
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Engineering the Polyketide Cell Factory

Mølgaard, Louise; Patil, Kiran Raosaheb; Thykær, Jette; Mortensen, Uffe Hasbro; Eliasson Lantz, Anna

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Mølgaard, L., Patil, K. R., Thykær, J., Mortensen, U. H., & Eliasson Lantz, A. (2012). Engineering the Polyketide
Cell Factory. Kgs. Lyngby: Technical University of Denmark (DTU).

http://orbit.dtu.dk/en/publications/engineering-the-polyketide-cell-factory(c658e186-8a24-4827-abd8-aca5e06be13e).html


 

 

Engineering the Polyketide Cell Factory 

 

 

 

Louise Mølgaard 

Ph.D. Thesis 

June 2012 

 

Center for Microbial Biotechnology 

 

Department of Systems Biology 



  



 

Preface 

The work presented in my Ph.D. thesis was carried out from March 2008 to June 2012 at 

Center for Microbial Biotechnology at DTU Systems Biology. The work was supported by a 

grant from The Danish Council for Independent Research, Technology and Production 

Sciences (09-064240). 

 

The project was supervised by Associate Professor Uffe Hasbro Mortensen and Assistant 

Professor Kiran Raosaheb Patil and I am thankful for their guidance and support over the 

years of my Ph.D. Unfortunately, Kiran Raosaheb Patil had to leave CMB before the 

completion of my project, but has stayed involved from his work at EMBL, Heidelberg. I 

owe thanks to Assistant Professor Jakob Blæsbjerg Nielsen for guidance in molecular biology 

of A. nidulans. I have been fortunate to have the invaluable support of Associate Professor 

Jette Thykaer during the last part of my Ph.D. both in reviewing parts of the thesis as well as 

guidance in fermentation technology. Furthermore, Associate Professor Anna Eliasson Lantz 

has provided guidance for the paper on image analysis as a platform for microbial screening 

and I owe her great thanks as well. 

 

Beyond this I have had invaluable assistance both from technical staff and fellow Ph.D. 

students and Post Docs. I would especially like to thank Tomas Strucko, Line Due Buron, 

Lars Poulsen, Hanne Jakobsen, Martin Engelhard Kogle, Martin Nielsen, Jette Mortensen, 

Elisabeth Krøger and Tina Johansen for their help. I have supervised a number of students 



during my Ph.D. of those Stine Prehn Lauritzen, Sebastian Wingaard Thrane and Niels Bjørn 

Hansen have contributed to the work presented in this thesis. My office mates Ana Rita 

Brochado and Anna Lena Heinz have also been invaluable for discussions and help through 

ups and downs. In addition I owe a great thanks to all of the people working at CMB for 

making it a wonderful place to be.  

 

I am eternally grateful to my friends and family for their support over the years. I would not 

have finished this work if it were not for the loving support from my son Alexander and 

husband Mikkel.          

 

 

 

  



5 

 

Abstract  

Natural products constitute one of the largest sources of therapeutics known to mankind. 

Among the natural products polyketides such as erythromycin (antibiotic) and lovastatin 

(cholesterol lowering) have long proven their immense value to patients around the world. 

Polyketides are naturally produced by plants, fungi and bacteria. However, the natural 

producers often do not achieve commercial titers of the polyketide therapeutic. Thus the 

natural production must be improved. This can be done by random mutagenesis or 

heterologous expression of the polyketide gene cluster resulting in production sufficient 

titers. To improve the production of polyketides biological engineering principles have been 

applied for the development and engineering of microbial polyketide cell factories. 

 

The two biological hosts used for heterologous polyketide production were Aspergillus 

nidulans and Saccharomyces cerevisiae. Both organisms have well-known genetic tools 

available for gene targeting and heterologous expression. It has been the aim to create a stable 

expression platform with all genes integrated in the genome. This has been achieved through 

the use of two advanced genetic engineering systems for A. nidulans and S. cerevisiae. Both 

systems have been aided by USER™ cloning vectors that were developed for efficiently 

generating large amounts of gene targeting substrate.  Upon integration the targets should 

lead to high expression of the polyketide synthase (PKS) as well as the activating 

phosphopantetheinylase (PPTase). This versatile vector system can easily be used for 

expression of other polyketides of interest as well as extended to express whole gene clusters. 
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After achieving proof of principle in terms of expression, the polyketide cell factory must be 

optimized. The optimization can be achieved through the use of adaptive evolution, random 

mutagenesis and screening as well as metabolic engineering.  

 

Firstly, in silico guided metabolic engineering was used as a tool to direct metabolism 

towards higher levels of 6-MSA production in A. nidulans. 6-MSA was stably expressed in 

the A. nidulans genome and bioreactor cultivations resulted in high titers of 6-MSA. The 

genome scale model of A. nidulans and the optimization algorithm OptGene was used to 

predict a knockout strategy designed to increase the production of 6-MSA in A. nidulans. 

Among the predicted targets deletion of the NADPH dependent glutamate dehydrogenase 

(gdhA) was selected as it should result in greater availability of NADPH for polyketide 

production. The deletion resulted in decreased growth rate of A. nidulans, which was partially 

rescued by the insertion of an extra copy of the NADH dependent glutamate dehydrogenase 

(gdhB). Physiological characterization in bioreactors revealed that the yields of 6-MSA on 

biomass increased albeit not significantly. As a result of this it may be argued that there is 

still more work to be done in terms of model building in A. nidulans. 

 

Utilizing another well-established cell factory S. cerevisiae the capabilities of a novel gene 

amplification system was demonstrated. The system was aimed at creating up to ten copies of 

a gene integrated in specific targeting sites of the S. cerevisiae genome. First, large amounts 

of gene targeting substrates were generated through the construction of a USER® vector. 

Through the use of one, two and four copy amplification strains the stable production of 6-

MSA was established. The 10.5 kb fragment of genes was successfully amplified. The 

constructed strains were evaluated in Erlenmeyer flasks. The results showed that the copy 
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number of the genes and the 6-MSA titer correlated well. This indicates that even more 

copies of the genes for 6-MSA production could yield even higher titers. Thus the acyl-CoA 

substrates do not appear to be limiting the production of 6-MSA.  

 

Construction of a cell factory and engineering it to increase production is one approach to 

obtaining an efficient cell factory. To aid the strain development further, it was sought to 

demonstrate the usefulness of a microtiter plate based cultivation system that uses CCD-

flatbed scanners and image analysis as a tool to follow microbial growth and product 

formation. This CCD-flatbed scanning platform can be used for both process optimization as 

well as screening libraries of mutants generated through random mutagenesis. The 

experiments validated the CDD-flatbed scanning platform as a tool for quantifying microbial 

biomass from both bacteria and yeasts. Furthermore, the platform can be used to detect onset 

of production as well as volumetric productivities of the colored polyketide actinorhodin in 

Streptomyces coelicolor. It is a system that can be used in industrial settings for optimizing 

cell factory conditions. The use of microtiter plates makes it high-throughput and inexpensive 

method.   

 

Thus in conclusion significant steps have been taken towards engineering an effective 

polyketide cell factory.   
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Dansk Resumé 

Naturstoffer udgør en af de største kilder til lægemidler. Blandt naturstofferne har polyketider 

såsom erythromycin (antibiotikum) og lovastatin (kolesterolsænkende) længe bevist deres 

enorme værdi for patienter over hele verden. Polyketider produceres naturligt af planter, 

svampe og bakterier. Men de naturlige producenter opnår ofte ikke kommercielle 

koncentrationer af medicinske polyketider. Derfor må den naturlige produktion ofte forbedres 

ved mutagenese eller heterolog ekspression af polyketid-generne for at opnå en produktion 

med tilstrækkelige koncentrationer. For at forbedre produktionen af polyketider er 

bioteknologiske principper blevet anvendt til udvikling og konstruktion af forskellige 

polyketid cellefabrikker. 

 

Først og fremmest blev de to biologiske værtsstammer Aspergillus nidulans og 

Saccharomyces cerevisiae anvendt til heterolog polyketid produktion. Begge organismer har 

kendte genetiske værktøjer til rådighed til ”gene targeting” og heterolog ekspression. Det har 

været målet at skabe en stabil ekspressions platform med alle gener integreret i genomet. 

Dette er opnået ved anvendelse af to avancerede gensplejsningsteknikker brugt på A. nidulans 

og S. cerevisiae. Begge systemer er blevet hjulpet af USER ™ kloningsvektorer, som blev 

udviklet for effektivt at frembringe store mængder af ”gene targeting” substrater og høj 

ekspression af polyketidsyntase (PKS) samt den aktiverende phosphopantetheinylase 

(PPTase). Dette alsidige system kan bruges til ekspression af andre interessante polyketider 

samt udvides til at udtrykke hele genklynger. 
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Efter at have opnået høj og stabil ekspressions niveau af polyketidet, skal cellefabrikken 

optimeres yderligere. Optimering kan opnås ved anvendelse af adaptive evolution, 

mutagenese og screening samt ”metabolic engineering”. 

 

For det første blev in silico hjulpen ”metabolic engineering” anvendt som et værktøj til at 

styre metabolismen mod højere niveauer af 6-MSA produktion i A. nidulans. 6-MSA blev 

stabilt udtrykt i A. nidulans genomet og bioreaktor dyrkninger resulterede i høje titre af 6-

MSA. Brugen af genom skala modellen af A. nidulans og optimerings algoritmen OptGene 

førte til udvikling af en knockout strategi, der skulle øge produktionen af 6-MSA i A. 

nidulans. Blandt kandidaterne forudsagt af modellen blev det valgt at deletere NADPH 

afhængig glutamat dehydrogenase  (gdhA) genet. Dette burde resultere i større tilgængelighed 

af NADPH til polyketid produktion. Deletionen resulterede i nedsat væksthastighed af A. 

nidulans, som blev delvist reddet ved indsætning af en ekstra kopi af NADH afhænging 

glutamat dehydrogenase (gdhB). Fysiologisk karakterisering viste, at udbytterne af 6-MSA 

per biomasse blev forøget dog ikke væsentligt. Som et resultat af dette kan det hævdes, at der 

stadig er mere arbejde at gøre i form af modelkonstruktion i A. nidulans. 

 

Anvendelse an en anden veletableret cellefabrik S. cerevisiae viser kapaciteten af et nyt gen 

amplifikationssystem. Systemet sigter mod at skabe op til ti kopier af et gen integreret 

specifikke steder i S. cerevisiae genomet. Først blev store mængder af ”gene targeting” 

substrater frembragt ved konstruktionen af en USER ® vektor. Ved anvendelse af en, to og 

fire kopier af amplifikations-stammerne blev stabil produktion af 6-MSA etableret. 10.5 kb 

fragmentet blev succesfuldt amplificeret. De konstruerede stammer blev evalueret i 

Erlenmeyerkolber. Resultaterne viste, at kopitallet af gener og 6-MSA titer korrelerede godt. 
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Dette indikerer, at endnu flere kopier af generne kan give endnu højere titere. Således virker 

det ikke som om Acyl-CoA substraterne er den begrænsende faktor i biosyntesen af 6-MSA. 

 

Konstruktion af en cellefabrik og ”metabolic engineering” for at øge produktionen, er en 

metode til at opnå en effektiv cellefabrik. For at hjælpe stammeudviklingen yderligere har 

man søgt at påvise anvendeligheden af en mikrotiterplade baseret dyrkningssystem, der 

anvender CCD-flatbedscannere og billedanalyse som et værktøj til at følge mikrobiel vækst 

og produktdannelse. Denne CCD-flatbedscanning platform kan anvendes til både stamme 

optimering samt screening af biblioteker af mutanter genereret gennem mutagenese. 

Forsøgene validerede CDD-flatbedscannings platformen som et redskab til kvantificering af 

mikrobiel biomasse fra både bakterier og gær. Endvidere kan platformen anvendes til at 

detektere starten af produktionen såvel som volumetriske produktiviteter af det farvede 

polyketid actinorhodin i Streptomyces coelicolor. Det er et system, der kan anvendes i 

industrien til optimering af cellefabrik betingelser, hvor ”high-throughput” er afgørende. 

 

Som konklusion er betydelige skridt taget mod konstruktion af en effektiv polyketid 

cellefabrik.   
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Overview of the Thesis 

This thesis represents a wide body of work that has touched upon many disciplines within 

metabolic engineering. Thus the reader is guided through the many interesting disciplines that 

have come together to fill this thesis. This overview aims at setting the stage for how the 

projects that have resulted in this thesis complement each other in providing insights into the 

process of engineering a polyketide cell factory.  

 

Discovering natural products has long been the goal of the pharmaceutical industry as well as 

academic research. When new natural product clusters have been discovered the next 

challenge becomes to establish a production process that enables the eventual purification and 

formulation of the product to be used as therapeutics. Along this road there are many 

challenges to be met. First of all, the decision of which organism to use as a production 

system must be made. Should one rely on the natural host or make the decision to express the 

polyketide in a heterologous host. If one chooses the heterologous host one is dependent on 

knowledge and skills in molecular biology to accomplish this goal. It is not a trivial goal as 

there are many choices to be made on the road to optimality. Beyond that one needs methods 

to characterize the strains in order to evaluate the productivity and growth behavior and 

optimize the production even further. On top of that the use of in silico model guided 

approaches can lead to further insights into how metabolism can be adjusted towards a higher 

productivity. These subjects are covered in chapter 1 and 2. 

   

Among natural products the polyketides are the most marvelous structures. They represent a 

diversity that continues to grow and that provides us with many fascinating structures. 
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Among them 6-methyl-salicylic acid constitutes a comparatively small model polyketide that 

is thus an ideal candidate for scientific endeavors. The polyketides and in particular 6-MSA 

will be described in chapter 3.  

 

In chapter 4 the construction of a polyketide cell factory in A. nidulans for the production of 

6-MSA is described. In an effort to guide metabolism towards higher productivity of 6-MSA 

in A.nidulans an in silico guided modeling approach was applied.  

 

 A novel gene amplification system for S. cerevisiae was applied for establishing stable 6-

MSA production. The system is useful for high and stable production of many biological cell 

factory products. The model polyketide 6-MSA was used a way to test the applicability of 

this novel gene amplification system. The construction and evaluation of this cell factory is 

described in chapter 5.  

 

A fascinating microtiter based cultivation platform using CCD-scanning and image analysis 

is presented in chapter 6. The platform is valuable for discovering novel polyketides through 

the use of different conditions or combinations of strains and to evaluate mutant libraries. The 

system can monitor growth and metabolite formation in yeast and bacteria. It provides a 

flexible and robust framework for testing many cultivation conditions, large mutant libraries 

and evaluating colored product formation.   
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Chapter 1 

From Product to Production  

Many of the compounds that are used in medicine today were originally produced as natural 

compounds by bacteria, fungi and plants (Newman and Cragg, 2007; Newman, 2008). Some 

of these compounds such as the immunosuppressant mycophenolic acid are still produced in 

the original host. One of the most famous examples is the non-ribosomal peptide penicillin 

that during and after the Second World War saved countless lives in the fight against 

bacterial infections (Rolinson, 1998). Since then many more compounds have been 

discovered. Often it is analogs of the natural product that end up as therapeutics with a 

stronger effect or less toxicity to humans. Examples of natural product analogs include 

analogs of penicillin, tetracycline and lovastatin (Sheehan and Henery-Logan, 1959; Xie et 

al., 2006; Pickens and Tang, 2009). 

 

One class of compounds that has yielded many therapeutics is the polyketides (PK). Some 

examples of polyketides are the antibiotics erythromycin, tetracycline and rifamycin. The 

immunosuppressants tacrolimus and rapmycin are also polyketides. One polyketide that has a 

large market value is the cholesterol lowering agent lovastatin (Weissman, 2009). An 

estimate from 2009 states that on average polyketide derived medicines have annual sales 

above US$ 20 billion (Weissman, 2009). Some polyketides have also been found to be quite 
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toxic such as the polyketide derived aflatoxin and patulin and they are thus also of some 

health concern to humans (Weissman, 2009). Structures of common polyketides can be seen 

in figure 1. 

 

 
  

Patulin 

(Toxin 

Actinorhodin 

(Antibiotic) 

Aflatoxin 

(Mycotoxin) 

 
 

Lovastatin 

(Cholesterol lowering agent) 

Amphotericin 

(Antifungal) 

 

 
 

6-MSA 

(Antibiotic) 

Pederin 

(Anti-cancer) 

Erythromycin 

(Antibiotic) 
Figure 1 The structures of different polyketides in parenthesis are given the significant properties of the polyketide 

(GenomeNet, 2012).  
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There are various ways of establishing production of polyketides, but there are three initial 

steps that must be overcome as illustrated in figure 2. First of all the polyketide compound 

most be discovered and the genes responsible for the production of the polyketide identified. 

Then through careful analysis possible host strains can be selected and an initial production 

established. Thereby establishing proof of concept in an initial cell factory.   

 

Figure 2 The figure illustrates the typical flow in the first steps of natural product discovery. The first scientific endeavor 

goes to actually discover a new compound that may be of therapeutic value. Beyond this one most select an appropriate 

production method and hopefully establish proof of concept in terms of being able to produce the natural product. 

 

 

Discovery of Polyketides 

Due to the many significant medical effects of polyketides the hunt for new polyketide 

derived compounds continues. One significant reason is the ever increasing resistance of 

bacteria to antibiotics. There are several recent advances in the technology that allows us to 

take a better guess at where the next natural compound might be found. 

 

In order to aid the discovery of new secondary metabolites from newly sequenced 

microorganisms, the bioinformatics tool antiSMASH was developed (Medema et al., 2011). 

It is designed to identify potential polyketide clusters from DNA sequences. Another 
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approach to the discovery of natural product pathways is a proteomics approach called PrISM 

(Bumpus et al., 2009).  The method takes advantage of the fact that most enzymes found in 

natural product biosynthesis are quite large. The method analyses the biggest proteins from a 

gel of culture broths from various organisms (including non-sequenced) via mass 

spectrometry (Bumpus et al., 2009). Once a protein has been identified the corresponding 

gene cluster is amplified by PCR and sequenced (Bumpus et al., 2009). Furthermore a 

database called ThYme with tertiary structures of polyketide synthase domains has been 

constructed that potentially can help identify the active site and catalytic residues of newly 

discovered PKSs (Cantu et al., 2011). Furthermore, the advancements in mass spectrometry 

have made the detection of natural products produced in very low quantities easier. 

 

An impressive amount of polyketide clusters have been found among the Aspergilli and 

streptomyces genomes. In Aspergillus nidulans 27 PKS related genes have been identified 

through sequence analysis, but only a fraction have been linked to a product (Keller et al., 

2005; Sanchez et al., 2008; Schroeckh et al., 2009). In addition Aspergillus oryzae and 

Aspergillus fumigatus are predicted to contain 30 and 14 PK gene clusters respectively 

(Keller et al., 2005). Among the streptomycetes S. coelicolor contains 21 natural product 

clusters and S. avermitilis contains 25 natural product clusters (Sanchez et al., 2008). 

   

It has been demonstrated that the polyketide clusters are subject to regulation and thus 

identification of a given polyketide requires activation of the gene cluster. There are generally 

two types of regulators the ones that act on several genes known as global regulators and 

local regulators that belong to a specific gene cluster. One example of a global regulator in A. 

nidulans is the LaeA regulator that has been shown to regulate sterigmatocystin, penicillin 
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and lovastatin gene expression (Bok and Keller, 2004). In addition the polyketides aspyridone 

A and B were discovered based on the inducible expression of a pathway specific regulator 

that was integrated ectopically into the genome (Bergmann et al., 2007). The induction by a 

transcription factor of Asperfuranone biosynthesis in Aspergillus nidulans is yet another 

example (Chiang et al., 2009). Furthermore, two new Xanthones were discovered in A. 

nidulans based both on genome sequencing and deletion studies (Sanchez et al., 2011). 

Another interesting way of triggering polyketide production was demonstrated by Schroeckh 

et al. in the cocultivation of S. hygroscopicus and A. nidulans that lead to the activation of 

two polyketide gene clusters (Schroeckh et al., 2009). Lastly, the use of different media to 

screen for induced polyketide production is another example. This approach has been shown 

to induce the production of the polyketide containing meroterpenoids (Frisvad and Samson, 

2004; Nielsen et al., 2011).   

 

6-Methyl Salicylic Acid 

The small model polyketide 6-methyl salicylic acid (6-MSA) has generated significant 

research attention. To date several natural producers of 6-MSA have been discovered. The 

production of 6-MSA in various fungal extracts has been studied since the 1950´s (Birch et 

al., 1955). It was first discovered from the fungus penicillium patulum, where it is further 

converted into patulin. Patulin is a toxic compound that is considered a dangerous food 

contaminant and is produced by many fungi as listed in table 1. There are thus limits both in 

the EU and the US on the amount of patulin allowed in food from e.g. apples such as juices 

and baby food (Puel et al., 2010). 
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Table 1 Species that are known to produce patulin and thus also 6-MSA (Puel et al., 2010). 

Producers of Patulin  

Aspergillus A. clavatus, A. giganteus, A. longivesica 

Penicillium P. carneum, P. carneum, P. clavigerum, P. concentricum, P. coprobium, P. 

dipodomyicola, P. expansum, P. glandicola, P. gladioli, P. griseofulvum, P 

marinum, P. paneum, P. scerotigenum, P. vulpinum.  

Other Byssochlamys nivea, Paecilomyces saturates 

 

The gene encoding the methyl salicylic acid synthase (MSAS) has been identified as the msas 

gene from P. patulum (Beck et al., 1990). Later the gene was also sequenced from P. urticae 

(Wang et al., 1991). Recently it has been sequenced from A. clavatus and was identified as 

the PatK gene (Artigot et al., 2009). P. chrysogenum, Talaromyces stipitatus and Aspergillus 

terreus contain clusters similar to the patulin cluster in P. clavatus, but have not been 

identified as patulin producers (Puel et al., 2010). In the case of A. terreus the gene AtX 

encodes the MSAS which has been verified by heterologous expression in A. oryzae (Fujii et 

al., 1996; Varga et al., 2005). In A. terreus however it has been found that 6-MSA is needed 

as a precursor for terreic acid biosynthesis and thus this may be the underlying reason behind 

6-MSA synthesis in A. terreus (Read et al., 1969). A study of inter kingdom transfer of 

polyketides also identified a homologous gene for 6-MSA synthesis in Aspergillus niger XM 

001402371 and Actinomadura madurare  AY271660 (Schmitt and Lumbsch, 2009). 

Likewise lichenized ascomycetes have through sequence analysis been identified as potential 

6-MSA producers (Schmitt et al., 2008). Furthermore a msas like gene was found in 

Aspergillus westerdijkiae and showed to be involved in aspyrone and isoasperlactone 

biosynthesis (Bacha et al., 2009).  

 

When new polyketides have been discovered the next step is to find a suitable production 

method as well as optimizing the productivity and yields.  
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Selection of a Cell Factory 

Once a polyketide has been discovered picking the right production method is important. As 

polyketides are large compounds chemical synthesis is often very difficult making the use of 

microorganisms as biological cell factories the method of choice. In this respect the first 

challenge is which cell factory to use. One option is to use the native host. Alternatively, 

when the gene clusters responsible for the production of a specific polyketide are known, 

they can be expressed in a heterologous host for production. Picking the right heterologous 

host for polyketide genes presents a challenge. Some examples of industrially used cell 

factories and the product they produce are given in table 2.  

Table 2 Examples of different cell factories that are used for biopharmaceutical and chemical productions in the industry 

(modified from Papini et al.) (Papini et al., 2010).  

Product Cell Factory 

Biopharmaceuticals 

Anticoagulant (tPA) CHO Cells 

Insulin S. cerevisiae 

Insulin E. coli 

Human growth hormone E. coli 

Recombinant vaccine against Hep B S. cerevisiae 

Monoclonal antibody based product CHO Cells 

  

Industrial Biotechnology Products 

Citric Acid  (organic acid) A. niger 

L-lysine  (amino acid) C. glutamicum 

Penicillin  (antibiotic) P. chrysogenum 

α-Amylases (enzyme) A. oryzae 

1,3 Propane diol (polymer) E. coli 

 

The most commonly used cell factories are mammalian cells (e.g. CHO cells), bacteria (e.g. 

E. coli) and fungi (e.g. yeast and Aspergilli). Mammalian cells are mainly used for 

biopharmaceuticals due to their ability to apply human like glycosylation patterns (dos Reis 

Castilho, 2008). The remaining fungi and bacteria are thus the method of choice for industrial 

biotechnological applications. The cell factories available today all have advantages and 



27 

 

drawbacks that are product and process dependent. The main cell factory properties of 

bacteria and fungal cell factories are listed in table 3. The modeling properties given in table 

3 are important for in silico guided metabolic engineering, but are still of more academic than 

industrial interest. 

Table 3 The properties of some industrial cell factories. The table is modified from Papini et al (Papini et al., 2010). 

 S. cerevisiae Aspergillus spp. E. coli 

Genetic Engineering Tools    

Availability of genomic tools +++ ++ +++ 

Online Resources/databases +++ ++ +++ 

Advanced molecular biology techniques +++ ++ +++ 

Strain Construction speed ++ + +++ 

    

Fermentation Properties    

Robust fermentation technologies +++ ++ +++ 

Tolerance to low pH ++ +++ - 

Capability of using complex feedstock + ++ + 

Presence of toxins or endotoxins/viral proteins/LPS - + + 

Fast Growth ++ + +++ 

    

Models of Metabolism    

Genome Scale Model Completion +++ + +++ 

Kinetic Models ++ + ++ 

In silico guided Metabolic Engineering ++ - +++ 

 

 

Yeasts and Aspergilli have been shown to produce polyketides efficiently and will be 

discussed in greater detail in the following sections. 

 

Yeasts as Cell Factories 

Yeasts have a long tradition in biotechnological processes as they have been used for decades 

in the baking and brewing industry. Examples of industrially relevant yeast species include S. 

cerevisiae, Pichia pastoris, Yarrowia lipolytica and Kluyveromyces lactis. S. cerevisiae is 

also used for recombinant protein production (e.g. insulin) and commodity chemicals (e.g. 
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ethanol). As a result of the long history, the knowledge of biochemistry, genetics and 

physiology of S. cerevisiae is great. This has lead to the establishment of advanced molecular 

biology and fermentation technologies (Papini et al., 2010). S. cerevisiae is a unicellular 

organism, which makes it easy to genetically engineer and cultivate in reactors compared to 

higher eukaryotes. Furthermore vectors, dominant and auxotrophic markers and efficient 

transformation protocols are available for S. cerevisiae (Papini et al., 2010; Mattanovich et 

al., 2012). Yeasts also have the added advantage that they are able to due most protein 

processing similar to other eukaryotic organisms such as folding, assembly and post-

translational modifications (Mattanovich et al., 2012). 

 

Homologous recombination occurs at a high efficiency in S. cerevisiae and it is thus easy to 

integrate genes stably in the genome and perform gene targeted deletions or overexpressions. 

A recent study in S. cerevisiae identified the TEF1 and PGK1 promoters as having the 

highest expression levels under most growth conditions making them good candidates for cell 

factory construction (Partow et al., 2010). Furthermore, there are already libraries of single 

and double deletion mutants and the effects of metabolism are thus well studied for genetic 

engineering strains. The ability to cross yeast strains also makes combining engineered traits 

easier. 

 

Today many processes involving S. cerevisiae as a cell factory have obtained GRAS 

(Generally Regarded as Safe) status thus making the approval of other processes involving 

this organism easier (Papini et al., 2010). In addition, yeasts can use a wide range of carbon 

and energy sources for production (e.g. glucose, lactose, maltose, starch, alkanes and fatty 

acid) (Mattanovich et al., 2012). In terms of polyketide production S. cerevisiae is ideally 
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suited as it does not produce any polyketides itself and there is thus not a strong competition 

for precursors. The possibility of the polyketide product being transformed through other 

polyketide modifying enzymes is thus also limited. From a purification perspective it is also 

simpler to work a non-producer as a cell factory. 

S. cerevisiae however also has some drawbacks as a production host especially for 

pharmaceutically relevant proteins. The strong fermentative metabolism and limited 

recombinant protein productivity presents a challenge (Mattanovich et al., 2012). 

Furthermore, S. cerevisiae has a tendency to hyper-glycosyalte proteins and they may be kept 

in the periplasmic membrane leading to degradation products that are difficult to remove 

(Mattanovich et al., 2012). 

 

Aspergilli as Cell Factories 

Filamentous fungi are used today to produce a wide range of products including organic acids 

(e. g. citric acid) and enzymes (e.g. α-Amylase). ). The most commonly used industrial 

Aspergilli are A. niger and A. oryzae (Lubertozzi and Keasling, 2009). Especially the 

production of enzymes from filamentous fungi is a large market constituting about half of a 

total enzyme market of nearly US$ 5 billion (Lubertozzi and Keasling, 2009). On top of this 

fungi have capabilities of utilizing a wide range of natural organic substrates (Papini et al., 

2010). They can tolerate a wide range of temperature, pH and salt concentrations (Lubertozzi 

and Keasling, 2009). The multicellular nature and tendency to aggregate and grow on wall 

surfaces makes it more challenging to cultivate Aspergilli than yeast, however it results in 

much easier purification of extracellular enzymes and metabolites as cells can be removed 

through simple filtration (Lubertozzi and Keasling, 2009). 
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In terms of genetic engineering methods filamentous fungi are still far behind S. cerevisiae. 

Thus the availability of dominant and auxotrophic markers and vectors is only a fraction of 

what can be found for S. cerevisiae. Although it is not used in the fermentation industry, A. 

nidulans molecular biology is well studied. The development of host strains for genetic 

transformation deficient in the non-homologous end-joining (NHEJ) pathway, e.g. the nkuAΔ 

strain, has significantly increased the frequency of homologous recombination paving the 

way for efficient gene targeting (Nielsen et al., 2008). However, the minimal size of 

homologous gene fragments needed to perform gene targeting is still larger than for S. 

cerevisiae. There are not as many well-studied promoters available for Aspergillus nidulans, 

but one study concluded that among the three promoters tested, the pgpdA promoter gave the 

best stable expression of a heterologous gene (Lubertozzi and Keasling, 2006). 

 

In terms of polyketide production Aspergilli are well-suited as hosts. They are already 

capable of producing quite large amounts of polyketides and their metabolism is thus geared 

to providing the necessary acyl-CoA precursors for polyketide production. However, there is 

a risk of cross-reactions in the polyketide pathway leading to the production of altered 

polyketides from the originally intended. 

 

Production of Polyketides  

During the design of a process for production of polyketides several factors need to be 

considered. There are two main options. One is using the native host of the polyketide 

synthase as a production strain. The other involves transferring the gene clusters to a 

heterologous host. Both aspects involve challenges from a bioinformatics, molecular biology 

and process point of view. 
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Native Producers of Polyketides 

The natural production of polyketides occurs in many different organisms amongst these are 

fungi, bacteria and plants. Examples include the production of 6-MSA by Penicillium 

griseofulvum and the production of actinorhodin by several streptomycete species (Sanchez et 

al., 2008). If the genes responsible for polyketide production are not known using the natural 

host may be the only option. 

 

Successful industrial production of the polyketide lovastatin in A. terreus was originally set 

up in 1980 at Merck (Manzoni and Rollini, 2002). Later improvements have been made and 

the Metkinen group have reported titers up to 7-8 g/L by using random mutagenesis 

procedures (Metkinen Oy, 2012). In addition the production of erythromycin by 

Saccharopolyspora erythraea occurs in the natural host and the annual production of 

erythromycin amounts to several thousand tons (Minas et al., 1998). Another example is 

mycophenolic acid that is produced quite efficiently from P. brevicompactum with final titers 

up to 5.7 g/L (Xua and Yang, 2007; Ardestani et al., 2010). Only recently the genes encoding 

the PKS that leads to mycophenolic acid production were partially annotated and 

heterologous expression of central elements made possible (Hansen et al., 2011; Regueira et 

al., 2011).  

 

However, the natural producers sometimes have low production rates of polyketides and are 

not suited for industrial scale production. For example P. griseofulvum produces only 0.2 

mg/L of 6-MSA on minimal medium (Peace et al., 1981). Beyond low yields it can often be 
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very difficult to cultivate secondary metabolite producing bacteria and fungi. Low growth 

rate and limited knowledge of nutritional requirements can lead to the use of a heterologous 

production platform. 

 

Heterologous Expression of Polyketide Synthase Genes 

The main cell factories used for heterologous polyketide production are bacteria, fungi and 

seldom plants (Pfeifer and Khosla, 2001). Figure 3 illustrates some of the challenging aspects 

that need to be considered when selecting a polyketide cell factory. 

 

Figure 3 The circles illustrate some of the central elements that one needs to be considering when choosing a polyketide 

host organism. 

 

First of all the molecular biology tools need to be available for the host strain. Depending on 

the choice of host strain there are going to be a more or less established method for genetic 

Heterologous 
Polyketide 

Host 

Genetic 
Engineering 

Tools 

Large Scale 
Production 
Methods 

Polyketide 
Toxicity 

Polyketide 
Precursors 

 Cross 
Chemistry 



33 

 

engineering. There may be a trade of between selecting an organism that is capable of 

producing high amounts of the desired polyketide versus an organism that is easy to 

manipulate and engineer. Furthermore, knowledge of large scale production methods by 

bioreactor cultivations also has to be well established.  If an efficient production process is to 

be established it is key to have knowledge of process factors that influence productivity and 

yields. 

 

An additional challenge is the fact that the genes of many polyketide synthases are very GC 

rich. Thus it may be of interest to codon optimize the genes for heterologous expression. The 

price of whole gene synthesis has fallen dramatically and it represents a true alternative to 

using the original polyketide gene (Carlson, 2009). The size of genes that can be synthesized 

has also increased rapidly (Carlson, 2009). However, codon optimization does not always 

lead to the desired expression of a gene.  

 

Another complicating factor of heterologous expression is the large size of some of the PKSs 

(100 to 10,000 kDa) (Pfeifer and Khosla, 2001). The genes thus are ranging from 20 to more 

than 100 kb in size (Murakami et al., 2011). Furthermore the genes often contain introns that 

may have to be removed before the gene is introduced in a heterologous host. 

 

Furthermore the natural PK host often has resistance mechanisms that allow it to tolerate its 

own toxin production. This problem also has to be overcome in a heterologous host. One 

example is the selfresistance to mycophenolic acid that is observed in penicillium 
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brevicompactum (Regueira et al., 2011). It is a result of an extra copy of IMP dehydrogenase 

(IMPDH) located in the polyketide cluster (Hansen et al., 2011; Regueira et al., 2011). 

 

In addition, all the precursors used by the polyketide synthase such as methyl-malonyl-CoA 

or propionyl-CoA need to be present in the host or the pathways engineered. Alternatively the 

precursor can be fed to the heterologous host. An example of an engineered precursor in S. 

cerevisiae and E. coli was the engineering of methylmalonyl-CoA Mutase-Epimerase 

Pathway for the production of the polyketide precursor methyl-malonyl-CoA  (Dayem et al., 

2002; Mutka et al., 2006). Methyl-malonyl-CoA is used for biosynthesis of triketide lactone 

and the polyketide part of erythromycin (Dayem et al., 2002; Mutka et al., 2006). 

 

Lastly, heterologous expression in a host that already has extensive secondary metabolism 

may result in the polyketide product being altered as a result of modifying enzymes from 

other polyketide clusters. Thus the possibility of cross chemistry between the heterologous 

polyketide and native polyketide modifying enzymes must be carefully considered. 

 

Examples of Heterologous Polyketide Production 

Several polyketides have been expressed heterologously in research labs to study their 

structure and function. Some of different polyketides that have been produced in a 

heterologous host are shown in table 4. The heterologous expression of the msas gene has 

been attempted several times within the last 20 years (see table 4). The first heterologous 

expression was achieved in S. coelicolor (Bedford et al., 1995) and the authors report a titer 
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of 20 mg/L 6-MSA. Beyond that there have been reports of up to 1.7 g/L in S. cerevisiae and 

445 mg/L in A. nidulans (Kealey et al., 1998; Panagiotou et al., 2009).  
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Table 4 Examples of the heterologous expression of 6-MSA and other polyketides in different microorganisms. 

Polyketide 
Heterologous 

host 

Natural 

Producer 

Expression 

system 
Reference 

Fungal type I PK  

  
6-MSA S. coelicolor P. patulum Plasmid (Bedford et al., 1995) 

6-MSA E. coli P. patulum Plasmid (Kealey et al., 1998) 

6-MSA S. cerevisiae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          P. patulum Plasmid (Kealey et al., 1998) 

6-MSA S. cerevisiae P. patulum Plasmid 
(Wattanachaisaereekul et 

al., 2008) 

6-MSA A. nidulans A. terreus 
Ectopic 

Integration  
(Panagiotou et al., 2009) 

6-MSA 

Nicotiana 

tabacum 

(tobacco) 

P. patulum Integration (Yalpani et al., 2001) 

Bacterial type I PK    

6-deoxyerythronolide 

(antibiotic) 
E. coli S. erythraea Plasmid (Pfeifer et al., 2001) 

Epothilone 

(anticancer) 

Myxococcus 

xanthus 

Sorangium 

cellulosum 
Integration (Julien and Shah, 2002) 

Picromycin/methymycin S. lividans S. venezuelas Plasmid (Tang et al., 1999) 

Bacterial type II PK  

  
Actinorhodin S. coelicolor S. parvulus Plasmid 

(Malpartida and 

Hopwood, 1984) 

Oleandomycin  S. lividans S. antibioticus Plasmid (Shah et al., 2000) 

Type III PK (often plant) 
   

Naringenin E. coli 
R. idaeus 

(raspberry) 
Plasmid (Zheng et al., 2001) 

Stilbene E. coli 
P. strobes  

(pine) 
Plasmid (Raiber et al., 1995) 
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Chapter 2 

Strain Improvement 

The enhancement of biological cell factories for the production of chemicals and therapeutics 

with increasing market value has long been a goal of the biotech industry (Otero and Nielsen, 

2010). In general there are three main strategies employed for strain improvement. They are 

referred to as metabolic engineering, adaptive evolution and random mutagenesis (see figure 

1). The use of one method of strain improvement does not necessarily exclude the others 

however the fundamental approach is different. 

 

 

Figure 1 The three main strategies used for strain improvement 

 

Adaptive evolution relies on the inherent rate of mutation occurring in a population of 

microorganisms as a result of a selective pressure. Often adaptive evolution is used to 
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increase the growth rate, increase tolerance to process conditions or byproducts as well as 

reduce the need for media supplementation (Ibarra et al., 2002). An example of successful 

adaptive evolution is the two fold increased uptake of lactose in a recombinant S. cerevisiae 

that was subjected to prolonged growth on a lactose containing media (Guimarães et al., 

2008). Another example where adaptive evolution was used after gene targeted deletions was 

the evolution of a S. cerevisiae mutant that was initially dependent on 500 mg/L glycine in 

the media to in the end be able to grow without glycine (Otero, 2009). Furthermore growth 

rate was increased from 0.03 h
-1

 to 0.14 h
-1

 through repeated subcultivation in shake flasks 

(Otero, 2009). Other examples can be found in the review by Wright, but will not be 

discussed in detail as adaptive evolution has not been used in the work performed in this 

thesis (Wright, 2004).  

 

 

Random Mutagenesis and Screening 

Historically, random mutagenesis and selection has been widely used in strain improvement 

programs and still is (Thykaer and Nielsen, 2003; Adrio and Demain, 2006). One example is 

the production of erythromycin in Saccharopolyspora erythraea that through random 

mutagenesis and selection has been increased 50-100 times to produce 8 g/L of erythromycin 

(Pfeifer and Khosla, 2001). Another example is the improvement obtained in the production 

of Penicillin by Penicillium chrysogenum (Thykaer and Nielsen, 2003).  

 

There are various methods of inducing random mutations with the aim of strain improvement. 

The most commonly used mutagens are the physical e.g. ultraviolet, gamma and X-
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irradiation and chemical e.g. ethyl methane sulphonate (EMS), nitrosomethyl guanidine 

(NTG) and mustards such as ICR170 (Rowlands, 1984). When employing these mutagens, it 

is important to be aware of the dose and which type of mutation they induce dependent on the 

outcome of the strain development that is desirable (Rowlands, 1984). 

 

In recent years however the production of a plethora of candidate improved strains has 

become possible through even more sophisticated methods of generating random mutations 

and recombination of different traits between different strain backgrounds. Examples of 

different methods have been reviewed by Santos and Stephanopoulos (Santos and 

Stephanopoulos, 2008). They provide examples of how synthetic promoter libraries, random 

knock-out and overexpression libraries, artificial transcription factors and genome shuffling 

can be used to generate a large variety of mutations (Santos and Stephanopoulos, 2008). 

Some of these methods may even allow for probing a larger phenotypic space as some 

mutations may not be as easily obtained by classical mutagenesis. In addition, it has been 

demonstrated that plasmids carrying mutation inducers can be used to generate fast mutations 

in a strain background and then the strains can be cured of the plasmid leading to a stable 

production strain (Selifonova et al., 2001). 

 

In continuation of these procedures of randomly generating mutations and selecting for 

improved phenotypes, it is possible to take the improved strains and compare them to the 

original wildtype strains by e.g. sequencing of central elements. This has lead to inverse 

metabolic engineering where the beneficial mutations of an observed improvement can be 

engineered back into the original strain background thereby potentially avoiding deleterious 

mutations (Bailey et al., 1996; Santos and Stephanopoulos, 2008).    
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Regardless of how the large number of strains have been generated it is essential to be able to 

screen for improved properties such as growth and titer in a reproducible and scalable manor. 

Thus the development of microtiter plate screening programs has proven indispensible for 

large scale industrial screening programs. 

 

Microtiter Plate Screening  

During the last decade the need for miniature bioreactors has dramatically increased within 

industry and research. The demand has been elevated due to the need for fast and efficient 

strain characterization. Micro-bioreactors have gradually replaced shake flasks as being the 

preferred testing vessel of large screening programs. The success of such random screenings 

again is also largely dependent on the number of strains that can be screened simultaneously. 

In this case micro-titer plates offer the possibility to culture many strains at the same time. As 

the field has received increasing attention quite a few reviews of the different platforms have 

been written (Betts and Baganz, 2006; Duetz, 2007). 

 

The main parameters evaluated for growth of microorganisms in a bench-scale and 

production scale bioreactor is stirring, pH, aeration and temperature. When moving towards a 

smaller scale it becomes increasingly difficult to measure and control these parameters. 

However technology in this field is moving fast and it is becoming increasingly possible to 

measure and control these parameters even at 0.1-100 mL. Something that is not possible 

from the traditionally used shake-flasks. Although some very advanced shake-flaks systems 

have been developed (Wittmann et al., 2003). Of course ideally any microbioreactor should 
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be able to produce results that are scale-able thus making the selection of production strains 

more efficient. 

 

The test systems need to be reliable and scalable to be comparable to large scale production 

facilities. One of the key issues with micro-bioreactors is achieving adequate mixing and 

oxygen transfer rates. When dealing with microtiter plates several investigations have been 

made on the influence of well geometry and size (Duetz and Witholt, 2004; Funke et al., 

2009). Experiments have also determined the effects of the amplitude and rpm of the shaker 

during orbital shaking of the plates (Duetz et al., 2000; Duetz and Witholt, 2001). It has been 

demonstrated that when using an orbital shaker with an amplitude of 50 mm gives much 

better oxygen transfer then lower amplitudes (Duetz et al., 2000). 

 

Another issue with scaling down reactor volumes is the limited amount of samples that can 

be withdrawn from a given vessel. As a rule of thumb only 10-20% of the volume should be 

extracted. This of course puts pressure on the analysis instruments such as HPLCs in terms of 

the volume of sampler required per measurement.  

 

Furthermore the systems are mainly amenable to singe celled organisms such as yeast and 

bacteria whereas filamentous organisms such as A. nidulans are very difficult to cultivate in 

microtiter plates. Filamentous fungi have a tendency to form thick mycelium broth or pellets 

that limit the flow of nutrients to all cells. Furthermore they tend to grow on surfaces of the 

cultivation vessels and require adequate stirring to avoid this. One example of successful 

cultivation in 24 deepwell microtiter plates involves the use of the filamentous bacterium S. 
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coelicolor (Sohoni et al., 2012). Sohoni et al. successfully established this system through the 

use of square well plates and glass beads increasing shearing considerable and enabling more 

dispersed cultivations (Sohoni et al., 2012). 

 

Random mutagenesis and adaptive evolution methods are however being challenged by more 

targeted genetic modifications made possible by genome sequencing as well as method 

development in molecular biology. Secondly, over the past decade the development of 

genome scale metabolic networks (GSMN) and optimization algorithms has made a model 

guided approach to strain improvement possible. 

 

In silico guided Metabolic Engineering  

The definition of metabolic engineering was first given by James E. Bailey in 1991. He stated 

that “Metabolic engineering is the improvement of cellular activities by manipulation of 

enzymatic, transport, and regulatory functions of the cell with the use of recombinant DNA 

technology” (Bailey, 1991). As technologies have matured metabolic engineering has 

evolved to use systems biology tools, where information at a systems level such as fluxome, 

transcriptome and metabolome are now being used as tools to guide beneficial modifications 

of a desired production system. The next step that is still only in its emerging tool building 

stage will be to use synthetic biology. Instead of modifying the existing cell factory synthetic 

biology aims to build the cellular parts and put them into a cell factory. This is thus a more 

bottom up oriented approach compared to the top down modifications coming from systems 

biology.  The technologies that support each step of the metabolic engineering cycle have 

seen tremendous improvements over the years. There is a continuous strive to push each field 

forward to the point where designing cellular systems from scratch may be the ultimate goal.  
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Figure 2 The steps needed to accomplish in silico guided metabolic engineering. The iterative process can be started at any 

point in the circle.  

 

Strain Construction 

The process of constructing a heterologous production host and subsequently optimizing it 

based on different metabolic engineering strategies is largely dependent on recombinant 

DNA technology. The first step in heterologous polyketide production involves the 

construction of vectors or gene targeting substrates for the genetic modification of the host 

cells or production strain. As this thesis involves the study of Saccharomyces cerevisiae and 

Aspergillus nidulans as polyketide hosts the focus of this section shall mainly be on the 

recent advances in tools available for these species.  

 



49 

 

For the expression of a specific polyketide gene cluster in a host organism, there are 

principally two ways to go. Either the polyketide cluster is integrated in the host organism 

genome or the strain is transformed with plasmids or autonomously replicating elements that 

will multiply within the host. The decision of which way to go is largely dependent on the 

tools at hand. However, ultimately the goal is to have a stable high expression of the 

polyketide gene clusters. Keeping in mind that extremely high expression levels will 

eventually limit cellular growth. Thus there is potentially a trade of between growth and 

productivity. 

 

Vector based System 

The availability of suitable cloning vectors is increasing rapidly. There is a research 

community effort to deposit many of these vectors and make them readily accessible in 

databases such as www.addgene.org and www.partsregistry.org (Vick et al., 2011). Several 

companies also sell cloning vectors and will synthesize any gene for you and clone it into 

your vector. Thus creating a vector albeit pricy can be done by a simple order with companies 

such as DNA 2.0 and GeneArt® (Invitrogen) (DNA 2.0, 2012). Some standardized cloning 

systems have also been established such as the Gateway™ system from Invitrogen that is 

commercially available. 

 

One of the problems with using vectors in yeast is that the ability to sustain high copy 

numbers of the plasmids as cells that are not burdened by plasmids will tend to outgrow the 

plasmid carrying producer cells. In order to counteract this of course antibiotic resistance 

markers or autotrophic strains are used. A further problem with yeast 2µ plasmids is that 

despite having reported copy number from 50-100 in each cell the population often has only a 

http://www.addgene.org/
http://www.partsregistry.org/
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few cells with high copy numbers and many with low copy numbers (Futcher and Cox, 1983; 

Futcher and Cox, 1984; Albertsen et al., 2011) . For a production process the addition of 

antibiotics and use of defined media compared to the cheaper complex media further makes 

plasmid based expression a more expensive method.  

 

Integrative System 

Vectors can also be used to simply generate the gene targeting substrate of interest. USER™ 

cloning is an excellent fast cloning technique for constructing gene targeting substrates of 

large genes (Nour-Eldin et al., 2006; Frandsen et al., 2008; Hansen et al., 2011).   

 

USER™ cloning has been used successfully for the construction of a gene targeting 

substrates for the production of 5-methyl-orsolinic acid that is the polyketide part of 

mycophenolic acid produced in Penicillium brevicompactum (Hansen et al., 2011). The 

design of USER cloning fragments for inserting several genetic elements at once can be quite 

complicated. To this end an automatic primer generation program called PHUSER (Primer 

Help for USER) has been developed by Olsen et al. (Olsen et al., 2011). 

  

Beyond the gene targeting substrate, it is important to select the right sites for insertion into 

the genome as some regions are more highly expressed then others. This was shown in a 

reporter beta-gal assay in S. cerevisiae where the difference between the lowest and highest 

expressed site was 8.7 fold (Bai Flagfeldt et al., 2009). In A. nidulans a study showed that 

there was no correlation between the gene copy number and expression of bovine chymosin, 

strongly indicating that integration site has an influence on expression level (Cullen et al., 
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1987). In Aspergillus paraciticus and A. niger it has also been demonstrated that there is a 

large variation in gene expression dependent on the integration site (Verdoes et al., 1995; 

Chiou et al., 2002).  

 

To achieve high expression levels and insertion of entire biosynthetic clusters the ability to 

sequentially insert several genes is very important. However the insertion of many pathway 

genes into the genome is often laborious and time-consuming. Especially if more than one 

copy of the gene is needed for sufficient production levels. Therefore the development of new 

methods to meet this end is imperative. It is important to be able to insert several copies of 

the genes of interest into the genome. Beyond this if a full pathway is inserted, it will be 

important to check if any enzyme constitutes a rate limiting step and its copy number should 

be amplified.   

 

There are a few recent examples of gene amplification in both bacteria and yeast. In S. 

coelicolor the gene cluster of 22 genes for the production of the polyketide actinorhodin was 

amplified to 4-12 tandem copies by recombination (Murakami et al., 2011). This resulted in a 

20-fold increase in the actinorhodin producing strain compared to the parental strain 

(Murakami et al., 2011). Another example is the DNA assembler that allows for the in vivo 

assembly of pathways in yeast or plasmids (Shao et al., 2009). The strategy named 

“Reiterative Recombination” shows another excellent example of how not only to insert a 

single gene into S. cerevisiae, but efficiently insert an entire pathway while allowing for the 

construction of pathway libraries (Wingler and Cornish, 2011). In addition, the stable 

integration in 10-11 copies from an integrative plasmid was achieved in the Yarrowia 

lipolytica genome using retrotransposons as integration sites (Juretzek et al., 2001). 
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From a production perspective the ability to integrate genes present the advantage of avoiding 

applying auxotrophic or antibiotic selection pressure on the system. The antibiotics represent 

a problem in purification processes as well as adding to the expense of the media. The use of 

recyclable markers such as URA  (S. cerevisiae) and PyrG (A. nidulans) that allow marker 

excision by direct repeat recombination 5-Fluoroorotic acid (5-FOA) makes it further 

possible to repeatedly apply  new modifications to the production host. Both S. cerevisiae and 

A. nidulans have the added advantage that it is possible to cross the strains. This makes the 

interchange of markers or traits among strains readily achievable.  

 

Strain Characterization 

After the construction of production strains they must be tested for productivity and yields in 

a reproducible growth environment that is also scale-able. Furthermore, the conditions under 

which the optimal production occurs must be found through testing of several possible 

options (Xie, 2012).  

 

The typical flow in a strain evaluation program is illustrated in figure 3 and can be described 

as follows. First large scale screening occurs of thousands of strains in microtiter plates or 

test tubes. Beyond this there is a screening of hundreds of strains in shake flask or 

microfermentors. Afterwards dozens of strain candidates are evaluated in bench-scale 

fermentors. In the end the best strain will be evaluated in pilot or commercial-scale 

fermentors. The strains selected will also be optimized in different media as well as optimum 

pH and pO2 (Xie, 2012).  
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Figure 3 The different steps of a strain evaluation program typically used. The figure is modified from (Xie, 2012) and 

microbioreactors are from Frachon et al. (Frachon et al., 2006). 

 

In silico guided Target Identification 

The field of bioinformatics has generated many strain modeling frameworks to predict 

cellular behavior and aid our understanding of biology. The main focus of this text is the 

algorithms build to aid metabolic engineers in their quest for the construction of the best 

possible production strain. In silico guided identification of targets for genetic engineering 

involves several steps as outlined in figure 4. The steps will be discussed in the following 

sections. 
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Figure 4 The steps that are needed for a model guided metabolic engineering approach. First one must construct a genome 

scale model where it is helpful to have an annotated genome. Then one must chose the objective such as biomass or product 

that one needs to obtain. Beyond this an optimization algorithm is chosen for predictions and the relevant targets evaluated. 

Lastly the improvements are constructed and tested in vivo.  

 

Model Construction 

The first step towards model construction has been the genome sequencing of many 

industrially relevant microorganisms. To date more than 3079 genomes have been sequenced 

and published (Genomes Online Database, 2012). Furthermore comparative genomics has 

made it possible to annotate full genomes very efficiently using e.g. BLAST and FASTA 

programs (Covert et al., 2001). With the full coverage of a species annotated genome and 

thus to a great extent enzymes and reactions, the next step has been to build genome scale 

metabolic networks (GSMN). An early review on how to build a genome scale model was by 

Covert et al. in 2001 describing the basic build-up of a model (Covert et al., 2001). It is 
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interesting to see the tremendous development of modeling that has succeeded this paper in 

only a decade. The construction of GSMN has increased quite rapidly and has been 

completed for more than 35 organisms (Orth et al., 2010). In 2010, Thiele and Palsson 

designed a protocol that describes how to build a metabolic reconstruction and gives 

guidelines for its refinement (Thiele and Palsson, 2010). This procedure includes an 

algorithm called metaSHARK that automatically generates a draft model thus saving 

considerable time and effort compared to building a model with only literature as a guide 

(Pinney et al., 2005). Of course researchers building these models in general have also looked 

at the models that already existed and used them as an inspiration and frame upon which to 

build new models of an organisms metabolism. One must also take the time to manually 

curate the model as not all genes have homologs in other organisms and substrate specificities 

might be different. Thereby experimentally determined data sets such as C-13 fluxomics and 

transcriptomics are needed. Examples of genome scale models of microorganisms of which 

most are industrially relevant are given in table 1. 



56 

 

Table 1  Genome scale models. When more than one genome scale model exists for the same strain the first and most recent 

models are given.   

 

 

Total 

Reactions 

(unique) 

Total 

Metabolites 

Total 

genes 

Model Id Reference 

E. coli (2000) 627 438 660 iJE660 (Edwards and 

Palsson, 2000) 

E.coli (2011) 2,251 1,136 1,366 iJO1366 (Orth et al., 2011) 

S. cerevisiae 

(2003) 

1,175 (842) - 708 iFF708 (Förster et al., 2003) 

S. cerevisiae 

(2008) 

1,761 1,168 - - (Herrgård et al., 

2008) 

A. nidulans 

(2008) 

1,095 (681) 738 666 iHD666 (David et al., 2008) 

A. niger 

(2008) 

2,240 

(1,190) 

1,045 (782) 871 iMA871 (Andersen et al., 

2008) 

A. oryzae 

(2008) 

(1,679) 1,040 1,184 iWV1184 (Vongsangnak et al., 

2008) 

 

The degree at which these models have actually been studied and validated varies in part due 

to the timeline in which they were developed. It is clear that the unicellular E. coli and S. 

cerevisiae are the most widely used microorganisms in research labs and thus modelling and 

validation of these far succeeds that of the Aspergilli models. The models of E. coli and S. 

cerevisiae have been updated and extended quite a lot (Herrgård et al., 2008; Orth et al., 

2011). Furthermore, it must be assumed that the number of genes and reactions occurring in 

A. nidulans, A. niger and A. oryzae exceeds that of E. coli and S. cerevisiae. However, due to 

less time afforded the build up and extension of Aspergilli models, the number of reactions 

and compartments covered in the Aspergilli models is still less than those for E. coli and S. 

cerevisiae. Thus E. coli and S. cerevisiae GSMN represent a larger part of metabolism than 

Aspergilli models. An interesting approach to further validation and optimization of a model 

as well as identifying species-specific reactions has been the comparative systems analysis of 
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two different  models (in this case Pseudomonas) to correct and verify the reactions in the 

individual models (Oberhardt et al., 2011).  

 

In silico Guidance 

A model that does nothing more than be a quantitative detailed description of a system does 

not give us more knowledge than what was used to build the model. It may put the 

knowledge together, but it must be combined with skilled predictive power that can tell us not 

only what is in the system, but also how it will behave if perturbed. The model is not more 

than the index of a book as were the parts of it the chapters. In engineering the goal is not 

only to build a model of a system, but to push the system to its limits. Metabolic engineering 

occurs through the observation of a system and predicting its potential to aid in improving the 

productivity of substance. Thus genome scale models have to be combined with predictive 

algorithms to aid the construction of improved production strains.  

 

To this end quite a lot of software suites have seen the light of day. Among the most well 

established whole cell analysis tools available are the CellNetAnalyzer (Klamt and von 

Kamp, 2011) , the BioMet Toolbox (Cvijovic et al., 2010) and the COBRA Toolbox 

(Schellenberger et al., 2011) . A recent extension that adds expression, transcription and 

regulatory information to the COBRA toolbox is TIGER (Jensen et al., 2011).  

 

Prediction of Biomass Formation 

A timeline of the development of the different algorithms currently used for in silico guided 

metabolic engineering is presented in figure 5. Common to all metabolic engineering 
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algorithms is an underlying mathematical optimization problem (Banga, 2008). The basic 

part of most metabolic engineering algorithms involves designing an objective function upon 

which the quality of the solution is decided. In most metabolic engineering strategies the 

objective is growth or product formation. Secondly, the model is confined by a set of 

constraints that limit the solution space. First of all the constraints are based on stoichiometry 

and direction of a given reaction as well as reversibility. In metabolic models there are then 

further constraints or bounds on the uptake of substrates such as glucose and oxygen. 

1990 2012

Modeling development

Metabolic Engineering 

(1991)

Systems Biology 

(2003)

Synthetic 

Biology 

(2010)

2002

MOMA

2005

Genetic 

Algorithm 

(OptGene)

2003

Bi-level programming

(OptKnock)

2000

GSM 

E. coli (iJE660)

2006

Up/Down 

regulation

(OptReg)

2008

A. nidulans 

GSM (iHD666)

1993

FBA

2010

Flux

(OptForce)

2011

Largest GSM

E. coli iJO1366 

 

Figure 5 The figure illustrates the metabolic engineering algorithm development over the last 20 years. In purple are 

examples of when E. coli and A. nidulans genome scale models were constructed. In green are given the most common 

algorithms for prediction of growth behavior. In blue are given some of the algorithms that can be used to predict product 

formation and guide metabolic engineering strategies. 

 

The most commonly used method is flux balance analysis (FBA) (Varma and Palsson, 1994; 

Orth et al., 2010). FBA is a linear programming based method that allows prediction of flux 

distribution in a given cell based on mass balance constraints (often at the GSMM scale) and 

a biological objective function. FBA is often used in conjunction with constraints on the 

uptake of nutrients and maximization of biomass formation (or growth) as the objective 
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function. Thus, one can get a quantitative description of predicted fluxes in cellular 

metabolism.  FBA has been very effective in accurately predicting the lethality of single gene 

knockouts (i.e. no biomass formation) (Förster et al., 2003; David et al., 2008). It has also 

been applied quite effectively for metabolic engineering along with several complementary 

algorithms (Curran et al., 2012). However, when it comes to predicting the growth rate and 

behavior of knockout strains, the later developed algorithm Minimization of metabolic 

adjustment (MOMA) has been found to be more effective in some systems including yeast 

(Segre, 2002; Brochado, 2010). MOMA uses quadratic programming to minimize the 

Euclidean distance between the fluxes observed at steady state before and after deletion of a 

specific gene (/s). It is basically a least squares minimization problem, in some regards 

similar to linear regression, only applied to a multidimensional space. The biological 

hypothesis behind MOMA is that an organism will try to counteract the effects of a gene 

knockout by adjusting cellular metabolic fluxes back towards the initial unperturbed state 

(Segre et al., 2002). Lastly, an algorithm called regulatory On/Off Minimization (ROOM) of 

metabolic flux changes tries instead to minimize the number of significant flux changes 

resulting from a knockout, but is otherwise quite similar to MOMA (Shlomi et al., 2005). 

 

Product Optimization Strategies 

FBA, MOMA and ROOM however mainly focus on describing the growth potential of a 

specific network (wild-type or perturbed). For the application in metabolic engineering the 

next level of programming frameworks needed to take into account the formation of the 

desired product competing with biomass formation for the substrate (/s). Thus, bilevel 

optimization algorithms had to be developed that could take into account both growth and 

product formation as these are often competing factors. The first development in this area 

was the OptKnock framework (Burgard et al., 2003). In this framework the cellular objective 
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(growth) is optimized within an industrial objective (product formation) optimization 

problem. The algorithm was initially applied to E. coli and identified several strategies for 

overproducing succinate, lactate and 1,3 propanediol.  

 

Industrially relevant objectives for strain improvement are often non-linear and linear 

programming based algorithms are of limited use in such cases. To address this problem, by 

using FBA or MOMA as scoring algorithms, a genetic algorithm using evolutionary search 

procedures for solving the combinatorial optimization problems was developed called 

OptGene (Patil et al., 2005). In the OptGene routine, the model is first preprocessed removing 

all lethal deletions from the solution space. Then for an initial random population of deletion 

strains the fitness, i.e. the design objective function (often productivity or biomass product 

coupled yield (BPCY)), is evaluated by using FBA or MOMA as a biological objective 

function. The best individuals are then crossed and a new population generated. In this way 

OptGene searches for optimal solution. Although not guaranteed, OptGene has been proven 

by a limited number of iterations to converge towards a global optimal solution in a number 

of cases.  

 

Another algorithm useful for in silico metabolic engineering is OptStrain that can be used to 

find the optimal pathway for the conversion of a substrate to a new product in a host 

microorganism (Pharkya et al., 2004). This is achieved by searching online databases for all 

possible reactions to be inserted while minimizing the use of foreign reactions.  
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The next step in terms of modeling has been to expand the algorithms not only to include a 

present/absent state of the reaction in a sort of on/off manor, but also to attempt predicting 

effects of up or down regulations of different genes. One example of such algorithms is 

OptReg (Pharkya and Maranas, 2006). Currently, such methods are limited due to the lack of 

comprehensive knowledge and models for in vivo enzyme kinetics and regulation. On the 

experimental front, it should be noted that controlled regulation of enzyme expression 

requires well-established tools, e.g. promoter libraries that exist for S. cerevisiae and E. coli 

(Nevoigt et al., 2006; Maertens and Vanrolleghem, 2010; Babiskin and Smolke, 2011). Such 

tools have not yet been published in the case of A. nidulans.  

 

The most recent addition to the prediction algorithms family is OptForce that relies on 

exploitation of complex flux couplings in the network rather than kinetic models 

(Ranganathan et al., 2010). OptForce has several advantages over gene knockout prediction 

algorithms in that it predicts combinations of gene knockout and flux overexpression targets, 

which are likely to result in more improvements per modification. 

 

An interesting approach to predict the yield of chemical biosynthesis that is not based on 

genome scale model has been published (Varman et al., 2011). The predictions are based on a 

first order mathematical model containing parameters such as cultivation mode, oxygen, 

nutritional sources and length of the pathway all relevant to biological production (Varman et 

al., 2011). The model used data from 40 papers with metabolic engineering of S. cerevisiae 

and can be used for an initial yield prediction (Varman et al., 2011). They conclude that the 

influence of the model parameters such as pathway length and cultivation conditions should 

be kept in mind when new metabolic engineering strategies of S. cerevisiae are designed.  
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Examples of in silico guided Metabolic Engineering 

The optimization algorithms OptKnock and OptGene along with minimization of metabolic 

adjustment (MOMA) have recently been used to predict the improvement of the production 

of vanillin and the sesquiterpene cubebol. Brochado et al. used a model-guided approach with 

Optgene and MOMA to predict the target deletion of pdc1, gdh1 for over-production of 

vanillin-glucoside. When this was combined with an overexpression of GDH2, the yield of 

vanillin glucoside on glucose was improved 1.5 times (Brochado et al., 2010). In the case of 

cubebol the deletion of gdh1 let to an 85% increase in cubebol titers (Asadollahi et al., 2009). 

Another similar study for the production of lycopene in E. coli predicted the deletion of 

gdhA, gpmA and gpmB (Alper et al., 2005a). In case of the deletion of gdhA the study 

revealed an increase in lycopene production of 13% albeit a decrease in growth rate to 82% 

of the wildtype growth rate (Alper et al., 2005a). The predicted deletions have been patented 

for carotene production in bacteria (Stephanopoulos et al., ). In a further study they combined 

their modeling targets with transposon mutagenesis generating a total of 64 mutants one of 

which ended up with an 8.5 times increase in lycopene production compared to the wildtype 

strain (Alper et al., 2005b). The authors note that combining the randomly generated 

transposon targets yields a decrease in lycopene production thus making these targets more of 

a one shot solution. Whereas the model guided approach with a total of three deletions shows 

a stepwise increase. Thus leading to the conclusion that for a continuous improvement of 

strains, a model guided approach has an advantage (Alper et al., 2005b).  
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Improvement of the Polyketide Cell Factories  

There have been many attempts to improve the production of polyketides in different 

microorganisms. The tetracycline pathway has been improved various ways both in industrial 

settings with random mutagenesis and by gene targeting through a metabolic engineering 

approach (Pickens and Tang, 2009). Another example is the 5.6 fold titer improvement of the 

polyketide fredericamycin in Streptomyces griseus through the overexpression of a 

transcription factor (Chen et al., 2008).  

 

The algorithm OptForce was used to increase the flux towards malonyl-CoA in order to 

improve the production of the flavanone naringenin (Xu et al., 2011). The model data is very 

well documented on several mutants in E. coli. 

 

Another study modeled the production of the polyketide part of erythromycin known as 6-

deoxyerythronolide B (6-dEB) in three different organisms E. coli, Bacillus subtilis and S. 

cerevisiae using MoMA (Boghigian et al., 2010). In E. coli the top scoring targets for 

deletion were the succinate dehydrogenase complex (isdhABCD), succinyl-CoA synthetase 

(sucCD) and the glutamate dehydrogenase gene (gdhA). In B. subtilis the highest scoring 

candidates were α-ketoglutarate dehydrogenase (citK) and sucCD. In S. cerevisiae the authors 

find that succinyl-CoA ligase (LCS1, LCS2) were the top candidates for knockout studies. 

However, these results remain to be validated in vivo. 

 

As seen from the above examples many of the targets for the improvement of polyketide 

production through model predictions are focused on the improved generation of NADPH 
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and malonyl-CoA. As precursors of polyketides these target metabolites are important for the 

improved polyketide production. 

 

Improvement of 6-MSA Production 

The production of 6-MSA has been increased in the heterologous host S. cerevisiae by 

overexpression of the ACC1 gene responsible for the conversion of acetyl-CoA to the 

polyketide precursor malonyl-CoA (Wattanachaisaereekul et al., 2008). It was also found that 

the use of ethanol as a carbon source increased the production of 6-MSA, which is expected 

to be a result of its conversion into acetyl-CoA that also generates NADPH 

(Wattanachaisaereekul et al., 2007). Another study on 6-MSA production in A. nidulans 

tested the different carbon sources xylose, glycerol and ethanol, but did not find any increase 

in productivity compared to glucose (Panagiotou et al., 2009).  

 

In conclusion the construction of cell factories and optimization of these is a complex 

procedure. It involves the knowledge of molecular biology, bioreactor operations and 

evaluation as well as the use of large scale metabolic models for evaluating and predicting 

cellular behavior. 
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Chapter 3 

Structure and Function of Polyketide Synthases 

In this chapter the group of natural compounds known as polyketides will be described. This 

chapter does not aim to be a complete description of these fascinating compounds, but to give 

the reader a fundamental knowledge that will aid the understanding of the underlying 

mechanisms that are important to the research conducted in this thesis. Thus it will mainly 

focus on the polyketide building blocks derived from primary metabolism and how these 

form a final polyketide. Information that is essential for any optimization strategy. 

 

Polyketides 

Polyketides are natural products made from acyl-CoA monomers that are connected through 

several rounds of condensation. The monomers typically include acetyl-, malonyl- and 

propionyl-CoA. Polyketides are produced naturally in fungi, bacteria and plants. The term 

polyketide was first coined in 1907 by the British scientist John Norman Collie (1859-1942) 

(Collie, 1907; Bentley and Bennett, 1999; Bentley, 1999). He actually used the word ketene 

in his paper, but later used the word ketide in his lectures. He discovered that the compounds 

were made of units by the general formula H[CH2-CO]x. . Polyketides come in many 

different sizes from the very small triacetic lactone with only 6-8 carbons to the very big 

maitotoxin with 164 carbons in the chain (Weissman, 2009).  
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Biosynthesis of Polyketides 

Polyketides are produced by large enzymes known as polyketide synthases (PKS). The 

polyketide synthases are made up of a set of domains that each serves a specific catalytic 

function. The minimal PKS contains an acyl transferase domain (AT) responsible for 

selecting the acyl-CoA starter unit for incorporation into the polyketide chain (Tsai and 

Ames, 2009). The tethering domain (T) or acyl carrier protein (ACP) is the subunit where the 

growing PK chain is attached. The ketosynthase (KS) or condensation domain is responsible 

for the Claisen condensation that connects two acyl-CoA substrates tethered to the T and KS-

domain by use of a conserved cysteine residue (Tsai and Ames, 2009). Beyond this many 

PKSs also contain ketoreductase (KR), dehydratase (DH), enoyl reductase (ER), cyclase 

(Cyc), thioesterase (TE), C-methyl transferase (C-MT) activities among others (Evans et al., 

2011).  

 

In order to function, the PKS needs to be activated by a phosphopantetheinyl transferase 

(PPTase) that covalently tethers the cofactor 4’phosphopantetheine to the polyketide synthase 

(figure 1) (Evans et al., 2011). This causes the transition of the enzyme from its apo to its 

holo state. There are several PPTase’s discovered to date. Two examples include Sfp from 

Bacillius subtilis and NpgA from Aspergillus nidulans that have been shown to be quite 

promiscuous in their activation and can activate an array of different PKSs (Cox and 

Simpson, 2009). The NpgA gene from A. nidulans has a functional allele known as CfwA 

and it has been suggested that these are the ones responsible for all PKS activation in A. 

nidulans (Márquez-Fernández et al., 2007).   
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+ PPTase  

 

  

Figure 1 Polyketide synthases have to be activated by a phosphopantetheinyl transferase (PPTase) in order to function. The 

action of the PPTase results in the covalent tethering of the CoA part of Coenzyme A to the polyketide synthase as illustrated 

above. 

Polyketides are grouped into different types depending on their method of elongation and 

degree of reduction of the polyketide chain. Type I PKSs can be subdivided into either 

modular or iterative type I polyketide synthases. The modular type I bacterial PKS can be 

exemplified by the DEBS polyketide synthase that eventually leads to the production of 

erythromycin in Sacchalospora erythraea (Katz, 2009). In the modular PKS there is one 

domain that is responsible for each modification to the extending polyketide chain (Katz, 

2009). Alternatively the polyketide structure is constructed by the iterative use of the catalytic 

sites referred to as Type I iterative PKSs typically found in fungi. Type II PKSs use single 

ACP-domains. On top of this ACP-domain they are made up of a KS and a chain-length 

factor (CLF) that are typically encoded by separate genes. The chain length is determined by 

the cavity size of the CLF (Tang et al., 2003). Type III polyketide synthases use acyl-CoAs 

but have no ACP-domains and only a single KS which initiates, tethers, extends and 

terminates the polyketide chain. In order to function they have to adopt a homodimer 

conformation.   
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The fungal iterative type I PKSs can be further divided into three categories depending on the 

degree of reduction of the polyketide chain. An example of a non-reducing polyketide 

synthase (NR-PKS) is the aflatoxin/sterigmatocystin pathway found in A. nidulans (Sanchez 

et al., 2008). A prime example of the partially reducing (PR-PKS) fungal polyketide synthase 

genes is the atX gene form Aspergillus terreus encoding the 6-MSA synthase (Fujii et al., 

1996; Fujii, 2010). The last category is the highly reducing polyketide synthase (HR-PKS) of 

which the prime example is lovastatin produced by A. terreus (Cox and Simpson, 2009). 

Lovastatin and its derivatives are well known as potent inhibitors of the HMG CoA reductase 

and thus have cholesterol lowering effects that renders them block-buster drugs (Sanchez et 

al., 2008).  

 

Another interesting class of compounds are the hybrid NRPS-PKS genes that on top of the 

Acyl-CoA incorporations of the PKS also incorporates amino acids from the NRPS part of 

the enzyme (Cox and Simpson, 2009). An example of a combined NRPS-PKS product is 

tenillin.  

 

Biosynthesis of 6-MSA 

In 1967 further details on the synthesis of many polyketides including 6-MSA were 

discovered (Birch, 1967). The 6-Methyl-Salicylate Synthase (MSAS EC 2.3.1.165) belongs 

to the type I PR-PKS (Cox and Simpson, 2009). The structure of the domains in the 6-MSA 

synthase is illustrated in figure 2 (Fujii, 2010). 
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Figure 2 The structure of the domains in the 6-MSAS. It consists of a ketosynthase (KS), Acyltransferase (AT), Thioester 

hydrolase (TH), Ketoreductase (KR) and Acyl Carrier Protein (ACP).  

 

In 1969 the first proposed reaction mechanism of the enzyme was given by Dimroth et al. 

(Dimroth et al., 1970). Later other reaction mechanisms have been proposed by Staunton and 

Weissman (Staunton and Weissman, 2001). The latest proposed mechanism for 6-MSA 

synthesis is from Fujii and involves a thioester hydrolase domain involved in the release of 

the 6-MSA. This mechanism was observed based on the 6-MSA synthase gene found in A. 

terreus, however the polyketide synthases are almost identical and it can be assumed that the 

P. patulum derived synthase has the same function. Figure 3 illustrates the proposed reaction 

mechanism for the production of 6-MSA by the continuous condensation of acetyl and then 

malonyl-CoA monomers (Fujii, 2010). First the acetyl-CoA is loaded onto the ACP domain. 

Then follows two Claisen condensations with malonyl-CoA. The reduction by the keto-

reductase is done at the expense of 1 NADPH that is reduced to NADP
+
. Then follows 

another condensation with a malonyl-CoA and finally the cyclisation and release by the 

thioesterase domain. 
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Figure 3 The mechanism by which 6-MSA is produced by the MSAS PKS from A. terreus. Reproduced from Fujii et al. 

(Fujii, 2010).   
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Abstract 

Polyketides constitute a large source of compounds used for therapeutics today (Newman and 

Cragg, 2007). Often the natural polyketide host does not display sufficient productivity 

needed for large-scale production. Furthermore, if there is no prior knowledge of large scale 

production in the natural host organism, setting up an industrial scale process can be very 

challenging. Thus, having an efficient heterologous production system is highly desirable. To 

address this possibility, we investigated the production of the model polyketide 6-methyl 
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salicylic acid (6-MSA) in Aspergillus nidulans. In an attempt to improve production we 

identified NADPH dependent glutamate dehydrogenase (gdhA) as a potential deletion target 

using the genome scale metabolic model of A. nidulans (iHD666) and in silico metabolic 

engineering algorithm OptGene (Patil et al., 2005; David et al., 2008). To alleviate the 

growth inhibition observed in the gdhA∆ mutant an extra copy of NAPH dependent glutamate 

dehydrogenase B (gdhB) was inserted. The engineered A. nidulans strains were characterized 

in batch reactors. The growth rate of the gdhA∆ strains decreased significantly with only a 

marginal increase in 6-MSA yield. The extra copy of gdhB resulted in increased growth rate. 

In addition, we have shown that we can establish model predicted deletions in A. nidulans. 

Thus an efficient polyketide cell factory has been generated for 6-MSA production and the 

first steps towards model guided optimization have been taken. 

 

Introduction 

Natural products are an important source of new drugs and natural product derived medicines 

constitute one of largest groups of therapeutics (Newman and Cragg, 2007). One class of 

medically significant compounds is the polyketides. Some examples of medically relevant 

polyketides are erythromycin (antibiotic), lovastatin (cholesterol lowering) and tacrolimus 

(immunosuppressant) and polyketide derived medicines generally have annual sales above 

US$ 20 billion (Weissman, 2009). Other polyketides are quite toxic e.g. aflatoxin, fuminisin 

and patulin. 

  

Polyketides are produced by large enzyme complexes known as polyketide synthases (PKS). 

Most PKSs are made up of different domains serving specific catalytic functions such as 
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condensation, chain elongation, ketoreduction, dehydration and cyclization (Tsai and Ames, 

2009). In order for the polyketide synthase to function it must be converted from its apo form 

to its holo form. This is done by a phosphopantetheinyl transferase (PPTase) that tethers a 

phosphopantetheinyl group from coenzyme A onto to the catalytic domain carrying the 

growing polyketide chain. 

 

6-methyl salicylic acid (6-MSA) is a model polyketide with minor antibiotic activity. The 

polyketide synthase gene is relatively small making it ideal as a model system as it simplifies 

the molecular biological challenge of heterologous expression. The first report of 6-MSA 

production was from P. patulum (Spencer and Jordan, 1992). However, the very low 

productivity of the natural host has lead to the establishment of a heterologous production 

platform that further enabled the study of polyketide synthesis. 6-MSA production has been 

attempted in both bacteria and fungi. The production of 6-MSA in S. coelicolor was 

measured based on cultivation from plates to be 20 mg/L (Bedford et al., 1995). Later the use 

of a glycerol medium and a plasmid based system titers improved to 75 mg/L in E. coli 

(Kealey et al., 1998). By using S. cerevisiae and a multicopy plasmid the titer in YPD media 

was increased to 1.7 g/L (Kealey et al., 1998). Another study of 6-MSA production in 

S. cerevisiae obtained a final titer of 200 mg/L in a minimal medium with a multi-copy 

plasmid (Wattanachaisaereekul et al., 2007). 

  

Another well-suited host for polyketide production is the ascomycete A. nidulans. It is 

already renowned for its polyketide productivity and has been found to contain around 27 

polyketide gene clusters (Galagan et al., 2005). One study of heterologous 6-MSA production 

in A. nidulans with a random integration of one or more copies of the A. terreus msas gene 
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was reported to produce 445 mg/L in a batch on glucose (Panagiotou et al., 2009). Moreover 

the targeted genetic engineering of A. nidulans is well established making it a suitable host 

for heterologous expression (Nielsen et al., 2006).  

 

Beyond the heterologous expression of the polyketide encoding gene several optimization 

steps must be taken. The adjustments of media or process conditions can have profound 

effects on the final yield. In addition, genetic modifications that can divert the carbon flow 

towards the polyketide precursors are also important. One example of metabolic engineering 

for polyketide production is the overexpression of Acetyl-CoA carboxylase (ACC1) that 

converts acetyl-CoA to malonyl-CoA in S. cerevisiae (Wattanachaisaereekul et al., 2008). 

The overexpression of ACC1 is an obvious target for 6-MSA production as the PKS requires 

three malonyl-CoAs to produce 6-MSA. As an alternative genome scale metabolic models 

and optimization algorithms can be used to predict less obvious targets that can lead to 

increased yields of 6-MSA.  

 

Metabolic Engineering Through in silico Design  

By using FBA or MOMA as scoring algorithms a genetic algorithm using evolutionary 

search procedures for solving the combinatorial optimization problems was developed called 

OptGene (Patil et al., 2005). In OptGene the model must first be preprocessed removing all 

lethal deletions from the solution space. Then from an initial population of deletion strains 

the fitness is evaluated based on an objective function often productivity or biomass product 

coupled yield (BPCY) is evaluated with FBA or MOMA. The best individuals are then 

crossed in silico and a new population generated. In this way OptGene searches for local 
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optima, but has been proven by a limited number of iterations to converge towards a global 

optimal solution.   

 

Examples of successful improvements obtained through in silico guided metabolic 

engineering include vanillin (Brochado et al., 2010), lycopene (Alper et al., 2005), 

sesquiterpenes (Asadollahi et al., 2009) and succinic acid (Otero, 2009) production in 

S. cerevisiae and E. coli. However, it remains to be shown whether these methods are also 

applicable for higher eukaryotes. There are still no examples of in silico guided approaches to 

metabolic engineering in filamentous fungi.  

 

Thus the aim of the study was to establish a platform for the heterologous production of 

polyketides in A. nidulans and explore the possibilities of in silico guided optimization. As a 

result the following steps were taken. The genetic changes are all targeted to specific 

genomic loci making it a reproducible system amenable to other polyketide synthases. The 

fact that different A. nidulans strains can be crossed makes it possible to exchange markers 

and efficiently incorporate changes into newly constructed strains. The possibility to achieve 

marker excision by direct repeat recombination enables repeated rounds of genetic 

modifications to metabolism. The engineered A. nidulans strains were subjected to 

physiological characterization in bioreactors evaluating the cellular performance in terms of 

growth rate, yields and productivities.  
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Materials and Methods 

The metabolic engineering approach was achieved by first modelling 6-MSA production 

followed by genetic engineering of the predicted strains. Finally the strains were 

physiologically characterized in bioreactors. 

 

Model Predictions 

The genome scale model iHD666 was used as a starting point for modelling 6-MSA 

production in A. nidulans. The reaction for biosynthesis of 6-MSA was added to the model. It 

involves the use of one acetyl-CoA, three malonyl-CoAs and one molecule of NADPH for 

production of one molecule of 6-MSA. On top of this a transport reaction for 6-MSA 

allowing secretion of 6-MSA from the cell, as observed in previous studies (Panagiotou et al., 

2009) was added to the model. The growth was constrained to be at least 0.01 hr
-1

 as mutants 

with growth below this limit are likely to be experimentally non-viable and/or 

biotechnologically irrelevant. The glucose uptake rate was fixed at 3 mmole/gDW/hr since 

unlimited uptake of substrate is not biologically meaningful and this value is within the range 

of observed rates for fungi. OptGene predictions are insensitive to the actual value of this 

constraint unless it is set too low. The entry flux into the pentose phosphate pathway (PPP) 

via glucose-6-phosphate-1-dehydrogenase (AN2981) was constrained to be between 1 and 2 

as it was experimentally observed through C-13 flux measurements on glucose with the same 

strain background that a maximum of 60% of the glucose taken up is directed to the PPP in 

this step (Panagiotou et al., 2009). The FBA simulations were performed using the GLPK. 

MOMA simulations were performed by using a custom function that calls OOQP as a 

quadratic solver. The deletion strategy was devised based on OptGene using Biomass-

Product Coupled Yield for ranking the best candidates (Patil et al., 2005). 
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Strain Construction 

The A. nidulans strains used for physiological characterization were constructed using the 

gene targeting methods of Nielsen et al. followed by sexual crossing (Nielsen et al., 2006). 

For the insertion of the msas the gene targeting substrates were cloned in a USER
TM

 vector 

(Geu-Flores et al., 2007).  

 

Strains 

E. coli DH5α cells were used for cloning the USER
TM

 vectors and propagating plasmids. 

Fungal transformations were performed with the strain IBT29539 for the knockouts and 

IBT28738 (Nielsen et al., 2008) for 6-MSA production. The control strain NID210 was 

constructed as described by Hansen et al. (Hansen et al., 2011). The A. nidulans strain 

IBT27263 was used for amplification of genomic DNA fragments for gene targeting. The 

strain is derived from G051 of the Glasgow strain collection (Clutterbuck, 1974). 

 

Media 

The Fungal minimal medium (MM) was as described in Cove (1966), but with 1% glucose, 

10 mM NaNO3 and 2% agar (Cove, 1966). The media were supplemented with 10 mM 

uridine, 10 mM uracil and 4 mM L-arginine, 0.02 mg/L biotin when required. After crossing 

the gdhA∆ the spores were spread on plates with 10 mM glutamine to increase the growth 

rate of the spores harboring the mutation.  
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For the batch cultivations minimal media containing (NH4)SO4 7.5 g/L, KH2PO4 1.5 g/L, 

MgSO4 7H2O 1 g/L, NaCl 1 g/L, CaCl2 0,1 g/L, antifoam 0,05 g/L and 1 mL of a trace metals 

solution containing CuSO4 ・ 5 H2O 0.4 g/L, Na2B2O7 ・ 10 H2O 0.04 g/L, FeSO4 ・ 7 H2O 

0.8 g/L, MnSO4 ・ H2O 0.8 g/L, Na2MoO4 ・ 2 H2O 0.8 g/L, ZnSO4 ・ 7 H2O 8.0 g/L was 

used. 

 

Vector Construction 

Ectopic integration of the msas gene was achieved by first constructing the gene targeting 

substrate by USER
TM

 fusion (Geu-Flores et al., 2007). The 5.3 kb msas gene was amplified 

from the vector pRS306CRUDTMSA-PP using the primers AGAgcgaUatgcattccgctgcaacttc 

and TCTgcgaUttaatggtgatggtgatga (Wattanachaisaereekul et al., 2007) and cloned into 

BGHAp71. The resulting plasmid was named BGHAp75. A list of the plasmids used in this 

work can be seen in table 1. All plasmids were sequenced (StarSEQ, Germany).  

Table 1 The plasmids used for construction of a fragment for the insertion of the msas gene in the site IS1 (Hansen et al., 

2011). A map of the plasmid p75 can be seen in supplementary S1. 

 

Recombinant Strain Construction 

In table 2 are given the genotypes of all of strains constructed in this study. The details of the 

construction will be given in the following text.  

Plasmid  Characteristics Reference 

BGHAp1 USER cassette (Hansen et al., 2011) 

BGHAp71 p1 with a pgdp::ArgB2::trpC (Hansen et al., 2011) 

pRS306CRUDTMSA-PP Yeast vector with the msas gene 

from P. patulum 

(Wattanachaisaereekul et 

al., 2007) 

BGHAp75 BGHAp71 with an inserted msas 

gene 

This study 
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Table 2 The A. nidulans strains constructed that were not used for batch cultivations. 

Strain Genotype* Source 

 Gene targeting and marker elimination strains  

IBT29539 argB2, pyrG89, veA1, nkuA∆ (Nielsen et al., 2008) 

IBT28738 argB2, pyrG89, veA1, nkuA-trS::AFpyrG (Nielsen et al., 2008) 

IBT25456 biA1, veA1 Glasgow strain collection 

NID596 argB2, nkuAΔ, wAΔ, yAΔ In house strain collection 

 Gene targeting  

NID63 6MSAS::argB, nkuAΔ IBT29539 

NID58 gdhA::AFpyr:: gdhB, nkuAΔ IBT29539 

NID61 gdhAΔ::AfpyrG, nkuAΔ IBT29539 

NID210 IS1::PgpdA::TtrpC::argB IBT28738 

 Removal of nkuA∆  

NID137 IS1::PpgdA-6MSAS-TtrpC::argB NID63 X IBT25456 

 Combining 6-MSA with the deletion strains  

NID164 IS1::PpgdA-6MSAS-TtrpC::argB, gdhAΔ::gdhBtr::AFpyrG NID58 X NID137 

NID180 IS1::PpgdA-6MSAS-TtrpC::argB, gdhAΔ::AFpyrG NID61 X NID137 

 Removal of pyrG on 5-FOA  

NID393 IS1::PpgdA-6MSAS-TtrpC::argB, gdhAΔ::gdhB NID164 pop 

NID392 IS1::PpgdA-6MSAS-TtrpC::argB, gdhAΔ NID180 pop 

 Final Strains**  

NID521 IS1::PgpdA-TtrpC::argB NID210 X IBT25456 

NID875 IS1::PpgdA-6MSAS-TtrpC::argB NID137 X NID596 

NID898 IS1::PpgdA-6MSAS-TtrpC::argB, gdhAΔ NID392 X NID596 

NID605 IS1::PpgdA-6MSAS-TtrpC::argB, gdhAΔ::gdhB NID393 X IBT25456 

*All strains except IBT25456, NID521, NID875, NID898 and NID605 are veA1, argB2, pyrG89. **The final strains are all 

argB2 and veA1. 

 

The gene targeting substrate from BGHAp75 was excised by NotI digestion and transformed 

into IBT28738 using the A. nidulans argB selectable marker as described by Nielsen et al. 

(Nielsen et al., 2008). Transformants were streak purified and were verified for insertion into 

IS1 (situated between AN6638 and AN6639 on chromosome I) by diagnostic PCR using the 

primers given in table 7 supplementary S1. The strain selected for further work was named 
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NID63. As a control strain for the insertion site the strain NID210 was used (Regueira et al., 

2011). The primers used can be seen supplementary S1. 

 

The knockout of gdhA (AN4376) was carried out as previously described by Nielsen et al. 

(Nielsen et al., 2006). The gene targeting substrates were amplified using the primers 

described in supplementary S1. The substrates were purified using illustra® DNA and Gel 

band purification kit (GE Healthcare) and transformed into IBT29539.The transformants 

were screened by PCR and positive candidates were streak purified. The selected strain was 

named NID61. 

 

In case of the gdhB replacement strain, parts of the gdhB gene was used as direct repeats thus 

a recombination event on 5-FOA results in the elimination of the pyrG marker and 

reconstitution of a functional gdhB gene in the AN4376 locus as shown in supplementary S1 

figure 3. The strain was constructed by the same methods as the gdhA strain. The replacement 

strain was named NID58. 

 

In the first round the nkuA∆ was eliminated by crossing NID63 with IBT25456 to increase 

genetic strain stability. Based on PCR verification of msas insertion and the loss of the nkuA 

mutation along with growth on selective media the progeny strain NID137 was chosen. 

 

The 6-MSA producing strain NID137 was crossed with NID58 and NID61, respectively 

resulting in the generation of the two progeny strains NID164 and NID180. The Aspergillus 
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fumigatus pyrG marker was eliminated from NID164 and NID180 by direct repeat 

recombination on 5-fluororotic acid (5-FOA) medium resulting in the strains NID393 and 

NID392.  

 

The gdhA deletions of NID392 and NID393 were verified by southern blotting. Genomic 

DNA from NID392 and NID393 was purified by using the FastDNA® SPIN for Soil Kit (MP 

Biomedicals, LLC) and restricted with the enzymes AflII and pmeI. The probe was PCR 

amplified as described in supplementary S4. The deletion of gdhA was verified by southern 

blotting. Blotting was performed as described by Sambrook and Russel 2001 (Sambrook and 

Russell, 2001). Labeling of the probes was performed according to the manufacturer’s 

protocol using the Biotin DecaLabel Kit, #0652 from Fermentas. Detection was done by the 

Biotin Chromogenic detection kit, #K0662 according to the manufacturer’s description.  

 

In the case of NID393 the reconstituted gdhB gene including the upstream region was PCR 

amplified with the primers GACTGCCGAAGTAAGAGCGCGG and 

TTATGCTTTGGACTGTGCAAGTC and sequenced to insure that there were no mistakes in 

the direct repeat recombination (StarSEQ, Germany). 

 

In order to avoid any differences in metabolism and expression levels of some genes due to 

auxotrophies the mutation pyrG89 was eliminated by crossing with a strain that had the 

wildtype allele of pyrG. The strains NID210 and NID393 were crossed with GO51 and the 

resulting progeny were tested on minimal media. NID137 was crossed with NID596 and the 

resulting progeny were tested on minimal media. Due to the mutations leading to white 
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(wAΔ) and yellow (wAΔ , yAΔ) color of some of the progeny in NID596 a visual selection for 

green progeny was undertaken. The spores were grown on minimal media and selected 

colonies were PCR verified for insertion in IS1 and the deletions. Based on sequence 

alignment it was established that the argB2 harbors a point mutation at basepair 245 in the 

coding sequence. Thus in order to confirm the presence argB2 mutation the first 600 bp of 

the gene was sequenced in all strains (StarSEQ, Germany). The resulting strains can be seen 

in table 2 under the heading final strains. All primers used can be seen in supplementary S1. 

 

Physiological Characterization 

The four strains NID875, NID521, NID898 and NID605 were all characterized in batch 

fermentations performed as described below. 

 

Inoculum Preparation 

The spores for inoculation of the batch reactor were generated by growing the A. nidulans 

strains on potato dextrose agar (PDA) plates for 4-5 days at 37 °C. The spores were harvested 

by addition of 5 mL of sterile saline water (0.9 % NaCl) per plate. The spores were counted 

in a counting chamber and the bioreactor was inoculated with 2 *10^9 spores per L. 

 

Bioreactor Cultivation Conditions 

The cells were grown in 2 L Braun bioreactors with a working volume of 1.8 L. The 

temperature was controlled at 30 °C. Stirring and airflow was set as a ramp starting at 100 

rpm and 0.1 vvm during germination. The pH was maintained at pH 3 for the first 8 hours of 

the fermentation after which it was slowly increased to pH 5.5 over the following 2 hours by 



92 

 

addition of 2 M NaOH. Stirring was gradually increased to 300 rpm after 5 hours then 600 

rpm after 10 hours and 800 rpm after 11 hours. The airflow was increased to .6 vvm/min after 

9 hours and then to 1 vvm/min after 10 hours and pH was set at 5.5 by addition of 2 M 

NaOH. During the cultivation pH was kept at 5.5 by the addition of 2 M NaOH and 2 M HCl. 

The concentrations of carbon dioxide in the exhaust gas were monitored with a gas analyzer 

throughout the fermentation (Innova AirTech Instruments 1313 Fermentation monitor was 

used for NID605 and NID521. The PrimaPro Process MS from Thermo Scientific was used 

for NID875 and NID898).  

 

Biomass measurements 

First the sampling port was emptied by removing approximately 3 mL of the broth and 

discarding it. Then approximately 5 mL of fermentation broth was pulled from the broth in 

the reactor. The syringe was then weighed before the liquid was filtered through a 

preweighed, dried filter (Sartorius AG, Goettingen, Germany) with a poresize of 0.45 µm. 

The filter was washed twice with the same volume sterile saline water (0.9 % NaCl). The 

filter was then dried at 150 W for 20 minutes in a microwave oven. The filters were cooled in 

a desiccator for at least 2 hours before the filters were weighed to determine the amount of 

biomass in the broth. 

 

Metabolite Measurements 

To determine the metabolite concentrations in the broth samples were filtered through a 0.45 

µm filter (Sartorius AG, Goettingen, Germany) and stored at -20 °C until further analysis.  
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Glucose was measured using an Agilent HPLC series 1100 with a RI (refractive index) 

detector. The samples were run on an ion-exclusion column with the dimensions 300 mm by 

7.8 mm (Aminex HPX-87H from Biorad).  The column was eluted at 60 °C with 5mM 

H2SO4 at flow rate of 0.6 mL/min. The metabolites were detected with an RI detector.  

6-MSA (SC-274880, Santa Cruz Biotechnology Inc., California, USA) was measured on an 

Agilent 1100 series HPLC with a degasser, binary pump, column oven and DAD. The Luna 

C18(2) column (100*2 mm with 3µ particles, Phenomenex (Torrence, CA)) was heated at 40 

°C during analysis. The samples were run on a gradient of milliQ water with 50 ppm TCA 

(Solvent A) and 50 ppm TFA in acetonitril (solvent B). The gradient of the solvents was as 

mix of A and B. The amount of B was changed in gradient from 20% to 60% in 10 minutes 

and then 20% B for the next 2 minutes.  

 

Results 

In silico optimization of 6-MSA production 

First the iHD666 model of A. nidulans metabolism was modified by the addition of the 

reactions for biosynthesis and export of 6-MSA. Then the production of 6-MSA was modeled 

using FBA and MOMA for prediction of a single deletion mutant with improved yields of 6-

MSA. The targets were sorted based on the maximum biomass product coupled yield (BPCY) 

giving the highest combined yield of biomass and 6-MSA. The list of predicted targets can be 

found in table 8 supplementary S3. The predicted targets were evaluated in terms of 

biological impact and significance. This inspection led to the removal of several unfeasible 

targets. Hence, several transport reactions were removed. Many of the predicted targets were 

aimed at increasing the availability of the cofactor NADPH for production of 6-MSA. As the 
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pentose phosphate pathway (PPP) is the largest source of NADPH many of the targets were 

related to the PPP (red). However, the split between the Embden-Meyerhof-Parnas pathway 

(EMP) and PPP is highly regulated and difficult to engineer (Hankinson and Cove, 1974), so 

targets in the PPP were not prioritized. Several genes encoding enzymes acting in the TCA 

cycle (blue) were also suggested as targets. With the same argument of tight regulation, these 

candidates fore gene deletion were not prioritized either. Lastly, genes that were proven to be 

lethal in deletion studies of S. cerevisiae or A. nidulans (Giaever et al., 2002; Roumelioti et 

al., 2010) were removed from the list (green). A reduced list of targets can be seen in table 3.  
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Table 3 The final list of possible candidates in a deletion strategy for improved 6-MSA production. Hydrogen ions (H+) are 

not balanced in the iHD666 model and thus not given in the reactions. The targets are sorted based on the Biomass Product 

Coupled Yield (BPCY). 

 Gene ID BPCY Reaction 

1 AN8866.2 (putative 

phosphoglycerate dehydrogenase) 

0.00513 

3-phospho-D-glycerate + NAD+ -> 3-

phosphonooxypyruvate + NADH 

2 AN3223.2b pfkA 

0.003093 

ATP + sedoheptulose-7-phosphate-> ADP + 

seduheptulose-1,7-bisphosphate 

3 AN7459.2a (putative 6-

phosphofructokinase) 

0.002952 ATP + Mannose -> ADP + D-Mannose-6-

Phosphate 

4 AN3432.2a (aldose-1-epimerase) 0.00284 UDP-galactose <-> UDP-glucose 

5 AN3058.2 (putative glycine 

hydroxymethyltransferase) 

0.002723 

tetrahydrofolate + L-serine <-> glycine + 5, 10 

methylenetetrahydrofolate 

6 AN3741.2c alcB 0.002465 glycerol + NAD -> D-glyceraldehyde + NADH 

7 AN4684.2a (putative 

triacylglycerol lipase) 

0.001991 

triacylglycerol + H2O -> diacylglycerol + 

0.0821 C120ACP + 0.0444 C140ACP + 0.0407 

C141ACP + 0.0081 C150ACP + 0.5161 

C160ACP + 0.0681 C161ACP + 0.0276 

C162ACP + 0.0039 C170ACP + 0.0860 

C180ACP + 1.2429 C181ACP + 1.0870 

C182ACP + 0.1051 C183ACP + 0.0200 

C200ACP (fatty acids) 

8 AN4323.2/AN7878.2/AN5957.2d 

(Putative branched chain amino 

acid aminotransferase) 

0.001877 

(R)-2-oxoisovalerate + glucose <-> 2-

oxoglutarate + L-valine  

9 AN4376.2 gdhA 

0.001756 

Oxoglutarate+NADPH -> glutamate and 

NADP+ 

 

After screening the initial targets both based on the level of characterization of the genes as 

well as the potential effect on metabolism one of the main targets was the NADPH-GDH 

(glutamate dehydrogenase, AN4376), gdhA. It was chosen for experimental validation, as 

previous studies strongly suggest that its deletion also may lead to dramatic reorganization of 

metabolic fluxes in other fungi (Thykaer et al., 2008). The main argument for choosing gdhA 
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as a target is that it consumes NADPH. By eliminating GDHA activity, potentially m ore 

NADPH will be available fore 6-MSA production. A more detailed overview of the reactions 

in A. nidulans involving GDHA and nitrogen metabolism can be seen in supplementary S2.  

 

Strain Construction 

The strains were constructed through several rounds of gene targeting, crossing and marker 

elimination by direct repeat recombination as illustrated in figure 1.  

 

 

Figure 1 Overview of the strain construction. All intermediate strains used for the construction are given in blue boxes. The 

red boxes represent the transient diploid state of a cross. The strains in the top row were constructed through gene targeting. 

Through several rounds of crossing (red boxes) and counterselection on 5-FOA the final strains (green boxes) given in the 

last row were obtained. 
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First we established the production of 6-MSA through genomic integration resulting in the 

strain NID63 that was then put through several crosses in order to obtain the final strain 

NID875. We then constructed the strain harboring the model predicted gdhA deletion 

(NID61) and crossed it with the 6-MSA producing strain and after crossing and marker 

elimination had the final strain NID898. In order to improve the growth rate of the gdhA 

deletion strain a strain with the deletion and an extra copy of gdhB was constructed (NID58) 

and crossed to a 6-MSA producing strain where the marker was eliminated by crossing 

resulting in the strain NID605. Furthermore, southern blot analysis in supplementary S4 

confirms the deletion of gdhA and the deletion of gdhA with the insertion of gdhB when 

compared to the reference strain IBT29539. All the final strains were able to grow in cheap 

non-selective media. The markers were eliminated such that the only difference to the 

reference was the intended deletions. The genotype of the strains constructed for evaluation 

of the metabolic engineering strategies can be seen in table 2 in the materials and methods 

section. 

  

Physiological Characterization 

The four strains NID875, NID521, NID898 and NID605 were all characterized in 2 L batch 

fermentations to determine the effect of the gdhA deletion on 6-MSA production. The growth 

and metabolite profiles are presented in figure 7 supplementary S6.  

 

The maximum specific growth rates of the strains were calculated based on dry weight 

measurements in the exponential phase of the cultivations. As expected, the growth rate of 

the gdhA∆ strain (NID898) was reduced to one third of the reference strain expressing 6-

MSA. Although the growth rate of the gdhA∆::gdhB  strain (NID605) is still severely 
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affected, it doubled when compared to the gdhA∆ strain presumably due to the extra copy of 

GDHB. Furthermore, the lag phase of NID605 and NID898 increased by more than 10 hours, 

possibly due to a redox in-balance. 

 

Table 4 The maximum specific growth rate (µmax) and yields (Y) calculated from the fermentation data. Ysx, Yxp were all 

calculated in the exponential growth phase. Dry weight (dw) 

Strain NID521 NID875 NID898 NID605 

Genotype IS1::PgpdA-

TtrpC::argB 

IS1::PgpdA-

6MSAS-

TtrpC::argB 

IS1::PgpdA-

6MSAS-

TtrpC::argB, 

gdhA∆ 

IS1::PgpdA-

6MSAS-

TtrpC::argB, 

gdhA::gdhB 

µmax (h
-1

) 0.24 ±0.01 0.21 ±0.02 0.07 ±0.01 0.14 ±0.03 

2
Ysx overall (g dw/g 

glucose) 

0.56 ±0.03 0.56 ±0.01 0.4 ±0.07 0.38 ±0.05 

1
Yxp (mg 6-MSA/g 

dw) 

  57.66 ±11.19 74.32 ±31.69 42.98 ±22.24 

rp (mg 6-MSA/g 

dw/h) 

  10.7 ±4.35 5.44 ±1.89 5.32 ±1.22 

2
Yxp overall (mg 6-

MSA/g dw) 

  48.66 ±2.39 34.82 ±11.41 30.04 ±7.89 

1
 Yxp was calculated in the exponential growth phase. 

2
 Yxp overall and Ysx overall are calculated at the time point of maximum biomass and 6-MSA titer. 

 

The 6-MSA and metabolite concentrations were measured in order to estimate the yields. The 

yield of biomass in the strains NID521 and NID875 are as expected quite similar. The yield 

of biomass decreases in the gdhA∆ strains probably as a result of reduced nitrogen 

assimilation.  

 

The model assumes a steady state, which is only present in the exponential phase. Thus the 

exponential phase yield should provide a better fit to the model predictions. When estimating 

the yield of 6-MSA per biomass (Yxp) in the exponential phase the mutant strain NID898 

showed increased yields. A more robust characteristic is the overall yield of 6-MSA per 
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biomass. The overall yield of 6-MSA (Yxp overall) was however larger in NID875 than in the 

engineered strains NID605 and NID898. When taking biomass into account by calculation 

the productivity, the reference strain NID875 still has a higher productivity (rp) than the 

mutant strains. In addition, we measured the polyols glycerol, erythritol and arabitol, but did 

not find significant amounts. 

 

Discussion 

Based on the results presented in the previous section, we have documented that the 

engineered strains were able to produce 6-MSA. To further optimize the 6-MSA production 

an in silico guided approach was taken. Model predictions are only as valid as the data on 

which the model was built and thus must be evaluated carefully to guide any optimization 

process. Thus the in silico predicted metabolic engineering targets were carefully evaluated 

before an experimental course was set. Firstly, transport reactions were removed as they are 

often artificial reactions added to the model allowing for the diffusion of products in and out 

of the cell. Moreover, many transporters are able to transport more than one type of 

metabolite making the outcome more unpredictable. In addition, targets in the pentose 

phosphate pathway were not prioritized as the pathway is highly regulated and thus difficult 

to engineer (Hankinson and Cove, 1974). Furthermore, the model tends to maximize the flux 

through the pentose phosphate pathway (PPP), which leads to the PPP potentially having a 

presumed higher impact on metabolism than is true in vivo. 

 

Eventually, gdhA was selected as a deletion target due to the consumption of NADPH that 

upon deletion would be available for 6-MSA production. Studies in the yeast S. cerevisiae 

(Brochado et al., 2010) as well as in E. coli (Alper et al., 2005) have shown that this target 
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can have quite beneficial effects as a metabolic engineering target. When modeling 6-MSA 

production in S. cerevisiae this gene was also reported as a top scoring candidate 

(Wattanachaisaereekul, 2007).  

 

The efficient generation of gene targeting substrates by USER™ cloning combined with a 

well established gene targeting method lead to the stable production of 6-MSA in A. nidulans. 

The deletion of gdhA using the counter-selectable marker of pyrG made it possible to create a 

clean strain that was only affected by the genetic modifications. At the same time, it is still 

possible to further engineer the strain. This could be used to increase the copy number of the 

6-MSA synthase or other metabolic engineering strategies aimed at increasing production of 

6-MSA. 

 

The insertion of an extra copy of gdhB resulted in a significant increase in the growth rate of 

the gdhA∆ strain (NID898). This result is comparable to results obtained in yeast where the 

growth of gdh1∆ (gdhA) was increased by the overexpression of gdh2 (gdhB) (Nissen et al., 

2000; Brochado et al., 2010).   

 

Physiological characterization showed that the yield of 6-MSA in the exponential phase 

increased in NID898, although the high standard deviation should be kept in mind. One 

reason that the study is not entirely conclusive could be the severe growth retardation 

observed in the A. nidulans mutant, which may be overcome by inserting extra copies of 

gdhB or supplementing with glutamine in the media. Supplementation with glutamine could 

alleviate the growth inhibition of the gdhA∆ mutation and thus lead to results that show if 
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metabolism is shifted due to the gdhA deletion. Alternatively, running chemostat cultivations 

of the strains would remove the effect of growth rate and give a better insight into the shifts 

in metabolism resulting from the gdhA deletion. As the growth rate is low the chemostats 

should be run at a low dilution rate, which is challenging to maintain with filamentous fungi. 

Alternatively, the growth rate of the mutant may be increased by the use of adaptive 

evolution where one continuously selects for the faster growing strain.  

 

A challenge for further applications of in silico approaches to guide metabolic engineering is 

improvement of the genomes-scale model of A. nidulans as well as optimization algorithms 

that may be tailored into taking regulation into account. The fact that the A. nidulans model 

(iHD666) only contains 666 genes and 1095 reactions whereas the newest E. coli model 

(iJO1366) contains 1366 genes and 2251 reactions (Orth et al., 2011) indicates that there is 

still room for improvement of the A. nidulans model. From the higher complexity of A. 

nidulans it may be argued that the model should contain even more reactions than the E. coli 

model. The lack of reactions is probably also due to the fact that the A. nidulans genome is 

less annotated. New modelling information may also be gained from the knowledge 

assembled in the A. niger and A. oryzae genome scale models (Andersen et al., 2008; 

Vongsangnak et al., 2008). In addition the S. cerevisiae and E. coli models have been trained 

on a lot of physiological evidence from mutant strains. The lesser amount of data available 

for A. nidulans results from the fact that mutants of A. nidulans have to be constructed 

whereas S. cerevisiae single mutants can be ordered from EUROSCARF (EUROSCARF, 

2012) as well as E. coli strains from Keio collection (Baba et al., 2006) and the the Coli 

Genetic Stock Center (CGSC) at Yale. On top of these collections 184.624 double knockout 

mutants from S. cerevisiae metabolism have been constructed and tested (Szappanos et al., 

2011).  In A. nidulans there are only very few studies of mutants that systematically target 
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metabolism. Thus the addition of experimentally determined flux and transcriptome data to 

the A. nidulans model may help shed new light on the connections in A. nidulans metabolism. 

 

These results exemplify the first use of OptGene as a guide for metabolic engineering of 

higher eukaryotes such as A. nidulans. The higher complexity of such a biological system 

makes it more difficult to predict the outcome of genetic modifications through the use of 

algorithms and genome-scale models. This can be ascribed to the highly developed regulatory 

mechanisms that are more prevalent in multi-cellular organisms compared to the single celled 

E. coli and S. cerevisiae. The ability of A. nidulans to counteract the modifications by 

changes in metabolism shows that there is still more to be done on the model building of this 

fungus.  

 

Often the deletion of a gene in an organism causes severe defects that could have been 

avoided by up/down regulation of gene expression. Thus an optimization strategy that 

involves fine tuning expression as opposed to eliminating reactions may yield other 

interesting results. To predict up/down regulations of gene expression for metabolic 

engineering an alternative metabolic engineering algorithm called OptForce was developed 

(Ranganathan et al., 2010). It is an extension to the OptFlux metabolic engineering platform 

(Ranganathan et al., 2010; Gonçalves et al., 2012). OptForce was used to increase malonyl-

CoA supply in order to improve the production of the flavanone naringenin (Xu et al., 2011). 

The authors chose to use the precursor malonyl-CoA as the optimization target and not the 

final product naringenin. The use of the polyketide precursor malonyl-CoA as an 

optimization target may be another way of getting new metabolic engineering targets that will 

give higher yields of 6-MSA.  
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A. nidulans already has a secondary metabolism requiring a large pool of acyl-CoA that could 

be made available for polyketide production. Detailed studies of acyl-CoA availability and 

cofactor balances through advanced HPLC analysis could shed light on existing precursor 

pools and the effects of the deletion of gdhA on those. Along those lines precursor availability 

could also be increased by creating knockouts of the major polyketides in A. nidulans such as 

sterigmatocystin that are known to be expressed under the cultivation conditions (Yu and 

Leonard, 1995). This should ultimately free acetyl-CoA for novel polyketide production. A 

similar approach includes the deletion of the actinorhodin cluster in S. lividans to increase 

expression of heterologous polyketides (Tang et al., 1999). As three units of malonyl-CoA 

are required for the production of 6-MSA, the overexpression of ACC1 that converts acetyl-

CoA to malonyl-CoA could have a beneficial effect in A. nidulans as it has been shown for S. 

cerevisiae (Wattanachaisaereekul et al., 2008).  

 

In terms of optimizing polyketide production, it has been shown that there is an effect of the 

pH on the level of sterigmatocystin biosynthesis in A. nidulans (Keller et al., 1997). Thus 

controlled studies of different pH levels in bioreactors could lead to higher 6-MSA 

productivity.  

 

To summarize there are still many points of entry to further optimize the polyketide 

production using A. nidulans as a cell factory. 
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Conclusion 

We established efficient production of the model polyketide 6-MSA in the heterologous host 

A. nidulans. For the first time ever the model iHD666 has been used with the algorithm 

OptGene to predict targets for genetic modifications that could improve chemical production 

in A. nidulans. The target gdhA∆ was successfully engineered in the A. nidulans strain and 

crossed with the 6-MSA producing strain. The gdhA∆ led to severe growth retardation, which 

was partially rescued by insertion of an extra copy of gdhB. This study shows that the A. 

nidulans cell factory can produce significant amounts of heterologous polyketides and further 

metabolic engineering may pave the way for harnessing this enormous potential. 
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Supplementary 

S1 Primers and Plasmids for strain construction 

The primers AGAgcgaUatgcattccgctgcaacttc and TCTgcgaUttaatggtgatggtgatga were used to 

generate the 6-MSAS gene fragment for insertion into BGHAp71 to create BGHAp75 with 

USER® cloning (see figure 2). 

 

Figure 2 The plasmid BGHAp75. The plasmid contains the msas polyketide synthase gene with the gpdA promoter in front 

of the gene and the trpC terminator after the gene. The selectable marker used is ArgB. Furthermore the gray sequences are 

complementary to the insertion site 1 on the A. nidulans genome. The NotI restriction sites were used for excision of the 

gene targeting substrate. 

 

In table 5 and 6 the primers used for amplification of gene targeting substrates are given. The 

pyrG fragment flanked by direct repeats was amplified from the plasmid pDel2 for the gdhA 

deletion (Nielsen et al., 2008). Whereas pyrG was amplified without direct repeats from the 
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plasmid PCR2.1 and used for the gdhA::gdhB strain. All other fragments were amplified 

from the A. nidulans strain IBT27263 (argB2, pyrG89, veA1). The strain is derived from 

G051 of the Glasgow strain collection (Clutterbuck, 1974). The assembly of the different 

fragments and the gene targeting method is illustrated in figure 3. Briefly the primers 

ANgdhA-dl-Up-F and ANgdhAΔ::gdhB-Up-R were used to generate a sequence homologous 

to the upstream region of the gdhA gene. The primers ANgdhAΔ::gdhB-Dw-F and ANgdhA-

dl-Dw-R were used to generate the corresponding downstream homologous sequence. Then 

the upper 2/3 and lower 2/3 of pyrG from A. fumigatus was amplified using the primers 

pDEL-Up-F-Ad (5A) and AFpyrG-int-F3 (4Q) and AFpyrG-int-R (2K) and pDEL-Dw-R-Ad 

(2B). Finally, the bipartite substrate was constructed by fusing the upstream Up-gdhA with 

the upstream pyrG fragment and the downstream targeting fragment gdhA-Dw to the 

downstream fragment of pyrG using the primers ANgdhA-dl-Up-F and AFpyrG-int-F3 (4Q) 

and AFpyrG-int-R (2K) and ANgdhA-dl-Dw-R, respectively. The pyrG is surrounded by 

direct repeats. Thus on 5-FOA plates pyrG is excised by direct repeat recombination. 

Table 5 Primers used for construction of the gene targeting substrates for the deletion of gdhA.  

gdhA∆  Primer Sequence 5´-> 3’ Fragment 

ANgdhA-dl-Up-F GACTGCCGAAGTAAGAGCGCGG 
Up-gdhA 

ANgdhA-dl-Up-Rad gatccccgggaattgccatgGAATGCGCTGAGCCCGCG 

ANgdhA-dl-Dw-Fad aattccagctgaccaccatgGTGGTGAATTAGCCCCGTCTC 
gdhA-Dw 

ANgdhA-dl-Dw-R CCTGGACTATCAGCTGATGGAG 

pDEL2-pyrG (AF)    

pDEL-Up-F-Ad (5A) catggcaattcccggggatcTGGATAACCGTATTACCGCC 
5´pyrG 

AFpyrG-int-F3 (4Q) TGATACAGGTCTCGGTCCC 

AFpyrG-int-R (2K) GGAAGAGAGGTTCACACC 
3´ pyrG 

pDEL-Dw-R-Ad (2B) catggtggtcagctggaattTGCCAAGCTTAACGCGTACC 

  

The deletion of gdhA combined with an insertion of an extra copy of gdhB was achieved in a 

similar manner to the one described for gdhA and with the primers given in table 5. The main 

difference is that the pyrG gene does not contain direct repeats. Instead part of the gdhB gene 

is used as direct repeats as indicated by the shading in figure 3.  
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Table 6 The primers used for the construction of the gene targeting substrates for the deletion of gdhA with the immediate 

insertion of gdhB. 

gdhA∆::gdhB  Primer Sequence 5´-> 3’ Fragment  

ANgdhA-dl-Up-F GACTGCCGAAGTAAGAGCGCGG 

Up-gdhA ANgdhAΔ::gdhB-Up-

R 

cgatgcgggagacacCATTTTTGCGCGAGAAGCTTATTGCTGA 

ANgdhAΔ::gdhB-Dw-

F 

gacttgcacagtccaaagcataAATTAGCCCCGTCTCCTAATTTTGAT 

 gdhA-Dw 
ANgdhA-dl-Dw-R CCTGGACTATCAGCTGATGGAG 

ANgdhB-start-F ATGGTGTCTCCCGCATCG 
5´gdhB 

ANgdhB::pyrG-5-R gtgaagagcattgtttgaggcCACCGTCAGGTCCACCAG 

ANgdhB::pyrG-3-F gcctcctctcagacagaaTCCATCTGCGCTTCCGAGAC 
gdhB 3´ 

ANgdhB-end-R TTATGCTTTGGACTGTGCAAGTC 

pyrGX     

pDEL-Up-F-Ad (5A) catggcaattcccggggatcTGGATAACCGTATTACCGCC 
5´pyrG 

pyrG_A.f-5'-F (10J) GCCTCAAACAATGCTCTTCAC 

pyrG_A.f-3'-R (1K) ATTCTGTCTGAGAGGAGGC 
3´ pyrG 

pDEL-Dw-R-Ad (2B) catggtggtcagctggaattTGCCAAGCTTAACGCGTACC 

 

 

Figure 3 The construction of the deletion of gdhA along with the insertion of gdhB in A. nidulans by the gene targeting 

method of Nielsen et al. (Nielsen et al., 2006). The deletion of gdhA was performed in an analogous manner with only pyrG 

flanked by direct repeats and up and down stream regions of the gdhA gene in the targeting substrates. Up-gdhA is a 

sequence homologous to the upstream region of the gdhA gene and gdhA-Dw is a sequence homologous to a region 

downstream of the gdhA gene. The shaded regions of gdhB are used to generate a direct repeat for excision of PyrG by 

homologous recombination on 5-FOA. This results in the generation of a single copy of gdhB that was validated by 

sequencing. 
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The primers used for diagnostic PCRs and verification during crossing are given in table 7. 

For the verification of gene targeting into insertion site 1 (IS1) a primer pair consisting of a 

primer upstream or downstream of the insertion fragment and a primer within the gene 

targeting substrate was used.  This generated both an up- and down- stream verification of the 

insertion. The negative control gave a small band of 500 bp if no insertion took place. In the 

case of nkuA the primers were located on either side of the locus and thus the wildtype 

produced a large band and the mutant a small band. The same was true for the gdhA locus 

verification. 

 

Table 7 The primers used for verification of gene targeting and nkuA elimination. 

Gene Primers 
Fragment size 

Wildtype Recombinant 

IS1::msas 

(upstream) 

CTCACTCGCCTCTCGTTGC 

- 2600 bp AAGCTGTTGGCAGCCTTAAA 

IS1::msas 

(downstream) 

GGTTTCGTTGTCAATAAGGGAA 
- 2499 bp 

GAGGTGGCGGCTTCGGAG 

IS1:: 

(negative 

control) 

GGACAACGGGAAGAGGCTCAG 

500 bp 
> 10,000 bp (not 

observed) GGAGAGGGAGAGAAGAAGAAGGG 

gdhA 
GGTCGTGTGCCTCTCTTGG 

3512 bp 2026 bp 
GCCCTGCATTGAGAACATCT 

gdhA::gdhB 
GGTCGTGTGCCTCTCTTGG 

1689 bp 3670 bp 
GGAATCATCATCATGCAACATC 

nkuA 
GAGGTTACCTCAGATCTTG 

2200 bp 550 bp 
CGAGTGCACAGCACAGCTG 
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S2 Nitrogen metabolism in A. nidulans 

Nitrogen assimilation is a central process in most bacteria and lower eukaryotes. It is an 

essential anabolic reaction eventually leading to the build up of amino acids. In figure 4 some 

of the central reactions involved in nitrogen assimilation in A.  nidulans can be seen. In 

essence nitrogen is assimilated in a tightly regulated fashion depending on the available 

nitrogen source (Morozov et al., 2001). In the batch cultivations run with A. nidulans 

ammonia is used as a nitrogen source. 

 

Figure 4 The assimilation of nitrogen in A. nidulans connected to the two glutamate dehydrogenases (Droste et al., 2010; 

GenomeNet, 2012) . The central part of the figure shows the reactions involving the two glutamate dehydrogenases NADP-

GDH (gdhA) and NAD-GDH (gdhB) (yellow). NADP-GDH utilizes NADPH in order to form L-glutamate. The reaction is 

primarily anabolic. On the other hand NAD-GDH (gdhB) uses the cofactor NADH to form L-glutamate albeit the reaction 

most often runs in the opposite direction generating NADH in catabolic reactions. GS: glutamine synthetase, GltA: 

glutamate synthase, GatA: 4 amino butyrate transaminase, AN5447: putative glutamate decarboxylase, AN1003: putative 

isocitrate dehydrogenase. Cofactors are only shown for the GdhB and GdhA reactions. 
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The glutamate dehydrogenase known as GdhA (AN4376, Chromosome III) is responsible for 

incorporating nitrogen in amino acids and thus serves an important function in nitrogen 

metabolism. GdhB (AN7451, Chromosome IV) is primarily responsible for the break-down 

of glutamate into oxoglutarate that is part of the TCA cycle. GdhA and GdhB are 

distinguished by their use of either NADH (GdhB) or NADPH (GdhA) as cofactors and are 

thus also referred to as NAD-GDH or NADP-GDH respectively.  
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S3 Model Predictions 

Table 8 Model predictions with OptGene for knockout targets to improve 6-MSA production. The targets were sorted based 

on maximum biomass product coupled yield (BPCY). Pentose phosphate pathway (red), TCA cycle (blue), S. cerevisiae/A. 

nidulans inviable (green). *This gene is no longer annotated in the A. nidulans genome (AspGD). 

Gene BPCY Reaction 

AN2440.2; 0.007445 D-Ribulose 5-phosphate <-> D-Ribose-5-phosphate 

AN0688.2a; 0.005996 D-Ribose-5-phosphate+ D-Xylulose-5-phosphate <-> 

seduheptulose-7- phosphate + D-glyceraldehyde-3-phosphate 

AN0688.2b; 0.005204 D-erythrose 4-phosphate + Xylulose-5-phosphate <-> beta-D-

fructose-6-phosphate + D-glyceraldehyde-3-phosphate 

AN2409.2*;  0.00513 3-phosphonooxypyruvate + glucose  -> 2-oxoglutarate + 3-

phosphoserine 

AN8866.2; 0.00513 3-phospho-D-glycerate + NAD+ -> 3-phosphonooxypyruvate + 

NADH 

AN6717.2; 0.00495 S-malate (mitochondrial)  + NAD(mitochondrial) <-> 

Oxaloacetate (mitochondrial)  + NADH (mitochondrial) 

AN6900.2; 0.004801 Glycerone phosphate <-> D-glyceraldehyde 3-phosphate 

AN8707.2a; 0.004521 Fumarate (mitochondrial) + H2O (mitochondrial) <-> S-malate 

(mitochondrial) 

AN7588.2; 0.004269 Ribulose-5-phosphate <-> Xylulose-5-phosphate 

AN2981.2; 0.004097 Alpha-D-glucose-6-phosphate + NADP -> D-glucono-1,5-

lactone 6-phosphate + NADPH 

AN5629.2/AN6077.2/ 

AN1728.2/AN2414.2; 

0.003945 NADH (mitochondrial) + Ubiquinone (mitochondrial) + 4 H+ 

(proton mitochondrial)  -> NADm + Ubiquinol (mitochondrial) 

+ 4 H+ (proton) 

AN2916.2/AN2332.2/ 

AN8793.2; 

0.003727 Succinate (mitochondrial)  + Ubiquinone (mitochondrial)  <-> 

fumarate (mitochondrial) + Ubiquinol (mitochondrial) 

AN2875.2b; 0.003461 Seduheptolose 1, 7 bisphosphate <-> glycerone phosphate + D-

erythrose-4-phosphate 

AN3223.2b; 0.003093 ATP + sedoheptulose-7-phosphate-> ADP + seduheptulose-

1,7-bisphosphate 

AN7459.2a; 0.002952 ATP + Mannose -> ADP + D-Mannose-6-Phosphate 

AN3432.2a; 0.00284 UDP-galactose <-> UDP-glucose 

AN3954.2; 0.002737 6-phospho-D-gluconate + NADP -> D-ribulose- 5-phosphate + 

CO2 + NADPH 

AN3058.2; 0.002723 tetrahydrofolate + L-serine <-> glycine + 5, 10 

methylenetetrahydrofolate 
AN3741.2c; 0.002465 glycerol + NAD -> D-glyceraldehyde + NADH 

AN4684.2a; 0.001991 triacylglycerol + H2O -> diacylglycerol + 0.0821 C120ACP + 

0.0444 C140ACP + 0.0407 C141ACP + 0.0081 C150ACP + 

0.5161 C160ACP + 0.0681 C161ACP + 0.0276 C162ACP + 

0.0039 C170ACP + 0.0860 C180ACP + 1.2429 C181ACP + 

1.0870 C182ACP + 0.1051 C183ACP + 0.0200 C200ACP 

(fatty acids) 

AN4323.2/AN7878.2/ 

AN5957.2d; 

0.001877 (R)-2-oxoisovalerate + glucose <-> 2-oxoglutarate + L-valine 

AN4376.2; 0.001756  Oxoglutarate+NADPH -> glutamate and NADP+ 
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S4 Southern Blot 

Table 9 Primers used for generating southern blot probe Up-gdhA. 

Name  Primer Sequence 5´-> 3’ Probe 

ANgdhA-dl-Up-F GACTGCCGAAGTAAGAGCGCGG 
Up-gdhA 

ANgdhAΔ::gdhB-Up-R cgatgcgggagacacCATTTTTGCGCGAGAAGCTTATTGCTGA 

 

 

Figure 5 Southern blot of the gdhA and gdhB mutants. In parenthesis is genotype followed by the expected band size. Lane: 

1. Ladder (Hyper Ladder 1 (Bioline)), 2. NID391 (argB2, pyrG89, veA1, IS1::PpgdA-6MSAS-TtrpC::argB, gdhAΔ) (4300 

bp – no band observed), 3. NID392 (argB2, pyrG89, veA1, IS1::PpgdA-6MSAS-TtrpC::argB, gdhAΔ) (4300 bp), 4. NID393 

(argB2, pyrG89, veA1, IS1::PpgdA-6MSAS-TtrpC::argB, gdhAΔ::gdhB) (7400 bp), 5. NID394, argB2, pyrG89, veA1, 

IS1::PpgdA-6MSAS-TtrpC::argB, gdhAΔ::gdhB) (7400 bp), 6.  IBT29539 (argB2, pyrG89, veA1, nkuA∆) (5600 bp). 

 

The Southern blot in figure 5 verified the deletion of gdhA and the deletion of gdhA with the 

insertion of gdhB in the strains NID392 and NID393.  
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S5 Calculation of Yields and Growth Rate 

The yields and growth rates were calculated based on the slope of a least squares 

approximation in the exponential phase as depicted in figure 6.  

 

 

 

Figure 6The growth rate was calculated based on the best linear fit of at least 5 data points of the age of the culture vs. 

ln of the dry weight in the exponential phase (the example is from NID521f4). The yield of 6-MSA on dry weight was 

calculated based on the slope of a linear fit between biomass concentration and 6-MSA production in the exponential 

growth phase (the example is from NID875 f4). 
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S6 Fermentation profiles 

 

Figure 7 Fermentation graphs from 2 L batch fermentations with 20 g/L glucose. In row 1 (column 1 and 2) are the profiles for NID521(IS1::PgpdA-TtrpC::argB), in row two 

are the profiles NID875 (IS1::PpgdA-6MSAS-TtrpC::argB), in row three are the profiles of NID898 (IS1::PpgdA-6MSAS-TtrpC::argB, gdhAΔ) . In row four are the profiles 

for NID605 (IS1::PpgdA-6MSAS-TtrpC::argB, gdhAΔ::gdhB). All of the axes have been set to the same scale.
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In this chapter a novel gene amplification system is presented that is under development in 

our lab. The people that have been involved with construction of the system and should be 

rightfully acknowledged are Christina Spuur Nødvig, Line Due Buron, Tomas Strucko and 

Zofia Jarczynska.    
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Chapter 5 

Novel gene amplification system for 6-MSA 

production in S. cerevisiae 

Abstract 

The use of Saccharomyces cerevisiae as a platform for the production of biopharmaceuticals 

and chemicals is well-established. The need to achieve high titers in respect to production 

processes is an everlasting demand. The first challenge in construction of a production host is 

having high expression of all the genes involved in the biosynthetic pathway. This has long 

been achieved through the use of 2µ based multicopy plasmid systems that are fast to 

construct and engineer. However, some important drawbacks exist in the 2µ based plasmid 

system. Firstly, the plasmid based systems achieve high copy numbers, but are challenged in 

terms of stability. If the number of different plasmids needed to achieve expression increases, 

the stability issue becomes an even greater challenge. Secondly, the ability to adjust levels of 

different enzymes in a pathway to avoid bottlenecks is not easily achievable in a plasmid 

based system. Thirdly, the population of cells in a plasmid based system is heterogeneous 

which complicates physiological analysis of the individual cells. In this paper the use of a 

gene amplification system that allows for the stable integration of genes in multiple copies is 

presented. The systems applicability is demonstrated on the polyketide synthase MSAS that 

must be activated by the PPTase NpgA leading to the production of the polyketide 6-MSA. 

The genes were amplified in one, two and four copies. Cultivation of the S. cerevisiae strains 

in shake flasks resulted in 6-MSA titers that correlated well with gene copy number. 
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Introduction 

Polyketides constitute a large group of natural products with importance in medicine (e.g. 

antibiotics) as well as undesirable properties (e.g. toxins) (Weissman, 2009). Polyketides are 

produced by large enzymes known as polyketide synthases (PKSs). In order for the 

polyketide synthases to function they have to be converted from their apo form into their holo 

form. This occurs by the action of a phosphopantetheinyl transferase (PPTase) that tethers a 

phosphopantetheinyl group onto the PKS (Tsai and Ames, 2009). Commonly used PPTases 

for heterologous expression are Sfp from bacillus subtilis and NpgA from Aspergillus 

nidulans as they are able to activate an array of different PKSs.  

 

The production of polyketides with therapeutic properties is quite a challenge. If the genetics 

of the natural polyketide producers is not well known, one is often left with time-consuming 

random mutagenesis and screening for improving production. Even so productivity can still 

be quite low. Alternatively, there have been efforts to chemically synthesize polyketides, but 

so far production has not yet achieved quantities that have made the process relevant for 

commercial production. A different method is to express the PKS and PPTase in a 

heterologous host that can offer the benefit of being a well known production organism. One 

well-studied production organisms is the yeast Saccharomyces cerevisiae. The heterologous 

expression of polyketides in yeast has been accomplished in large by the use of plasmid 

based expression systems. A well-studied model polyketide is 6-methyl salicylic acid (6-

MSA). Kealey et al. and Wattanachaisaereekul et al. have both achieved high titers of 6-

MSA by the use of 2µ plasmid expression in S. cerevisiae (Kealey et al., 1998; 

Wattanachaisaereekul et al., 2007).   
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In the study performed by Wattanachaisaereekul et al. expression of msas and npgA was 

achieved using a system of two 2µ based plasmids. The npgA gene was located on a 2µ 

plasmid with the TRP1 marker and the msas gene was located on a 2µ plasmid with URA3 

marker. Upon expression in S. cerevisiae on a minimal medium they achieved a final titer of 

150 mg/L of 6-MSA with 20 g/L glucose in the media in controlled bioreactors 

(Wattanachaisaereekul et al., 2008).  

 

Plasmid based expressions systems offer a quick way to provide proof of principle in terms of 

expression of polyketide genes in a heterologous host. Furthermore, high titers can be 

achieved by multicopy plasmids such as the 2µ based systems in yeast. The overexpression of 

genes is one of the most commonly used genetic tools both in academic research as well as 

industrial production strains. From a production perspective high expression levels often 

leads to higher titers of the product. In academia high expression levels can be used to study 

the physiological effects of overexpression of a specific gene. If the 2µ based system does not 

provide equal stable expression in all cells the effects observed from such an analysis may 

not be correct. Furthermore, when testing if genes have a dominant negative (e.g. toxic) effect 

after being overexpressed, it will also be difficult to access if only a proportion of the cellular 

population harbors the desired overexpression of a gene.  

 

Several studies have documented that 2µ based expression systems are not stable and 

plasmids are readily lost (Futcher and Cox, 1983; Futcher and Cox, 1984; Albertsen et al., 

2011). Plasmid stability has also been shown to be dependent on the media used, the selection 

markers applied, size of the plasmid and process conditions (Zhang et al., 1996). In addition, 

Albertsen et al. demonstrated that individual cells in a culture expressing a heterologous 
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protein tagged with either yellow fluorescent protein (YFP) or cyan fluorescent protein (CFP) 

as an N-terminal fusion showed a great variability in expression level (figure 1) (Albertsen et 

al., 2011). Figure 1 clearly demonstrates that only a proportion of the yeast cells shown in the 

brightfield image (DIC) are fluorescing (CFP, YFP) and thus expressing protein at a 

detectable level. On top of this there is a great variability between the dimmest and brightest 

fluorescing cells indicating that protein expression is not even within the cellular population. 

 

Figure 1 The figure shows the fluorescence of CFP and YFP of cells expressing proteins for the production of 

sesquiterpenes. In the left panel is pictures obtained through differential interference contrast microscopy (DIC) and in the 

right panel CFP (figure A) or YFP (figure B) fluorescence of the 2µ based protein expression. The figure is reproduced from 

Albertsen et al. (Albertsen et al., 2011). 

 

The expression of the CFP and YFP fusion proteins were analyzed by FACS and the results 

are illustrated in figure 2 (Albertsen et al., 2011). The results of Albertsen et al. further 

substantiate the claim that there is a large variation in CFP and YFP expression levels within 

a population of cells when the proteins are expressed from a 2µ plasmid. The lower left 

corner shows that for about half of the cells, the fluorescence signal was below the detection 

level. The top right corner of the figure shows the linear correlation expected as the CFP and 

YFP are expressed from the same plasmid. However, as the scale is logarithmic there is a 100 

times difference between the level of expression in the lowest and highest expressing cells of 

the counted population.   
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YFP 
 

Figure 2 Cells expressing YFP and CFP on a 2µ plasmid were analyzed 

by FACS and the amount of fluorescence was measured. In 53.1 % of 

the cells the fluorescence is very low and can to some degree be 

attributed to noise in the measurement. The remaining 42.5 % of the 

cells show a linear expression as CFP and YFP are expressed in the same 

plasmid. However there is a 100 fold difference in expression level 

between the lowest and highest expressing cells. 

 

 

 

As described, there are problems of 2µ plasmid instability and high variability of expression 

level within a cellular population. These problems can be overcome by stably integrating the 

genes of interest in the yeast genome through homologous recombination. However, one 

integrated copy of a PKS gene does not suffice to achieve significant amounts of polyketide 

product (Wattanachaisaereekul, 2007). Thus, one needs to incorporate several copies of the 

gene in the genome in order to achieve titers as the ones observed when using the 2µ based 

plasmid systems. If homologous recombination is achieved through the use of recyclable 

markers, it would take considerable time to integrate the new genes and achieve marker 

excision by direct repeat recombination making the strain ready for another round of 

transformation. An alternative strategy to repeated rounds of integration could be to achieve 

high copy numbers via gene amplification. 
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Gene amplification of large pieces of DNA occurs naturally in many microorganisms as well 

as mammalian cells (Haber and Debatisse, 2006). This occurs in S. cerevisiae and other 

yeasts as a result of Ty retrotransposons that can spread genes throughout the genome 

(Lesage and Todeschini, 2005). Taking advantage of the natural ability to amplify genes in 

microorganisms is a method that could potentially give rise to high expression in production 

strains. For example, targeting of repetitive elements such as rDNA and δ-sequences can be 

used for multiple integration of genes in S. cerevisiae (Lopes et al., 1989; Sakai et al., 1990). 

However, targeting genes to these natural elements often results in unstable tandem repeats 

and it is difficult to detect where integration has occurred.  

 

One successful example is the gene amplification of the bacterial gene cluster for the 

production of the antibiotic actinorhodin to improve the yield in Streptomyces coelicolor 

(Murakami et al., 2011). The cluster was amplified in 4-12 tandem copies resulting in a 20-

fold increase in actinorhodin production compared to the parental strain (Murakami et al., 

2011). Another example is the gene amplification through multicopy integrative plasmids in 

Yarrowia lipolytica (Juretzek et al., 2001). The gene amplifications resulted in a stable 

expression of 10-11 copies of the integrative plasmids. Measurement of β-galactosidase 

activity in strains with 5 to 13 copies of LacZ resulted in a 10-11 fold linear increase 

(Juretzek et al., 2001). This method takes advantage of evenly dispersed retrotransposons in 

the Y. lipolytica genome. However, when this method is used, it is difficult to detect where 

the gene copies are located as there are many retrotransposons in the genome. 
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Alternatively, the use of random mutagenesis and screening over several years in 

pharmaceutical companies has resulted in gene amplification of entire biosynthetic clusters. 

One example is the penicillin biosynthesis cluster (57 kb) that was amplified several times 

(Fierro et al., 1995; Newbert et al., 1997). Another example is the kanamycin-over-producing 

strain Streptomyces kanamyceticus where the 145 kb DNA cluster has been shown to be 

amplified up to 36 tandem copies (Yanai et al., 2006). However, random mutagenesis and 

screening is a quite time consuming process and strains are often hard to characterize with 

respect to copy number. Moreover, tandem repeats are prone to gene loss by homologous 

recombination.  

 

To develop a plasmid free gene expression system that allows high copy gene expression we 

set out to construct a gene amplification system S. cerevisiae (see figure 4). By exploiting one 

of the cells natural DNA repair mechanisms, genes were amplified by a process that 

assembles transposon migration. The gene amplification system uses homologous 

recombination to multiply a single copy of a gene and insert it in up to ten well-defined 

integration sites.   

 

First gene amplification strains were constructed that contained one, two, four and up to ten 

copies of a specific gene targeting cassette in a selected genomic loci (figure 3 top). The sites 

chosen for integration were selected based on previous studies showing expression of 

heterologous genes in those sites (Mikkelsen et al., 2012). The gene targeting cassettes in 

each site were constructed to contain two up and downstream targeting sequences called A 

and B that were taken from the Neurospora crassa genome to avoid homology with the S. 

cerevisiae genome. Between the sequences A and B an I-SceI cut site and the counter-
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selectable marker URA3 was inserted. The genomic targeting site is illustrated in figure 3. I-

SceI is a homing endonuclease with an 18 bp recognition sequence. Thus the recognition 

sequence exists in approximately one out of 7*10
10

 bp. In comparison the yeast genome is 

approximately 12*10
6
 bp making it unlikely that a cut site will exist anywhere else than in the 

gene amplification cassettes. Thus restriction with I-SceI will result in double stranded breaks 

that can be repaired from the gene targeting substrate that has replaced one of the cassettes 

after transformation. 

 

In order to take advantage of the gene amplification cassette sites we constructed a gene 

targeting platform with USER™ vectors that were designed for integration into the evaluated 

sites. Thus the vectors are amenable to any gene of interest (your favorite gene (YFG)). In 

this case we wanted to integrate multiple copies of msas and npgA as illustrated in figure 3. 

 

Yeast Genomic DNA with the gene amplification cassette 

 

DNA Substrate 

 

Figure 3 At the top of the figure is an illustration of the gene targeting cassette in the genomic DNA of the S. cerevisiae 

strains. The site is present in one, two or four copies depending on the strain. The gene targeting substrates are illustrated 

with the gene targeting substrate used for expression of the polyketide synthase msas and the PPTase npgA. The bottom 

figure illustrates the general set-up of the method with your favorite gene (YFG) (courtesy of Tomas Strucko).  
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In this study we used a system with up to four sites. In order to accomplish successful gene 

amplification the five simple steps illustrated in figure 4 must be followed. First the gene 

targeting substrate excised from the USER™ vectors is transformed into the receptor cell 

harboring a number of copies of the amplification cassette with an I-SceI cut site and the 

URA3 marker (step 1). After selection and streak purification the cells are plated on 5-FAA 

media, which results in the elimination of the TRP1 marker by direct repeat recombination 

(step 2). The isolated strains are then transformed with a plasmid containing the I-SceI 

endonuclease under the control of a galactose inducible promoter (step 3). Then the 

transformants are streaked on SC-gal-trp resulting in the induction of the expression of the I-

SceI endonuclease (step 4). This results in double stranded breaks in the gene amplification 

cassettes where no gene targeting has occurred. Subsequently, the inherent double strand 

break repair system repairs the breaks using your favorite gene sequence as a template, hence 

resulting in the desired gene amplification. The gene amplification cassettes contain the 

URA3 marker, so if all sites have recombined to contain Your Favorite Gene the URA3 

marker will be lost. Thus, the cells where the gene amplification cassette has been replaced 

by Your Favorite Gene at all sites can be selected based on their ability to grow on 5-FOA 

plates (step 5). In order to prevent the loss of gene amplification cassettes by homologous 

recombination between adjacent integration sites on the yeast chromosome, the sites were 

chosen such that essential genes are present between the sites. Thus if homologous 

recombination should occur between adjacent sites, the yeast cells will not survive.  
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Figure 4 The steps involved in the gene amplification used in S. cerevisiae (courtesy of Tomas Strucko). 

 

In order to investigate the capability of our gene amplification system we set out to amplify 

the MSAS PKS and the NpgA PPTase in S. cerevisiae. Firstly, we wanted to challenge the 

system by investigating if the large gene targeting fragment composing a total of 10.5 kb 

could be amplified. Secondly, we sought to investigate if more gene copies would result in 

increased 6-MSA titers. Thirdly, we wanted to check if it was the PKS enzymes or acyl-CoA 

substrates that were limiting the production of 6-MSA. Thus by increasing the copy number 

of the genes and hence enzyme concentration we wanted to examine if we would reach a 
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point of substrate limitation. This is essential in order to determine what strategies to use for 

metabolic engineering of polyketide production in S. cerevisiae. If the Acyl-CoA substrates 

are not the limiting factor strategies to improve substrate availability may not result in 

improved 6-MSA titers. 

 

Materials and Methods 

The construction and evaluation of the S. cerevisiae strains was performed as described in the 

following. 

 

Media 

The media used for genetic manipulation in yeast were prepared as previously described 

(Sherman et al., 1986) with the only exception that the synthetic medium contained twice the 

amount of leucine (60 mg/L). The strains with the TRP1 marker excision were obtained on 

synthetic complete media containing 500 mg/L of 5-Fluoroanthranilic acid (5-FAA). The 

media containing 5-FOA for counterselection of the URA3 marker was prepared as described 

(Mikkelsen et al., 2012). The rich media for the shake flask experiments (YPD) was prepared 

as previously described (Mikkelsen et al., 2012).  

 

Plasmid Construction 

E. coli DH5α cells were used for cloning and propagating plasmids. Plasmids were 

constructed by USER® cloning (Geu-Flores et al., 2007). The promoters were amplified 

from the vector pSP-GM2 (Partow et al., 2010). The msas gene and npgA gene were 
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amplified from the plasmids pRS426CTMSA-PP and pRS424CTnpgA respectively 

(Wattanachaisaereekul et al., 2008). The primers used are given in table 4 of the 

supplementary. All constructed plasmids were verified by sequencing (StarSEQ GmbH, 

Germany). 

 

Table 1 The plasmids used in the construction of gene targeting substrates and gene amplification. 

Plasmid Genotype or relevant features Source 

DNA Fragment Vectors 

pSP-GM2 pTEF1 and pPGK1 bidirectional 

promoter 

(Partow et al., 2010) 

pRS426CTMSA-PP 6-MSAS gene from P. patulum (Wattanachaisaereekul 

et al., 2008) 

pRS424CTnpgA  npgA gene from A. nidulans (Wattanachaisaereekul 

et al., 2008) 

Gene Amplification Vectors 

PWJ1320 I-SceI endonuclease expression 

plasmid 

(Lisby et al., 2003) 

pCSN1 Sites A, B, DR::TRP1::DR, USER 

cassette, ccdB 

Gene Amplification 

System 

Constructed Vectors 

pCSN1_LM1 A- pPGK1-npgA-TEF-msas-

DR::TRP1::DR-B 

This study 

 

 

Strain Construction 

Yeast transformation was performed with the lithium acetate/polyethylene glycol/single 

carrier DNA transformation method (Gietz and Schiestl, 2007) with the NotI excised 

substrate of the pCSN1_LM1 vector.  

 

The gene amplification strains were isolated on SC-trp plates and streak purified. Then the 

TRP1 marker was eliminated by direct repeat recombination on 5-FAA. The isolated strains 

were transformed with the plasmid PWJ1320-trp and expression of I-SceI was induced by 



 

132 

 

streaking on SC-gal-trp plates. The strains were streak purified and selected on 5-FOA to find 

the colonies where amplification was successful at all sites. In table 2 is a list of the used and 

constructed strains are shown  

Table 2 The gene amplification strains used in this study. 

 

After successful amplification the correct integration of the substrate was verified by colony 

PCR with one substrate specific primer and one outlying primer as illustrated in figure 5.  

Name  Genotype Amplification 

Cassettes 

Source 

Strains from the Gene Amplification System  

CEN.CSN-XII MATa MAL2-8C SUC2 his3Δ1 trp1-289 ura3-52 

XII-5::A-Ics-URA3-B 

1 Gene 

Amplification 

System 

CEN.CSN-X-

XII-9C 

MATa MAL2-8C SUC2 his3Δ1 trp1-289 ura3-52  

X-3::A-Ics-URA3-B  XII-5::A-Ics-URA3-B 

2 Gene 

Amplification 

System 

CEN.CSN-VII-

X-XI-XII-39A 

MATa MAL2-8C SUC2 his3Δ1 trp1-289 ura3-52 

VII-1::A-Ics-URA3-B X-3::A-Ics-URA3-B XI-

2::A-Ics-URA3-B XII-5::A-Ics-URA3-B 

4 Gene 

Amplification 

System 

Strains with gene amplification of the msas and npgA genes  

CEN.CSN-

XII_LM1 

MATa MAL2-8C SUC2 his3Δ1 trp1-289 ura3-52 

XII-5::A- pPGK1-npgA-TEF-msas-B 

1 This study 

CEN.CSN-X-

XII-9C_LM1 

MATa MAL2-8C SUC2 his3Δ1 trp1-289 ura3-52  

X-3:: pPGK1::npgA-TEF::msas-B  XII-5::A- 

pPGK1::npgA-TEF::msas-B 

2 This study 

CEN.CSN-VII-

X-XI-XII-

39A_LM1 

MATa MAL2-8C SUC2 his3Δ1 trp1-289 ura3-52 

VII-1::A- pPGK1::npgA-TEF::msas-B X-3::A- 

pPGK1::npgA-TEF::msas-B XI-2::A- 

pPGK1::npgA-TEF::msas-B XII-5::A-

pPGK1::npgA-TEF::msas-B 

4 This study 
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Figure 5 The figure illustrates the placement of the primers for verification of the insertion of the gene targeting fragment in 

the integration sites. Thus the region marked in gray is the upstream region of the insertion at either site VII, X-3, XI-2 or 

XII-5. 

 

The verification primers are given in table 3.  

Table 3 Primers used for verification of the insertion of the gene targeting fragment at the targeted integration sites. 

Integration site Forward Primer Reverse Primer Fragment 

length 

VII VII-UP-M-Fwd    

CAACGTGAGCTGGTTGTTGT 

Tadh-Rv 

CTGGCGTAATAGCGAAGAGG 

862 bp 

X-3 X-3-UP-M-fwd 

CGAGGGAAGGGAAATAAGGT 

Tadh-Rv 

CTGGCGTAATAGCGAAGAGG 

714 bp 

XI-2 XI-2-UP-M-Fwd 

TTGCTCACCTTCCTGGACTT 

Tadh-Rv 

CTGGCGTAATAGCGAAGAGG 

909 bp 

XII-5 XII-5-UP-M-Fwd  

GCTCTATTGGAGGTGGCAGA 

Tadh-Rv 

CTGGCGTAATAGCGAAGAGG 

721 bp 

 

   

 

Cultivations 

To determine the effect of gene copy number on 6-MSA titers the constructed strains were 

grown in 500-mL baffled Erlenmeyer flasks containing 100 mL YPD media. The flasks were 

incubated with shaking at 150 rpm and constant temperature at 30ºC. The growth of the 

cultures was followed by measuring A600 during growth on glucose. 
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Quantification of Metabolites 

To determine the metabolite concentrations the samples were centrifuged at maximum speed 

for 2 minutes and the supernatant was transferred to HPLC vials and stored at -20 °C until 

further analysis.  

 

Glucose was measured using an Agilent HPLC series 1100 with a RI (refractive index) 

detector. The samples were run on an ion-exclusion column with the dimensions 300 mm by 

7.8 mm (Aminex HPX-87H from Biorad).  The column was eluted at 60 °C with 5mM 

H2SO4 at flow rate of 0.6 mL/min. The metabolites were detected with an RI detector. 

  

6-MSA (SC-274880, Santa Cruz Biotechnology Inc., California, USA) was measured on an 

Agilent 1100 series HPLC with a degasser, binary pump, column oven and DAD. The Luna 

C18(2) column (100*2 mm with 3µ particles, Phenomenex (Torrence, CA)) was heated at 

40°C during analysis. The samples were run on a gradient of milliQ water with 50 ppm TCA 

(Solvent A) and 50 ppm TFA in acetonitril (solvent B). The gradient of the solvents was as 

mix of A and B with 20% to 60% B in 10 minutes and then 20% B for the next 2 minutes.  

 

Results 

In order to test whether the large gene fragments or even small pathways of several enzymes 

could be amplified in our gene amplification system we set out to express the 6-MSA 

synthase gene and the PPTase in multiple copies. The two genes needed to establish 6-MSA 

production were cloned into the vector pCSN1 resulting in the vector pCSN1_LM1. The gene 

targeting substrates were excised and transformed into three strains (1, 2, 4 sites) allowing for 
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the amplification of the genes in two and four copies. The successful transformants were 

tested for gene insertion and transformed with the ISce-I plasmid to allow for gene 

amplification in the case of the two and four copy strains. The transformation colonies were 

streaked on SC-gal-trp plates to induce the amplification. From these plates 20 colonies were 

picked and replica plated on 5-FOA and SC-URA plates. In the case of the two copy strain 17 

out of the 20 selected colonies grew on 5-FOA plates and not on –URA plates indicating that 

the genes had been amplified. In case of the four copy strains 9 out of the 20 selected 

colonies grew only on 5-FOA and not on –URA. Thus the amplification frequency appears to 

decrease as a result of increased copy numbers.    

  

The strains CEN.CSN-XII_LM1, CEN.CSN-X-XII-9C_LM1, CEN.CSN-VII-X-XI-XII-

39A_LM1 containing one, two and four copies of the msas and npgA gene were cultivated in 

Erlenmeyer flasks with 100 mL YPD (four replicates per strain). The concentration of 6-

MSA and primary metabolites was measured in all samples. The titer of 6-MSA at the time of 

glucose depletion is given in figure 6. The concentration of 6-MSA increases with the 

number of copies of the genes in an almost linear fashion. The final biomass measured as the 

optical cell density A600 was comparable for all strains indicating that growth was not 

effected by 6-MSA production.   
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Figure 6 The effect of the copy number of the msas and npgA gene on 6-MSA titer at the time of glucose depletion. 

 

Discussion 

The gene amplification system was clearly validated for the production of 6-MSA through 

the use of the two enzymes the PKS and the PPTase. The system is still under development, 

but it is expected to be able to amplify as much as ten copies of the pathway potentially 

making expression levels and thus titers more than competitive with a 2µ based plasmid 

system.  

 

When dealing with enzyme pathways one often finds that one or more steps in the pathway 

are rate limiting. By the use of this novel gene amplification system the limiting step could be 

identified by amplification of one enzyme in the pathway and subsequent insertion of the 

other enzyme in one copy either through integration in the pathway strains or by generation 

of diploid strains. In the case of polyketide synthesis, it could be used to evaluate what level 

of the PPTase is sufficient to activate all PKSs. It could also be used to study the efficiency of 

different PPTases. Furthermore, in terms of metabolic engineering it could be used to 
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establish if the acyl-CoA substrates become limiting to product formation at high enzyme 

concentrations resulting from high gene copy numbers.   

 

Conclusion 

We successfully amplified the 10.5 kb gene fragment for production of the polyketide 6-MSA 

in the yeast S. cerevisiae. Thus we have shown that the gene amplification system can be 

used for amplification of large gene fragments and even small pathways of enzymes that need 

to interact to form a product. Furthermore 6-MSA titers correlated well with gene copy 

number. Thus the acyl-CoA substrates do not appear to limit production of 6-MSA in our 

system. This method can be used to pave the way for studying the relationship between 

different enzyme pathways and generating knowledge on pathway bottlenecks that can 

further aid the construction of advanced microbial cell factories. 
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Supplementary S1 Plasmids and Primers 

The primers used to create the fragments for the USER® vector pCSN1_LM1. 

Table 4 List of primers used for amplification of the gene fragments to be inserted into the vectors. 

DNA 

fragment 

Primers Sequence 5’-3’ 

Dual Promoter FW prom CSN 

 

ACCATTTGUTTTATATTTGTTGTAAAA 

 

RV prom CSN 

 

ATGCATTTGUAATTAAAACTTAGATTAG 

 

6-MSA FW 6-MSA CSN 

 

ACAAATGCAUTCCGCTGCAACTTCTACA 

 

RV 6-MSA CSN 

 

CACGCGAUTTAATGGTGATGGTGATGATGTT 

 

npgA FW npgA RC CSN 

 

CGTGCGAUTTAGGATAGGCAATTACACACC 

 

RV npgA RC CSN 

 

ACAAATGGUGCAAGACACATCAAGCGC 

 

 

In figure 7 is the plasmid map of the plasmid used to generate gene targeting substrate by 

NotI restriction. 
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Figure 7 The figure shows a graph of the pCSN1_LM1 vector which contains a dual promoter the npgA gene and the 6-

msas-6xhis gene. The targeting sites for the integration into the gene amplification system are called A and B and the trp1 

gene flanked by direct repeats. 
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This chapter is intended as an application paper that will be submitted together with a 

paper describing the technical aspects of the herein evaluated technology. The results 

intended for the first paper have thus been put in the supplementary of this chapter 

and was included for the sake of completeness. 
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Abstract  

Background 

Towards the goal of developing an optimized cell factory, it is essential to be able to 

screen a large number of conditions and strains. To achieve this goal the use of 

miniaturized systems such as microtiter plates and automatic pipetting systems that 

can handle a large number of strains in a reproducible manner has become essential. 

In this paper we evaluated the possibility of using a CCD-flatbed scanning based 

technology for high-throughput quantification of microbial biomass and product 

formation.  

 

Results 

The CCD-flatbed scanning platform was demonstrated as a useful platform for 

screening both bacteria and yeast cultures. Our results demonstrated good correlation 

between image intensity and biomass or product formation using standard transparent 

and black 24-well plates and 24-square, deepwell propylene microtiter plates. Our 

results show that growth of the bacterium Pseudomonas putida and the yeast 

Saccharomyces cerevisiae can be effectively monitored in microtiter plates using the 

CCD-flatbed scanning technology. Furthermore, we were able to clearly distinguish 

different growth behaviours in mutants of S. cerevisiae. In addition, we have 

demonstrated that the platform can be used to quantify the formation of the coloured 

antibiotic actinorhodin from the filamentous bacterium Streptomyces coelicolor and 

also to clearly identify the onset and rate of antibiotic production in different 

recombinant strains, and hence the technology has potential to be used in screening to 

select for the best performing strain.   
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Conclusions 

The usefulness of the CCD-flatbed scanning technology to quantify biomass and 

product formation has been clearly demonstrated. The system is easily applicable to 

monitoring growth of bacteria and yeast. Furthermore it can aid in the advancements 

of discovery and production of especially coloured natural products. The technology 

is based on the use of commonly available and easy to handle microtiter plates and 

can thus be used for high throughput screening of a wide array of strains and products. 

The CCD-flatbed scanning technology may one day be combined with liquid handling 

robots and analytical equipment allowing further data generation in a very efficient 

manor. 

 

Background 

The detection of growth and metabolite characteristics of individual microbial strains 

out of large sets of strains (e.g. mutants generated in a strain improvement program) 

plays an important role in biotechnological and pharmaceutical research. Growth 

characteristics of microbial cultures such as lag phase, exponential phase, oxygen 

limited phase (aerobic microorganisms) and the final cell density can be used to 

determine strain-specific properties and evaluate growth conditions. Moreover, 

growth characteristics are used together with information about production 

characteristics to detect potential high-yield or high-productivity recombinant strains.  

 

However, the success of a screening is often limited by the number of strains or 

culture conditions tested. The number of strains that are required to detect mutants 

with a particular function can rise up to several thousands. Consequential, the 
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cultivation in Erlenmeyer shake flasks is often not practicable. This has resulted in the 

development of microtiter plate based systems. The advantages of microtiter plate 

based systems are that microtiter plates are cheap, robust, easy to handle, high-

through-put and standardized. In addition, miniaturised growth systems and high-

throughput screening methods can reduce the effort of labour, time and costs.  

 

Nevertheless, down-scaling of cultivation vessels does not come without 

consequences. One may risk changing the growth conditions and oxygen limitation 

may be a problem. To determine the effects of miniaturization, several studies have 

been conducted. These studies have lead to more insights into the influences of well 

dimensions, culture volumes, orbital shaking conditions and surface tension on 

oxygen-transfer rates and the degrees of mixing (Duetz et al., 2000; Hermann et al., 

2003; Duetz and Witholt, 2004; Kensy et al., 2005a; Kensy et al., 2005b; Funke et al., 

2009). It has been shown that e.g. shaking amplitude of 50 mm and a shaking velocity 

of 300 rpm is sufficient to reach oxygen transfer rates of 39 mmol O2/l/h in standard 

round 96-lowwell plates or 40mmol O2/L/h in standard round 24-lowwell plates, 

respectively. At such conditions the aerobic bacterial strain Pseudomonas putida CA-

3 reached cell densities up to 9 g dry weight/ l during growth on a glucose mineral 

medium (Duetz et al., 2000). To further enhance oxygen transfer rates, square wells 

(Duetz and Witholt, 2004) and flower plates (Funke et al., 2009; m2p-labs, 2012a) 

have been applied. Further, the development of adequate well-closure systems, that 

assure the prevention of (cross)-contamination during vigorous shaking, defined 

exchange rates of headspace air and limited evaporation, has improved the appliance 

of microtiter plates as mini bioreactors crucially (m2p-labs, 2012b). Moreover, for 

Str. coelicolor cultivations it has been shown that the data obtained from microtiter 
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plates is more accurate and with reduced variation than data from shake flasks 

(Siebenberg et al., 2010; Sohoni et al., 2012). 

 

Most industrial biological production processes can benefit from a miniaturized 

testing system for the production strain. Examples of relevant organisms include 

mammalian cell cultures, bacteria and fungi. Single cell growing organisms like  

Escherichia coli  and S. cerevisiae used for a large range of industrial products like 

recombinant proteins and commodity chemicals can easily be cultured in microtiter 

plates (Papini et al., 2010; Mattanovich et al., 2012). Filamentous organisms are more 

challenging to cultivate in small scale. However, for the streptomycetes (a group of 

filamentous bacteria), that are well known for their ability to produce antibiotics such 

as kanamycin, neomycin and hygromycin B (Wehmeier and Piepersberg, 2009), 

successful cultivations in microtiter based set-ups have been reported (Sohoni et al., 

2012). Many natural products are coloured and having a colour screen for product 

formation can be very useful. This strategy has been efficiently applied both for 

polyketide production by Str. coelicolor, using actinorhodin as a model compound 

(Sohoni et al., 2012) and for isoprenoid production by E. coli using lycopene as a 

model compound (Alper et al., 2005). Often natural product clusters must be induced 

in order to produce a secondary metabolite and thus being able to screen many media 

conditions at the same time is a valuable asset (Bode et al., 2002; Frisvad and 

Samson, 2004). Compared to reading the colour of the individual compounds on a 

petri dish, an online monitoring system could potentially also identify the onset of 

antibiotic production and kinetics for production and not just final concentrations. The 

biggest challenge for microtiter plates are filamentous fungi that tend to form pellets 
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and grow on the sides of the vessels and thus studies of filamentous fungi in 

microtiter plates are not as widespread.  

 

Standardized microtiter plate formats allow researchers to use multipipettes, 

replicators and automated systems for incubation, sampling and storage. However, 

growth-control implicates various manual and highly repetitive steps. In many 

applications, biomass measurements are performed with spectrophotometers. 

Withdrawing a sample is hereby indispensable, which results in four main 

disadvantages for miniaturised growth systems. Firstly, even small sampling volumes 

decrease culture volumes (e.g. a total volume of 100µl is often used in standard 96-

lowwell plates) significantly which leads to less reproducible results. Secondly, 

repetitive sampling increases the risk for (cross-) contamination. Thirdly, long 

stopping periods between orbital shaking can result in stress reactions due to reduced 

oxygen transfer rates. Lastly, optical density measurements with common 

spectrophotometer are time-consuming.  

 

There are a number of commercially available systems for cultivation in small-scale 

bioreactors or microtiter plates that avoid the sampling problems stated above. The 

systems use different approaches for monitoring growth in microtiter plates. One 

system is the BioLector® that can monitor biomass and protein formation by GFP 

tagging and has been demonstrated as a tool for screening bacterial and yeast strains 

in 96 well plates (Kensy et al., 2009) (m2p-labs, Germany). Furthermore pH and DOT 

can be monitored without interrupting the shaking movement. A drawback of the 

BioLector® is that only one microtiter plate can be handled at a time reducing the 

number of strains to be tested. A further development of BioLector® is the 
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RoboLector, where the BioLector® has been combined with a liquid handling robot 

(Huber et al., 2009).   

 

A different system is the SimCell from Bioprocessors, Inc. now a part of Seahorse 

Bioscience, Inc. (Morris Plains, NJ). The SimCell reactors can measure pH, dissolved 

oxygen tension (DOT) and optical density through the use of fluorescence detection 

and can handle 1260 experiments at a time. However, they are only applicable to 

higher eukaryotic systems such as mammalian cell cultures as the oxygen transfer is 

too low to support the growth of microbial cultures (Seahorse Bioscience, 2012). 

They also use their own custom made reactors. In addition, the Applikon 

Biotechnology® Micro-24 Bioreactor system is designed for mammalian as well as 

microbial cells (Isett et al., 2007; Chen et al., 2009; Pall Corporation, 2012). The 

Micro-24 Bioreactor system is capable of controlling gas supply, temperature and pH 

in each well. It automatically monitors and logs each reactors temperature, pH and 

oxygen. Cultivations run in custom made 24-well cassettes.  

 

Samorski et al. described a novel method for quasi-continuous combined light 

scattering and fluorescence measurements of one microtiter plate that can be used to 

monitor growth (Samorski et al., 2005). Furthermore, ATP- consumption and 

fluorescence can be used to monitor microbial growth in microtiter plates.  

 

However, all of the above mentioned methods have individual light detectors for each 

individual well, which necessarily limits the number of cultures to be scanned 

simultaneously by one apparatus. This problem is overcome by the CCD-flatbed 

scanning technology presented in this paper as it can measure several plates 
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simultaneously. It also allows for higher shaking frequency and amplitude which 

improves the mass transfer capabilities. 

 

In this paper we evaluated the feasibility to apply CCD-flatbed scanning technology 

to quantify the concentration of biomass and potentially also secondary metabolites in 

microbial cell suspensions in vessels with transparent bottoms (e. g. microtiter plates). 

The use of scanned images to follow growth allows for the continuous documentation 

of growth and coloured metabolite formation as all images are stored, which makes it 

easy to retrace the results of an experiment. This can be used either for regulatory 

purposes or backtracking if there are unexpected results. The CCD-flatbed scanning 

technology is easy to set up and uses standard microtiter plates for the cultivations and 

can handle several microtiter plates simultaneously as stated above. Furthermore, 

cultivations in standard microtiter plates allows for automatic handling by pipetting 

robots to facilitate efficient down stream analysis. Black 24- round low-well 

microtiter plates with transparent bottoms were evaluated on their applicability for the 

quantification of biomass in growing P. putida CA-3. The system was further 

validated as a tool for distinguishing different S. cerevisiae mutants based on growth 

characteristics. In addition, we were able to identify onset of product formation as 

well as distinguishing between Str. coelicolor recombinant strains based on 

volumetric productivity. 

 

Results and discussion  

The detailed set up and validation of the CCD-flatbed scanning technology will be 

presented in the following sections. Furthermore, applications of the technology for 

quantification of biomass and product formation in P. putida, S. cerevisiae and Str. 
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coelicolor are demonstrated. The system was developed in cooperation with 

Enzyscreen BV, Netherlands where the behaviour of light and physics related to the 

scanning technology was undertaken. This information is provided in the 

supplementary section. 

   

CCD-flatbed scanning technology 

The set-up of the CCD-flatbed scanner to record growth based on image analysis is 

illustrated in figure 1. The system was constructed by using a commercially available 

flatbed-scanner that was modified (steering software, scanning area, light bundling, 

housing etc.) and combined with a rack-system that allowed us to fix vessels and 

microtiter plates in a minimal distance to the scanning-unit. The rack was able to 

perform orbital shaking with an amplitude of 50 mm and up to 300 rpm. The software 

allowed for the shaking to be stopped at regular intervals and subsequently images 

were acquired by the scanner and the shaking restarted.  
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Figure 1. Illustration of the CCD-based cultivation platform and data analysis. The strains are 
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inoculated in microtiter plates. Then the plates are placed in the metal frame of the shaker and the 

shaker started.  Afterwards the shaking is automatically stopped and the plates are scanned from below 

at regular time intervals. After the images are recorded image analysis software is used to analyse the 

red, green and blue colour components. Based on the colour intensity a growth curve of the 

microorganism can be plotted (blue curve). 

 

In order to measure growth through analysis of scanned images, a significant response 

in image intensity as a result of microbial growth is required. The ability to detect 

colour differences by the scanner was clearly demonstrated as illustrated in 

supplementary figure 8. Furthermore, the behaviour of the light in the concentrated 

cell suspension is dependent on how the light is scattered by encounters with cells and 

media components. The properties of light interactions with P. putida cells were 

tested and can be seen in the supplementary figure 9. In addition, it was determined 

that the light intensities were also dependent on whether the image was analysed in 

the centre or closer to the walls of the well. This was most apparent for small well 

diameters such as 96 well plates and the wall effects disappeared as the diameter of 

the well increased. It was also shown that for standard media compositions there is 

only a negligible effect of peptone and glucose concentrations in the media on image 

intensity (figure 13, supplementary). In addition white, gray and black microtiter 

plates were tested for measuring growth of P. putida cells (figure 14, supplementary). 

 

 

Application I: Monitoring of growth in P. putida cultivations 

First, we built a correlation between biomass concentrations and scattering intensity 

of P.putida CA-3 cells suspensions in black 24-well microtiter plates (figure 2). The 

cell mass concentration was calculated from the scattering intensity by the first order 
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exponential equation: biomass concentration is equal to 0.01*(scattering intensity)
1.67

. 

The scattering intensity was calculated from the green value (in Red-Green-Blue 

colour space) obtained from images taken by the scanner by the correlation given in 

supplementary figure 8.  The calculated correlation between biomass and scattering 

intensity has a correlation factor (R
2
) close to 1 giving an excellent fit between 

scattering intensities and biomass concentrations for P. putida cells, which is also 

apparent from figure 2.  

 

Figure 2 The correlation between biomass concentration and scattering intensity (green-value) for P. 

putida cultivations in 24-well black microtiter plates.  

 

Growth of P. putida CA-3 was then monitored over time in black 24-well microtiter 

plates by the flatbed scanner at 1 hour intervals in triplicate cultivations. Light 

scattering intensity values were calculated from the green channel and converted into 

biomass concentrations using the correlation curve of figure 3. 
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We found that light scattering intensities measured with the flatbed scanner can be 

utilized to accurately estimate biomass concentrations of growing P. putida CA-3 

cultures (figure 3). Our results demonstrate that digital-images produced by a 

commercially available flatbed scanner contain sufficient information (digital colour-

values) to quantify light-scattering intensities and biomass concentrations of bacterial 

cell suspensions, respectively.  

 

Figure 3. Accumulation of biomass during growth of liquid P. putida CA-3 cultures in 

(shaken) 24-well black microtiter plates monitored with CCD-flatbed scanning 

technology. The standard deviations are based on triplicate cultivations. 

 

Application II: Monitoring of growth in S. cerevisiae cultivations 

Next we set up an experiment to determine the ability of the CCD-flatbed scanning 

technology to accurately measure growth of yeast cultures. We first compared white 

and transparent microtiter plates. For the white microtiter plates we observed a similar 
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behaviour with the S. cerevisiae strains as seen for P. putida in figure 14 

(supplementary) with a good sensitivity at low dry cell weight, but not much response 

at higher dry cell weight (data not shown). We also wanted to test if transparent 

microtiter plates could be used and found that the intensity response to growth was 

similar to that observed for the black plates with P. putida cultures (data not shown). 

Transparent plates have the advantage that they are commonly available in most 

research labs and cheaper than the coloured plates. However, there is more reflection 

in the plate and the amount of growth in the neighbouring wells does cause a minor 

disturbance of the signal. The transparent plates gave a slightly higher inter-well 

variation than white plates (data not shown).  

 

To build a more robust correlation we wanted to compare the image intensities to 

values obtained in a stirred tank reactor with standard off-line analysis of biomass 

concentration. The yeast S. cerevisiae was cultivated in a 2 L stirred tank reactor for 

30 hours. During the cultivation dry cell weight and optical density was measured 

every 2-3 hours from a 5 mL sample of the fermentation broth. At each time point 750 

µL of the fermentation broth was also distributed into 6 wells of a transparent 24-well 

microtiter plate. The microtiter plate was placed in the metal frame, shortly shaken, 

stopped and an image acquired by the CCD flatbed scanner. The images were 

analysed by the scanning software for the RGB colour values.  

 

We built correlations for the red, green and blue colour and selected the red colour for 

our yeast cultures as it had the best correlation coefficient (data not shown). The data 

showing the biomass concentration correlation with the intensity of the red colour in 

the image are plotted in figure 4. Our data demonstrate that there was an excellent 
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correlation between the biomass concentration of S. cerevisiae and the image intensity 

in the range from 1-7 g dry wt/l (R
2
= 0.99). We only observed a minor variation 

between the image intensities measured within the different locations of the 24-well 

plate as indicated by the error bars in figure 4. This validated that there was no 

significant influence of position in the plate of an individual strain on the 

measurement. At low image intensities the measurements were less accurate. This is 

similar to what we observed in the black plates with P. putida (supplementary figure 

14). For dry cell weights above 1 g/l a very good sensitivity was seen. The change in 

intensity as a response to dry cell weight was approximately 5 for S. cerevisiae under 

the tested growth conditions. 

  

 

Figure 4 Comparison of image intensity and dry cell weight.  S. cerevisiae was grown at 30 ºC in a 

2 L bioreactor and samples were taken every 2-3 hours. From each sample culture broth was 

distributed with 750 µL in 6 wells of the 24-well transparent microtiter plate. Then the plate was 

shaken and scanned. At the same time dry cell weight was measured as described in materials and 

methods. The error bars represent the standard deviation between the 6 individual wells measured.  
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Application III: Screening of different S. cerevisiae strains for 

identification of growth characteristics 

When screening a mutant library the ability to distinguish different growth behaviours 

is important. Furthermore, it is essential to be able to estimate changes in growth rate. 

In order to verify the potential of the CCD flatbed scanner, we grew a wildtype 

reference and two different S. cerevisiae mutants on a medium containing both 

glucose and galactose. The cultivations were run in white microtiter plates as these 

have the highest response in image intensity as function of growth. Thus they are 

most likely to be able to identify different growth behaviours (albeit at low biomass 

concentrations). The three strains were wildtype (green), mutant 1 (red) and mutant 2 

(blue). Mutant 1 lacks glucose repression on galactose and can thus consume both 

carbon sources at the same time [5]. As can be seen on figure 5 mutant 1 only has two 

growth phases. The first growth phase during which the glucose and galactose are 

consumed (0-16 h) and the second in which the ethanol produced in the first phase is 

consumed (16-30 h). In contrast the wildtype (green) has three apparent growth 

phases. This is a result of the S. cerevisiae strain first consuming glucose (0-10 h). 

Then when all glucose is consumed repression is relieved and galactose is used (11-16 

h). Finally, the primary metabolites produced in the growth phase are consumed, 

which for the most part is ethanol (16-30 h). Mutant 2 (blue) grows considerably 

slower than the other two strains which is also apparent in bioreactor cultivations 

(Otero, 2009).  
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Figure 5 Application III S. cerevisiae mutants. For the three different S. cerevisiae strains the 

diauxic shifts between different growth phases are easily observed by using the image intensity. 

Wildtype strain: green triangles, Mutant 1: red squares and Mutant 2: blue diamonds. The strains were 

grown at 30 ºC in white walled round low well microtiter plates for 50 hours (24 wells).  The scanner 

was set to obtain images every 30 minutes. The error bars are based on the standard deviation between 

the 8 wells measured for each strain. 

 

Application IV: Product formation in Str. coelicolor. 

We wanted to also evaluate the potential for using the described image analysis set-up 

for monitoring of production of secondary metabolites. Several secondary metabolites 

are coloured (Alper et al., 2005), hence, enabling detection by image analysis.  If the 

product of interest would not be coloured, a coloured model compound may be used 

during strain optimisation. Polyketide production by the filamentous bacteria 

Streptomyces coelicolor was chosen as a case study. Str. coelicolor naturally produces 

a blue-coloured polyketide, actinorhodin. Three strains known to differ in 

actinorhodin production were selected. Two of the strains have been modified in the 
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promoter of actIIorf4, a positive regulator of the actinorhodin biosynthetic pathway, 

and the third strain included was the corresponding wildtype strain. For the Str. 

coelicolor cultivations, square, 24-deepwell propylene microtiter plates with a 

working volume of 3 ml were used, as they earlier have been shown to provide better 

mixing and hence improved oxygen availability than standard round 96- or 24-well 

plates (Duetz and Witholt, 2004). This is important in order to obtain reproducible 

growth and production of Str. coelicolor. This type of plates are challenging when it 

comes to the image analysis as they are opaque, which resulted in that growth could 

not be followed in these experiments (data not shown), whereas actinorhodin 

production could be accurately monitored as described below. 

 

Firstly, we wanted to investigate whether the time for onset of actinorhodin 

production could be determined. The light intensity of the blue channel was plotted 

against time for the three strains (figure 6). The light intensity started to increase 

around 24 h for recombinant strain 1, whereas an increase in light intensity first was 

seen around 48 h for recombinant 2 and the wildtype. These time points were in good 

agreement with onset of actinorhodin production detected by off-line analysis of 

actinorhodin (data not shown).   
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Figure 6. Light intensity of the blue channel over time for the three Str. coelicolor strains 

investigated.  Wildtype strain: green triangles, recombinant1: red squares, recombinant 2: blue 

diamonds. The strains were grown at 28 ºC in 24-square, deepwell propylene microtiter plates for 

100 hours.  The scanner was set to take images every 3 hours. 

 

 

To further verify the potential of the image analysis set-up, we investigated whether 

information about productivity could be extracted from the light intensity data. Values 

for the slopes of the linear range of the light intensity curves, i.e. in the range of 24-36 

h for recombinant strain 1, 51-66 h for recombinant strain 2 and 72-87 h for the 

wildtype, were estimated (table 1). Volumetric productivities based on off-line 

actinorhodin concentration measurements were also calculated (table 1). When 

comparing the values extracted from the image analysis to the volumetric 

productivities, one can see that the strains follow the same order. The sensitivity of 

the image analysis seemed to be somewhat lower than for volumetric productivities 

determined from off-line data. A 1.7 and 2.5 increase for recombinant strains 1 and 2 
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compared to the wildtype strain was observed using the image analysis data whereas a 

1.4 and 4.8 increase was seen in off-line determined volumetric productivities (table 

1). This might be of less importance for screening applications as long as strains can 

be ranked in the correct order and may only pose a limitation for strains that have very 

small differences in productivity. 

 

Table 1: Productivity data for the three Str. coelicolor strains 

 Volumetric productivity 

Strain Off-line analysis
1
 (mg L

-1 
h

-1
) Image

2
 (intensity h

-1
) 

Wildtype 11.0 0.131 

Recombinant 1 15.7 0.217 

Recombinant 2 52.2 0.330 

1
 Values were calculated from off-line determined actinorhodin concentration  

2
 Values were calculated from the linear range of the slope of the blue channel light intensity curve   

 

Growth does not seem to disturb the signal. For recombinant 1, production was 

growth associated, whereas no or very limited growth took place simultaneous with 

production for the other two strains (data not shown). However, the extracted 

information matched off-line data equally well for all three strains. 

 

Earlier start of production of a secondary metabolite and increased volumetric 

productivity are both wanted properties during strain improvement. The described 

image analysis set-up provides a valuable screening tool during strain improvement, 

when often characterisation of large numbers of strains is wanted. 
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Conclusions  

We have demonstrated the applicability of an image analysis based CCD-flatbed 

scanning technology as a method of monitoring both growth and product formation in 

a variety of microorganisms. The system has been demonstrated to accurately 

characterize growth of P. putida and S. cerevisiae. Furthermore, we were able to 

distinguish between the growth rates of different S. cerevisiae mutants grown in the 

microtiter plates. Lastly, the ability to determine the volumetric productivity of 

actinorhodin as well as onset time of production in Str. coelicolor makes the CCD-

based system ideal for identifying efficient antibiotic producers. In conclusion the 

CCD-based scanning technology has proven itself useful as a screening platform for 

many types of products and microorganisms.  

 

Methods 

The experimental work is described in detail in the following sections. 

Image Analysis 

All images were acquired by using a Plustek flat-bed scanner (Plustek Technology 

GmbH, Germany). Images were analyzed by using custom MATLAB
©

 scripts that 

made use of MATLAB
©

 image processing toolbox. Images of individual wells from 

the micro-titer plates were extracted and RGB (Red Green Blue) channel values were 

averaged for each well. Pixel values that deviated by more than two standard 

deviations from the average value were discarded and the average recalculated. The 

effects of discarding deviating pixels were checked manually to insure that only noise 

and not significant data was discarded. 
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Cultivations 

The methods used in connection with the cultivation of the different microorganisms 

used are described in the following sections. 

Experimental work with P. putida 

The work carried with P. putida was performed as described below. 

 

Strains 

The P.putida CA-3 strain was a kind gift of Keur Olomá (Dublin). 

 

Media and Cultivation Conditions 

P. putida CA-3 was grown overnight in a 300-ml Erlenmeyer flask (without baffles) 

filled with 35 ml of mineral medium (Evans et al., 1970) supplied with nitrilotriacetic 

acid (4 mM) as the complexing agent, glucose (150 mM) as the sole carbon and 

energy source, and a K2HPO4-KH2PO4 buffer (200 mM) at pH 7.2. The flask was 

incubated at 25°C on an orbital shaker (300 rpm; shaking diameter, 5 cm). This 

preculture was used to inoculate a second-batch culture with the same properties. 

When this second culture had reached an optical density at 540 nm (OD540) of 

approximately 1.0 (corresponding to 0.40 g [dry weight] liter−1, as determined by 

drying the washed pellet of a 20-ml cell suspension [OD540 = 24] at 110°C for 18 h 

and subsequent weighing on an analytical balance), aliquots of 1ml were transferred 

to the wells of several 24-lowwell microtiter plates (Greiner Bio-one, Netherlands). 

The microtiter plates were inoculated at 30°C on the scanner-shaker apparatus 
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(300rpm, 50 mm shaking diameter). Orbital shaking was stopped every hour for 1 min 

for scanning of the microtiter plates (300 dpi scanning resolution). 

 

Experimental work with S. cerevisiae 

The work carried out with S. cerevisiae was performed as described below. 

 

Strains 

The S. cerevisiae wildtype strain CEN.PK-113-7D was used for establishing a 

correlation between the bioreactor and the microtiter plates. It was also used in the 

study of the different colour components. For the detection of different growth phases 

the strains used can be seen in table 2. 

 

Table 2 The yeast strains used for cultivation in microtiter plates. The strains CEN.PK 113-5D were 

used for screening of different S. cerevisiae strains. 

Strain Genotype Origin 

Wildtype MATa MAL2-8
c
 SUC2 P. Kötter 

(Frankfurt, 

Germany) 

Mutant 1 MATa mig1Δ::MEL1 mig2Δ::URA3 MEL1 

MAL2-8
c
SUC2 

(Klein et al., 1999) 

Mutant 2 MATa URA3-52  MAL2-8
c 
SUC2 ser3Δ 

ser33Δ sdh3Δ 

(Otero, 2009) 

 

Media 

The media used for the 2 L batch reactor with S. cerevisiae was a Delft medium with 

the following composition glucose 20 g/L, (NH4)2SO4 10 g/L, KH2PO4 3 g/L, MgSO4 

·7H2O 1 g/L, 0.05 mL/L Antifoam 298 (Sigma-Aldrich, St. Louis, MO, USA) and 2 

mL/L trace metal solution (FeSO4 ·7H2O 3 g/L, ZnSO4 ·7H2O 4.5 g/L, CaCl2 ·6H2O 
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4.5 g/L, MnCl2 ·2H2O 0.84 g/L, CoCl2 ·6H2O 0.3 g/L, CuSO4 ·5H2O 0.3 g/L, 

Na2MoO4 ·2H2O 0.4 g/L, H3BO3 1 g/L, KI 0.1 g/L, and Na2EDTA ·2H2O 15 g/L), and 

2 mL/L vitaminsolution (d-biotin 50 mg/L, Ca-pantothenate 1 g/L, thiamin–HCl 

1 g/L, pyridoxin–HCl 1 g/L, nicotinic acid 1 g/L, p-aminobenzoic acid 0.2 g/L, and 

m-inositol 12.5 g/L).  

 

Bioreactor Cultivations 

The bioreactor (Biostat Braun Biotech International GmbH, Mulsungen, Germany) 

for the batch had a working volume of 2 L. The temperature of the cultivation was 

kept at 30 °C, and the pH was automatically controlled at 5.0 by addition of 2M KOH. 

The agitation was set to 500 rpm and the bioreactor was aerated with 2 L air/min. The 

concentrations of oxygen and carbon dioxide were measured in the off-gas by an  

Innova 1311 acoustic gas analyzer (Innova Airtech Instruments, Denmark). Dry cell 

weight was determined by filtering 5 mL of fermentation broth through a dried, pre-

weighed nitrocellulose filter (Satorius AG, Geottingen, Germany) with a pore size of 

0.45 mm. The residue was washed twice with the same volume saline water (0.9 % 

NaCl). The filter was then dried in a microwave oven at 150 W for 10 minutes to get a 

constant weight. The filter was cooled down in a desiccator for at least 2 hours and 

the cell weight was determined.  

 

Samples from the bioreactor fermentation broth were transferred to 6 wells of the 

transparent 24-well microtiter plate (4 wells in the centre and 2 wells in the corners of 

the plate) (Costar® 24 Well Clear TC-Treated Multiple Well Plates (Product #3524)) 

and the plate was covered with black sandwich covers obtained from 

Enzyscreen B. V. (Haarlem, Netherlands). The plate was shaken for 15 seconds at 175 
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rpm and 50 mm shaker diameter and then scanned to capture the image for measuring 

image intensity. 

 

Microtiter plate cultivations 

For the microtiter plates the media was the same as for the bioreactor cultivations. In 

application III the carbon source was changed to be 10 g/L of glucose and 10 g/L 

galactose. Mutant 2 was supplemented with uracil (300 mg/L). OD was measured as 

previously described. 

 

Each well of the white 24-well clear bottom microtiter plate (Visiplate TC, Wallac 

Oy, Turku, Finland) had a culture volume of 750 µL and the shaker with the 

amplitude of 50 mm. Each strain was grown in eight of the 24 wells of a microtiter 

plate. The strains were distributed as shown in figure 7 below (green is wildtype, red 

is mutant 1 and blue is mutant 2) 

 
1 2 3 4 5 6 

a             
b             
c             

d             
Figure 7The distribution of the S. cerevisiae mutants in the 24-well microtiter plate. 

Wildtype (green), mutant 1 (red) and mutant 2 (blue) 

 

 

The shaker was running at 150 rpm and temperature was set to 30 ºC. The plate was 

covered with black sandwich covers that contained special filters to minimize water 

evaporation during cultivations and were obtained from Enzyscreen B. V. (Haarlem, 

Netherlands). The shaker was stopped and an image acquired every 30 minutes during 

the 50 hour cultivation (150 dpi scanning resolution). 
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Experimental work with Str. coelicolor 

The work carried out with Str. coelicolor was performed as described below. 

 

Strains  

The wildtype strain applied in this study, Streptomyces coelicolor A3(2), was a kind 

gift from Mervyn Bibb, John Innes Centre, Norwich, UK. The two recombinant 

strains modified in regulation of actinorhodin production were constructed in-house 

by replacing the native promoter of actIIorf4 with either the strong constitutive 

promoter ermE* or with a synthetic promoter from a promoter library. The cultures of 

Str. coelicolor were cultivated from frozen mycelia (FM) as described in (Sohoni et 

al., 2012). 

 

Medium 

The defined minimal medium used for bench-scale cultivations was a modification to 

Evans medium (1970), and was limited in phosphate. The medium was prepared as 

described by Borodina et al. (2008) and contained 3 mM NaH2PO4, 100 mM NH4Cl, 

10 mM KCl, 2 mM Na2SO4, 2 mM citric acid as chelating agent, 1.25 mM MgCl2, 

0.25mM CaCl2, as well as the following per liter: 30 g glucose, 5 ml trace elements 

solution (20mM FeCl3, 10mM CuCl2, 50 mM ZnCl2, 10mM MnCl2, 0.02mM 

Na2MoO4, 20mM CoCl2, 10 mM H3BO4), 1 ml vitamins solution (0.05 g of biotin, 1 g 

of calcium pantothenate, 1 g of nicotinic acid, 25 g of myo-inositol, 1 g of thiamine-

HCl, 1 g of pyridoxine-HCl, 0.2 g of para-aminobenzoic acid/liter) and 100mM 3-(N-

morpholino) propanesulfonic acid (MOPS) as buffer. pH was adjusted in the range of 

6.80 to 6.90 using sterile NaOH solution (4M) before distribution of sterile medium 
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into the plates.  

  

Cultivation conditions 

24-square, deepwell propylene microtiter plates and sandwich covers that contained 

special filters to minimize water evaporation during cultivations were obtained from 

Enzyscreen B. V. (Haarlem, Netherlands) and used for all cultivations. Each well was 

filled with 6 glass beads (3 mm in diameter) before autoclavation. 80 µl of frozen 

mycelia stock was mixed with 80 ml of sterile re-constituted medium. 3.15 ml of this 

mixture was dispensed into each well of a sterile microtiterplate. The plates were 

incubated at 28°C and 150 rpm. The shaker had an amplitude of 50 mm. 

 

Actinorhodin quantification 

To extract actinorhodin (ACT), 1.8 ml of 2M NaOH was added to 200µl sample. The 

mixture was vortexed and centrifuged at 10000 X g for 10 minutes at 4°C and the 

absorbance of the supernatant measured at 640nm. Actinorhodin concentrations were 

calculated as described in (Borodina et al., 2008). All the measurements were done in 

duplicate.  
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Supplementary  

The technical aspects in terms of response and light scattering angles that are needed 

for the scanner to work as a cell quantification platform are described in the following 

sections. The goal of the results presented in the supplementary was to gain insight in 

the behaviour of visible light after entering the transparent bottom of a vessel 

containing microbial cells. We varied the vessel diameter, vessel-wall colour, filling 
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height, cell concentration, and the presence or absence of a light absorbing layer on 

top of the culture, and measured the amount of light exiting the vessel perpendicularly 

through the same transparent bottom, using a flatbed CCD scanner. 

 

Dose-response of the CCD-scanner 

Image capturing of CCD scanners is based on a non-linear conversion from light 

intensities to digital RGB-values (normally 256 levels / 8-bit). To convert the scanner 

response into absolute light intensities the transmittance of light through light-

absorbing dilutions with known extinction coefficients was plotted against the scanner 

response (Figure 8). Exclusively the transmittance of green-light (green-value) was 

measured for direct comparison to photometric measurements of microbial 

suspensions at 540nm. Figure 8 shows that a linear correlation exists between digital 

green-values higher than 20 and the intensity of light transmitted. In the range of low 

light intensities the curve showed non-linear pattern. This is because in the low light 

range digital capture systems often reduce the bit depth obtained from the analogue-

to-digital converter by choosing fewer levels, but levels that represent more visually 

equal increments for the human eye (Brown, 2004). A correlation fitting the entire 

curve can be given as scattering intensities equals 0.118 multiplied by the green value 

to the power of 1.3. This equation gives the best fit of the data to the curve over all 

due to the exponential shape in the beginning of the curve (R
2
 = 1.0).   The conversion 

into absolute values enabled us to quantify and to analyse light scattering intensities 

from microbial cell suspensions in the experiments. 
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Figure 8. Dose response-curve. Correlation of relative intensities of light 

transmitted through ink-dilutions of known extinction coefficients to digital 

arbitrary green-values obtained from scanning images of the same dilutions. 

 

Distribution of scattering angles after interaction with single P. 

putida cells 

To understand the complex behaviour of light in concentrated cell suspensions, it is a 

prerequisite to determine the behaviour of light striking a single cell. For that reason a 

petri dish filled with a dilute P. putida cell suspension was illuminated from below 

with a green laser beam. The laser beam was set perpendicular to the surface. The 

light intensities at various angles were measured using a lux meter. It appeared that 

more than 95% of the light that interacts with a single P. putida cell is forwardly 

scattered (by means of refraction or reflection) at angles lower than 40 degrees (Fig. 

9). The maximal intensity of scattered light was detected at an angle of 11 degrees in 

the forward direction. Less than 1% of the light was reflected in the backward 
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direction. These results are in accordance with experiments on the angular 

dependence of scattering from E. coli cells which demonstrated that the intensity of 

refracted light is maximal at scattering angles lower than 30° (Cross and Latimer, 

1972). The fact that the major fraction of light striking a single cell is scattered in the 

forward directions indicates that light returning from concentrated cell suspensions is 

not the cause of single reflections at the cell surface but of many light scattering 

events that have randomly redirected the light beam. 

 

 

Figure 9. Intensity of light scattering dependent on the 

refraction angle. A green laser beam was directed 

perpendicular to the bottom of a Petri dish filled with a 

dilute P. putida CA-3 cell suspension (0.12 g dry wt
 
l
-

1
). Light intensities were measured 15 cm above the 

suspension at angles between 5 and 35 degrees.  

 

Light scattering by cells in black-walled vessels 

To verify that the major fraction of light returning from a cell suspension has been 

scattered via multiple cells we determined the impact of light absorbing and light 
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reflecting boundaries of the cell suspension on light scattering intensities measured 

with the CCD-scanner system. If dilute cultures in a black-walled 16 mm vessel are 

covered with a light absorbing layer on top of the culture, almost no light was found 

to exit through the bottom of the vessel (situation A in Fig 10). The small amount of 

light that does return is the sum of i) the little light that is directly reflected by a single 

cell (change of direction by an angle of approx 150 degrees), and ii) the light changed 

in direction by 150 degrees as a result of multiple small-angle scatterings by the 

subsequent interaction with multiple cells (e.g. 5 encounters, with and average change 

in direction of 30 degrees). The chance of the latter happening is apparently quite 

small as well. 

 

If the light absorbing layer on top of the culture is removed, the amount of light 

returning to the CCD is 3-5 fold higher (Situation B in Fig. 10). The extra light 

returning to the CCD is a consequence of light reflecting to the culture-air interface 

before or after being scattered (by a small angle) by one or more cells. The apparently 

relatively high frequencies at which this is occurring may be explained by the 

circumstance that only a single encounter with a cell (at a scattering angle of 30 

degrees) is sufficient (instead of the at least 5 encounters as described above). The 

amount of light returning from vessels filled with water was found to be negligible. 

Accordingly, direct reflections from the suspension surface to the CCD do not have an 

impact on light scattering intensities measured by the scanner system. 

 

Light scattering by cells in white-walled vessels 

The amount of light returning from white-walled 16 mm vessels was found to be 10-

50 fold higher compared to black-walled vessels for P. putida cultures in the range of 
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0.1-3 g dry wt
 
l
-1

 (Situation D in Fig. 10). The reason behind this large difference is 

probably two-fold. First of all (most relevant at low cell densities) light may reflect 

(unhindered until this time) to the white walls (change in direction between 150 and 

180 degrees), and subsequently be scattered by a single cell (change in direction of 

e.g. 30 degrees), so that the light can exit the vessel from the bottom and arrive at the 

CCD. This sequence of events is similar to what is happening in the black-walled 

vessel when light is allowed to reflect to the culture-air interface, but with the 

difference that on a white surface the reflection is highly diffuse and almost 100%, 

while at a culture-air interface the amount of light reflected can be as low as 5% 

(dependent on the angle). Secondly, light that gets trapped in the cell suspension from 

hundreds of scattering events occurring at higher cell densities does not get absorbed 

when interacting with a vessel wall. Instead it gets reflected, and so obtains another 

chance to eventually exit the vessel through the bottom and arrive at the CCD. 

Assuming that the second situation is responsible for most of the light detected at 

moderate cell densities (e.g. 2 g dry wt l
-1

), it seems reasonable to conclude that most 

light that does reach the CCD has reflected to the white wall 10-50 times since it 

entered the vessel. That the availability of a light-reflecting culture-air interface is 

also important in this 'trapping' of the light into the well, is proven by the much lower 

light intensities measured in white-walled vessels where the cultures are covered with 

a light absorbing layer (situation C in Fig 10). 
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   A  B C                     D 

 

 

 

 

Figure 10. Influence of a light absorbing  (black) and light 

reflecting suspension boudaries on light scattering intensities 

measured with the CCD-scanner system. Light scattering 

intensities were measured in the center of transparent bottoms 

of 16mm-vessels filled with P. putida CA-3 cell suspensions at 

a biomass concentration of 0.88g dry wt. l
-1

. Black bars: 

vessels with black walls. Grey bars: vessels with white walls. 

Figure A - D: Schemata (simplified) of light paths that 

contribute most significantly to the intensity of light scattering 

detected by the CCD under each condition. 
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Travelling distance of light before exiting the vessels 

The strong effects of the wall colour indicated that a large proportion of the light 

exiting from the centre of the vessel must have reflected to the wall (8 mm away) 

previously. This - in its turn - indicated that even at relatively high cell densities light 

exiting from the centre of the wells has actually travelled multiple mm's or even cm's 

after entering the cell suspension. We therefore quantified the “light travelling 

distance distribution” with the experimental setup as depicted in Fig 11: part of a petri 

dish was covered with a light-impermeable black layer  (round, with various 

diameters, and a small hole in the middle), and the amount of light exiting from the 

small hole in the middle was quantified using the CCD flatbed scanner. It appeared 

that 50% of the exiting light has entered the vessel at a distance of 4 mm or more. For 

a cell density of 14 g dry wt l
-1

, it can be calculated that statistically a photon must 

have interacted with at least several hundreds cells during this travel. Assuming that 

cells are randomly distributed in the suspension and each cell has an average volume 

of 1 x 10
-15

 l
3
 (or 1 x 10

-18
 m

3
) and an average dry weight of 3 x 10

-13
 g, 

approximately 5% of the suspension volume is occupied by cells and accordingly a 

photon would strike a cell on the average every 20µm. Hence, for a distance of 4 mm 

a photon would strike at least 200 cells. However, the chance that a photon strikes 200 

cells without being scattered in various directions is minimal. Accordingly, the 

number of cells that a photon has stroked before exiting the vessel in a distance of 

4mm or more is certainly in a much larger magnitude. We therefore conclude that a 

photon must have been scattered at least thousands or even million times before 

exiting the vessel bottom in such a distance. 
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A 

 

B 

 

E 

 

C 

 

D 

 

Figure 11. Light scattering intensities in P. putida CA-3 cell-suspensions of different 

concentrations measured in aperture holes of various diameters surrounded by infinite non-

illuminated (non-transparent) areas. A - D Scanning images of the P. putida CA-3 cell 

suspensions in aperture holes of different diameters at a concentration of 14 g dry wt. l
-1

. E 

Correlation between diameter of the illuminated area (aperture hole) and light scattering 

intensities 

 

Spatial distribution of light exiting black and white walled vessels of 

various diameters 

The intensity of light exiting from white-walled vessels (containing an identical cell 

suspension) appeared to be negatively correlated with the vessel diameter, but 

positively correlated for black-walled vessels (see figures 12A-12F). Furthermore, 

light intensities appeared to be highest in the centre of black-walled vessels, while the 

opposite is true for white-walled vessels. This stands in good agreement with the 

general picture arising from the results given above: The major fraction of light 

d = 3 mm d = 6 mm 

d = 16 mm d = 8.5 mm 
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travels large distances even in highly concentrated suspensions before exiting the 

suspension at the transparent bottom. Most light that returns from the suspension has 

been scattered many times instead of being reflected by specular reflections near to 

the suspension boundary. For that reason, light absorbance by black walls and diffuse 

reflections by white walls have strong impacts on light intensities up to considerable 

distances to the walls. The distance up to which the light intensity is dependent on the 

wall colour is negatively correlated with the biomass concentration of the suspension 

(compare Fig. 12E and 12F). As assumed above, most light is scattered by cells in the 

forward direction which implicates that a photon needs to strike several cells for a 150 

degree change in direction. At higher biomass concentrations such a change in 

direction can occur in a more narrow space. Accordingly, the average travel distance 

of a photon in a suspension is also negatively correlated with the concentration of 

cells. Additional experiments (not shown) demonstrated that light-scattering 

intensities measured in the centre of vessels with diameter of 86mm or bigger are not 

influenced by the wall colour. We therefore conclude that behind a certain distance 

aberrations of light scattering due to reflection and absorption at the vessel wall 

become negligible and light scatters similar to an infinite cell suspension. 
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A 

 

 C 

 

 E 

 

  B 

 

  D 

 

 F 

 

Figure 12. Impact of vessel-diameter and black and white walls on light scattering intensities 

in P. putida CA-3 cell suspensions. Light scattering intensities were measured with a CCD 

flatbed scanner below the transparent bottom (over the horizontal middle axis) of vessels with 

black and white walls filled with P. putida CA-3 cell suspensions at biomass concentrations 

of 0.72g dry wt. l
-1

 and 7,68g dry wt. l
-1

, respectively. 
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Influence of glucose and protein on light scattering measurements 

with CCD flatbed scanning technology 

Intensities of light scattered from P. putida CA-3 cell suspensions containing 200mM 

and 1M glucose and 40 g l
-1

 and 80 g l
-1

 peptone were measured in a range of different 

biomass concentrations (Fig. 13). It turned out that both glucose and peptone reduce 

light scattering intensities of cell suspensions detected with the CCD flatbed scanner. 

Especially at biomass concentrations higher than 1 g dry wt. l
-1 

scattering intensities 

were significantly lower in the presence of both substances. At the highest biomass 

concentration tested (14 g dry wt. l
-1

) light scattering intensities were 6.7% and 11.8% 

lower in the presence of 200mM and 1M glucose, respectively. In the presence of 40 

g l
-1

 and 80 g l
-1

 peptone the intensity of scattered light was 7.4% and 11.4% lower, 

respectively.  

 

 

  A 

 

  B 

 

Figure 13. Influence of glucose (A) and peptone (B) on light scattering intensities in P. putida CA-

3 cell-suspensions at different biomass concentrations.  
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This is because glucose and protein in the suspension approach the refractive index of 

the solvent to that of the cells, which reduces light scattering and the suspension 

appears less turbid (Robertson, 1909; Bateman et al., 1966; Chantrapornchai et al., 

2001). Accordingly, components of liquid growth media such as glucose and peptone 

can alter the optical properties of a cell suspension and thus have to be taken into 

consideration for light-scattering measurements using CCD flatbed scanning 

technology. For example, experiments with strongly varying protein concentrations in 

heterogeneous culture collections would require an initial calibration of the scanner 

system. Glucose concentrations in standard liquid growth media, however, are usually 

below 200mM and cause only negligible alterations (data not shown).  

 

Application of various types of commercially available microtiter 

plates 

Light scattering measurements were performed with dilution-series of P. putida CA-3 

cell-suspensions in black, grey and white low well microtiter plates in the 24-well and 

96-well format and transparent bottoms (Fig. 14). It turned out that at biomass 

concentrations below 3.5 g dry wt. l
-1

 the resolution of the system is highest if white 

microtiter plates are applied, while at higher biomass concentrations the application of 

black microtiter plates results in a much higher resolution and therefore more accurate 

results. This implies that low cell densities can be most reliably determined in small 

white-walled vessels, and the least accurate in small black-walled vessels. For large-

sized vessels, the wall colour has a smaller effect. For measurements in the full range 

of biomass concentrations grey microtiter plates appeared to be most reliable. In 

conclusion, our results demonstrate that for P. putida biomass concentrations in a 
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range of 0-14 g dry wt. l
-1

 can be accurately determined using CCD-flatbed scanning 

technology in conjunction with grey microtiter plates with transparent bottoms.  

 

In black 96-well microtiter plates and at biomass concentrations below 2 g dry wt. l
-1

 

light scattering intensities were below the detection limit and reflections from the 

suspension surface caused inaccurate values. At biomass concentrations higher than 2 

g dry wt l
-1

, however, light scattering intensities increased almost linearly. In contrast, 

black 24-well microtiter plates behaved similar to grey ones and exhibit a relatively 

high resolution in the whole range of biomass concentrations.  

 

    96-well format 

 

   24-well format 

 

Figure 14.  Correlation between light scattering intensities and biomass concentrations of P. putida CA-3 cell 

suspensions in black, white and grey 24- and 96-lowwell microtiter plates with transparent bottoms. Light scattering 

intensities were quantified using a flatbed scanning technology. 
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Conclusions and Perspectives 

The production of medicine and chemicals through the use of biological cell factories has 

long been the goal of the biotech industry. Polyketides in particular constitute a large and 

diverse group of medically significant compounds. The discovery of which is still ongoing 

and having an efficient cell factory ready for heterologous expression is clearly beneficial. 

Thus this thesis set out to engineer a model polyketide cell factory into two commonly used 

host systems for heterologous expression namely Aspergillus nidulans and Saccharomyces 

cerevisiae. The model polyketide 6-MSA was used to demonstrate the applicability of these 

systems for polyketide production. 

 

 A stable expression system for the production of 6-MSA in A. nidulans has been set up. 

Furthermore the production of 6-MSA in A. nidulans was optimized using the algorithm 

OptGene to predict beneficial genetic engineering targets. The predicted target gdhA resulted 

in a severe growth rate reduction that was partially rescued by insertion of an extra copy of 

gdhB. This study provides the first attempts to use OptGene to guide metabolic engineering 

in A. nidulans. It indicates that the metabolism of A. nidulans may well be more complex 

than the model iHD666 describes. Thus future efforts should set out to provide more fluxome 

and transcriptome data as well as mutants targeting central carbon metabolism that can shed 

lights on the metabolic fluxes and connections in A. nidulans. Another proposal would be to 

tailor OptGene to deal with more regulated complex biological systems. As models of A. 

niger and A. oryzae have been published after the A. nidulans model there may be some 

lessons learned from these fungi that could be useful for the A. nidulans model.  
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Another well-established polyketide host is the yeast S. cerevisiae. In this respect a novel 

gene amplification system was developed that would allow for high expression and thus 

likely high productivity of 6-MSA in S. cerevisiae. Importantly, the system was constructed 

to have stable integration of the PKS and the PPTase in the yeast genome as opposed to the 

traditionally used 2µ plasmids that have been shown to be unstable. The system was 

successfully used to demonstrate that amplification was possible in up to four copies of the 

10.5 kb gene fragments. There was a good correlation between gene copy number and 6-

MSA titers in Erlenmeyer flask experiments. In future the system will be developed to harbor 

up to ten copies of the gene amplification cassettes aiming at an even higher productivity. 

This may even provide higher titers than the commonly used 2µ based plasmid systems. 

Furthermore the system allows for the identification of pathway bottlenecks by allowing for 

the stable increase in gene copy number of one gene to be combined with one copy of another 

gene in the pathway. In terms of polyketide production, it would be possible to investigate if 

the PPTase or PKS expression level are limiting for polyketide production. Sufficiently high 

levels of expression may also lead to limitations in acyl-CoA or NADPH substrates under 

which circumstances metabolic engineering would be a well chosen approach to increase 

productivity. 

 

Engineering an efficient cell factory also involves the need to test a variety of production 

conditions such as media. In this respect the validation of a CCD-flatbed scanning platform 

using image analysis for measuring biomass and metabolite formation in a variety of 

microorganisms was undertaken. The results clearly demonstrate the usefulness of the system 

for monitoring growth of both bacteria and yeast. This includes screening of mutant libraries 

with diverse growth profiles. Furthermore productivity and onset of production of the colored 

antibiotic actinorhodin in S. coelicolor was identified through the use of the CCD-flatbed 
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scanning platform combined with image analysis. The system could also be used for inducing 

novel polyketide expression by testing a variety of media and inducers in parallel. The system 

is still ongoing development and can monitor growth continuously during cultivations. It has 

the potential for being combined with liquid handling robots. Furthermore plate optimization 

could one day lead to a screening system than can handle more challenging filamentous 

fungi. This would decrease the time, labor and cost of industrial screening programs even 

further.    

 

Polyketides constitute a diverse group of compounds. Even after identification of the 

polyketide gene clusters through an array of cultivation conditions, their heterologous 

expression and production present a challenge. This is in many cases due to the large size of 

the gene clusters. Thus the development within molecular biology and screening of 

polyketide cell factories is still a challenging road to follow. Modeling cellular metabolism 

has come a long way in only a short time and will one day be able to direct metabolic 

engineering even in A. nidulans as it has been shown for S. cerevisiae and E. coli. Increasing 

the time an effort for advancing our knowledge of metabolic fluxes in A. nidulans is essential 

for the successful modeling of future chemical production processes. 
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