of CGRP (Bell & McDermott, 1996); 

this may be an additional possible explanation for the lack of effect of BIBN4096BS 

in our studies. 
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In contrast to the above, the role of endogenous CGRP in pathological 

conditions, such as myocardial infarction, cerebral ischaemia, endotoxic shock and 

preconditioning (induced by brief ischaemia/reperfusion) has been well documented 

(Bell & McDermott, 1996; Gangula et al., 2002; Li & Peng, 2002; Yallampalli et al., 

2002).  Moreover, in hyperdynamic conditions, such as in pregnancy, endogenous 

CGRP maintains normal fetoplacental development, fetal survival and vascular 

adaptations (Gangula et al., 2002).  

6.7 Pre- and post-junctional CGRP modulation: implications for 

migraine treatment 

The hypothesis underlying the development of antimigraine compounds is based on 

the involvement of vascular or neural components in migraine (Fusco et al., 2003).  It 

is well known that migraine pathogenesis involves the activation of trigeminal nerves, 

which may release CGRP that, in turn, promotes neurogenic inflammation and cranial 

vasodilatation (Goadsby et al., 2002b; Villalón et al., 2002).  Moreover, conventional 

antimigraine compounds, such as triptans, abort migraine attacks by several 

mechanisms, including: (i) constriction of dilated cranial blood vessels and carotid 

arteriovenous anastomoses via the stimulation of 5-HT1B receptors (De Vries et al., 

1999b; Saxena & Tfelt-Hansen, 2000; Tfelt-Hansen et al., 2000; Goadsby et al., 

2002b; Villalón et al., 2002); and (ii) inhibition of CGRP release as well as of 

nociceptive transmission on peripheral and central trigeminal sensory nerves via 5-

HT1B/1D receptors (Bigal et al., 2002; Goadsby et al., 2002b; Tepper et al., 2002).   

 Several studies have reported that inhibition of trigeminal CGRP release may 

underlie the therapeutic efficacy of triptans (Bigal et al., 2002; Goadsby et al., 2002b).  

Indeed, findings in animals have shown that triptans inhibit trigeminal CGRP release; 

this is further strengthened by clinical data showing that sumatriptan normalised the 

elevated CGRP levels with alleviation of migraine headache (Goadsby & Edvinsson, 

1993; Knight et al., 1999; Goadsby et al., 2002b).  On the other hand, it has been 

shown that compounds that inhibit neurogenic inflammation (e.g. NK1 receptor 

antagonists) and the trigemino-vascular system (5-HT1D receptor agonist; 

PNU142633) are ineffective in acute migraine treatment (McCall, 1999; Williamson 

& Hargreaves, 2001).  Therefore, it is not clear whether the inhibition of trigeminal 

CGRP release is an important mechanism behind the therapeutic efficacy of 
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antimigraine agents.  The above effect of triptans (inhibition of trigeminal CGRP 

release) may be secondary to the alleviation of headache produced by cranial 

vasoconstriction.  Accordingly, it is tempting to suggest that vasoconstriction of 

cranial blood vessels, including arteriovenous anastomoses, is the most important 

effect of acutely-acting antimigraine drugs.  This suggestion gains weight when 

considering that: (i) sumatriptan poorly penetrates the central nervous system; (ii) the 

5-HT1B/1D receptor agonists, alniditan and IS159, which have little affinity for 5-ht1F 

receptors, are at least as effective as sumatriptan in aborting acute migraine attacks 

(Goldstein et al., 1996; Chaveau & Delaage, 1997; Dingemanse et al., 1999); and (iii) 

BIBN4096BS is reported to be effective in migraine based on its antagonism of 

vascular CGRP receptors (Edvinsson, 2003; Olesen et al., 2003a) and on its failure to 

block capsaicin-induced CGRP release (Chapter 2). 

Finally, our experimental findings support the contention that the therapeutic 

action of antimigraine compounds is mainly due to cranial vasoconstriction rather 

than inhibition of trigeminal CGRP release.  It would be interesting to investigate 

whether BIBN4096BS (like triptans) is capable of: (i) inhibiting CGRP release 

following electrical stimulation of the trigeminal system; and (ii) normalising the 

elevated plasma CGRP levels in migraine patients. 

6.8 Implications for future antimigraine therapy 

Based on epidemiology data and other lines of evidence (Mathew, 2001), it seems that 

people suffering from migraine headache worldwide are not adequately treated and 

there remains a significant unmet need in migraine care.  The real challenge to be 

faced in near future in migraine treatment is to: (i) diagnose migraine early; and (ii) 

deliver migraine-specific therapies (Brandes, 2002).  Regarding the latter, a crucial 

improvement should be aimed to avoid potent side effects such as coronary 

vasoconstriction (Villalón et al., 2002).  In this respect, the following possible 

avenues are being explored: (i) 5-HT1D receptor agonists; (ii) 5-ht1F receptor agonists; 

(iii) 5-HT7 receptor antagonists; (iv) antagonists at CGRP and substance P receptors; 

(v) agonists at specific α-adrenoreceptor subtypes; (vi) selective adenosine A1 

receptor agonists; (vii) NO synthesis inhibitors; and (viii) other possible avenues. 
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(I) 5-HT1D  RECEPTOR AGONISTS 

A series of isochroman-6-carboxamide derivatives, including PNU-109291, have been 

described as highly selective 5-HT1D receptor agonists (pKi: 5.2 and 9.0 at 5-HT1B and 

5-HT1D receptor, respectively) (Ennis et al., 1998).  PNU-109291 is devoid of carotid 

vasoconstrictor effects in the anaesthetised cat, but potently inhibits dural plasma 

extravasation in the guinea pig (Ennis et al., 1998).  Moreover, these 5-HT1D receptor 

agonists do not produce vasoconstriction in in vivo (canine external and internal 

carotid beds) (Centurión et al., 2001) or in vitro (cerebral arteries) (Bouchelet et al., 

2000) preparations.  More recently, it has been shown that PNU-142633 (congener) is 

ineffective in patients with migraine (Gómez-Mancilla et al., 2001).  Clearly, 

inhibition of dural plasma extravasation by itself is not predictive of antimigraine 

activity. 

5-HT1D receptors are found in the trigeminal sensory nerves and their ability 

to shut down firing is dependent on both drug efficacy and firing frequency; hence, 

the apparent failure of PNU-142633F to relieve migraine could be due to an 

insufficient efficacy at 5-HT1D receptors (Williamson & Hargreaves, 2001).  This 

strategy may still represent a viable option for migraine therapy, but the compound 

should lack activity at 5-HT1B receptors and should have an efficacy similar to 

sumatriptan at 5-HT1D receptors (Villalón et al., 2002). 

(II) 5-HT1F  RECEPTOR AGONISTS 

Two potent 5-ht1F receptor agonists, LY344864 (pKi: 6.3, 6.2 and 8.2 at 5-HT1B, 

5-HT1D and 5-ht1F receptor, respectively; (Johnson et al., 1997; Phebus et al., 1997) 

and LY334370 (pKi values: 6.9, 6.9 and 8.8 at 5-HT1B, 5-HT1D and 5-ht1F receptor, 

respectively (Johnson et al., 1997; Phebus et al., 1997) have been described.  Both 

compounds potently inhibit dural plasma protein extravasation (Johnson et al., 1997; 

Phebus et al., 1997), but are devoid of vasoconstrictor activity (Bouchelet et al., 

2000).  Together with the fact that SB224289, which displays little affinity at the 

5-ht1F receptor (Hagan et al., 1997), completely antagonises sumatriptan-induced 

external carotid vasoconstrictor effects (De Vries et al., 1998; Saxena et al., 1998), it 

is evident that the 5-ht1F receptor is not involved in the vasoconstrictor effects of 

sumatriptan and the second-generation triptans.  It is therefore implied that, if LY334370 

turns out to be effective in migraine at doses devoid of 5-HT1B/1D receptor interaction, the 
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mechanism of action will not be via cranial vasoconstriction.  In fact, it has recently been 

reported that LY334370 is clinically effective to abort a migraine attacks (Goldstein et 

al., 2001b).  However, it has to be emphasised that LY3334370 displayed antimigraine 

activity at doses that may interact with extracranial vasoconstrictor 5-HT1B receptors 

(Goldstein et al., 2001b).  In the absence of the importance of dural plasma protein 

extravasation (see above), further experiments will be needed to explain the efficacy 

of LY334370. 

(III) 5-HT7 RECEPTOR ANTAGONISTS 

Methysergide and lisuride, prophylactic antimigraine drugs, have high affinity for 

5-HT7 receptors (Hoyer et al., 1994).  In addition, it has been shown that 5-HT7 

receptors mediate vasodilator responses in several vascular tissues (Eglen et al., 1997) 

including the canine external carotid bed (Villalón et al., 1997).  Thus, it would be 

expected that selective antagonists at 5-HT7 receptors might have antimigraine 

properties, although this remains to be determined. 

(IV)  ANTAGONISTS AT CGRP AND SUBSTANCE P RECEPTORS 

Electrical stimulation of the trigeminal ganglion produces release of potent vasodilator 

peptides such as substance P and CGRP (Goadsby, 1993; Goadsby et al., 2002b).  

Further evidence suggests that during an attack of migraine an increase in plasma 

levels of CGRP is observed (Ashina et al., 2000).  The release of CGRP is blocked by 

dihydroergotamine and sumatriptan (Goadsby, 1993; Goadsby et al., 2002b), 

indicating that the blockade of this mechanism could be another strategy to develop 

antimigraine drugs.  Recently, it has been shown that the CGRP antagonist, 

BIBN4096BS, potently and dose-dependently inhibited the increases in facial blood 

flow induced by electrical stimulation of the trigeminal ganglion (Doods et al., 2000).  

These findings, in conjunction with the ability of BIBN4096BS to antagonise 

CGRP-induced vasorelaxation of the human temporal artery (Verheggen et al., 2002) 

and porcine carotid arteriovenous anastomoses (Kapoor et al., 2003a; Kapoor et al., 

2003b) strongly suggest that blockade of vascular CGRP receptors may have potential 

therapeutic usefulness in the treatment of migraine.  In addition, a new nonpeptide 

CGRP antagonist, SB-273779, which blocked the CGRP-induced hypotension in 

anaesthetised rats (Aiyar et al., 2001), represents an opportunity to analyse its 

potential antimigraine activity. 
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Lastly, it has been shown that lanepitant (Goldstein et al., 2001a) and 

RPR 100893-201 (Diener et al., 1995), very potent substance P (NK1) receptor 

antagonists, were not clinically effective in aborting migraine (Diener et al., 1995; 

Goldstein et al., 2001a), although they inhibited the neurogenic dural inflammation.  

Thus, these results suggest that blockade of NK1 receptors is not a fruitful strategy to 

relieve migraine. 

(V) AGONISTS AT SPECIFIC α-ADRENORECEPTOR SUBTYPES 

It has been shown that specific α1- and α2-adrenoceptor subtypes mediate 

vasoconstriction in the carotid circulation of anaesthetised dogs and pigs, implying 

that selective agonists at these receptors may be effective in aborting migraine attacks 

(Willems et al., 2003).  Considering the possibility of α1-adrenoceptor subtypes, it is 

reported that the α1B-adrenoreceptor subtype does not seem to play an important role 

in cardiovascular regulation (Willems et al., 2003). Thus, a selective α1B-adrenoceptor 

agonist may have advantages over the currently available acute antimigraine drugs, 

which all constrict the human isolated coronary artery (Maassen VanDenBrink et al., 

1999); significantly, in this context, α1B-adrenoceptors are not present in the latter 

vascular bed (Rudner et al., 1999).  The possible antimigraine efficacy of selective 

agonists at specific α2-adrenoceptor subtypes can be considered on the basis of our 

findings showing that α2C-adrenoceptors mediate canine external carotid 

vasoconstriction.  Moreover, α2C-adrenoceptors exclusively mediate the 

antinociceptive effect of α2-adrenoceptor agonists (such as clonidine) in rats (Khasar 

et al., 1995).  This property, together with the fact that these receptors mainly mediate 

vasoconstriction in both anaesthetised pigs (Willems et al., unpublished observations) 

and dogs (Willems et al., 2001), favours the potential usefulness of selective 

α2C-adrenoceptor agonists in migraine therapy (Willems et al., 2003).  Admittedly, the 

above findings are mainly based on the effects of antagonists and, therefore, it is 

crucial to develop potent and selective agonists at α1B- and α2C-adrenoceptor subtypes 

as potential antimigraine agents. 

(VI)  SELECTIVE ADENOSINE A1 RECEPTOR AGONISTS  

GR79236, a selective adenosine A1 receptor agonist, inhibits trigeminal nerve firing 

and calcitonin gene-related peptide release without producing vasoconstriction 
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(Goadsby et al., 2002b; Giffin et al., 2003).  Therefore, GR79236 may have 

therapeutic potential in migraine and it would be interesting to investigate in migraine 

patients 

(VII) NO SYNTHESIS INHIBITORS 

Several lines of evidence have shown that NO may play a pivotal role in migraine 

pain (Goadsby et al., 2002b).  Moreover, migraineurs are hypersensitive to 

nitroglycerin, and the NO donor nitroglycerin (glyceryl trinitrate) triggers genuine 

migraine attacks (Olesen et al., 1994).  Apart from potent vasodilating effects, NO: (i) 

mediates central processing of pain by interacting with central nervous system NMDA 

(N-methyl-D-aspartate) receptors (Hibbs et al., 1988; Kolesnikov et al., 1992); and 

(ii) causes CGRP release from perivascular nerve endings (Strecker et al., 2002; 

Strecker & Messlinger, 2003).  Therefore, a substance that inhibits NO production 

may be a useful in acute migraine treatment (Lassen et al., 1997; Goadsby et al., 

2002b).  This hypothesis was explored by studying the effect of NOS inhibitor, 

L-Na-methylarginine hydrochloride  (546C88) in migraine patients; the study reported 

that NOS inhibitor was effective in headache relief (Lassen et al., 1997).  However, 

the results are from a small group of patients and further clinical investigations are 

warranted to prove the efficacy of NOS inhibitors in migraine therapy. 

(VIII)  OTHER POSSIBLE AVENUES 

There are several agents that are explored for antimigraine potential. Among those: 

(i) civamide (chemically related to capsaicin) (Doggrell, 2001), a vanilloid receptor 

agonist (ii) neuroactive steroids (e.g., ganaxolone) (Ramadan, 2001); and  (iii) 

octreotide (Kapicioglu et al., 1997), a somatostatin analogue have shown promising 

results in clinical investigations. 

Finally, to attain a maximal therapeutic efficacy, the antimigraine compounds 

should act via several mechanisms (De Vries et al., 1999a).  However, an 

antimigraine agent, which elicits its effect on the trigeminal system without producing 

cranial vasoconstriction, may not be effective in acute migraine management.  

Therefore, the future goal is to focus more on the development of selective 

vasoconstrictor compounds with minor side effects. 
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6.9 Conclusion 

In conclusion, the results of the present thesis show that: (i) BIBN4096BS is a potent 

CGRP receptor antagonist devoid of important effects per se in the cardiovascular 

system; (ii) endogenous CGRP does not play an important role in regulating the basal 

vascular tone in anaesthetised rats and pigs; (iii) CGRP receptors are widely 

distributed in the cardiovascular system of anaesthetised rats; (iv) the antimigraine 

potential of BIBN4096BS involves CGRP receptor antagonism and (v) the therapeutic 

action of sumatriptan is mainly due to cranial vasoconstriction rather than trigeminal 

(CGRP release) inhibition. 
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7 SUMMARY 
7.1 Summary in English 

Chapter 1 is divided into three sections, namely: (i) migraine (Part I); (ii) the putative 

role of CGRP in migraine pathophysiology (Part II); and (iii) aims of this thesis (part 

III).   

Part I discusses important aspects involved in migraine pathophysiology.  Firstly, the 

historical perspective, epidemiology, clinical features and diagnostic criteria 

(ICHD’2004) of migraine have been described shortly.  Thereafter, based on the 

current developments in migraine research, the pathophysiology of migraine is 

explained.  Subsequently, the treatment methods (acute and preventive treatments) 

currently used to relieve migraine are discussed.  Lastly, the pharmacology and 

relevance of the currently used experimental models, which are believed to be 

predictive of therapeutic potential, have been described in detail.   

Part II gives an overview about CGRP, namely: (i) discovery; (ii) structure 

and distribution; (iii) biological functions; and (iv) receptors.  Details regarding CGRP 

receptor classification, structure, distribution and signal transduction mechanisms 

were given.  This was followed by the therapeutic potentials of CGRP receptor 

agonists and antagonists. Chapter 2 rounds off with: (i) the potential role of CGRP in 

the migraine pathophysiology; and (ii) newly developed CGRP receptor antagonists 

and their potential role as antimigraine drugs.  

Part III of Chapter 1 sets out the main aims of this thesis. 

 
In Chapter 2, we investigated the effects of BIBN4096BS on capsaicin-induced 

porcine carotid haemodynamics and on plasma CGRP release.  BIBN4096BS has 

recently been introduced as an experimental tool (antagonist) to investigate the CGRP 

receptor-mediated functional responses.  Our results in anaesthetised pigs show that: 

(i) i.c. administration of capsaicin dilated carotid arteriovenous anastomoses and 

arterioles, together with an increase in carotid pulsations and a narrowing of the A-V 

SO2 difference as well as an elevation of jugular venous plasma CGRP 

concentrations; and (ii) BIBN4096BS dose-dependently antagonised the changes in 

carotid haemodynamics and A-V SO2 difference caused by capsaicin, but it enhanced 

the capsaicin-induced increase in jugular venous plasma CGRP concentration.  Taken 

together, these results suggest that: (i) CGRP receptors are present (and operative) in 
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the carotid circulation; and (ii) BIBN4096BS behaves as an antagonist of 

capsaicin-induced carotid haemodynamic changes that are mediated via the release of 

CGRP.   

 
In Chapter 3, we have investigated the effects of BIBN4096BS on the cardiac output 

distribution and on α-CGRP induced porcine carotid haemodynamics in a model 

predictive of antimigraine activity.  In cardiac output experiments, BIBN4096BS 

(100, 300 and 1000 µg kg-1; i.v) treatment did not alter the systemic and regional 

haemodynamics.  In carotid haemodynamic experiments, BIBN4096BS 

dose-dependently antagonised α-CGRP-induced: (i) decrease in mean blood pressure; 

(ii) increase in carotid and arteriovenous anastomotic conductance; and (iii) A-V SO2 

difference.  The above findings indicate that: (i) BIBN4096BS behaves as a CGRP 

receptor antagonist on the porcine systemic and carotid circulation; and (ii) 

endogenous CGRP does not play a significant role in the regulation of basal vascular 

tone on the basis of the failure of BIBN4096BS to modify systemic and regional 

haemodynamics per se. 

 
Chapter 4 investigates in anaesthetised pigs the effects of sumatriptan on 

capsaicin-induced carotid haemodynamic changes and on plasma CGRP release.  It 

was demonstrated that infusions of capsaicin: (i) increased total carotid, arteriovenous 

anastomotic and capillary blood flows and conductances; (ii) narrowed the A-V SO2 

difference; and (iii) increased plasma CGRP concentrations.  These capsaicin-induced 

responses (except those in arteriovenous anastomotic blood flow and conductance 

where sumatriptan produces vasoconstriction) were not modified by sumatriptan.  Our 

results support the contention that the therapeutic action of sumatriptan is mainly due 

to cranial vasoconstriction rather than trigeminal (CGRP release) inhibition. 

 
In Chapter 5, we investigated in anaesthetised rats the effects of BIBN4096BS on 

α-CGRP-induced systemic and regional haemodynamic changes.  Our findings show 

that α-CGRP infusions: (i) decreased mean arterial blood pressure and increased heart 

rate as well as systemic vascular conductance; (ii) increased the vascular conductances 

to the heart, brain, gastrointestinal tract, adrenals, skin and skeletal muscles.  The 

above α-CGRP-induced responses were attenuated by BIBN4096BS.  Moreover, 

BIBN4096BS pre-treatment did not alter the baseline systemic and regional 
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haemodynamics.  These lines of evidence indicate that: (i) exogenously administered 

α-CGRP dilates the regional vascular beds via CGRP receptors on the basis of the 

antagonism produced by BIBN4096BS; (ii) endogenously produced CGRP does not 

play an important role in regulating the systemic and regional haemodynamics under 

resting conditions; and (iii) BIBN4096BS has less affinity for rat CGRP receptors. 

 

7.2 Samenvatting in het Nederlands (Summary in Dutch) 

Hoofdstuk Één is onderverdeeld in drie delen, namelijk: (i) migraine (Deel I); (ii) 

mogelijke rol van calcitonin gene-related peptide (CGRP) in migraine pathofysiologie 

(Deel II), and (iii) doelen van huidig proefschrift (Deel III).   

Deel I beschrijft belangrijke aspecten over het the ontstaan (pathofysiologie) 

van migraine. Historische perspectieven, epidemiologie, klinische aspecten en 

diagnostische criteria (IHS 2004) van migraine worden in het kort beschreven. 

Gebaseerd op recente bevindingen in migraine onderzoek, wordt de pathofysiologie 

en mogelijke behandelingen (acuut en preventief) van migraine beschreven. Ten slotte 

wordt de farmacologie en de mogelijk voorspelbare waarde van experimentele 

modellen in detail beschreven. 

Deel II geeft een beknopte uiteenzetting over CGRP, namelijk: (i) 

ontdekking; (ii) structuur en distributie; (iii) biologische functies; en (iv) receptoren. 

Details omtrent CGRP receptoren (classificatie, structuur, distributie en signaal-

transductie mechanismen) worden beschreven, gevolgd door mogelijk therapeutische 

mogelijkheden van CGRP receptor agonisten (receptor stimulatie) en antagonisten 

(receptor blokkade). Het hoofdstuk wordt afgesloten door een beschrijving van CGRP 

in migraine pathogenesis (het ontstaan) en nieuwe CGRP receptor antagonisten als 

mogelijke antimigraine drugs.   

Deel III beschrijft de doelen van het proefschrift. 

 
In Hoofdstuk Twee worden de hematologische (bloeddoorstroming) effecten van 

BIBN4096BS, alsmede de effecten op CGRP afgifte, na toediening van capsaicin 

(belangrijk ingrediënt van rode pepers) in genarcotiseerde varkens onderzocht. Het is 

recentelijk aangetoond dat BIBN4096BS kan worden gebruikt om de betrokkenheid 

van CGRP receptoren te onderzoeken. Onze resultaten laten zien dat: (i) lokale 

toediening van capsaicin in het halsslagader (carotid) vaatbed veroorzaakt relaxatie 
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(dilatatie) van halsslagader arterioveneuze anastomoses en arteriolen, alsmede een 

toename in halsslagader pulsaties, een verlaging van het verschil in arterieele en 

jugulair-veneuze zuurstofverzadiging (A-V SO2) en een verhoging van de veneuze 

plasma CGRP concentraties; en (ii) BIBN4096BS verminderde de hematologische 

capsaicin-geïnduceerde veranderingen in het halsslagader vaatbed en A-V SO2 

verschil. Echter, BIBN4096BS veroorzaakte een verhoging van CGRP plasma 

concentratie. De effecten van BIBN4096BS waren dosisafhankelijk. Deze resultaten 

suggereren dat BIBN4096BS een antagonist is van capsaicin-geïnduceerde carotid 

hematologische veranderingen, die veroorzaakt worden via de release van CGRP.   

 
In Hoofdstuk Drie hebben we de effecten bestudeerd van BIBN4096BS op de 

distributie van de cardiac output, alsmede op humaan α-CGRP geïnduceerd 

hematologische effecten in een varkensmodel met voorspellende waarde voor 

migraine activiteit. BIBN4096BS toediening (100, 300 and 1000 µg kg-1; i.v) 

veroorzaakte geen systemisch of regionaal hematologische veranderingen in de 

cardiac output experimenten. Echter, in de carotid experimenten veroorzaakte 

BIBN4096BS een dosisafhankelijke verlaging van de α-CGRP geïnduceerde: (i) 

verlaging in bloeddruk (hypotensie); (ii) verhoging in de conductance van het 

halsslagader vaatbed en arterioveneuze anastomoses; en van het (iii) A-V SO2 

verschil. Bovengenoemde bevindingen suggereren dat: BIBN4096BS een CGRP 

receptor antagonist is in zowel het systemische als halsslagader circulatie in varkens; 

en dat (ii) endogeen (lichaamseigen) CGRP geen belangrijke rol speelt in de regulatie 

van de basaal vasculaire tonus, omdat BIBN4096BS per se geen systemische of 

regionale veranderingen teweegbracht.  

 
Hoofdstuk Vier onderzocht de mogelijke effecten van het veel gebruikte antimigraine 

middel sumatriptan op de capsaicin-geïnduceerde veranderingen in 

bloeddoorstroming en systemische CGRP afgifte in het halsslagader vaatbed van 

genarcotiseerde varkens.  Toediening van capsaicin veroorzaakte: (i) een toename in 

halsslagader vaatbed bloeddoorstroming (en conductance) en in corresponderende 

distributie (arterioveneuze anastomoses en capillaire bloedvaten); (ii) een verlaging 

van het A-V SO2 verschil; en (iii) een verhoging van plasma CGRP concentraties. 

Deze capsaicin-geïnduceerde effecten [behalve die in arterioveneuse anastomotische 

bloeddoorstroming en conductance, waar sumatriptan een constrictie (=samentrekken 



Summary Chapter 7 

146 
 
 

van bloedvaten) veroorzaakt] bleven onveranderd na toediening van sumatriptan. 

Onze resultaten bevestigen de hypothese dat de therapeutische effectiviteit van 

sumatriptan in migraine wordt voornamelijk veroorzaakt door een selectieve craniële 

(in halsslagader circulatie) vasoconstrictie en niet (of in minder mate) door de 

remming van CGRP afgifte uit (trigeminal) zenuwuiteinden. 

 
In Hoofdstuk Vijf hebben we de effecten van BIBN4096BS bestudeerd op de 

systemisch en regionaal hematologische veranderingen na toediening van humaan 

α-CGRP in genarcotiseerde ratten. Onze bevindingen laten zien dat α-CGRP 

toediening produceert: (i) hypotensie en tachycardie, alsmede een verhoging van de 

systemisch vasculaire conductance (bloeddoorstroming gecorrigeerd voor 

bloeddrukveranderingen); (ii) een toename in regionaal vasculaire conductance naar 

verschillende goed doorbloede weefsels/organen, inclusief het hart, hersenen, darmen, 

huid en skeletspieren. Bovengenoemd α-CGRP-geïnduceerde effecten waren 

verminderd door BIBN4096BS.  Bovendien, behandeling van de ratten met 

BIBN4096BS veroorzaakte geen verandering in systemische and regionale 

hematologische parameters (bijvoorbeeld bloeddoorstroming en hartritme) per se.  

Deze resultaten leveren bewijs dat: (i) exogeen (niet-lichaamseigen) toegediende α-

CGRP produceert dilatatie (relaxatie) in specifieke vaatbedden via CGRP receptoren; 

(ii) endogeen (lichaamseigen) geproduceerd CGRP speelt geen belangrijke rol in 

basaal systemisch of basaal regionaal hematologische parameters in genarcotiseerde 

ratten; en (iii) BIBN4096BS heeft een lagere affiniteit voor rat CGRP receptoren in 

vergelijking humane CGRP receptoren. 
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8.4 List of abbreviations 

°C: Degrees Celsius 

4991w93: 4-[3-(trans-3-dimethylaminocyclobutyl)-1H-indol-5-

ylmethyl]-(4S)-oxazolidi n-2-one 

546C88: L-Na-methylarginine hydrochloride   

5-HT: 5-hydroxytryptamine 

a.u.: Arbitary units 

AD: Anno Domini 

ATP: Adenylate tri phosphate 

A-V SO2 difference: Difference between arterial and jugular venous oxygen 

saturations 

BC: Before Christ 

BIBN4096BS: 1-Piperidinecarboxamide, N-[2-[[5-amino-1-

[[4-(4-pyridinyl)-1-piperazinyl]carbonyl]pentyl]amino]-

1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-

4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl) 

cAMP: Cyclic adenosine monophosphate 

cDNA: Complimentry DNA 

Ce: Cerium  

c-Fos: FBJ osteosarcoma oncogene 

cGMP:  Cyclic guanosine 5’- monophosphate 

CGRP: Calcitonin gene related peptide 

CNS: Central nervous system 

COL-29: Human colonic epithelium-derived cell line 

Compound 1: (4-(2-Oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-

1-carboxylic acid [1-(3,5-dibromo-4-hydroxy-benzyl)-

2-oxo-2-(4-phenyl-piperazin-1-yl)-ethyl] -amide) 

CP122288: 5-methylaminosulphonylmethyl-3-(N-methoxy-

pyrrolidin-2R-yl-methyl)-1H-indole 

CRLR: Calcitonin receptor-like receptor 

Cys(ACM)2,7]hα-CGRP: [acetamidomethyl-cysteine2,7]CGRPα; 

Cys(Acm)2,7hα-CGRP:  [acetamidomethyl-cysteine2,7]CGRPα 
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DNA: deoxy ribonucleic acid 

e.g.: For example 

et al.: and colleagues 

ET: Endothelin 

FBJ: Finkel-Biskis-Jinkins 

FHM: Familial hemiplegic migraine 

GPCR: G-protein coupled receptor 

GR127935: N-[methoxy-3-(4-methyl-1-piperazinyl)phenyl]-

2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl) 

[1,1-biphenyl]-4-carboxamide hydrochloride 

GR79236: N-[(2-methylphenyl)methyl]adenosine (metrifudil), 2-

(phenylamino)adenosine (CV1808), 

h: Hour(s) 

HCA-7: Human colonic epithelium-derived cell line 

HEK293: Human embryonic kidney cells 

i.c.: Intracarotid route of administration 

i.m.: Intramuscular 

i.p.: Intraperitoneal route of administration 

i.v.: Intravenous route of administration 

i-CGRP: immunoreactive CGRP 

ICHD: International classification of headache disorders 

IHS: International Headache Society 

IS159: 3-(2-aminoethyl)-5-[acetamidyl-3-(4-hydroxyphenyl)-

propionamidyl-acetamidyl-oxy]-indole 

IUPHAR: International Union of Pharmacology Committee on 

Receptor Nomenclature and Drug Classification  

K+: Potassium ions 

KeV: Kilo electro-volt (radioactive γ-radiation) 

kg: Kilogram(s) (103 gram) 

KIU: Kininogenase inhibitor units 

L6: A cell line representative of skeletal muscle 

LY334370: 4-fluoro-N-[3-(1-methyl-4-piperidinyl)-1H-indol-5-yl]-

benzamide 
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LY344864: N-[3-(dimethylamino)-2,3,4,9-tetrahydro-1H-carbazol-

6-yl]-4-fluorobenzamide 

min: Minute(s) 

ml: Milliliter(s) 

mmHg: Millimeter mercury 

MRI: Magnetic resonance imaging 

mRNA:  messenger ribonucleic acid 

n: Number of animals used 

NaoH: Sodium hydroxide 

Nb: Niobium 

NIHES: The Netherlands Institute for Health Sciences 

NK: Neurokinin 

nM: Nanomolar 

NMDA: N-Methyl-D-aspartate 

NO: Nitric oxide 

NOS: Nitric oxide synthase 

NSAID: Non-steroidal antiinflammatory drugs 

NUFFIC: The Netherlands Organisation for International 

Cooperation in Higher Education  

pA2: Negative logarithm to base 10 of the molar 

concentration of the antagonist that makes it necessary 

to double the concentration of the agonist needed to 

elicit the original submaximal response. 

pg: Picogram 

pH: Negative logarithm to base 10 of the hydrogen (H) 

concentration 

pKi: Negative logarithm  of a concentration of a competing 

ligand in a competition assay that would occupy 50% of 

the receptors in no radioligand would be present 

pM: Picomolar 

PNU109291: (s)-3,4-dihydro-1-ethyl]-N-methyl-1H-2-benzopyran-6-

carboximide 
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PNU-142633: (s)-3,4-dihydro-1-[2-[4-[4-aminocarbonyl) phenyl]-1-

piperazinyl]ethyl]-N-methyl-1H-2-benzopyran-

6-carboximide 

PNU-142633F: (s)-3,4-dihydro-1-[2-[4-[4-aminocarbonyl) phenyl]-1-

piperazinyl] ethyl]-N-methyl-1H-2-benzopyran-

6-carboximide 

poly A: Polyadenylation 

RAMP: Receptor activity modifying protein 

RBI: Research Biochemicals International (SIGMA-Aldrich) 

RCP: Receptor component protein; 

RIA: Radioimmunoassay 

RP 67580: 2-[1-amino-2-(2-methoxy phenyl) ethyl]-7,7 diphenyl-4 

perhydro-isoindolone-(3aR,7aR) 

RRA: Radioreceptor assay 

Ru: Ruthenium  

S.D.: Standard deviation 

s.e.m.: Standard error of the mean 

SB-(+)-273779: [N-methyl-N-(2-methylphenyl)-3-nitro-4-(2- 

thiazolylsulfinyl)nitrobenzanilide] 

SB224289: 2,3,6,7-tetrahydro-1’-methyl-5-[2’-methyl-4’(5-methyl-

1,2,4-oxadiazol-3-yl)biphenyl-4-carbonyl] furo [2,3-f] 

indole-3-spiro-4`-piperidine hydrochloride 

Sc: Scandium 

SK-N-MC cells: Human neuroblastoma cell line; 

Sn: Tin  

SPSS: Statistical Package for Social Sciences 

SVC: Systemic vascular conductance 

U.S.A.: United States of America 

VIP: Vasoactive intestinal peptide 

vs.: Verses 

µg: Microgram (10-6 g) 
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