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Abstract

This thesis builds around the investigation into using soft glass materials for mid-
infrared and THz applications. Soft glasses is a term that covers a wide range of
chemical compositions where many are yet to be fully investigated. The work in
this thesis is separated in two parts, the mid-infrared applications and the THz
applications.

In the mid-infrared, it is investigated whether soft glasses are a suitable candi-
date for supercontinuum generation (SCG). A few commercially available fluoride
fibers are tested for their zero dispersion wavelength (ZDW), a key property when
determining the possibility of SCG in a fiber. A group of soft glasses, namely the
chalcogenides, are known to display two photon absorption (TPA) which could po-
tentially limit the SCG when this is initiated within the frequency range where this
nonlinear process occur. An analytic model is presented to estimate the soliton self
frequency shift (SSFS), another key element in SCG, when TPA is present. To show
the validity of this model, it is used with chalcogenide fiber parameters from the
literature to show that a frequency shift is limited due to the TPA effect.

It is only resent, that soft glass materials have come into focus for THz appli-
cations, thus these materials remain relatively unknown. A selection of GeAsSe
chalcogenides is investigated to determine whether they have potential as trans-
parent glasses for THz applications. In order to do so, these glasses are tested
experimentally in both transmission and reflection measurements to determine the
complex refractive index. Knowledge of the index and loss is key in determining if
these glasses will be interesting candidates for future applications.

Henrik Steffensen
30 November 2012
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Resume

Denne afhandling er bygget op omkring en undersøgelse om hvorvidt bløde glasser
har et potentiale for at bruges til applikationer i det midt infrarøde og i THz omr̊adet.
Udtrykket bløde glasser dækker over en bred vifte af glasser med varierende kemiske
sammensætninger hvor mange endnu ikke er undersøgt til bunds. Arbejdet i denne
afhandling fokuser primært p̊a to omr̊ader, superkontinuum generering i det midt
infrarøde og p̊a at undersøge en serie glasser i THz omr̊adet.

Det undersøges om en række specifikke glasser er egnede kandidater til brug i
superkontinuum generering. En række fluor baserede glas fibre fra kommercielle
udbydere undersøges for deres nul-dispersion, en væsentlig parameter n̊ar det skal
vurderes om en fiber er egnet til at bruges til superkontinuum generering. En af glas
grupperne der ofte bruges som fiber i superkontinuum generering er chalcogenide.
Men denne type glas har mulighed for to-photons tab, hvilket fører til øget tab i
fibre af dette glas. I afhandlingen præsenteres en model der kan estimere hvor meget
dette ulineære tab reducerer det frekvensskifte der er for̊arsaget er Raman effekten i
fiberen og som ligeledes er et væsentligt element i at opn̊a et bredt superkontinuum
spektrum. For at understrege denne effekt er modellen brugt p̊a fiber parametre fra
litteraturen, hvormed det kan vises at denne effekt begrænser det frekvensskifte der
ville kunne opn̊as hvis denne effekt ikke var til stede.

Det er kun i nyere tid at man er begyndt at interessere sig for brugen af bløde
glasser i THz omr̊adet. Derfor er disse materialer stadig relativt ukendte ved disse
frekvenser. I denne afhandling undersøges en række glasser af GeAsSe chalcogenid
typen derfor, for at se om de udviser et potentiale. De testes eksperimentelt, b̊ade
i transmissions og refleksions målinger, for at bestemme deres brydningsindeks og
tab. Ud fra denne viden kan det afklares om disse glasser har et potentiale for at
arbejde videre med dem til THz brug.
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1

Introduction

Mid-infrared and THz optical technologies are receiving an increasing amount of
interest in recent years. The interest in these frequencies is based in the possibilities
with light at these frequencies to create spectroscopy devices useful for any range of
applications within testing of physical, biological and chemical sensing [1, 2, 3, 4].

There has been great interest in creating new sources such as fiber lasers [5],
quantum cascade lasers [6] and frequency combs [7] in the mid-infrared and in THz
sources such as optical rectification in lithium niobate [8]. In resent years, there has
also been great interest in creating broadband sources covering as much as the mid-
infrared spectrum as possible. Mainly these sources are based on Supercontinuum
Generation (SCG) in materials that are transparent in the mid-infrared such as soft
glasses [9, 10, 11].

In the THz regime, novel materials are also of an interest, as work has been
carried out in creating THz guiding optical fibers using low loss polymers [12, 13].
Soft glass materials appear as a promising alternative for the use of polymers. Some
of the soft glasses, namely tellurite and chalcogenide, are highly nonlinear in the mid-
infrared [14], they might also have a substantial nonlinearity in the THz spectrum
which would make them candidates for nonlinear optical devices in the THz range.

This thesis begins with an outline of what soft glasses are comprised of and with a
discussion of their known properties. Following this the soft glasses are investigated
in respect to their usability as a medium in SCG, specifically the focus is on the
dispersion of commercially available fluoride fibers, to see whether these are an
option, secondly the focus is on to which extend the Two-Photon Absorption (TPA)
that is inherently present in chalcogenide reduces the possibilities of using these
fibers for SCG. The soft glass materials are also considered for use in the THz regime,
a range of chalcogenide glasses from the GeAsSe family is tested to investigate their
potential in this spectral range.
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Soft Glass Materials

Soft glass materials are a range of materials that is getting an increasing amount of
interest in research. Common for these materials are, as the name implies, the amor-
phous glass structure and the low melting temperature for these glasses compared
to the more commonly used silica glass. The soft glass materials are composed of a
whole range of different glasses, which for the main can be placed in three overall
groups, namely fluoride glasses, tellurite glasses and chalcogenide glasses. Besides
the common denominator in the lower melting temperature, all these glasses ap-
pear to have a significantly lower loss than silica in the mid and far-infrared region.
First in this chapter will be a introduction to the chemical compositions of these
materials, after which the glass properties will be discussed.

2.1 Chemical Compositions

2.1.1 Fluoride Glasses

Flouride glasses are a generally non-oxide range of glasses based on metal fluorides.
The glasses within this class can be further grouped into such sub-groups as fluo-
rozirconate glasses, based on zirconium fluoride, fluoroaluminate glasses, based on
aluminium fluoride, and fluorophosphate glass, which differs from the other two as
it is a compound of metal fluorides and metaphosphate containing oxygen.

Fluoride glasses are often referred to by acronyms of the metal fluorides the
glasses are based on, such examples are ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF), ZBLA
(ZrF4-BaF2-LaF3-AlF3), CLAP (CdF2-LiF-AlF3-PbF2) and BZnYbT (BaF2-ZnF2-
YbF3-ThF4) [15]. As the materials are all compound glasses, the concentration of
each metal fluoride can be reasonably freely chosen at production. ZBLAN is the
most used of these glasses and is also regarded as the most stable fluoride glass [16].
It is currently used in a range of applications such as doped with rare earth ions for
fiber lasers and amplifiers and for mid-infrared transmission fibers [15, 16].
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4 Soft Glass Materials

Flouride fiber is soluble in water, and the material are thus prone to water
intruding into the material from the air if not properly sealed [17, 11].

2.1.2 Tellurite Glasses

Tellurite differ from flouride glasses in it being based mainly on a single molecule,
namely tellurium dioxide in its orthorhombic mineral tellurite form, �-TeO2. In
its pure form, tellurite forms a crystal structure, however in combination with small
molar concentrations of other compounds, it will form a glass structure. Examples of
tellurite glass compositions include 75TeO2-20ZnO-5Na2O [18], (95-x)TeO2-(x)Li2O-
5TiO2 [19] and 75TeO2-12ZnO-5PbO-3PbF2-5Nb2O5 [20]. As with fluoride glasses,
the composition of the added chemical compounds are variable, leaving with many
various options of creating a tellurite glass.

2.1.3 Chalcogenide Glasses

Chalcogenide is a chemical compound consisting of at least one chalcogen ion and
at least one other ion being more electropositive than the chalcogen. Chalcogen ion
are all ions in group 16 of the periodic table, although also oxygen is included in this
group, chalcogen and the term chalcogenide usually excludes all oxides and refers
primarily to sulfides, selenides and tellurides [21]. Chalcogenides are also a group
of non-crystalline or amorphous semiconductors which causes these materials to
display two-photon absorption in the near-infrared [22]. However it is reported that,
differing from crystalline semiconductors, amorphous chalcogenide is inherently p-
type [23], meaning that at excitation, only free holes are created while free electrons
are not.

Chalcogenide glasses also has potential as photonic chip material as it is possible
to use planar wafer technology known from the silicon chip production to modify
these glasses.

2.2 Comparison

In the near-infrared regime, silica is the preferred material as it is easy to handle
and has a low loss. As we go into the mid- and far-infrared, the loss in silica is
greatly increases which is why other glasses is preferred in this range. In Table 2.1
is listed some key material properties of soft glasses and silica for comparison [24,
25, 14, 26, 27, 28, 18, 29, 9, 30, 31, 11, 32]. As mentioned earlier, there is a great
number of different chemical compositions available or making soft glasses, and with
many of them not being fully studied yet, thus these material property values are
approximate only.
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Table 2.1: Properties of soft glasses in comparison with silica
Silica Flouride Tellurite Chalcogenide

Refractive index, n 1.46 1.5 1.8–2.3 2.4–2.8
Nonlinear index, n2 [m2/W] 2.7× 10−20 2.1× 10−20 6× 10−19 10× 10−18

Raman Stokes shift [THz] 13 17.7 22.5 6.8
Near- and mid-infrared
transmission range [�m] 0.2–2.5 0.2–7 0.4–5.0 0.8–16

Fiber loss [dB/km] 0.2 40 2.9× 103 0.4
at [�m] 1.5 2.0 1.55 6.5

ZDW (material) [�m] 1.3 1.6 2.5 4–5
Glass transition temp∗ [oC] 1000 300 300 300
Band gap∗ [nm] 120 440–670 516–700

(∗): Highly dependent on the chemical composition.

As it shows from the table, fluoride fibers are those that closest resemble silica,
as they have comparable nonlinearity and fiber dispersion, though the loss is much
higher. In comparison, chalcogenide and tellurite glasses both have a substantially
higher Zero Dispersion Wavelength (ZDW) and nonlinearity.

All the soft glass fibers have a much lower glass transition temperature than
silica, causing the drawing temperature to be set much lower when drawing these
materials into fibers. For flouride glasses especially, the glass melting temperature
is only slightly higher than the glass transition temperature, leaving it practically
impossible to create flouride fibers with a hole structure in them. For chalcogenide
and tellurite, several examples have been reported of succesfully made Photonic
Crystal Fibers (PCFs) [33, 21, 9]. Furthermore, soft glass materials are more difficult
to handle than silica fibers, they are more brittle and it is thus not as straight forward
to, for instance splice fibers together, as it is with silica.
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3

Mid-Infrared Supercontinuum

Generation in Soft Glass Materials

Broadband light sources in the mid-infrared range, 2-15 �m, are of significant in-
terest due to the many infrared applications in astronomy [34, 35], spectroscopy of
biological [2, 3] and chemical [1] samples, IR microscopy [36], gas sensing [37] and
military countermeasures [38]. Broadband light sources based on SCG [39] in silica
fibers are widely used in the visible and near-infrared wavelength range [40]. How-
ever a mid-infrared supercontinuum light source cannot use silica fibers because of
the loss edge at around 2.2 �m. Instead other glasses with a higher transparency in
the mid-infrared can be used, such as ZBLAN [41, 42], bismuth [28], tellurite [20, 9]
or chalcogenide [43, 10]. Chalcogenide glasses generally have a nonlinear index two
orders of magnitude higher than silica, whereas bismuth and tellurite have one order
of magnitude higher and finally ZBLAN have a nonlinear index comparable to that
of silica [27], see also Table 2.1. The material ZDW is also higher than that of silica
with chalcogenide having the highest at around 4-5 �m depending on the chemical
composition [28].

This chapter begins with a brief discussion of SCG in general then discusses in
more detail the possibilities and perspectives of generating Supercontinuum (SC) in
soft glass materials. Afterwards a section is dedicated to discussing the importance
of knowing the dispersion of the fiber used for a SCG, with description of how this
was measured and the results obtained. Lastly I present the work on an analytical
model to predict the Soliton Self Frequency Shift (SSFS), which is essential in SCG.
With this model I then show how TPA in especially chalcogenide affects the red-shift
of solitons.

7



8 Mid-Infrared Supercontinuum Generation in Soft Glass Materials

3.1 Obtaining Supercontinuum Generation

The fundamentals in SCG is pumping the nonlinear fiber close to the ZDW and by
Modulation Instability (MI) or soliton fission to generate fundamental solitons and
have them redshift [39]. Thus the location of the ZDW is one of the key elements in
obtaining SCG as well as the possibility to have them red-shift far while also forming
dispersive waves in the blue region of the spectrum. It is possible to use any laser
as the optical pumping source for SCG, however for simplicity, a fiber laser would
be preferable, as with a fiber laser it is possible to avoid free space coupling. Two of
the most available fiber laser are ytterbium fiber lasers, usually with a wavelength
around 1064 nm, or erbium fiber laser, with a typical wavelength around 1564 nm.
Using either of these, standard silica fiber is not a good choice here, as the ZDW is
typically around 1317 nm for standard SMF28 fiber [44]. Various methods are thus
used to engineer the ZDW of the fiber to enable the use of fiber lasers, methods
such as using PCFs [45, 39] that can be dispersion engineered for optimal SCG [46],
tapers [47, 48, 43, 49] or by the use of silica fiber to either redshift the pulse [50] or
to initialize the SCG [41] before coupling to a soft-glass fiber. Other advantages of
using PCFs include the possibility of creating the fiber endlessly single-moded and
having a tighter confinement in the fiber thus increasing the nonlinear constant.

Of the three material options, only step-index chalcogenide [51, 52] and ZBLAN
fibers [53, 54] are readily available commercially. The chalcogenide fibers avail-
able are usually offered based either on arsenic selenide (As2Se3) or arsenic sulfide
(As2S3). Chalcogenide have the highest nonlinear index of the two, and would thus
be an interesting candidate if not for the high ZDW which makes it challenging to
use a fiber laser [43]. ZBLAN on the other hand have a lower ZDW that more easily
allows for using a fiber laser to pump the SCG. If looking at non-commercial fiber,
tellurite and chalcogenide are both very interesting, as it is possible to create PCFs
in these glasses [33, 21, 9], which makes it possible to tailor the dispersion to suit
SCG [46].

3.2 Dispersion

Knowing the ZDW is essential in good SCG and since the soft glasses are relatively
un-investigated together because of the high degree of variation in the composition
of the materials between suppliers, it is necessary to investigate each specific fiber
considered for SCG. First the experimental setup is described with a description of
the fibers tested and the results of the measurements in the following section.
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3.2.1 Experiment

To measure the dispersion of the fibers, a low coherence interferometric setup is
used [55, 56]. The experiment is based on a broadband source or a tunable laser
where the light is divided in two, the one arm being propagated through the fiber,
the other is propagated through air alone. The two light beams are then combined
and sent to a Optical Spectrum Analyzer (OSA) to measure the power spectrum.
A schematic of the experiment is shown in Fig. 3.1. In this experiment, a SC source
is used as the broadband source. This experiment is only suitable for Single-Mode

SC OSA

Fiber

BS BS

Manual

Delay Stage

Lens

Lens Lens

Lens

Figure 3.1: Schematic of the dispersion measurement setup. A SC laser is used as
the light source, the light is split in two parts, one to propagate through the test
fiber, the other is propagated through air (reference). In the reference beam, the
same two lenses are placed to reduce any effect the lenses used to couple in and out
of the fiber might have. The manual delay stage is used to adjust the length of the
reference arm to increase the visibility of the interference pattern measured with the
OSA.

Fibers (SMFs), as it is required that the light propagating through the fiber is
confined in a single mode, otherwise it is not possible to calculate the dispersion of
the fiber. The dispersion can be found as

D(�) =
1

Lc

[

1

Δ�2

(

2� ⋅Δ�− �2dΔ�

d�

)]

, (3.2.1)

where L is the length of the fiber and Δ� is the distance in wavelength between the
peaks in the interference pattern. The derivation of this equations is described in
detail in App. A.1, is it based on differentiating the phase of the combined electric
field, where the derivative of the phase can be estimated based on the periodicity of
the interference pattern.

If the fiber is not single moded, it is highly likely that some light is coupled
into the higher order modes. In this case, the power spectrum measured does not
comprise solely of the light traveled through the reference arm and the fundamental
mode of the fiber, and the premise behind Eq. (3.2.1) is no longer valid. However
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the experiment can still be used to give an inclination of where the ZDW will be. If
only the light traveling through the fiber is measured, then if any light is coupled
into the higher order modes, an interference pattern will emerge as the propagation
constant of the modes is not the same. Thus changing the coupling of the light to
reduce the interference pattern as much as possible will ensure that only little light
will couple into the higher order modes. If the power in the fundamental mode can
be assumed much greater than the light in any other mode, Eq. (3.2.1) can still be
used to give an estimated dispersion curve. It is however important to note that
the error in this measurement is much greater than when measuring on a SMF, and
should only be used to give a qualitative estimate of where the ZDW is.

3.2.2 Fibers Measured

ZBLAN fibers from two different suppliers were considered for use, one being Ir-
Photonics [53] providing samples from both an old and a new batch, denoted (1)
and (2) respectively, and from FiberLabs [54] as the second manufacturer. As the
fibers are from different manufacturers, the composition of the fibers vary between
IrPhotonics and FiberLabs. IrPhotonics changed the composition of the fiber during
the investigation in order to obtain a less brittle fiber. However in which way this
was done was not disclosed, thus the fibers are treated as being different. Further
details of the fibers are shown in Table 3.1.

Table 3.1: Fibers tested for ZDW
Fiber NA Core Diameter Cut-off �
IrPhotonics (1) 0.17 9�m 2�m
IrPhotonics (2) 0.17 9�m 2�m
FiberLabs 0.2 10.7�m 2.8�m

Fig. 3.2 shows the measured dispersion for the three fibers. It shows the two
fibers having a ZDW at 1832nm and 1846nm respectively for fibers (1) and (2),
and at 1583nm for the fiber from FiberLabs. This is for all fibers well below the
cut-off wavelength, and the dispersion measurements should thus only be regarded
qualitatively, however it clearly shows a significant difference in location of the ZDW.
As it is optimum for SCG to pump just slightly above the ZDW, it shows that if
using either of the IrPhotonics fibers, the pump wavelength should be above roughly
1850nm, which could make thulium doped fiber lasers an option, or if using the
FiberLabs fiber, a pump around roughly 1600nm is necessary.

Furthermore, attempts were done to measure dispersion on drawn tellurite fiber
for use in simulations of SCG [9], however these yielded no result as the fiber was
poorly shaped and proved impossible to sufficiently couple into the fundamental
mode.
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Figure 3.2: The measured dispersion for three different fibers. Two different fibers
from commercial supplier IrPhotonics and one from commercial supplier FiberLabs.
The two fibers have roughly the same ZDW, with (1) being at 1832nm and (2) being
at 1846nm, whereas the fiber from FiberLabs have a ZDW at 1583nm.

3.3 Soliton Self-Freguency Shift Model by Method

of Moments

The SSFS effect was analytically shown by Gordon [57] by looking at the Raman
amplification as a perturbation to the Nonlinear Schrödinger (NLS). Later works
extended the description by including self-steepening and Third Order Dispersion
(TOD) for long pulses [58] and linear losses [59]. Judge et. al. extended the original
model to be used in fiber tapers [60, 61] and recent work has been shown that
includes the full Raman description as well as linear loss, TOD and self-steepening
effects by the use of method of moments [62]. As chalcogenide is increasingly being
used as a new material for SCG, it is now necessary to extend the previous work
to also include TPA which is present in various chalcogenide materials, for instance
As2Se3. As it was shown that including loss in the description of SSFS had a great
effect of the predicted red-shift [59], it is expected that TPA will further reduce the
red shift.

The NLS equation expressed as [63],

∂zu(z, t) = −i
�2

2
∂2
t u(z, t) + ir

0∣u(z, t)∣2u(z, t), (3.3.1)

where u(z, t) is the complex envelope op the electric field at carrier frequency !0, �2

is the Group Velocity Dispersion (GVD) coefficient, and r
0 is the real part of the
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nonlinear constant

r
0 =

!0n2

cAeff

, (3.3.2)

with n2 is the nonlinear refractive index, c is the speed of light and Aeff is the
effective area, has a fundamental soliton solution given by

u(z, t) =
√

P0sech

(

t

T0

)

exp

(

−i
�2

2T 2
0

z

)

, (3.3.3)

with T0 as the pulse width, P0 is the peak power and with the two constraints that
�2 < 0, i.e. anomalous dispersion, and that

r
0P0T

2
0

∣�2∣
= 1. (3.3.4)

This solution is named the fundamental soliton and it will propagate unchanged
through the fiber. However, the NLS equation neglects effects such as Raman scat-
tering, self-steepening and TPA. Thus a more accurate description of the propaga-
tion in a fiber is the Generalized Nonlinear Schrödinger (GNLS) equation, given as
[62]

∂zu(z, t) =− �

2
u(z, t) + i

∑

m≥2

im�m

m!
∂m
t u(z, t)

+ i
∑

n≥0

inn
n!

∂n
t

{

u(z, t)

∫

R(t′)∣u(z, t− t′)∣2dt′
}

, (3.3.5)

where � is the linear loss, �m is the m’th derivative of the propagation constant with
respect to !, n is the n’th derivative where by the zero’th derivative is meant the
nonlinear constant itself as given by [64]

0 =
!0n2

cAeff

+ i
�TPA

2Aeff

, (3.3.6)

with nonlinear loss, �TPA, included in the imaginary part of the nonlinear constant.
The integral is performed over the entire domain, e.g.

∫

dt =
∫∞

−∞
dt and

R(t) = (1− fR)�(t) + fRℎR(t), (3.3.7)

is the time response function for the nonlinear susceptibility where ℎR(t) is the
Raman response function and fR is the fractional Raman response.

The derivation of the SSFS model is based on utilizing the Method of Moments
(MoM) [65, 58]. The more common variational technique cannot be applied because
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the GNLS equation, Eq. (3.3.5), does not have a Lagrangian when the temporally
asymmetric nonlocal Raman term is included. Had the nonlocality been symmetric,
then variational techniques could have been applied [66, 67].

The MoM require a relevant ansatz to be chosen. Since the solution to the NLS
is a fundamental soliton, the ansatz is assumed to follow a similar shape, thus the
ansatz is chosen as

u(z, t) =
√

P0(z)sech

(

t− tc(z)

T0(z)

)

exp
[

iΦ(z)− ib(z)(t− tc(z))− i�(z)(t− tc(z))
2
]

,

(3.3.8)

where P0 is the peak power, T0 is the pulse width in time, tc is the pulse shift in
time, Φ is the time-independent phase shift, b is the angular frequency shift and
finally � is the quadratic chirp. All these pulse characteristics is assumed to vary
with z.

In this model for SSFS, the two first terms of each sum in the GNLS is included,
namely the two dispersion terms, GVD and TOD, and the nonlinear terms which
included the Kerr nonlinearity, the Raman scattering and the self-steepening. Thus
the governing equation is assumed to be

∂zu(z, t) =− �

2
u(z, t)− i

�2

2
∂2
t u(z, t) +

�3

6
∂3
t u(z, t)

+ i0u(z, t)

∫

R(t′)∣u(z, t− t′)∣2dt′ − 1∂t

{

u(z, t)

∫

R(t′)∣u(z, t− t′)∣2dt′
}

.

(3.3.9)

The MoM require the same number of moments as the number of included pulse
characteristics, however as b, P0, T0, � and tc is not dependent on the phase shift,
only 5 moments is required. These 5 moments are

Q(z) =

∫

∣u(z, t)∣2dt, (3.3.10a)

PM(z) =
1

2

∫

(u(z, t)∂tu
∗(z, t)− u∗(z, t)∂tu(z, t))dt, (3.3.10b)

I1(z) =

∫

t∣u(z, t)∣2dt, (3.3.10c)

I2(z) =

∫

(t− tc)
2∣u(z, t)∣2dt, (3.3.10d)

I3(z) =

∫

(t− tc)(u
∗(z, t)∂tu(z, t)− u(z, t)∂tu

∗(z, t))dt. (3.3.10e)

If necessary, it is possible to define a 6th moment to derive an equation for the
change in Φ [68].
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The evolution equations for the 5 pulse characteristics are then found by first
calculating each moment by inserting the ansatz. These are then differentiated with
respect to z which, after rewriting, results in 5 differential equations for the 5 pulse
characteristics as a function of the derivatives of the moments. These derivatives can
then be found by differentiating Eq. (3.3.10) with respect to z, inserting Eq. (3.3.9)
followed by the ansatz. This derivation of the coupled differential equations can be
seen in more detail in App. A.2.

The result of this is these 5 coupled differential equations,

∂zb = − 8

15

(r
0 + br

1)P0

T0

fR

∫

ℎR(t)A1

(

t

T0

)

dt

+
4

3
�r

1P0

[

1− fR + fR

∫

ℎR(t)B1

(

t

T0

)

dt

]

− 4

3
�(i

0 + bi
1)P0T0fR

∫

ℎR(t)A2

(

t

T0

)

dt

− 4

5

i
1P0

T 2
0

[

1− fR + fR

∫

ℎR(t)B2

(

t

T0

)

dt

]

− 4

(

�2

9
− 2

3

)

�2i
1P0T

2
0

[

1− fR + fR

∫

ℎR(t)B3

(

t

T0

)

dt

]

(3.3.11a)

∂ztc = b(�2 + b�3) +
1

2
�3

[

�2

3
�2T 2

0 +
1

3T 2
0

− b2
]

+ r
1P0

[

1− fR + fR

∫

ℎR(t)B4

(

t

T0

)

dt

]

− 2

3
(i

0 + bi
1)P0T0fR

∫

ℎR(t)A2

(

t

T0

)

dt

− 2

(

�2

9
− 2

3

)

�i
1P0T

2
0

[

1− fR + fR

∫

ℎR(t)B3

(

t

T0

)

dt

]

(3.3.11b)

∂zT0 = 2�T0(�2 + b�3) +
8

�2
r
1P0fR

∫

ℎR(t)A3

(

t

T0

)

dt

+
4

�2
(i

0 + bi
1)P0T0

[

1− fR + fR

∫

ℎR(t)B5

(

t

T0

)

dt

]

−
(

4

3
− 12

�2

)

�i
1P0T

2
0 fR

∫

ℎR(t)A4

(

t

T0

)

dt (3.3.11c)
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∂zP0 = −�P0 − 2�P0(�2 + b�3)−
(

8

�2
+

8

15

)

r
1P

2
0

T0

fR

∫

ℎR(t)A5

(

t

T0

)

dt

−
(

4

3
+

4

�2

)

(i
0 + bi

1)P
2
0

[

1− fR + fR

∫

ℎR(t)B6

(

t

T0

)

dt

]

− 12

�2
�i

1P
2
0 T0fR

∫

ℎR(t)A6

(

t

T0

)

dt (3.3.11d)

∂z� = (�2 + b�3)

(

2

�2

1

T 4
0

− 2�2

)

+
2

�2

(r
0 + br

1)P0

T 2
0

[

1− fR + fR

∫

ℎR(t)B7

(

t

T0

)

dt

]

−
(

8

15
− 4

�2

)

�r
1P0

T0

fR

∫

ℎR(t)A7

(

t

T0

)

dt− 76

15�2

i
1P0

T 3
0

fR

∫

ℎR(t)A8

(

t

T0

)

dt.

(3.3.11e)

where r
n and i

n are the real and imaginary parts of n respectively.

The eight An(x) functions,

A1(x) =
15

8
csch4(x) [4x+ 2xcosh (2x)− 3sinh (2x)] (3.3.12a)

A2(x) = 3xcsch3(x) [xcosh (x)− sinh (x)] (3.3.12b)

A3(x) =
1

4
csch4(x)

[

−
(

2x3 + 6x
)

cosh (2x) + 9x2sinh (2x)− 4x3 + 6x
]

(3.3.12c)

A4(x) =
3

�2 − 9
xcsch3(x)

[(

3x3 + �2x
)

cosh (x)−
(

6x2 + �2
)

sinh (x)
]

(3.3.12d)

A5(x) =
15

8�2 + 120
csch4(x)

[(

18x2 − 3�2
)

sinh (2x)−
(

4x3 + 12x− 2�2x
)

cosh (2x)

−8x3 + 12x+ 4�2x
]

(3.3.12e)

A6(x) =
1

304
csch5(x)

[(

68�2x2 − 180x2 + 75�2 − 450
)

cosh (3x)−
(

158�2x− 720x
)

sinh (3x)

+
(

412�2x2 − 2700x2 − 75�2 + 450
)

cosh (x)−
(

306�2x− 2520x
)

sinh (x)
]

(3.3.12f)

A7(x) =
15

8�2 − 60
csch4(x)

[

16x3 + 4�2x− 6x+
(

8x3 + 2�2x+ 6x
)

cosh (2x)

−
(

18x2 + 3�2
)

sinh (2x)
]

(3.3.12g)

A8(x) =
45

152
csch5(x)

[

8xsinh (3x) + 28xsinh (x)−
(

2x2 + 5
)

cosh (3x)−
(

30x2 − 5
)

cosh (x)
]

(3.3.12h)
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is normalized such that An(x → 0) = x, while the seven Bn(x) functions

B1(x) =
3

2
csch4(x)

[(

6x2 − 1
)

cosh (2x)− 8xsinh (2x) + 12x2 + 1
]

(3.3.13a)

B2(x) =
5

12
csch5(x) [7sinh (3x) + 27sinh (x)− 3xcosh (3x)− 45xcosh (x)]

(3.3.13b)

B3(x) =
3

�2 − 6
csch3(x)

[(

4x3 + �2x
)

cosh (x)−
(

6x2 + �2
)

sinh (x)
]

(3.3.13c)

B4(x) =
1

36
csch5(x)

[(

18x2 + 61
)

sinh (3x) +
(

54x2 + 297
)

sinh (x)

−48xcosh (3x)− 432xcosh (x)] (3.3.13d)

B5(x) = csch3(x)
[

3x2sinh (x)− 2x3cosh (x)
]

(3.3.13e)

B6(x) =
3

�2 + 3
csch3(x)

[(

3x2 − �2
)

sinh (x)−
(

2x3 − �2x
)

cosh (x)
]

(3.3.13f)

B7(x) =
3

2
csch4(x)

[

4xsinh (2x)−
(

2x2 + 1
)

cosh (2x)− 4x2 + 1
]

, (3.3.13g)

are normalized such that Bn(x → 0) = 1. Not all these functions are linearly
independent, it shows that

A5(x) =
1

�2 + 15

[

�2A1(x) + 15A3(x)
]

(3.3.14a)

A8(x) =
1

�2 − 6

[

�2A2(x)− 6A6(x)
]

(3.3.14b)

B6(x) =
1

�2 + 3

[

9B5(x) +
(

�2 − 6
)

B3(x)
]

(3.3.14c)

B7(x) =
1

�2

[

2�2B2(x) +
(

2�2 − 12
)

B3(x)− 3�2B4(x) + 12B5(x)
]

. (3.3.14d)

It is thus only necessary to calculate integrals over 11 functions and not the 15
mentioned An and Bn functions, reducing the computational need.

Since the first order parameters, �2 and 0, appear as linear expansions, it is
possible to introduce a moving frame of reference [62]. The moving frame is based on
using a soliton with a fixed carrier frequency, !0, with the dispersion and nonlinearity
parameters evaluated at this frequency and then to update this frequency to follow
the red-shift as !0(z + dz) = !0(z) + db. With this, the equations can be reduced



Soliton Self-Freguency Shift Model by Method of Moments 17

to

∂zb = − 8

15

r
0P0

T0

fR

∫

ℎR(t)A1

(

t

T0

)

dt+
4

3
�r

1P0

[

1− fR + fR

∫

ℎR(t)B1

(

t

T0

)

dt

]

− 4

3
�i

0P0T0fR

∫

ℎR(t)A2

(

t

T0

)

dt− 4

5

i
1P0

T 2
0

[

1− fR + fR

∫

ℎR(t)B2

(

t

T0

)

dt

]

− 4

(

�2

9
− 2

3

)

�2i
1P0T

2
0

[

1− fR + fR

∫

ℎR(t)B3

(

t

T0

)

dt

]

(3.3.15a)

∂ztc =
1

6
�3

[

�2�2T 2
0 +

1

T 2
0

]

+ r
1P0

[

1− fR + fR

∫

ℎR(t)B4

(

t

T0

)

dt

]

− 2

3
i
0P0T0fR

∫

ℎR(t)A2

(

t

T0

)

dt

− 2

(

�2

9
− 2

3

)

�i
1P0T

2
0

[

1− fR + fR

∫

ℎR(t)B3

(

t

T0

)

dt

]

(3.3.15b)

∂zT0 = 2�T0�2 +
8

�2
r
1P0fR

∫

ℎR(t)A3

(

t

T0

)

dt

+
4

�2
i
0P0T0

[

1− fR + fR

∫

ℎR(t)B5

(

t

T0

)

dt

]

−
(

4

3
− 12

�2

)

�i
1P0T

2
0 fR

∫

ℎR(t)A4

(

t

T0

)

dt (3.3.15c)

∂zP0 = −�P0 − 2�P0�2 −
(

8

�2
+

8

15

)

r
1P

2
0

T0

fR

∫

ℎR(t)A5

(

t

T0

)

dt

−
(

4

3
+

4

�2

)

i
0P

2
0

[

1− fR + fR

∫

ℎR(t)B6

(

t

T0

)

dt

]

− 12

�2
�i

1P
2
0 T0fR

∫

ℎR(t)A6

(

t

T0

)

dt (3.3.15d)

∂z� = �2

(

2

�2

1

T 4
0

− 2�2

)

+
2

�2

r
0P0

T 2
0

[

1− fR + fR

∫

ℎR(t)B7

(

t

T0

)

dt

]

−
(

8

15
− 4

�2

)

�r
1P0

T0

fR

∫

ℎR(t)A7

(

t

T0

)

dt− 76

15�2

i
1P0

T 3
0

fR

∫

ℎR(t)A8

(

t

T0

)

dt.

(3.3.15e)
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The normalization of the An(x) and Bn(x) functions, is such that all integrals over
Bn functions in Eq. (3.3.15) goes towards 1 as the pulse width is increased while
integrals over An functions goes towards TR/(fRT0), where

TR = fR

∫

t ℎR(t)dt (3.3.16)

Reducing the complete solution for broad pulses is thus straightforward, resulting
in

∂zb =− 8

15

r
0P0TR

T 2
0

+
4

3
�r

1P0 −
4

3
�i

0P0TR − 4

5

i
1P0

T 2
0

− 4

(

�2

9
− 2

3

)

�2i
1P0T

2
0 ,

(3.3.17a)

∂ztc =
1

6
�3

[

�2�2T 2
0 +

1

T 2
0

]

+ r
1P0 −

2

3
i
0P0TR − 2

(

�2

9
− 2

3

)

�i
1P0T

2
0 . (3.3.17b)

∂zT0 =2�T0�2 +
8

�2
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1P0TR
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+
4

�2
i
0P0T0 −

(

4

3
− 12

�2

)

�i
1P0T0TR, (3.3.17c)
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+
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i
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0 TR,

(3.3.17d)

∂z� =− 2�2�2 +
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�2

�2

T 4
0

+
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�2

r
0P0

T 2
0

−
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8

15
− 4

�2

)

�r
1P0TR

T 2
0

− 76

15�2

i
1P0TR

T 4
0

.

(3.3.17e)

As can be seen from Eq. (3.3.15), the angular frequency shift is neither directly or
indirectly dependent of the pulse shift in time, tc, it is thus only necessary to model
the four differential equations for b, P0, T0 and �.

3.3.1 Comparison of Models

A SSFS model based on the same approach has previously been proposed by Chen
et. al. [62] though not including the imaginary part of the nonlinear constant, i.e.
TPA. It is thus appropriate to compare the model proposed here with the model of
Chen et. al. as well as with simulations of the GNLS equation. The model of Chen
et. al. does not account for any nonlinear loss, so in the comparison, i

n = 0 in order
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to properly compare the two models. The simulation of the GNLS is performed with
the interaction-picture method described by Travers et. al. [69].

For comparison, a fundamental soliton input at 1550 nm is considered, in a 50 m
silica fiber with a loss of 0.2 dB/km. The dispersion parameters are assumed as
�2 = −5.1 ps2/km and �3 = 0.1 ps3/km. The nonlinear constants are assumed to be
r
0 = 2 W−1km−1 and 1 = r

0/!0. The input peak power is defined by the chosen
pulse width, according to the relation P0 = ∣�2∣/(r

0T
2
0 ), as a fundamental soliton

is assumed. For the Raman response function, the data shown in Fig. 3.3 has been
used.
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Figure 3.3: The Raman response function for silica in time (left) and frequency
(right).

Fig. 3.4 shows the SSFS results for both a 100 fs and a 25 fs broad pulse. The
broader pulse shows a good level of agreement between the two MoM models and
the simulation in both frequency shift and evolution of the peak power and pulse
width. The 25 fs pulse is showing good agreement in frequency shift although the
two models predict the evolution of the peak power and pulse width with bigger
variation then the numerical simulations. When the pulse width is reduced to 10 fs,
as is shown in Fig. 3.5, the two MoM models begin to break down. This breakdown
is due to the increased effect of higher order effects, such as TOD and self-steepening,
and the chosen ansatz not being able to accommodate these, as the ansatz is based
on a fundamental soliton. A more complex ansatz would be possible, but any added
complexity would lead entail more parameters to account for in the model, thus also
greatly increasing the computational time.

Figs. 3.4 and 3.5 also show, that with decreased pulse width, a greater difference
between the two MoM models starts to show, thus indicating a difference in the
two analytical models. In the paper of Chen et. al. the pulse energy, E, and a
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Figure 3.4: Center wavelength (top), pulse width (middle) and peak power (bottom)
as a function of propagation distance for a pulse with initial width of 100 fs (left)
and 25 fs (right). It shows that there is generally a good agreement between the
analytical models and the result from the simulations of the GNLS equation.

normalized quadratic chirp, C, is used instead of peak power and quadratic chirp,

E =
2P0

T0

, (3.3.18a)

C =
�

2T 2
0

. (3.3.18b)

With this redefinition, and also neglecting any nonlinear loss, meaning that i
n = 0,

in order to compare the models, as Chen et. al. does not account for this, the
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Figure 3.5: Center wavelength (top), pulse width (middle) and peak power (bottom)
as a function of propagation distance for a pulse with initial width of 10 fs. In this
case there is a bigger discrepancy between the MoM models and the simulation of
the GNLS equation.

differential equations can be expressed as

∂zb = − 4

15

(r
0 + br

1)E

T 2
0

fR

∫

ℎR(t)A1

(

t

T0

)

dt

+
1

3

r
1EC

T 3
0

[

1− fR + fR

∫

ℎR(t)B1

(

t

T0

)

dt

]

, (3.3.19a)

∂ztc = b(�2 + b�3) +
1

2
�3

[

�2

12
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T 2
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3T 2
0
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]
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r
1E

T0

[

1− fR + fR
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, (3.3.19b)
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where we have used Eq. (3.3.14a) and have introduced

A9(x) =
1

150− 4�2

[

120A3(x)−
(

4�2 − 30
)

A7(x)
]

, (3.3.20)

in order to ease the comparison. By direct comparison, it shows that a completely
agreement with Chen et. al. would require that

A3(x) = A9(x) = A1(x) =
15

8
csch4(x) [4x+ 2xcosh (2x)− 3sinh (2x)] , (3.3.21)

and that

∫

ℎR(t)B1

(

t

T0

)

dt =

∫

ℎR(t)B4

(

t

T0

)

dt = 1. (3.3.22)

After careful scrutiny, no mistakes were found in this work, so the origin of the
difference between the two models remains uncertain. This difference between the
models is reduced as the pulse width is increased, as the An and Bn functions can be
reduced, which reduces this model to that presented by Chen et. al. Fig. 3.6 shows
the value of these functions while Fig. 3.7 shows the value of the integral over these
functions. It shows that while the An functions differ, the integral value display
approximately the same value, whereas the integral over the Bn functions shows a
significant difference, leading to the different outcomes of the two MoM models.
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Figure 3.6: An (left) and Bn (right) functions used in Eq. (3.3.19).
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Figure 3.7: Value of
∫

ℎR(t)f(t/T0)dt for An (left) and Bn (right) functions used in
Eq. (3.3.19) in the case of a silica Raman response. For An functions, the integral
value has been normalized with fRT0.

3.4 Effect of Two-Photon Absorption

As TPA is a power reducing effect and the Raman effect is dependent on power, it is
expected that the nonlinear loss will lead to a decrease in red-shift. If a wide chirp
free pulse is considered, then Eq. (3.3.17) reduces to

∂zP0 = −�P0 −
(

4

3
+

4

�2

)

i
0P

2
0 . (3.4.1a)

∂zT0 =
8

�2

r
1P0TR

T0

+
4

�2
i
0P0T0 (3.4.1b)

∂zb = − 8

15

r
0P0TR

T 2
0

(3.4.1c)

where also the dispersion of TPA has been neglected. These reduced differential
equations offer an insight into the effect of TPA and make it possible to give some
qualitative predictions of the influence of the nonlinear loss. As seen from the
2nd term of the Right Hand Side (RHS) side of Eq. (3.4.1a), the peak power is
reduced due to the TPA while simultaneously, as seen from the 2nd term on the
RHS of Eq. (3.4.1b), the pulse width is initially increased. As the rate of red-shift
is proportional to the peak power and inversely proportional to the pulse width
squared, it’s seen that at least initially, and while the pulse is still chirp free, the
rate of red-shift is decreased.

The approximation to the peak power, Eq. (3.4.1a), is analytically solvable and
is used to define a nonlinear loss length, including both linear and TPA loss, as the
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length after which the peak power has been reduced to 1/e of the initial value, given
by

Lloss =
1

�
ln

[

e+
(

4
3
+ 4

�2

) i

0
P0(0)

�

1 +
(

4
3
+ 4

�2

) i

0
P0(0)

�

]

. (3.4.2)

This nonlinear loss length gives us a qualitative expression for the length after which
the peak power is reduced to the extend where the red-shifting of the soliton is
effectively halted. For a case where TPA can be neglected, it is seen that the loss
length is reduced to only depend on the linear loss. In Fig. 3.8 is shown the results
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Figure 3.8: Center wavelength (top), pulse width (middle) and peak power (bottom)
as a function of propagation distance for a pulse with initial width of 100 fs (left) and
25 fs (right). The results from the proposed model (solid) and numerical simulations
(dashed) are shown for different levels of TPA.

for a scenario, where the material properties from the silica fiber used in Sec. 3.3.1
and a non-zero TPA coefficient is assumed. Although this is unphysical, it is useful
to show the effect of including TPA and to compare the model with numerical
simulations. The TPA coefficient is given in the form of a Figure of Merit (FOM),
defined as

FOM =
n2

��TPA

=
r
0

4�i
0

, (3.4.3)
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and thus the lower the FOM, the greater the nonlinear loss. The results shows
that there is a good qualitative agreement between the proposed model and the
simulations. Both the red-shift and peak power shows the same characteristics, with
the predictions of the pulse width being slightly more varied, however a significant
difference does not occur until the power is greatly reduced and the red-shift already
shows to have effectively halted. In all cases this also shows to happen before the
define nonlinear loss length. Furthermore it shows that, as predicted, the greater
the TPA, the lower the accumulated red-shift. The nonlinear loss length, Lloss,
has been plotted as vertical lines in each case, and it shows as a good measure of
the distance after which the red-shift has effectively halted. At the distance, Lloss,
the simulations and the model show that the peak power has decreased more than
to the 1/e value, which is due to the way the term has been derived where pulse
broadening, which also cause a decrease in peak power, was neglected.

3.4.1 Red-Shift in Chalcogenide

Some soft glasses, like the chalcogenide materials arsenic selenide, As2Se3, and ar-
senic sulfide, As2S3, have substantial two photon absorption coinciding with the
wavelengths used in telecommunication, which can limit the performance of these
materials. Table 3.2 lists measured values of the nonlinear parameters for arsenic se-
lenide found in the literature. In Yeom et. al. [43], a chalcogenide fiber was tapered

Table 3.2: Used values of the nonlinearity and two photon absorption for a As2Se3
Chalcogenide fiber by Nguyen et. al. [22].

� (nm) n2 (10−18m2/W) �TPA (10−11m/W) FOM
1415 11.0† 0.97 0.8†

1434 14.0† 1.10 0.9†

1456 13.0† 0.80† 1.1†

1491 9.9† 0.46† 1.45†

1515 8.9† 0.31 1.9†

1554 7.0† 0.25 1.8†

(†) marks values read off from a figure.

in order to decrease the ZDW below 1550 nm, enabling the possibility to pump
the fiber in the anomalous dispersion regime with an erbium fiber laser to create a
mid-infrared supercontinuum. The obtained dispersion and effective area are found
to be �2 = −360 ps2/km, �3 = 3.85 ps3/km and Aeff = 0.4773 �m2. The nonlinear
coefficients are calculated from the values in Table 3.2 with the assumption that
the effective area is independent of frequency in order to differentiate 0(!). Finally
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the Raman response function, ℎR(t), is based on Hu et. al. [29], where, by fitting
to the estimated gain peak position and Full Width Half Maximum (FWHM), the
response has been approximated with a decaying harmonic oscillator as given by

ℎR(t) =
� 21 + � 22
�1� 22

exp

(

− t

�2

)

sin

(

t

�1

)

, (3.4.4)

with �1 = 23 fs, �2 = 210 fs and using the reported fraction of the Raman response,
fR = 0.1. The comparison to that of silica is shown in Fig. 3.9. The resulting
nonlinear constant for the chalcogenide tapered fiber is 62.4 W−1m−1, 4 orders of
magnitude higher than that of a typical silica fiber as used in Sec. 3.3.1.
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Figure 3.9: Comparison of the Raman response function of silica and As2Se3.

The difference in including TPA in modelling SSFS is seen in Fig. 3.10, where
the evolution of a fundamental soliton is shown for a pulses with a width of 50 fs
and 25 fs, respectively. For both pulses it shows that the TPA greatly reduce the
expected red-shift due to a combined decrease in peak power and increase in pulse
width.
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Figure 3.10: Center wavelength (top), pulse width (middle) and peak power (bot-
tom) as a function of propagation distance for a pulse with initial width of 50 fs
propagated where TPA is neglected (left) and included (right). Comparison between
the proposed model (solid) and numerical simulations (dashed) is also shown with
the nonlinear loss length shown as the vertical lines.
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4

Terahertz

THz technologies have gotten increased interest in recent years with the ability to
use THz pulses for spectroscopy of a wide range of physical, chemical and biological
samples [70, 4]. There has been a great focus on developing methods for THz
radiation and detection [8, 71], which has enabled the field to expand. With the
ability to create and detect THz has come an interest in creating THz devices to
expand the field, with such examples as waveguides [72, 73], filters [74, 75] and
modulators [76, 77]. It is in this light that new materials are investigated to show
if they have potential as basis for optical devices. Soft glasses is known to display
good transmission properties in the mid-infrared, and they are thus of interest as
well as they might have transmission bands reaching out to the THz regime.

This chapter begins with an explanation of THz Time Domain Spectroscopy
(THz-TDS) and the theory behind how it is used to determine the complex refractive
index. The different experimental techniques used to perform the measurements is
then discussed after which the resulting data is presented. First with an in-depth
analysis of a single sample to outline the method of retrieving the index, then the
resulting index for all the samples are discussed. Finally an attempt at performing
Time Resolved THz Spectroscopy (TRTS) is outlined and discussed with the chapter
ending with a discussion on the next step in investigating these materials.

4.1 THz Time Domain Spectroscopy

With the ability of measuring the electric field of a THz pulse, and not just the
intensity of the field, it is possible to perform THz-TDS which can be used to
measure the complex refractive index of materials [4, 78].

29
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4.1.1 Measuring The Complex Refractive Index

If we assume a plane wave incident perpendicular on a surface, the transmission, T ,
and reflection, Γ, coefficients for an electric field traveling from region 1 with index
ñ1 perpendicular on region 2 with index ñ2 are

T1−2 =
2ñ2

ñ2 + ñ1

, (4.1.1a)

Γ1−2 =
ñ2 − ñ1

ñ2 + ñ1

, (4.1.1b)

where the complex refractive index is given as

ñ = n+ i� (4.1.2)

with � representing the linear loss as � = 2!�/c. By comparing a measured electric
field where a sample is present in the beam path to a reference measurement where
there is no sample, it is possible for us to determine the transfer function and thus use
this to determine the index. There is two possibilities to perform this measurement,
either by measuring the transmitted field from a sample or the reflected field.

In Transmission

In transmission the sample is placed at the focus of the beam path. The electric
field is measured, Esample, as well as the electric field when the sample is not present
to use as the reference electric field, Eref . Esample will consist of the first part of
the pulse propagated straight through the sample as well as the transmitted echoes
of the remainder of the pulse that have been bouncing back and forth inside the
sample. This can be expressed as

Ẽsample(!) =Ts−a

[

eik0(ñs−ña)d + Γ2
s−ae

ik0(ñs−ña)(3d)

+Γ4
s−ae

ik0(ñs−ña)(5d) + Γ6
s−ae

ik0(ñs−ña)(7d) + . . .
]

Ta−sẼref (!),
(4.1.3)

where the subscripts s and a refers to sample and air, respectively. The first term in
the sum is the pulse propagating straight through the sample, with thickness d. The
exponential term expresses the phase change that the field experience from traveling
through the sample instead of the air, where k0 is the vacuum propagation constant.
Second term in the sum is the transmission of the first echo. This echo have been
reflected inside the sample twice and traveled a total distance of 3d, the remaining
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terms follow from the same method, and thus

T̃ (!) =
Ẽsample(!)

Ẽref (!)

=Ts−aTa−se
ik0(ñs−ña)d

∞
∑

m=0

[

Γ2
s−ae

i2k0(ñs−ña)d
]m

=Ts−aTa−se
ik0(ñs−ña)d

1

1− Γ2
s−ae

i2k0(ñs−ña)d
. (4.1.4)

This expression for the transmission assumes an infinite sampling length in time, or
as an approximation all measurable echoes above the noise. However, if the sample is
thick, it is possible to distinguish the echoes in time, and thus the total transmission
can be approximated as

T̃ (!) =Ts−aTa−se
ik0(ñs−ña)d

=
4ñs

ñs + 1
eik0(ñs−1)d. (4.1.5)

This expression has to be numerically solved, which is best done by separating the
problem into two coupled real equations, thus with the total transmission coefficient
being defined as T̃ (!) = ∣T̃ (!)∣exp [iΦT (!)], we have

∣T̃ (!)∣ = 4
√
n2 + �2

(n+ 1)2 + �2
e−

!

c
�d (4.1.6a)

ΦT (!) =
!

c
(n− 1)d− tan−1

(

� (n2 + �2 − 1)

n(n+ 1)2 + �2(n+ 2)

)

, (4.1.6b)

which can be readily solved with numerical tools such as Matlab. If the absorption
of the material is small, such that � ≪ n, the transmission coefficients from air to
sample and again from sample to air can be regarded as real, decoupling the two
equations and instead result in [4]

∣T̃ (!)∣ = 4n

(n+ 1)2
e−

!

c
�d (4.1.7a)

ΦT (!) =
!

c
(n− 1)d, (4.1.7b)

or

n = 1 +
c

!d
ΦT (!) (4.1.8a)

� = − 1

k0d
ln

[

(n+ 1)2

4n
∣T̃ (!)∣

]

. (4.1.8b)
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In deriving this, it was assumed that the electric field could be assumed as a
plane wave. If instead the electric field is propagating as a Gaussian beam, then it
is also necessary to account for the Gouy phase shift [79]. This phase shift is −�/2 at
an infinite negative propagation distance from the beam waist to �/2 at an infinite
positive propagation distance. Thus the measured phase shift should potentially be
adjusted with up to � depending on the beam properties. It was shown, that the
index retrieved with the plane wave approximation would have a negative correction
when accounting for the Gouy phase shift [79], however, as the beam profile of this
experiment is not characterized, the plane wave approximation is assumed.

The complication with performing a transmission measurement occurs when the
sample does not transmit light in the entire frequency region. In this case, it makes
it impossible to determine the accurate phase of any light with a frequency above
the black region, thus making it difficult to evaluate the refractive index.

In Reflection

If the reflected field is measured instead, the reference electric field is the reflected
field off a known sample. The known sample should always be a metal, as in this
case, the reflection coefficient is 1, meaning that the measured reference electric field
is the field that will be incident on the sample. As with the transmitted field, the
reflected field also have contributions from the echoes in the sample, thus the total
reflection coefficient can be expressed as

Γ̃(!) =
Ẽsample(!)

Ẽref (!)

=Γa−s + Ts−a

[

Γs−ae
ik0(ñs−ña)(2d) + Γ3

s−ae
ik0(ñs−ña)(4d)

+Γ5
s−ae

ik0(ñs−ña)(6d) + Γ7
s−ae

ik0(ñs−ña)(8d) + . . .
]

Ta−s

=Γa−s + Ts−aTa−sΓs−ae
i2k0(ñs−ña)d

∞
∑

m=0

[

Γ2
s−ae

i2k0(ñs−ña)d
]m

=Γa−s +
Ts−aTa−sΓs−ae

i2k0(ñs−ña)d

1− Γ2
s−ae

i2k0(ñs−ña)d
. (4.1.9)

As with a transmission measurement, if the sample is sufficiently thick or lossy,
the echoes can be ignored and the total reflection can be assumed to be just the
initial reflection. This results in a analytically solvable equation, given the complex
refractive index as

ñ =
1 + Γ̃

1− Γ̃
. (4.1.10)

A complication in using the reflection method to measure the refractive index, is that
if the metal mirror used as a reference is not positioned exactly where the surface of
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the sample will be, there will be a phase change due to the different path length of the
beam. If Δx represent the distance the metal mirror is position ahead of the sample
in the beam path, then Γ̃(!) has to be multiplied with a exp

(

i2w
c
Δx

)

phase change.
This phase change will have to be assessed by looking at the initially measured phase
of the reflection, and then trying to determine the size of the displacement Δx.

In Fig. 4.1 is shown the theoretical phase of Γ as a function of � for various
values of n. As it shows, the phase of Γ will never be negative and for an index
greater than 2, it is bounded at roughly 0.5 rad.
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Figure 4.1: The phase of Γ as a function of � for various values of n.

4.1.2 Measuring the Refractive Index of Thick Samples

As it is difficult to accurately estimate the corrective phase change in a reflection
measurement, a transmission measurement is often preferred. However as mentioned
if the sample have a black region, i.e. no light is transmitted, it is not possible to
determine the phase of the light for any frequencies above this region, nor is it of
course possible to determine the index in the black region itself. Thus for thick sam-
ples, a reflection measurement has to be performed in order to have the possibility of
determining the refractive index for the entire frequency region. However, as there
is usually an unknown phase change to account for in the reflection measurement,
the transmission spectrum can be used as a reference when trying to determine this
phase change.

4.1.3 Experimental Setups

There electric field was measured in two different experimental setups. At low
frequencies, a commercial system called Picometrix was used [80], while for higher
frequencies, a broadband Air Based Coherent Detection (ABCD) setup was used.
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The principles behind these two THz systems are explained in the below. Other
options for creating THz radiation also include using a �(2) nonlinear crystal for
optical rectification. Two nonlinear crystals commonly used for this process are
ZnTe [81] or LiNbO3 [8]. The principle behind using a nonlinear crystal, specifically
LiNbO3 are briefly outlined in Sec. 4.4.

Finally for additional comparison, the samples were also tested with Fourier
Transform Infra Red (FTIR) spectroscopy, which does not allow for index determi-
nation, but will further validate the results obtained with the Picometrix and ABCD
experiments.

Picometrix

The commercial time-domiain system used is from commercial supplier Picometrix
with the product name ”T-Ray 4000 R⃝ TD-THz System” [80]. The system has a
0.02 - 2 THz bandwidth with a high Signal-to-Noise Ratio (SNR) of above 70 dB.
As this system is from a commercial supplier, the specific generation and detection
scheme is not divulged, however, comparable systems make use of the exciting a
photoconductive switch by a femtosecond (fs) pulse for THz generation and use a
similar photoconductive switch as an antenna and have it sampled by the same fs
pulse train for detection of the field [4].

The principle behind using a photoconductive switch to generate THz radiation
is based on the oscillation of an electric dipole. In time domain, the electric field
generated by an oscillating dipole moment can be expressed as [4]

E(r, �, t) =
1

4�"0

[

1

r3
p
(

t− r

c

)

+
1

cr2
∂tp

(

t− r

c

) 1

c2r
∂2
t p

(

t− r

c

)

]

sin (�) ,

(4.1.11)

where r and � is the distance and angle, respectively, from the dipole moment p. In
the far field region, where r ≫ � ≫ d and d is the size of the dipole, only the last
term on the RHS is significant, and thus the electric field is only dependent on the
second derivative of the dipole moment or the first derivative of the current density
j(t). Biasing two electrodes on a semiconductor layer, and then impinge a fs pulse
onto the biased semiconductor surface, will excite electrons in the semiconductor
and create a current between the two electrodes creating the THz radiation. For
detection, a similar structure can be used as an antenna, though with the bias being
provided by a portion of the fs pulse train used to generate the THz field. The fs
pulse gates the antenna and the THz field then drives a current over the antenna
which will be proportional to the THz electric field strength.
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ABCD Setup

The ABCD setup is named after the ABCD scheme used to detect the THz pulse
[71]. The characteristics of this setup is the ability to create a broadband THz
pulse, ranging from about 2 to about 18 THz, a schematic of the setup can be seen
in Fig. 4.2.
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Figure 4.2: Setup of the ABCD experiment for both transmission (top) and reflec-
tion (bottom). PMT: Photo Multiplying Tube, BS: Beam Splitter, OPM: Off-axis
Parabolic Mirror.

The setup is powered by a Ti:sapphire regenerative amplifier (Spectra-Physics
Spitfire) emitting 1.5mW, 35fs laser pulses with a central wavelength of 800nm
at a rate of 1kHz. The pulse train is split in two, one for THz generation, the
other half for THz detection. The beam for THz generation is propagated through
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a �-Barium Borate (�-BBO) crystal, creating 400nm pulses in a Type 1 Second
Harmonic Generation (SHG) process. The half wave plate is used to collinearize
the 400 and 800nm light before being focused into an air plasma by an off-axis
paraboloidal mirror. The air plasma is created inside a N2 purged chamber, to
reduce the level of water in the sample chamber. The THz pulse is generated in the
air plasma through a Four Wave Mixing (FWM) rectification process that makes
use of the spectral broadening of the pulses [82, 83]. The third order polarization
created by in air plasma is

P (3)(t) = �3
xxxxE800nm(t)E800nm(t)E400nm(t), (4.1.12)

from which the THz wave is formed as, in the far field,

ETHz(t) ∝ ∂2
t P

(3)(t). (4.1.13)

The detection of the pulse is based on the before mentioned ABCD scheme.
The THz pulse is focused in air with an AC bias and a detection pulse. The THz
pulse enables a frequency doubling of the detection pulse in a third order nonlinear
process,

ETHz
400nm ∝ �(3)

xxxxI800nmETHz, (4.1.14)

thus the frequency doubled field is proportional to the THz field, however, if mea-
sured without the Ac bias, the phase information of the THz field would be lost,
as Imeasured = ITHz

400nm ∝ (�
(3)
xxxxI800nm)

2ITHz. The AC bias also stimulates frequency
doubling of the detection pulse similar to the THz pulse does. Thus the electric field
created is

E400nm ∝ �(3)
xxxxI800nmETHz + �(3)

xxxxI800nmEbias. (4.1.15)

The measured intensity is

Imeasured ∝ E2
400nm ∝ (�(3)

xxxxI800nm)
2
[

(ETHz)
2 + (Ebias)

2 + 2ETHzEbias

]

, (4.1.16)

which consists of three elements, where the third term on the RHS contains the
desired information. Because the third term is dependent on the AC bias, this term
will oscillate with the AC bias frequency, thus by measuring the intensity with a
lock-in amplifier, locked in at the AC frequency, it is possible to average away all
terms but the desired third term, and thus

Ilock−in ∝ (�(3)
xxxxI800nm)

2ETHzEbias. (4.1.17)

As the detection pulse is much shorter than the THz pulse, the detection pulse is
scanned in time over the THz pulse with the delay stage, resulting in the THz field
being measured as a function of the delay time, � .
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FTIR

To give a more complete picture of the low loss abilities of the samples, a FTIR
spectroscopy [84] measurement was also performed on the samples. A Vortex 70
from Bruker Optics was used for these FTIR measurements. As FTIR spectroscopy
measures the reduction in intensity when the light is passed through the sample,
it is not possible to use this measurement to obtain the complex refractive index,
however the results still show if the samples have low loss areas. FTIR spectroscopy
is based on a Michelson interferometer, where a white light source is divided in two
by a beam splitter, each arm is reflected off a mirror to be sent straight back to the
beam splitter. From there, what is now reduced to half of the intensity is sent from
the beam splitter through the sample and then to a detector. The key element is
that the difference in path length between the mirrors, will cause those wavelengths
that have an even number of half wavelengths in path difference wavelengths to
constructively interfere, and those where the difference in path length is an odd
number of half wavelengths to destructive interfere. By moving the mirror, the
spectral content of the intensity sent through the sample is changed. Measuring
the intensity as a function of mirror position results in a spectrogram that can be
Fourier transformed to give the information in wavenumber. By comparing this to
a measurement performed without the sample, it is possible to obtain the intensity
transmission.

The intensity transmission is the absolute square of the electric field transmission,

Isample

Iref
= Tintensity = ∣TE−field∣2. (4.1.18)

The phase information that we obtain in the THz-TDS is not possible to obtain
with this experiment, and it is thus not possible to derive the complex refractive
index.

4.2 Refractive Index of Selenide Based Chalco-

genides

A series of chalcogenide glass samples were prepared by our collaborators at the
Laser Physics Centre at Australian National University in Canberra, Australia. The
chemical compositions of the glasses all belong to the GeAsSe group, with various
concentrations of the components and also of various sample thickness. The details
of the samples can be seen in Table 4.1.

As the samples all have various thickness, it is not possible to directly compare
any measured reflection or transmission, but instead the complex refractive index
has to be retrieved in order to compare the samples. First a single sample, arsenic
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Table 4.1: Chalcogenide Bulk Samples
Composition Thickness [mm]
As2Se3 1.355
Ge11As22Se67 1.35
Ge15As20Se65 1.706
Ge15As25Se60 1.07
Ge33As22Se55 1.43

selenide, is investigated with a detailed explanation of the data retrieval after which
the results from all the samples are compared.

4.2.1 Analysis of As2Se3 Measurement Data

Picometrix Results

For lower frequencies, the Picometrix system is used to obtain data of the transmis-
sion. An aperture was used to avoid any light might bypass the sample and cause an
inaccurate measurement. The measured electric field can be seen in Fig. 4.3 where
both the reference field and the transmitted field is shown.

As the Picometrix system have a very fast scan rate of 100 Hz, it is possible to
average over a large number of scans to limit the noise. The sample measurement is
a result of averaging over 100.000 scans, with the reference field being an average of
20.000 scans performed before the sample measurement and 20.000 performed after.

Looking at the transmitted field, a clear echo of the transmitted pulse is seen
at roughly 560–570 ps with a second echo just visible at around 590 ps. To avoid
accounting for these echoes in the refractive index retrieval, the part of the data
used are limited to 510–550 ps as marked on the figure. The advantage of this is a
great simplification of data treatment, with this limited data range, there is a risk
that part of the initial transmitted pulse might be cut away in this process, and
thus the data has to be studied to make sure this is not the case. However as the
sample is thick, the risk of this is limited.

To retrieve the refractive index, first a Fast Fourier Transform (FFT) is per-
formed on both electric fields, Fig. 4.4, in order to obtain T̃ (!), which can be seen
in Fig. 4.5 for the absolute value and the phase respectively.

As it shows from Fig. 4.4, the noise at higher frequencies limits the data to a
0.1–1.2 THz range. With these it is possible to numerically retrieve the complex
refractive index using Eq. (4.1.6). This has been done using a built-in function,
fsolve, in Matlab. This function requires an initial guess, and for this, Eq. (4.1.8)
was used to find the approximate index. The resulting real refractive index can be
seen in Fig. 4.24 along the retrieved indexes from the other samples or in Fig. 4.19
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Figure 4.3: Raw data from the Picometrix system. The sampling time is 78.125 fs
giving the measurement a bandwidth of 6.4 THz. The sample data is an average
of 100.000 scans, with the reference data being an average over 40.000 scans, half
performed before the sample measurement, the other half after. The vertical lines
mark the part of the measured field that is used in retrieving the refractive index.

where all results for the index of arsenic selenide is shown. Similarly the loss can be
seen in Fig. 4.25 or Fig. 4.20.

ABCD - Reflection Results

The reflection measurements performed in the ABCD setup was performed twice,
to ensure that the obtained data was consistent and to see the variation that would
happen as the sample and mirror was replaced with each other repeatedly.

To show that the aperture used to hold the mirror and the sample, a measure-
ment was performed with neither the mirror nor a sample mounted. The resulting
measurement, shown in Fig. 4.7, shows only noise. It can thus be safely assumed that
the electric field measured is reflection only from either the mirror or the sample.

The data shown in Fig. 4.6 has a sampling rate of 10 fs, and each data set is a
result of a 5 scan average. The limited number of averages is due to a time consuming
scan rate and to avoid temperature drift of the laser to distort the data. As it shows,
the reflected field appears to be slightly ahead of the corresponding reference fields.
This is caused by the slight chance in position of the sample relative to the mirror.

The corresponding absolute reflection coefficient and the phase of the reflection
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Figure 4.4: The Fourier transformed electric fields. It shows clearly that the sample
have an increasing loss with frequency and that the sample noise on the sample
measurement prevents any data above 1.2 THz to be used.
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Figure 4.5: The absolute value (left) and phase (right) of the measured transmission.
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Figure 4.6: The measured electric field for the reflection measurement. The insert
show a zoom of the data. The data was obtained in two different measurements
simple labeled 1 and 2.
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Figure 4.7: Measurement without either sample or mirror to show that the sample
aperture is not having an effect on the reflection measurements, as nothing is re-
flected by the aperture itself. The measurement also shows that the measured data
has a small offset.

can be seen in Fig. 4.9 and Fig. 4.10 respectively found by using a FFT of the
electric fields. In Fig. 4.10, the initial uncorrected phase of each measurement
is shown. From these phases, it is estimated how much the displacement, �x, the
sample have to be corrected relative to the mirror. This estimate is performed by
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Figure 4.8: The Fourier transforms of the measured electric fields shown in Fig. 4.6.
The data clearly show a dip at 18 THz caused by the silicon wafer used as a beam
splitter in the setup. It is also seen that the amplitude decreases at about 15 THz
causing the relative noise to increase. The frequency limit for this measurement has
thus been set to 15 THz.

assuming that the phase of the reflection coefficient should approximately have a
zero phase derivative. A negative phase derivative would mean that a negative
phase would occur, which is not physical as the material is not a gain medium. A
positive phase derivative on the other hand would cause the loss to be too great in
the transmission window that can be seen in the transmission measurements. With
this, it is estimated that measurement 1 should be shifted 4.43 �m and measurement
2 shifted 3.93 �m. The effect of this shift can be seen in Fig. 4.11 for the electric
field. The reflection coefficient used to retrieve the complex refractive index is an
average of the reflection found for the two measurements.

Because the phase correction of the reflection coefficient is an assessment, there
is a degree of uncertainty to what the exact phase correction should be. The real
and imaginary index,

n =
1− ∣Γ∣2

1 + ∣Γ∣2 − 2∣Γ∣cos (ΦΓ)
(4.2.1)

� =
∣Γ∣sin (ΦΓ)

1 + ∣Γ∣2 − 2∣Γ∣cos (ΦΓ)
, (4.2.2)

are both a function of the phase of the reflection coefficient. However as the real
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Figure 4.9: The absolute value of the reflection measured.
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Figure 4.10: The uncorrected and corrected phase of the reflection measured.

index is dependent on the phase as cos (ΦΓ) and the phase change is very small,
the uncertainty on the phase has only a small impact on the uncertainty of the
refractive index. The imaginary index on the other hand is dependent also on the
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Figure 4.11: The phase adjusted electric fields for the reflection measurement. The
insert show a zoom of the data. Sample 1 has been shifted what corresponds to a
distance 4.43 �m and 3.93 �m for sample 2. In time this correspond to 29.5 fs and
26.2 fs respectively.

phase change as cos (ΦΓ) but more importantly as sin (ΦΓ) in the nominator. Thus
a change in the assessment of the phase correction, will greatly change the retrieved
imaginary index. This effect is clearly seen in Fig. 4.12, where the phase correction
as described by Δx has been changed ±0.1 �m.

The small phase change will in one instance even cause � to be negative, which
would mean that the signal would experience a gain in the sample.
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Figure 4.12: The index as retrieved with the assessed phase correction (red) and the
corresponding index if the phase correction, Δx has been changed ±0.1 �m in both
measurements.
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ABCD - Transmission Results

The measured electric fields from the transmission measurements performed on the
ABCD setup is shown in Fig. 4.13 with the corresponding Fourier transform in
Fig. 4.14. From the Fourier transform it is clearly seen from the transmitted pulse
that no light is transmitted in from about 1 THz to around 10 THz. This makes
it very challenging using this measurement to retrieve the refractive index as it will
be difficult to determine the correct phase in the transmission window.
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Figure 4.13: The measured electric field in the transmission measurement. The
insert shows a zoom of the transmitted pulse.

The absolute transmission of the sample and the phase of the transmission is
shown in Figs. 4.15 and 4.16 respectively.

With the retrieved index from the reflection measurements, it is possible to
determine what the phase of the transmission would be based on this index. Having
calculated that, it is possible to approximate the phase offset of the transmission
measured, which is what is shown in Fig. 4.16. Having approximated the phase,
the index can then be determined with Eq. (4.1.6) as was done with the Picometrix
data. The corresponding index and loss is shown in Figs. 4.19 and 4.20 respectively.
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Figure 4.14: The Fourier transform of the measured electric fields as shown in
Fig. 4.13. A transmission window at 10–14 THz is clearly seen as well as second
window around 16–17 THz.
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Figure 4.15: The absolute value of the transmission measured.
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Figure 4.16: The uncorrected and corrected phase of the transmission measured.
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Figure 4.17: The measured intensity by the FTIR spectroscope. The bandwidth is
divided in two as the beam splitter in the spectroscope has to be manually changed.
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Figure 4.18: The transmission as measured with the FTIR and the ABCD setup.

The measured FTIR transmision show the same characteristics as the ABCD
transmission measurement, Fig. 4.18 with a transmission window at 11–14 THz.
Furthermore it the FTIR measurement shows more clearly that it is a resonance
causing loss at 15 THz before there is a new transmission region starting at 16 THz.

4.2.2 Retrieved Refractive Index

The retrieved refractive index and loss for As2Se3 and Ge11As22Se67 is shown in
Figs. 4.19 and 4.20 where data from the 3 measurements, Picometrix, ABCD reflec-
tion and transmission are combined. All raw data, Fourier transforms and corre-
sponding reflection or transmission coefficients are shown in App. B.

Of the two glasses, the Ge11As22Se67 glass generally has a lower index than
As2Se3. The only exception is around a strong resonance that is apparent in both
glasses. For As2Se3 it is 6.7 THz where it for Ge11As22Se67 is at 7 THz. As the
reflection measurement data have a high relative noise level, it is not possible to
determine if there are any smaller resonances in the glass, as it is indeterminable
from the noise. The noise of the reflection measurement is clearly seen at 11–14 THz
where the transmission measurement yielded data as well. There is a good overlap
in the index determined from the two measurements, with the transmission data
being less noisy. The As2Se3 glass has an index around 3.1 before the resonance
with a dip to 3 at 3–4.5 THz. The Ge11As22Se67 glass shows the same dip from 2.85
to 2.75. At the resonance, the index As2Se3 rises to about 4.25 and dips to 2.15
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Figure 4.19: Refractive index as comprised of three measurements. For low frequen-
cies, the index has been determined with the Picometrix data with the reflection
measurements being the base for the rest of the frequency range. Around 10–15
THz the transmitted electric field through the glasses was used to supplement the
reflection measurement (shown in black for both samples).

before settling at an index around 2.8 as shown by the transmission measurement.
The Ge11As22Se67 glass peaks at the resonance at 3.75 with a straight dip to 2.3
and slow decrease to 2.1 at 10 THz with a quick increase to 2.5 as shown by the
transmission measurement.

The corresponding loss of the glasses are shown in Fig. 4.20, as found by �(!) =
2!�/c. At low frequencies, the loss of all materials follow a universal power law
scaling [85]. When the wavelength get sufficiently small, the mean free path in the
material get comparable to the wavelength of the plane wave, which changes the
loss dynamics. This transition is called the Ioffe-Regel transition [86]. However,
due to the noise of the reference measurements, it is not possible to see when this
transition occurs, other than it occurs above 1 THz, as is seen later from Fig. 4.25
where the loss found with the Picometrix system is shown in more detail.

The strong resonance seen in the refractive index is also clearly visible in the
loss, with As2Se3 having a strong resonance at 6.7 THz and for Ge11As22Se67 at 7
THz. Ge11As22Se67 also have smaller resonances at 8–9 THz. From the reflection
measurements, any transmission windows are not visible due to the noise in the
measurement and the uncertainty of the phase correction. However, looking at
the results from the transmission it is clear that both glasses have a transmission
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Figure 4.20: The loss as comprised of three measurements. For low frequencies the
Picometrix data was used and for the 10–15 THz region the ABCD transmission
measurement was used. The reflection measurements is the base for the estimated
loss in the range above 1 THz.

window around 11–14 THz where the loss is estimated to be 15 cm−1 for As2Se3 and
10 cm−1 for Ge11As22Se67. As discussed later with Fig. 4.26, it also appears from
the transmission coefficient that Ge11As22Se67 have a narrow transmission window
at 5 THz.

Arsenic sulfide glass, As2S3, shows a similar strong resonances at 10 and 11.5
THz [78]. The shift in frequency between the resonances for As2S3 and As2Se3 can
be due to the smaller mass of the sulfide ions as the phonon frequency is determined
as ! = (k/m)1/2 where k is the spring constant determined by the strength of the
As-S or As-Se bond.

The two glasses, Ge15As20Se65 and Ge15As25Se60, have a refractive index behav-
ior, shown in Fig. 4.21, very similar to that of Ge11As22Se67. This is expected as
the chemical compositions are relatively similar as well. Both Ge15As20Se65 and
Ge15As25Se60 have a strong resonance at 7 THz, seen in Fig. 4.22, with an index
that peaks at 3.7 at 6.6 THz before dropping to 2.5 at 7.3 THz with a continuous
small decline to an index of 2.1 at 9.5 THz before increasing to a value of 2.65 and
2.6 for Ge15As20Se65 and Ge15As25Se60 respectively at 13 THz. Ge15As20Se65 has an
index at 2.9 for low frequencies increasing to 3.1 at 2.5 THz before dropping again
to 2.9 around 3–4.5 THz. Ge15As25Se60 show the same characteristic with the only
significant difference being a lower index at 2.8 for frequencies under 1 THz.
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Figure 4.21: Refractive index for two GeAsSe glasses as in Fig. 4.19.
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Figure 4.22: Loss for two GeAsSe glasses as in Fig. 4.20.

In the plot of the loss for these two glasses, Fig. 4.22, it shows that they have the
same resonances around 8–9 THz as Ge11As22Se67 which is what causes the index
decline of these glasses in the same frequency region. To show how the index of
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Figure 4.23: Combined plot of the index for the four GeAsSe glasses shown in
Figs. 4.19 and 4.21.

the glasses all compare to each other, the index for all the four glasses tested in the
reflection measurement are shown in Fig. 4.23.

With the Picometrix data, the real part of the refractive index is shown in
Fig. 4.24 for all 5 samples in the 0.1–1 or 1.2 THz range. The glasses have indexes
at 3.1, 2.85, 2.85, 2.8 and 2.65 for As2Se3, Ge11As22Se67, Ge15As20Se65, Ge15As25Se60
and Ge33As22Se55 respectively over the measurement range. As the compositions
of Ge11As22Se67 and Ge15As20Se65 are similar, it is, as we also see in the figure,
expected that the refractive index is very similar, however as we see in Fig. 4.25,
the loss of the two compositions differ. As mentioned, the loss of the glasses will
at long wavelengths follow a power law scaling which appears to hold true for the
entire Picometrix frequency range, as also seen in the loglog plot of the loss. As the
power law holds for the Picometrix range shows that the Ioffe-Regel transition will
be outside this range.

The absolute transmission of each chalcogenide glass is shown in Fig. 4.26 for the
measurements with the ABCD setup. As the glass samples have varying thickness, it
is not possible to directly compare the transmission. However, it is clearly seen that
the germanium based glasses all have an apparent transmission window at 5 THz,
indicating a shift in phonon resonances away from 5 THz at either side compared
to As2Se3. The loss transmission at 5 THz has a very narrow bandwidth and is
lower in absolute value than the transmission window at 12.5 THz. Even though
the index is greater on the right side of the strong resonance that is seen for As2Se3
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Figure 4.24: The refractive index n for 5 GeAsSe glasses retrieved from measure-
ments with a Picometrix system.
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Figure 4.25: The loss of 5 GeAsSe glasses. The insert show the loss plotted on a
loglog scale.
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Figure 4.26: The transmission of the five GeAsSe glasses as measured with the
ABCD setup.

and Ge11As22Se67 and is expected to be present for the other glasses as well, the
loss will be significantly greater than at 12.5 THz. Assuming no loss and an index
for Ge11As22Se67 of 2.8 at 5 THz and 2.5 at 12.5 THz, the difference in transmission
only from Fresnel refraction is 78% at 5 THz and 81%.

To complement the transmission measurements at high frequencies and going
into the mid-infrared, the measured absolute transmission with the FTIR spectro-
scope is shown in Figs. 4.27 and 4.28. The FTIR measurements show the same
characteristics in the THz region as those seen with the ABCD setup. All samples
display a resonance at 14.7 THz with a transmission window at 11–14 THz. The
glasses with germanium furthermore show a resonance at 23.8 THz which is also
clearly seen in Fig. 4.28 at 12.6 �m. Althought the FTIR measurements show the
same characteristics, as seen in Fig. 4.29, the two measurements does not find the
same absolute value of the transmission.
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Figure 4.27: FTIR Transmission shown in the THz regime.
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Figure 4.28: FTIR Transmission shown in the mid-infrared. The samples have
varying thickness, so no direct comparison can be made, but it clearly shows that
the germanium causes a strong resonance at 12.6 �m that limits the mid-infrared
transmission window as well as a smaller resonance at 7.8 �m.
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Figure 4.29: The transmission measured by the FTIR spectroscope (dashed) and
the ABCD setup (solid).

4.3 Time Resolved THz Spectroscopy

THz-TDS is not a time-resolved measurement, the measured index is the static
index. However it is also possible to make TRTS in a pump-probe configuration
where it is possible to measure the transient conductivity dynamics in the samples
[87, 88, 89]. The premise for this is to use a pump pulse to photoexcite carriers
into a nonequilibrium state, creating free carriers, whose dynamic can be measured
with the THz probe pulse. The following subsection describes the theory behind
this experiment with the experiment setup being described in Sec. 4.3.2.

4.3.1 Photoconductive Effect

Measuring the photoconductive effect is divided in two measurements, a 1D scan
and a 2D scan. The scans are named such as the experiment require either 1 or 2
delay stages to be used, respectively. The 1D scan gives information on the carrier
mobility and the 2D scan is used to determine the complex conductivity. The 1D
scan is also used ahead of a 2D scan to determine at what delay time the pump
pulse coincides with the probe pulse, to determine the scan limits of the 2D scan.
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1D scan

The 1D scan is based on ignoring the phase information and only look at the peak
of the probe THz pulse as it has propagated through the sample. The pump pulse
is then scanned in time relative to the peak of the probe pulse. At the peak of
the probe pulse, it can be assumed that all frequency components are in phase. At
negative delay times, where the pump pulse arrives after the probe pulse, there will
be no effect on the measured peak value, as there will be no free carriers to attenuate
the probe pulse, the unattenuated value will be called E0. As the pump pulse is
scanned in time to arrive before the probe pulse, the peak of the probe pulse will
decrease due to the attenuation of free carriers in the sample, called Vpump(�). As
the pump pulse is scanned further ahead of the probe pulse, the attenuation of the
peak value of the probe pulse, will decrease, as the free carriers recombine and the
sample return to equilibrium state, thus Epumped(�) → E0. An example of a 1D scan
is shown in Fig. 4.30.

3 4 5 6 7 8
2

3

4

5

6

Pump Delay Time [ps]

P
ea

k 
V

al
ue

 o
f P

ro
be

 [a
.u

.]

Figure 4.30: Example of a short 1D scan of bulk GaAs used to calibrate the probe
delay for testing GeAsSe. The change in peak value of the probe is clear around
5 ps, where in times before that, the pump pulse arrives after the probe pulse and
no attenuation is seen to after 5 ps where the pump pulse arrives before the probe
pulse and a great attenuation is seen. The relaxation of the carriers happen on a
timescale of several 100 ps, which is why the effect is not seen in this figure.

If the material tested is a thin conducting layer, thickness d ≪ �, on a substrate,
and the reduction in peak value of the probe pulse is low, the carrier mobility can
be estimated with [88]

� =
nsubstrate + 1

Z0ednmax

(

E0 − [Epumped(�)]min

E0

)

, (4.3.1)

where Z0 is the impedance of vacuum, e is the electron charge and nmax is the
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maximum number of injected carriers determined by

nmax =
�F�(1−R)

ℎc�
, (4.3.2)

where � is the quantum efficiency, F is the energy per area of the pump pulse, R
is the reflection coefficient of the pump pulse off the sample and � is the pump
penetration depth.

When performing this experiment, it should be noted that the induced carriers
might change the index of the sample, which in turn change the propagation time
through the sample, thus the peak of the probe pulse might not be located at the
same delay time as without the pump pulse being present.

2D scan

A 2D scan is differs from a 1D scan by measuring the entire THz pulse and not
just the peak of the pulse. With this, you obtain a data set, Esample(t, �pump) that
can be used to determine the complex conductivity. Introducing the pump-prope
delay time u = t− �pump, the complex conductivity can be found by determining the
complex dielectric function, similar to Sec. 4.1.1, as a function of the pump-probe
delay time by [88]

T̃ (!, u) =
Ẽsample(!, u)

Ẽref (!)
, (4.3.3)

and the relation between the complex dielectric function and the conductivity as
[87]

"(!) = "non−excited(!)−
i�(!)

"0!
. (4.3.4)

4.3.2 Experimental Setup

The experimental setup for a TRTS experiment is based on the ABCD setup ex-
plained in Sec. 4.1.3 with the inclusion of a pump pulse incident on the sample. The
schematics of the setup is shown in Fig. 4.31. This pulse pump is obtained by insert-
ing a beam splitter to separate part of the source laser. This beam is then directed
through a delay stage to control the timing of the pump pulse. The chalcogenide
samples have band gap energy above 800 nm, it is thus necessary to use a �-BBO
crystal to frequency double the light to have enough photon energy to excite carriers
in the sample. Lastly a lens is used to focus the light down on the sample. It is
highly important that the pump spot on the sample is well aligned with the probe
spot, as otherwise the carriers will recombine without being detected by the THz
probe pulse.
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Figure 4.31: Setup of the TRTS experiment. It is based on the ABCD (transmission)
experiment, described earlier with Fig. 4.2, with a part of the 800 nm laser light
used to excite carriers in the sample. In this specific experiment, a �-BBO crystal
was used to frequency double the light to 400 nm in order to be above the band gap
energy of the sample.

4.3.3 Measurement Results

Two different sets of samples were available for testing. A set of bulk samples, as
described in Sec. 4.2 and a set of thinfilm samples. The thinfilm samples (1–2 �m
thickness) is a range of GeAsSe chalcogenide deposited on quartz glass. Normally, for
THz measurements, the preferred substrate is high resistivity silicon [78], as this is
transparent in the THz range up to 18 THz, where there is a resonance. However as
silicon is also a semiconductor it is not feasible for this type of measurements, which
is why the non-conducting quarts glass was chosen. The limits for this material
however is that it is black above roughly 5 THz.

Thinfilm Sample

As described earlier, the first measurement to perform is the 1D scan which was
initially done on the thinfilm sample. First a known GaAs sample was tested,
as shown in Fig. 4.30, to determine when the pump pulse arrives compared to the
probe pulse, thus indicating the search perimeters when testing the unknown GeAsSe
sample. When testing the thinfilm, no measurable difference was observed in the
peak value. This could be because the number of excited carriers was too small,
either from insufficient pump power or because the penetration depth in the sample
was too great. The pump power was therefore increased, even to an extent where
the sample took physical damage, still without experiencing any difference in probe
peak value. To overcome the issue of penetration depth, the thinfilm sample was
replaced with a bulk sample.
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Bulk Sample

The bulk sample used was the As2Se3 composition which have a well known band
gap. Similarly to the thinfilm sample however, no difference in probe peak value
was observed. This observance, together with the research showing that only free
holes are excited, leads to the conclusion that the mobility of the free holes are too
low to be observed with this experimental setup. The investigation into the carrier
dynamics of the chalcogenide GeAsSe glasses where therefore not continued.

4.4 Future Ideas

As the complex refractive index now has been determined for these GeAsSe chalco-
genide glasses, it could be interesting to attempt to determine their nonlinearity in
the infrared regime. This is possible as new THz radiation techniques using lithium
niabate crystals have made it possible to obtain electric field strengths strong enough
to perform z-scans of materials in the THz regime.

THz Generation by Optical Rectification in Lithium Niobate

The generation of THz radiation in a second order nonlinear crystal like ZnTe or
LiNbO3 is possible by utilizing the difference frequency mixing of the spectral com-
ponents in ultra short laser pulses [8]. The optimum coupling between pump pulse
and THz pulse occurs when there is phase velocity matching, however in lithium
niobate, the index at THz frequencies exceeds the group index for the usual 800
nm pump pulses. This problem is overcome by tilting the intensity front of the
pump pulse. Using this technique, THz pulses with several �J pulse energy has
been demonstrated for THz pulse with a bandwidth of 0.1–3 THz [8]. These pulse
have sufficient peak power to be used to investigate the nonlinearity of materials in
a z-scan experiment.

Z-Scan

The closed z-scan technique is based on sending a focused probe beam through
the sample under test and measuring the propagated intensity through an aperture
at the detector. By moving the sample back and forth in the focused beam, the
nonlinear focusing or defocusing changes the measured intensity [90]. This technique
has previously been used to study doped semiconductors with THz pulses [91].
Another study used the second harmonics generated in a lithium niobate crystal
to determine the second order nonlinearity of the crystal at THz frequencies [70].
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Conclusion

The use of soft glass materials will play an increasing role as more interest is gathered
at optical technologies in the mid- and far-infrared. In this paper, work has been
presented that will further the use of these materials as we have outlined some of
the material properties of these glasses.

A brief introduction to the glasses has been given, showing that there is a broad
range of possible glasses within this category. As many of these glasses are relative
unknown, work has been done to outline if certain specific glasses are of interest in
using for mid-infrared and THz applications.

The dispersion of commercially available fluoride fibers were measured to deter-
mine if they would be good candidates as a medium for mid-infrared supercontinuum
generation while also providing details necessary when modeling the supercontin-
uum generation in these fibers. In order to expand on the knowledge of the effect
of two photon absorption on supercontinuum generation in chalcogenide fibers, an
analytical model was derived to show the effect of this nonlinear loss on soliton self
frequency shift, an essential part of obtaining a broad supercontinuum spectrum.

A range of chalcogenide glasses comprised of GeAsSe has been studied in the THz
regime, with both transmission and reflection measurements allowing to determine
the complex refractive index. These measurements show that these glasses have
interesting transmission windows at high THz frequencies centered around 12.5 THz
as well as having transmission at THz frequencies below 1 THz.

As these chalcogenides are amorphous semiconductors, it was also studied whether
it was possible to determine the complex conductivity of these materials, as it should
be possible to excite carriers. However it was discovered in experiments, that the
mobility of these free carriers, consisting only of free holes, has a mobility that is
too high to measure with the experimental setup available.

In conclusion, it has been shown that the soft glasses tested here has potential
for use in nonlinear optical applications. A model was presented to describe the
effect of two photon absorption on soliton self frequency shift, giving a useful tool in
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determining the potential use of chalcogenide fibers as a medium for supercontinuum
generation. It has been showed that GeAsSe chalcogenide glasses show transmission
in the THz regime and the next logical step would be, now that the complex refrac-
tive index is known, to attempt to determine the nonlinear index at THz frequencies
using high power lithium niobate THz radiation setups.



Appendix A

Derivations

A.1 Dispersion

The measured power spectrum is from the field that consist of a sum of the field that
propagated through the SMF, denoted f , and the field that propagated through air,
denoted r. The field can be expressed as

E =
1

2
[Efexp (i�(!)L) + Erexp (ik0(!)d)] exp (−i!t) + c.c., (A.1.1)

where L is the length of the fiber with the propagation constant �, d is the difference
in length in free air the fields travel, where it is assumed that air has the propagation
constant, k0, of vacuum. This field leads to a power spectrum, P (�), proportional
to

P (�) ∝ ∣E∣2 ∝ ∣Ef ∣2 + ∣Er∣2 + 2EfErcos (k0d− �L) . (A.1.2)

The oscillating term with the phase

�(!) = k0(!)d− �(!)L (A.1.3)

gives rise to periodically constructive and destructive interference. It is this period-
icity that is used to determine the dispersion, D.

If the phase term is differentiated twice with respect to ! you obtain

d2�

d!2
= −d2�(!)

d!2
L = −�2L (A.1.4)

where it is used that the wave number k0 is linear in frequency. The second derivative
of the propagation constant is related to the dispersion constant by

D = −2�c

�2
�2. (A.1.5)
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As the measured power spectrum is done in wavelength, the phase derivative is
rewritten to be differentiated by wavelength using this derivate rule

d2f (y(x))

dx2
=

d2f(y)

dy2

(

dy

dx

)2

+
df(y)

dy

d2y

dx2
(A.1.6)

leading to

d2�

d!2
=

(

d�

d!

)2
d

d�

(

d�

d�

)

+
d2�

d!2

d�

d�
. (A.1.7)

As there is 2� between each constructive interference peak, it can be approximated
that

d�

d�
≈ 2�

Δ�(�)
(A.1.8)

where Δ� is the distance in between each peak. This leads to

D(�) =
1

Lc

[

1

Δ�2

(

2� ⋅Δ�− �2dΔ�

d�

)]

. (A.1.9)

Data treatment

The data treatment for the measured power spectrum is done in a few simple steps.

∙ Fit each peak to the peak of a sine function and record the peak position called
�n.

∙ Determine Δ�p = �n+1 − �n and �p = (�n+1 + �n)/2.

∙ Fit the data points (�p,Δ�p) to a 3rd or 4th order polynomial.

∙ Use the determined Δ�(�) function to determine the dispersion.

A.2 Coupled Differential Equations for Soliton Self-

Frequency Shift Model

The method (MoM) for deriving the coupled equations for the SSFS model is out-
lined in Sec. 3.3 and the derivation is here presented with more detail. The ansatz
is chosen as

u(z, t) =
√

P0(z)sech

(

t− tc(z)

T0(z)

)

exp
[

iΦ(z)− ib(z)(t− tc(z))− i�(z)(t− tc(z))
2
]

,

(A.2.1)
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with the 5 required moments

Q(z) =

∫

∣u(z, t)∣2dt, (A.2.2a)

PM(z) =
1

2

∫

(u(z, t)∂tu
∗(z, t)− u∗(z, t)∂tu(z, t))dt, (A.2.2b)

I1(z) =

∫

t∣u(z, t)∣2dt, (A.2.2c)

I2(z) =

∫

(t− tc)
2∣u(z, t)∣2dt, (A.2.2d)

I3(z) =

∫

(t− tc)(u
∗(z, t)∂tu(z, t)− u(z, t)∂tu

∗(z, t))dt, (A.2.2e)

and the GNLS

∂zu(z, t) =− �

2
u(z, t) + i

∑

m≥2

im�m

m!
∂m
t u(z, t)

+ i
∑

n≥0

inn
n!

∂n
t

{

u(z, t)

∫

R(t′)∣u(z, t− t′)∣2dt′
}

. (A.2.3)

In our model, only the first two dispersion terms, GVD and TOD, as well as the
first two nonlinear terms, containing the Kerr nonlinearity, Raman scattering, self-
steepening and TPA, is included. However, the first part of the derivation will
include all terms.

Using the ansatz, the 5 moments can be evaluated as

Q = 2P0T0, (A.2.4a)

PM = i2bP0T0 = ibQ, (A.2.4b)

I1 = 2tcP0T0 = tcQ, (A.2.4c)

I2 =
�2

6
P0T

3
0 =

�2

12
QT 2

0 , (A.2.4d)

I3 = −i
2�2

3
�P0T

3
0 = −i4�I2. (A.2.4e)

By differentiating these 5 equations, we get a set of differential equations for the
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pulse parameters.

∂zb = − 1

2P0T0

(i∂zPM + b∂zQ) , (A.2.5a)

∂zP0 =
3

4T0

(

∂zQ− 4

�2

1

T 2
0

∂zI2

)

, (A.2.5b)

∂zT0 =
1

2P0T 2
0

(

6

�2
∂zI2 −

1

2
T 2
0 ∂zQ

)

, (A.2.5c)

∂z� =
3

2�2P0T 3
0

(i∂zI3 − 4�∂zI2) , (A.2.5d)

∂ztc =
1

2P0T0

(∂zI1 − tc∂zQ) . (A.2.5e)

These equations are all dependent on the derivatives of the moments.

In the derivation, these eight An(x) functions,

A1(x) =
15

8
csch4(x) [4x+ 2xcosh (2x)− 3sinh (2x)] (A.2.6a)

A2(x) = 3xcsch3(x) [xcosh (x)− sinh (x)] (A.2.6b)

A3(x) =
1

4
csch4(x)

[

−
(

2x3 + 6x
)

cosh (2x) + 9x2sinh (2x)− 4x3 + 6x
]

(A.2.6c)

A4(x) =
3

�2 − 9
xcsch3(x)

[(

3x3 + �2x
)

cosh (x)−
(

6x2 + �2
)

sinh (x)
]

(A.2.6d)

A5(x) =
15

8�2 + 120
csch4(x)

[(

18x2 − 3�2
)

sinh (2x)−
(

4x3 + 12x− 2�2x
)

cosh (2x)

−8x3 + 12x+ 4�2x
]

(A.2.6e)

A6(x) =
1

304
csch5(x)

[(

68�2x2 − 180x2 + 75�2 − 450
)

cosh (3x)−
(

158�2x− 720x
)

sinh (3x)

+
(

412�2x2 − 2700x2 − 75�2 + 450
)

cosh (x)−
(

306�2x− 2520x
)

sinh (x)
]

(A.2.6f)

A7(x) =
15

8�2 − 60
csch4(x)

[

16x3 + 4�2x− 6x+
(

8x3 + 2�2x+ 6x
)

cosh (2x)

−
(

18x2 + 3�2
)

sinh (2x)
]

(A.2.6g)

A8(x) =
45

152
csch5(x)

[

8xsinh (3x) + 28xsinh (x)−
(

2x2 + 5
)

cosh (3x)−
(

30x2 − 5
)

cosh (x)
]

(A.2.6h)
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which are normalized such that An(x → 0) = x, and the seven Bn(x) functions

B1(x) =
3

2
csch4(x)

[(

6x2 − 1
)

cosh (2x)− 8xsinh (2x) + 12x2 + 1
]

(A.2.7a)

B2(x) =
5

12
csch5(x) [7sinh (3x) + 27sinh (x)− 3xcosh (3x)− 45xcosh (x)] (A.2.7b)

B3(x) =
3

�2 − 6
csch3(x)

[(

4x3 + �2x
)

cosh (x)−
(

6x2 + �2
)

sinh (x)
]

(A.2.7c)

B4(x) =
1

36
csch5(x)

[(

18x2 + 61
)

sinh (3x) +
(

54x2 + 297
)

sinh (x)

−48xcosh (3x)− 432xcosh (x)] (A.2.7d)

B5(x) = csch3(x)
[

3x2sinh (x)− 2x3cosh (x)
]

(A.2.7e)

B6(x) =
3

�2 + 3
csch3(x)

[(

3x2 − �2
)

sinh (x)−
(

2x3 − �2x
)

cosh (x)
]

(A.2.7f)

B7(x) =
3

2
csch4(x)

[

4xsinh (2x)−
(

2x2 + 1
)

cosh (2x)− 4x2 + 1
]

, (A.2.7g)

normalized such that Bn(x → 0) = 1, are needed to derive the final set of differential
equations.

The derivative of Q can be found by differentiating Eq. (A.2.2a) and inserting
Eq. (A.2.3). With that we have

∂zQ =

∫

u∗∂zu+ u∂zu
∗dt

= 2ℜ
∫

u∗∂zu dt

= 2ℜ
∫

u∗

[

−�

2
u+ i

∑

m≥2

im�m

m!
∂m
t u+ i

∑

n≥0

inn
n!

∂n
t

{

u

∫

R(t′)∣u(t− t′)∣2dt′
}

]

dt

= −�Q+
∑

m≥2

ℜ
[

2
im+1�m

m!

∫

u∗∂m
t u dt

]

+
∑

n≥0

ℜ
[

2
in+1n
n!

∫

u∗∂n
t

{

u

∫

R(t′)∣u(t− t′)∣2dt′
}

dt

]

. (A.2.8)

As the pulse is bounded in time, it shows that

ℜ
[

im+1

∫

u∗∂m
t u dt

]

= 0, (A.2.9)
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and with only the first two nonlinear terms are included, we get

∂zQ = −�Q+ ℜ [i0]

∫

∣u∣2
∫

R(t′)∣u(t− t′)∣2dt′ dt

−ℜ
[

1

∫

u∗∂t

{

u

∫

R(t′)∣u(t− t′)∣2dt′
}

dt

]

. (A.2.10)

In this the ansatz is inserted. All integrals in t can be analytically solved, getting

∂zQ =− 2�P0T0 −
16

15
fR

r
1P

2
0

∫

ℎR(t)A1

(

t

T0

)

dt− 8

3
fR�

i
1P
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0 T

2
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(
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)

dt

− 8

3
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0 + bi
1)P

2
0 T0

[

1− fR + fR

∫

ℎR(t)f1

(

t
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)

dt

]

, (A.2.11)

where

f1(x) =
1

�2

[(

�2 − 3
)

B3(x) + 3B5(x)
]

=
1

3�2

[(

�2 − 6
)

B3(x) +
(

2�2 + 6
)

B6(x)
]

Similarly it is done for the other derivatives,

∂zPM =
1

2

∫

[(∂zu)(∂tu
∗) + u(∂t∂zu

∗)− (∂zu
∗)(∂tu)− u∗(∂t∂zu)] dt,

= i2ℑ
∫

(∂zu)(∂tu
∗)dt, (A.2.12)

where, in the rewriting, it has been used that u goes to zero at infinity. Inserting
the GNLS

∂zPM = i2ℑ
∫

∂tu
∗

[
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2
u+ i
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}
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]

,

(A.2.13)

where it has been used, similar to Eq. (A.2.9), that

ℑ
[

im+1

∫

(∂tu
∗)(∂m

t u)dt

]

= 0. (A.2.14)
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∂zPM = −i�

∫

ℑ [u∂tu
∗] dt+ iℑ
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i20
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(∂tu
∗)u
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, (A.2.15)

With the ansatz inserted it results in

∂zPM =− i2b�P0T0 + i
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∫
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]

. (A.2.16)

Similarly for I1,

∂zI1 =

∫

t [u∗(∂zu) + u(∂zu
∗)] dt

= tc

∫

[u∗(∂zu) + u(∂zu
∗)] dt+ T0

∫

t− tc
T0

[u∗(∂zu) + u(∂zu
∗)] dt

= tc∂zQ+ 2T0ℜ
∫

t− tc
T0

u∗∂zu dt (A.2.17)
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which can also be written as

∂zI1 − tc∂zQ

= 2T0ℜ
∫

t− tc
T0

u∗

[
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∑
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dt, (A.2.18)

where the loss term disappears since it is an odd function, and ultimately

∂zI1 − tc∂zQ =2b(�2 + b�3)P0T0 + �3P0T0

[

�2

3
�2T 2
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3T 2
0
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(A.2.19)
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For I2 we get

∂zI2 =

∫

(t− tc)
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= ℜ
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where

f2(x) =
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and finally for I3,
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(A.2.23)
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∂zI3 = 2P∂ztc + i2�T0
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resulting in
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With the derivative of the moments, the five coupled differential equations become
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Figure B.13: Measured electric field.
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Figure B.16: The samples have been shifted 3.13 and 1.75 �m respectively.
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Figure B.17: Corrected electric field
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Figure B.18: Measured electric field.
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Figure B.21: The samples have been shifted 17.20 and 7.79 �m respectively.
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Figure B.22: Corrected electric field
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Figure B.23: Measured electric field.
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Figure B.26: The samples have been shifted 5.10 and 4.47 �m respectively.
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Figure B.27: Corrected electric field
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List of Symbols

� Linear loss.

� Propagation constant. The subscript refers to the number of
derivations with respect to ! that has been performed on the constant.
Noticeably, the first order derivative, �1 is the reciprocal of the group
velocity and the second order derivative, �2 is proportional to the
Group Velocity Dispersion (GVD).

�TPA The Two-Photon Absorption (TPA) constant.

 Nonlinear constant. The subscript refers to the number of derivations
with respect to ! that has been performed on the constant. The
superscripts r and i refers respectively to either the real or imaginary
part of .

�(t) Dirac delta function. The key property of this function is that
∫

f(t)�(t− t0)dt = f(t0).

� The imaginary part of the complex refractive index. Is proportional to
the linear loss.

� Wavelength.

� Quadratic chirp.

Φ Phase of the electric field.

� Phase of the electric field.

! Angular frequency.

Ω Difference in angular frequency between the actual angular frequency !
and a reference angular frequency !0.

Aeff Effective modal area.
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108 List of Symbols

b Soliton angular frequency shift.

c Speed of light.

C Normalized quadratic chirp.

D Dispersion.

E Energy.

fR Fraction of the nonlinear response function caused by the instantaneous
electronic response.

ℎR(t) Raman response function. The non-instantaneous part of the nonlinear
response function.

i Imaginary number.

I1 The third of the five moments used in the Method of Moments (MoM).
If normalized by the energy is equal to the center of the pulse in time.

I2 The fourth of the five moments used in the MoM.

I3 The fifth of the five moments used in the MoM.

L Length.

ñ The complex refractive index.

n The real part of the refractive index.

n2 The nonlinear refractive index.

Q The first of the five moments used in the MoM. Equals the energy of
the pulse.

P Power. When it occurs with the subscript zero it refers specifically to
peak power.

PM The second of the five moments used in the MoM.

R(t) Nonlinear response function as a material experience when a electric
field is present.

t Time. With the subscript c it denotes the center of the pulse.

T0 Pulse width in time.



List of Symbols 109

u(z, t) The complex envelope function of the electric field.

z Propagation direction.

∂n
x Partial differential operator with respect to x differentiated n times.
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List of Acronyms

ABCD Air Based Coherent Detection

BS Beam Splitter

�-BBO �-Barium Borate

FFT Fast Fourier Transform

FOM Figure of Merit

fs femtosecond

FTIR Fourier Transform Infra Red

FWM Four Wave Mixing

FWHM Full Width Half Maximum

GNLS Generalized Nonlinear Schrödinger

GVD Group Velocity Dispersion

HMFG Heavy Metal Flouride Glass

MI Modulation Instability

MMF Multi-Mode Fiber

MoM Method of Moments

NLS Nonlinear Schrödinger

OSA Optical Spectrum Analyzer

PCF Photonic Crystal Fiber

RHS Right Hand Side
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112 List of Acronyms

SC Supercontinuum

SCG Supercontinuum Generation

SHG Second Harmonic Generation

SMF Single-Mode Fiber

SNR Signal-to-Noise Ratio

SSFS Soliton Self Frequency Shift

THz-TDS THz Time Domain Spectroscopy

TOD Third Order Dispersion

TPA Two-Photon Absorption

TRTS Time Resolved THz Spectroscopy

ZDW Zero Dispersion Wavelength
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[79] P. Kučel, H. Němec, F. Kadlec, and C. Kadlec, “Gouy shift correction for
higly accurate refractive index retrieval in time-domain terahertz spectroscopy,”
Optics Express, vol. 18, no. 15, pp. 15338–15348, 2010.

[80] Picometrix Homepage http://www.picometrix.com/pico products/terahertz tr4000.asp.
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