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Abstract

The research conducted in the context of this PhD, lies on the cross section between

multi-scale modeling of flow in porous media, electrochemical diffusion and reaction,

in combination with Shape and Structural Optimization techniques. More specifi-

cally, we have followed two lines of action for dealing with this problem. On the one

hand, we attempt to perform optimization of a Solid Oxide Fuel Cell in the macro

scale. Focusing on the anode interconnect, we wish to come up with an optimum

interconnect design. This can be achieved in principal, since the interconnect needs

to satisfy two major requirements. On the one hand, it needs to secure the intake

of fuel into the cell, fact that would require an as low hydraulic resistance as pos-

sible, i.e. ideally an open channel and on the other hand to exhibit an as high as

possible electronic conductance, which in the ideal case would mean an area blocked

completely by a material with high conductivity such as coated stainless steel. The

balance between these two competing, oppositely driving forces, indicate that there

should be a design that satisfies in the best way both. Similar problems have been

successfully dealt by structural-topology optimization approaches and this is one of

the first attempts to apply this combination of set of tools to fuel cells. Describing in

a nutshell the methodology followed, we use Comsol’s ability to create Matlab scripts

which incorporate the desired physics of the problem (Partial Differential Equations,

treating the setup as continuum) and we combine these scripts with the ones con-

taining the optimization routines like the Method of Moving Asymptotes (MMA).

Success in obtaining such a design, would greatly affect the overall cell’s efficiency

rendering the Solid Oxide Fuel Cell more competitive in the sustainable energy basket

of solutions. In this project, consulting role was also undertaken by researchers at

National Center for Sustainable Energy, Risø and more specifically by Dr. Martin

Søgaard, Dr. Henrik Frandsen and Dr. Peter Vang Hendriksen (team leader).

The other approach is based on attacking the problem in the micro-scale. Taking

as starting point the homogenization method for getting an upscaled equation for

the diffusion of ion vacancies in a fuel cell’s cathode, we derive formulas that ex-

press the Area Specific Resistance (ASR) of the electrode as a function of geometric

parameters, such as the tortuosity and the porosity of the material, for preselected

micro-structures. Furthermore, we apply optimization techniques to lead this ASR to

minimization. This work has been the fruit of collaboration with Professor Sossina

Haile at the California Institute of Technology (Caltech) and with assistant Professor

Francesco Ciucci at the Hong Kong University of Science and Technology (HKUST).

As a complementary in this modeling work, we have also developed other activi-

ties, leading to either already accepted, submitted or soon to be submitted publica-

tions. These additional to the main focus directions, have had three components. In

chronological terms, first was the experimental contribution to the calculation of the



optimum percentage of Zirconium in Zirconium Doped Ceria (ZDC) in the context

of my external stay at the California Institute of Technology. Secondly, we have also

participated in testing the compound of magnesium hydrides encapsulated in PMMA

for a set of experiments aiming at the development of a mass production method

through laser ablation for cheap and effective hydrogen storage. This work was done

in collaboration with Dr. Athanasios Stubos at the National Center for Scientific

Research, in Athens, Hellas. Towards the end of the PhD, we have also worked

close with Professor Ciucci once more, on assessing the identifiability of the physical

parameters, surface reaction rate k and bulk diffusion coefficient D, as functions of

the Biot number and the normalized by the diffusional time scale annealing time, in

Isotope Exchange Depth Profiling Measurements (IEDP). Besides computing the ex-

pected relative errors, we have also proposed a novel approximation for the confidence

intervals on k and D.



Populært dansk resume

Denne Ph.D. afhandling, med engelsk titel: ”Modeling and Structural Optimization

of Solid Oxide Fuel Cells”, udgør en større del af Forskningsprojektet EnergyShaping -

”Topolgy optimization of Solid Oxide Fuel Cells and Magnetic refrigeration systems”,

som er støttet af Forskningsr̊adet for Teknologi og Produktion.

Afhandlingen omhandler matematisk og numerisk modellering og strukturel opti-

mering af ”Solid Oxide” brændselsceller, som er en meget alsidig type brændselscelle

idet den fx kan køre p̊a naturgas og luft. Da brændselsceller generelt har en meget

høj effektivitet, og b̊ade producerer elektricitet og overskudsvarme, vil den nation-

alt og internationalt planlagte udbredelse af brændselsceller fremme en bæredygtig

energiproduktion.

Afhandlingens to dele omfatter modellering og strukturel optimering af to essen-

tielle dele of brændselsceller, som ogs̊a involverer strukturer p̊a to størrelses-skalaer:

På mm-skala transporteres og fordeles brændselsgas og luft ind i og igennem brænd-

selscellen vha. en ”interconnect” struktur, og da denne struktur ogs̊a skal lede den

producerede elektriske strøm mellem brændselscellerne er der et stort behov for at

optimere de strukturelle bestanddele af interconnect’en. På mikrometer-skala har

strukturen af de porøse membran-elementer i brændselscellen stor betydning for ef-

fektiviteten af de elektrokemiske reaktioner som driver cellen. I afhandlingen er der

udviklet et nyt matematisk værktøj som kan benyttes til bedre at evaluere mulige

membran-mikrostrukturer.
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Chapter 1

Introduction

1.1 Solid Oxide Fuel Cells in general, materials and com-

position

The realization of the necessity for shifting from the profile of absolute depen-

dence of our economy and energy technology on hydro-carbons and fossil fuels

for the most of the 20th century to more sustainable, flexible and environment-

friendly alternatives has motivated research in this direction. Fuel cells, being

one of the promising technologies in the prospect of energy sustainability, have

regained much attention in the last decades. Despite the fact that they have been

invented in the 19th century, their full potential is far yet from being reached and

there is significant room for increasing their efficiencies and enhancing their per-

formance by minimizing the overall losses of the system, thus rendering them

more competitive.

Fuel cells are devices whose working principle lies in the field of direct elec-

trochemical conversion of some constantly supplied substances’ (fuels) chemical

energy to electricity. Consequently, Fuel Cells do not suffer from the Carnot’s

limit of efficiency, i.e. limitations from working through thermal cycles and they

do not involve nor a combustion step nor the subsequent transformation to me-

chanical energy and then to electricity along the energy transformation process.

The set of this outstanding properties have rendered Fuel Cell technology ex-

tremely popular and great expectations about them becoming a major factor

in our modern societies’ energy sustainable future have been put on. Research

efforts by scientists from different fields, spanning from material science, and

electro-chemistry to solid-state physics, mechanical and process engineering have

been combined to materialize these expectations. Despite the fact that they have

been invented in the 19th century, their full potential is being constantly ex-

plored and their limits expanded, historically based on experimental approaches.

1
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However, the attempt to render Fuel Cells a competitive and viable wide-spread

technology has been significantly boosted lately by computer simulations as well,

enriching the traditional ways of advancement in this field.

Our choice of dealing with SOFC in particular emanates from the fact that

they hold a dominant position among the direct electrochemical conversion de-

vices, since not only do they exhibit high cell efficiency as all fuel cells, but on

top of that, the highest power density of any other system. The high operat-

ing temperature of SOFCs, ranging from 600◦ to 800◦, dictated by the necessity

for high ionic conductivity in the cell and for catalyzing the reduction-oxidation

half-reactions, provides the possibility for internal fuel reforming (T > 650◦C)

giving access to unique fueling versatility from hydrocarbons, to jet and commer-

cial fuels and hydrogen [6], [7], [8], [9]. Another advantage of the high operating

temperatures is the absence of need to perform water management, a very cum-

bersome process in other fuel cells like the PEM ones, since the water produced

is in the vapor phase. The conductivity and resistance of any part of the cell is

thus also not affected by the presence of water.

These characteristics, together with absence of rotating mechanical parts and

noise abatement make the use of SOFC very attractive. In the same time however,

their operating temperature around 800◦ does not favor often shut downs and

startups, mainly because of the time lag in acquiring the desired load and also

because of the consequent acceleration of the cell’s degradation processes. The

combination of the above advantages and disadvantages, have rendered SOFC the

predominant option for stationary applications, while offering them a growing role

in transportation as auxiliary power units as well as in other mobile applications

[10], [11].

The purpose of this small overview of the material requirements and technol-

ogy behind standard and state-of-the-art SOFC’s is to merely set the scientific

background and introduce the main concepts necessary to our work, and not to

exhaust the subject, since our focus lies in the application of analytical and com-

putational tools for modeling different parts of the cell. However, this modeling

and any attempt for mathematical optimization would be incomplete or out of

perspective if not combined with a solid comprehension of the basic material and

electrochemical mechanisms that in broad terms take place during the operation

cycle of a fuel cell.

The materials used in the different components of SOFC are mainly ceramics,

or their combinations with a few metals. The core of every SOFC is an assembly

of four main parts, two electrodes, an in-between solid electrolyte and the inter-

connect. The major electrochemical phenomena characterizing SOFC operation

is the oxygen reduction at the cathode, followed by the vacancy transport of

oxygen ions through the electrolyte all the way to the anode, where the oxygen
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ions react with the oxidized hydrogen ions to form water and electricity. SOFC

schematics in terms of the electrochemical conversion and the mass transfer for

H2 of hydrocarbon fuels are given in figure 1.5, 1.3, 1.2 and 1.4 while in figures

1.6 and 1.7 a glimpse is taken in a typical Membrane-Electrode-Assembly (MEA)

micro-structure and cathode for a SOFC.

Figure 1.1: Transport of spieces within
a SOFC, [1]

Figure 1.2: Mass transport within an
SOFC, [1]

Crucial to the cell’s efficiency, durability and degradation, is the chemical and

mechanical stability of the materials used and the compatibility of the different

components, especially with respect to the expansion strain that they suffer as a

result of the cells high operating temperatures. Especially concerning the inter-

connect, one common source of degradation can result from the uptake of carbon

coming from the anode side fueling with hydrocarbons, when carbon is in excess

in the fuel. Severe material failure such as cracking or delamination can be also

induced by the different behavior of the interconnect and the ceramic parts of

the cell (quantified by the Coefficient of Thermal Expansion, CTE) in terms of

response to thermal loads over the whole range of the operation of the cell from

room temperature during start up to the final steady state temperature of the

cell. In the sections describing the main layers of a SOFC we rely on a fraction

of the extremely wide literature, as found in [12], [13] and [14].

1.2 Solid Oxide Fuel Cells Components

1.2.1 Electrolyte

Solid electrolytes, or super ionic conductors, are solid materials with electrical

conductivity totally or partially due to conduction of ions and they can be of

crystallic or semi-crystallic nature. The main mechanisms known when studying

these materials are the Frenkel and Shottky suggestions about defects transport

in solids. These defects can be caused both by intrinsic reasons (thermody-

namic balance adjustment) and external intervention (doping). The electrolyte

in SOFCs performs the key task of conducting oxygen ions O2− produced at the

cathode through oxygen reduction, to the anode where it combines with protons
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Figure 1.3: Schematic representation of the porous cell structure.

Figure 1.4: A schematic representation
of a SOFC. It basically consists of: (A)
a solid electrolyte layer, (B) an anode,
(C) a cathode electrode, and two chan-
nels, one for the fuel (D), and one for the
oxidant gas (E) [2]

Figure 1.5: The separate anode and
cathode reactions for the SOFC, when
using hydrogen and carbon monoxide
fuel, [3]

H+ to form water, as shown in fig 1.1, 1.2. In this way the presence of the elec-

trolyte secures closing of the system and completion of the overall electrochemical

reaction. The selection of material for an ideal electrolyte for SOFCs is subject

to some more requirements beyond the obvious one of high ionic conductivity.

• not allow any electronic current (i.e. practically infinite electronic resis-

tance)

• be impermeable to gas flows
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• maintain inertness to the adjacent highly oxidizing and reducing environ-

ments of the electrodes

In this way, the ideal candidate materials lie within the family of stable,

oxygen ion or proton conducting ceramics.

Solid solutions of divalent or trivalent metals such as CaO, Y2O3, and Sc2O3

with oxides of quarter valent metals such as zirconia or ceria are crystallized in

the fluorite structure. The fluorite structure is face-centered cubic with the anions

on the edges of the tetrahedron resulting in a very stable structure. The lower

valent of the dopant with respect to the substituted cation results in the creation

of the many vacancies through which oxygen ionic transfer is realized. More

specifically, interaction of one mole of yttria with one mole of zirconia, results in

zirconium having a 4+ oxidation state being substituted by yttrium which has a

3+ oxidation state, assigning thus a negative effective charge to the particular site.

Compensation of the cation substitution is achieved through the creation of an

ionic, i.e. oxygen in this case, vacancy, with an effective minus two charge being

assigned to the particular site. Since the principles of electro-neutrality and mass

site balance have to hold for every mole of yttria added to zirconia two moles of

cation substitution are formed and one mole of oxygen vacancy. This mechanism

of oxygen vacancies creation through doping enhances severely the conductivity

with respect to the pure ZrO2. Higher levels of metal oxide doping, result in

higher bulk conductivity of YSZ. Defining the optimum percentage of doping

depends on several factors (e.g. impurities, atomistic size and other properties

and energetics). The 8% in yttria is in general believed to balance the electrostatic

interactions between zirconia defects and oxygen vacancies. The first dominate if

> 8% and then oxygen transport is hindered, while for < 8% again the imbalance

results in lower ionic conductivity. The ionic radius of the anion (oxygen) being

smaller than the corresponding one of the cation explains why the ionic diffusion

is much higher for oxygen than for the involved cations, e.g. Zr + 4, Y + 3.

Zirconia, is known to form three crystallographic structures, monoclinic, tetrag-

onal and cubic. The monoclinic is stable from room temperature up to 1170C◦,

the tetragonal is stable up to 2370C◦ while the cubic one is stable above this

limit until the melting point is reached (2680C◦). These phase transitions are

subjected to noticeable volume changes and although reversible, result in mate-

rial failure during cool-down. Zirconia doping with another lower-valent cation is

a usual technique in order to alleviate the phase instability in ambient tempera-

ture and create a stable ceramic. Apart from YSZ, other materials have also been

investigated as suitable for electrolyte materials with noticeable performance like

SSZ and particularly Ceria.
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1.2.2 Anode

The anode of an SOFC is that particular component where the electrochemi-

cal oxidation of hydrogen to protons takes place while in the same time these

produced protons meet and interact on the TPBs with the oxygen ions coming

from the cathode through the electrolyte producing water vapor and electrons

according to 1.1.

2H2 + 2O2− −→ 2H2O + 4e− (1.1)

Besides this primary operation, anode is also responsible for giving passage to

the gas fuel and also access to the electrical species (ions and electrons) to reach

the reaction sites 1.3. In order to fulfill these requirements the material which

anode is composed of is subjected to the following requirements:

• chemical stability in oxidizing environment.

• catalytic activity for hydrogen oxidation.

• high electronic conductivity.

• high ionic conductivity.

• chemical and physical compatibility with surrounding components.

• mechanical and thermal compatibility with surroundings.

• porosity for high diffusion of the fuel (fig. 1.3, 1.2)

• hindrance of non-desirable reactions, e.g. pyrolysis.

The fuel is being humidified by vapor which is known to lower the anode over-

potential, assist the completion of the water-gas shift reaction and clean carbon

depositions on the electrode’s interface.

Stability and compatibility of the anode refers to a series of not favorable

conditions that the anode material has to undergo such as chemical reactions

and dimensional/phase changes, resulting from interactions with other SOFC

components, the highly reducing atmosphere, the corrosive effect of water vapor

produced and/or the average to high operating temperatures.

Providing access to the reaction sites (TPBs) for oxygen ions is performed

through a suitable phase while another phase is necessary to offer the way out

to electrons to make it to the interconnect posts. The absence of any ceramic

materials among the known Mixed Ionic-Electronic Conductors (MIEC) exhibit-

ing simultaneously very high electronic and high ionic conductivity, dictates the

use of two different phases so as to perform each task separately, in a percolated

network however. In order to perform its proper electrochemical functions, the
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anode must be able to transport oxygen ions to the active oxidation sites as well

as product electrons away from the active sites.

Metals are known for catalyzing the anode reaction. Among them, Ni is

low cost and with good chemical stability. Hence it has been traditionally con-

sidered as the metallic phase in the ceramic-metallic compound (cermet). If a

ceramic phase such as YSZ is used, emanating basically from the need for good

ionic conduction properties, we come up with a material that does not favor Ni

agglomeration, diminishes the anode CTE (compared to the pure Ni one), and

enhances the mechanical attachment of the anode to the electrolyte.

Typically the cermet production comes from powders of YSZ and NiO which

are being mixed and sintered together at temperatures 1300C◦ − 1400C◦. After

the addition of the electrolyte and the cathode, the cell is being exposed to inert

atmosphere until the steady state operating temperature and the NiO is being

reduced to Ni by a H2 current, resulting in Ni to YSZ analogy of 45 − 55%. In

this way, the highly porous percolated networks of metallic and ceramic phases

extend from the electrolyte layer all the way to the anode/interconnect interface.

The amount of Ni proves to be a very important parameter affecting the elec-

trical conductivity of the cermet and its overpotential. The optimum percentage

is 40 − 45% vol. of Ni. The electrochemical properties of the anode are further

affected by the production method which controls the electrode’s micro-structure.

Finally, it has been reported that increasing the sintering temperature proves also

to be beneficial for the electrochemical efficiency of the anode.

Major factors affecting the anode’s degradation are:

• Volume increase of Ni during operation. Ni reoxidation to NiO takes place

if oxygen passes in the fueling line. Re-fueling or reducing the anode does

not however return the anode in its former state. This re-oxidation results

in 70% volume increase of the metallic phase and in total 3 − 9% volume

increase of the whole electrode.

• Carbon uptake coming from a hydrocarbon fuel.

• Sulfur poisoning (short and long term).

Dealing with some of the factors leading to anode degradation has served

as inspiration in devising alternative materials for SOFC anodes. Particularly

favorable seems to be the use of Gadolinium Doped Ceria (GDC) in terms of

both resistance to carbon poisoning and increase of electrochemical performance

in general, while different perovskites have been proposed as solutions to sulfur

poisoning.
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Figure 1.6: Cross-sectional SEM image
of a typical SOFC, [4]

Figure 1.7: SEM image of infiltrated
cathode, [4]

1.2.3 Cathode

The dual purpose of the cathode (fig. ??) in SOFCs consists in the first place of

the electrochemical reduction of oxygen f O2 to O2− as shown in Reaction 1.2.

O2 + 4e− −→ 2O2− (1.2)

Secondly the cathode is responsible for facilitating air i.e. oxygen to reach re-

duction sites and then the produced oxygen ions to reach the electrolyte. The

material requirements for a SOFC cathode can be summarized as follows:

• Catalytically active to oxygen reduction.

• Chemically and mechanically stable.

• High ionic conductivity.

• Thermal and mechanical compatibility with surroundings (thermal expan-

sion coefficient (TEC), mechanical properties).

• High electronic conductivity.

Originally Pt was used as cathode material because of its well known catalytic

impact on oxygen reduction, but gradually other materials like perovskites have

gained ground because of economic and higher electrochemical activity reasons.

Perovskites are compounds of the form ABO3. One perovskite used typically

for cathode material is the LaMnO3. This particular material undergoes phase

transitions which are believed to be due to the partial oxidation Mn3+ to Mn4+.

More specifically, it appears orthorhombic structure at 25C◦ and rhombohedric

above 600C◦. Hence, naturally, the transition temperatures depend severely on

the levels of Mn3+ ions and the oxygen stoichiometry. Once again, increase in

the pure LaMnO3 electrochemical properties such as ionic conductivity can be
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achieved through means of doping with lower-valent cations such Sr2+ or Ca3+.

The general type of these doped perovskites is La1−xAxMnO3±δ, where A is the

dopant. In the case at which the dopant is strontium (LSM), the increase in

ionic conductivity from around 10S/cm at 700C◦ for undoped material, can vary

from many decades to several hundreds S/cm. Another advantage from using

LSM as cathode, is the fact that it exhibits a CTE close to the one that the elec-

trolyte from YSZ does. It is generally known, and has also been experimentally

confirmed, that lowering the cathode’s temperature lowers the ionic conductivity

and retards the oxygen reduction reaction. As a result, targeting lower operation

steady state temperature than the typical around 800C◦, and in the same time

preserving high cell efficiency, is attempted by addition of YSZ or GDC, or the

fabrication of multi-layer cathodes LSM/LSC/GDC, or finally the addition of

catalytically active ceria nano-particles.

Alternative material to LSM are rare earth perovskite oxides with Co (LSCF),

and they include oxide mixture of LaCoO3 and LaFeO3 doped with Sr. These

compounds exhibit their maximum conductivity, 1000S/cm, around 600C◦. A

drawback of LSCF is the fact that it does not exhibit the desired stability in

reducing environment and that its CTE is not so much compatible with the one

of the rest of the cell.

To conclude this brief reference to cathode materials we cite the most signif-

icant reasons that lead to the cathode’s degradation:

• Reaction of perovskites with YSZ

• Reaction of perovskites with interoconnect steels.

1.2.4 Interconnect

The interconnect is the part of the fuel cell that is the interface or connection of

the fuel cell to the environment. Through the interconnect, the cell is constantly

supplied with fuel in order to sustain a balanced uninterrupted flowrate of fuel

to the reaction sites on the anode side. On the cathode side, it acts as a cooling

branch, permitting to high amounts of a cheap gas containing oxygen, hence

usually just air, to flush and carry away great amounts of the produced heat

during all the electrochemical processes involved in the cell. One could think in

this way the interconnect as the ”mirror” image of the electrolyte. This is a valid

picture because the interconnect makes sure not only that the ions do not cross

but also separates the two gas streams. Furthermore, equally important is the

fact that through the interconnect takes place the electronic conductance from

and to the cell and the establishment of the power supply to the load connected

to the cell. Hence, the performance of the interconnect is of ultimate importance

for the overall performance of a cell. Summing up the requirements for a good

interconnect material, we can say that these are:
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• Chemical stability in very challenging reducing and oxidizing environments.

• High electronic conductivity.

• Practically zero ionic conductivity. Even the slightest conduction of ion

would result in a shortcut and loss of power.

• A proper TCE, matching those of the other parts of the cell.

• Good mechanical stability. Along with the anode support it is the part of

the cell that undertakes all the mechanical stresses.

• Low cost material.

For a planar SOFC, usually the interconnect is a system of ribs of parallel

channels. They can be assembled in 2 ways giving rise to co-flow/opposite flow

or cross flow between the airstream and the fuel stream. A characteristic design

for an interconnect is depicted in fig.1.8. Two major categories can be considered

Figure 1.8: Schematic representation of an interconnect for a planar SOFC [3]

when the chemical composition of the interconnect is under discussion: ceramic

and metallic interconnects. In any case the decisive factors are the application

and the temperature range of operation. When we refer to the application this

also includes the kind of fuel used as well as the chemical composition of the

adjacent parts, i.e. the two electrodes.

The use of ceramic materials for the interconnect is almost compelling when

examining high temperature SOFCs, in the range 900◦ − 1100◦. The metallic

materials in this range would degrade very fast, because of phase transitions,

creep and curie temperatures. In terms of fulfilling the requirements mentioned

above, the ceramic materials have exhibited good behavior in oxidizing atmo-

spheres but they tend to lose oxygen in reducing atmospheres. A common choice

for a ceramic interconnect is LaCrO3 which stable over a wide range of pressures
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and its electronic conductivity can be increased by appropriate and careful dop-

ing, usually with Sr. A good match with the TCE of the MEA can also been

accomplished through doping too. Major barrier however, in the use of ceramic

materials so far has been their really high cost, mainly due to the high cost of the

relevant manufacturing processes. The difference can be in the area of eight times

larger than in the case of using a metallic interconnect at a lower temperature.

It is indicative that for a ceramic interconnect the cost of this part alone can rise

up to 90% of that of the whole cell [12].

The potential candidates along the metals for this part of the cell would lie

between stainless compounds of Ni, Fe, Cr and the noble metals. The cost of

the noble metals excludes them instantly from the selection process. Among the

remaining candidates, Al is also excluded because the formation of Al2O3 lowers

the electronic conductivity. The remaining options include austenitic and ferritic

stainless steels whose CTE match the one of the other parts of the cell, in the

order of 10.5 ·10−6K−1−12.5 ·10−6K−1. Among the various products developed

in the industry for SOFC applications are the Ducralloy by Metalwerkee Plansee

and the CroFer 22 APU by the collaboration of Julich and ThyssenKrupp [14].

The good properties achieved by the former are counter balanced by its forbidding

cost while the performance of the later compound seems to be restricted by the

increase in the Area Specific Resistance (ASR) of the Mn spinel layer and the

volatility of Cr. The degradation of metallic interconnects can originate from

corrosion due to the steam in the anode, from oxygen in the air stream, or from

carbon and sulphur when dealing with hydrocarbons as fuels. For protection

against these factors of loss of power, it is suggested that a proper protective

coating layer should be applied.





Chapter 2

Theoretical Investigations

Two inter-affected factors are the principal ones for the manufacture of an ideal

interconnect: the materials used and its actual design. Having discussed the

choices of materials already, in what follows we focus our efforts in studying

the design of a metallic interconnect with our final goal to make contributions in

producing optimized interconnect designs and to offer insight in how its geometry

can affect the performance of the cell in total. Our analysis intends to primarily

study the main two aspects of the interconnect, i.e. the gas flow around it and

the electronic conductance through it.

2.1 Fluid Flow

For a fluid flow analysis assuming that we are always referring to length scales

at which the continuum hypothesis holds (i.e. one or two order of magnitudes

greater that the nanoscale) the necessary theoretical tools are provided by prop-

erly expressing in general the major conservations laws for mass, momentum,

angular momentum and energy. In what follows we only mention those notions

that are necessary to our analysis, i.e. mainly mass, momentum and energy since

they suffice for the scope of this work. The flow through-out the channel of an

interconnect is a transport problem of a gas of spatially varying density. This

happens 2.1 because as we go downstream the gas channel, the composition of

the gas (for the shake of simplicity taken to be H2 −H2O binary) changes, since

hydrogen is being subtracted from the gas and diffuses to the reaction sites, and

steam is being added, produced a few hundred microns below, into the membrane.

The differential form of mass balance, termed also as continuity equation, for

a fluid flow of density ρ and velocity uj :

13
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∂tρ+ ∂j(ρuj) = ω (2.1)

in the above ω is a generation of mass term accounting for source or sink,

i.e. accounting for the generation or disappearance of mass as in the case of a

reacting flow. In the case of steady, incompressible flow the above becomes:

uj∂jρ+ ρ∂juj = ω

uj∂jρ = ω

giving finally:

uj∂jρ = ω (2.2)

In the last equation we see how the spatial variation of density enters the con-

tinuity equation. At this point it is also useful in terms of what follows, to make

absolutely clear what we refer to by the term incompressible fluid. By the notion

of incompressibility we mean that the volume of a fluid element in the flow under

study does not change at any point in space or time, i.e. there is no dilatation

or other transformation to its shape (though it can of course, translate, rotate

or become skewed). This fact is encapsulated in the mathematical definition of

incompressibility [15] [16]:

∇ · u = ∂juj = 0 (2.3)

In other words, incompressibility is not synonymous to preserving constant

density only in terms of volume element changes, simply because the change can

be due to spatial variations by thermal gradients or reactions taking place. The

case of a flow in an interconnect is the case of such a reacting flow. Hence, for

our study it is always true that ∂juj = 0 but the density overall is or should be in

principle treated as variable because of the change of the gas composition, unless

we specifically study sub-cases where for the shake of simplicity or under other

assumptions we are justified to neglect the density’s spatial variation. The con-

ditions under which a flow can produce such phenomena that distort the volume

of a fundamental fluid element are met for example in the case of very fast super-

sonic flows and shock waves emerging flows, extensively studied in the context

of aerodynamics and flows through turbine engines. For completion purposes,

we add that the criterion for categorizing a flow as compressible is crossing the

value 0.3 for the Mach number, the number that provides the ratio of the flow’s

velocity against the velocity of the speed of sound at the current temperature.

The threshold of Mach = 0.3 has been set as such because it corresponds to an

average change in density of 5% [15]. By an easy calculation, we find that the

speed of sound at the operating temperature of our cell i.e. T = 800◦C(assuming

this also to be the temperature of our flow), given by:
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Uair =

√
γRT

M
= 657, 16

m

s
(2.4)

R being the universal gas constant M the average molecular weight of air. In

our case using a gas mixture with synthesis of 97.28%H2 and 2.78%H2O giving

an average molar mass of 2.4354 · 10−3 kg
mol the speed of sound is even larger at

the same temperature, i.e. Uinletgas = 2.122 · 103m
s . Typical values of gas fuel

velocities at SOFC fuel gas channels do not exceed 5ms , hence we conclude that

the Mach number is practically 0 for our flow and we can safely rely on its in-

compressibility to hold throughout all of this study.

The force balance, or in Newtonian terms, balance of momentum rate, for

viscous flow of a any fluid is fully described by the Navier-Stokes whose differential

form in the most general case is given as:

(∂t(ρui) + ∂jui(ρuj)) = ∂iσij + ρfi (2.5)

σij is the total stress tensor and fi is the sum of body forces on the fluid. The

total stress tensor is

σij = −pδij + τij (2.6)

The viscous stress tensor for dynamic viscosity µ and secondary viscosity ζ is

decomposed as follows:

τij = µ(∂jui + ∂iuj −
2

3
δij∂kuk) + ζδij∂kuk (2.7)

In the case of a newtonian incompressible fluid the viscous stress tensor is

only dependent on the strain rate tensor ∂jui + ∂iuj i.e.

τij = µ(∂jui + ∂iuj) (2.8)

With the above assumptions the Navier-Stokes for a viscous, incompressible

reacting flow with no external body forces, reads:

∂t(ρui) + ∂jui(ρuj) = −∂iP + µ∂2
j ui (2.9)

Expanding now the right hand side and using the definition of incompress-

ibility and steadiness we get,

∂t(ρui) + ∂jui(ρuj) = ui(∂tρ) + ρ(∂tui) + ∂j(ui(ρuj))

= ui(∂tρ) + ρ(∂tui) + ui∂j(ρuj) + ρuj∂jui

= ui∂j(ρuj) + ρuj∂jui

= uiω + ρuj∂jui

= ρui∂juj + uiuj∂jρ+ ρuj∂jui

= uiuj∂jρ+ ρuj∂jui
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So finally the Navier Stokes equation for a steady, viscous, incompressible reacting

2− d flow takes the form:

uiuj∂jρ+ ρuj∂jui = −∂iP + µ∂2
j ui (2.10)

We also cite the same equation for a steady, viscous, incompressible flow:

ρuj∂jui = −∂iP + µ∂2
j ui (2.11)

The inherent characteristics and major physical properties of any flow are

elegantly captured by the Reynolds number defined as:

Re =
ULρ

µ
=
UL

ν
(2.12)

where in the above, L is the dominating length scale of the flow, U is the

scale of the flow’s velocity, µ is the dynamic viscosity and ν is the kinematic

viscosity of the liquid (single or multi-component). This definition, emanating

from a direct ratio of the inertia versus the viscous forces in a fluid, describes

precisely whether one of this two terms dominates. In the limit at which the

Reynolds number is very small viscous forces are by far exceeding inertia ones

(Re < 1), while in the other limit of viscous forces affecting almost not at all the

flow, the Reynolds number takes immense values. Typical examples of flows ex-

hibiting both these two so different flow regimes are the flow in a journal bearing

with Re below 1 while the supersonic flight of an aircraft in the order of Re = 106.

A crucial aspect of our simulations is the dimensionality of our study. For the

shake of computational power needed and in order to be able to approach the

subject from a theoretical-analytical point of view as well, we chose as appropriate

to conduct our research in two dimensions. One of the challenges of this work

was in general to take special care so that this reduction in dimensions not to

affect the range of our conclusions and to still adequately describe in all cases,

what is generally admitted to be, a 3-dimensional problem.

As such, we refer to the changes necessary to the above cited expressions of

the Reynolds number in order to include the strong effect of the narrow slit, i.e.

the gas channel’s height. It turns out from lubrication theory [16],[17],[18], that

the severe damping imposed by the ceiling and the floor walls for the full three

dimensional flow can be adequately incorporated in a two dimensional version

of the Navier-Stokes by the addition of a damping term, proportional to the 2D

fluid velocity. The constant of proportionality, α is inversely depending on the

square of the channel’s height.

α =
12µ

h2
(2.13)

So the version of the Navier-Stokes that we use is:
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uiuj∂jρ+ ρuj∂jui = −∂iP + µ∂2
j ui − αui (2.14)

It is important to realize in which regime our flow lies, by calculating an

approximate Re, so as to devise the right strategy for our analysis. The deter-

mination of an average dynamic viscosity and density is done by assuming an

inlet gas composition of weight fractions, wH2 = 0.8, wH2 = 0.2 from the paper

[19] and by calculating an average value according to the expressions supplied by

[18]. With substitution we find, µ = 6.410−5Pa · s, ρ = 0.0278 kg
m3 . The average

velocity of flows for SOFC anodes in experimental settings are of the order of 2ms ,

(or refer to calculations under constant dP e.g. 100Pa giving a Re = 0.12). For

an interconnect channel with dimensions L = 4cm(length), w = 4cm(width), h =

0.35mm(height) the Reynolds number of open channel is below 1 , considering

the height h as the characteristic length scale of the problem. This conclusion is

very important because it means that for many choices of the design parameters

we can neglect the inertia terms in our study without any severe loss either from

a qualitative or quantitative perspective. Considering for some part of our work

the flow as Stokes flow, will considerably facilitate a theoretical analysis since

dropping the inertia terms leaves behind only linear terms in the Navier-Stokes

equation which can be integrated and solved for certain ’regular’ geometries. As

a concluding remark in this section, we state beforehand that working with in

general small Reynolds numbers is a choice also dictated by the method of Topol-

ogy Optimization since in this regime a problem with the viscous dissipation as

objective function is proven to be well posed [20]

The point of initiation to derive some analytical insight is to consider the case

of one pilar of cylindrical current collector material in the cross flow of the gas.

Pictorially this is described in figure 2.1

So now we face the problem of solving the equations of creeping flow for a

cylinder in a flow of given gas composition. The relevant Navier Stokes free of

inertia terms now reads:

∂iP = µ∂2
j ui − αui (2.15)

The problem of creeping or Stokes flow, around a sphere and a cylinder is

extremely well studied in fluid mechanics and hydrodynamics (references [17],

[21], [22], [23], [24]. Here we present in a condensed way the few steps necessary

to solve for the velocity field of the Stokes flow. The first step is to take the curl

of eq. 2.15, producing:

0 = µ∂2
jχj − αχi (2.16)

Since this is a two dimensional flow, a stream function can be defined for

this flow. By definition, a stream function is tangent to the velocity vector, i.e.
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Figure 2.1: 3d geometry of the gas channel. Inflow gas velocity U

ui∂iΨ = 0. Furthermore the velocity field can be represented in general for such

a flow as the curl of the vector potential which is the stream function in vector

form. For the cylindrical case the vector potential is B = [0 0 Ψ] in r, θ and z.

So we can write:

ui = εijk∂jBk (2.17)

where εijk the Levi-Civita permutation tensor. Taking the curl of eq. 2.17

and keeping in mind the definition of the vorticity we get the expression that

relates the vorticity to the stream function.

− χi = ∂j
2Bi (2.18)

In the 2-d case with not including the extra damping term in eq. 2.16 or in

the general 3-d case, substitution of eq. 2.18 would result in having to solve the

biharmonic equation∇4Ψ = 0, accompanied by the suitable boundary conditions.

By doing so, as it is proven in [25], [26], [27], there is an acceptable solution that

can match the flow around the sphere to the far field flow. This is not the

case however in two dimensions and especially about a cylinder whose case is

problematic. As we will vigorously demonstrate, for the cylinder case there can
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be achieved no such matching no matter what choice we make regarding the

constants emerging from solving our equations. The mathematical proof of this

lack of solution, relies in a perturbation expansion of the solution on the Re

number. Literature work on this topic is found in [28] and [29] for instance but

we refrain from expanding on it significantly since it is not our primary objective.

The theoretical inability to solve to the pure Stokes problem for a cylinder

had led the scientists at the beginning of the previous century to consider the

creeping flow around a cylinder as one that cannot be achieved by nature. To

the rescue came Oseen in 1910 presenting a proposal of not dropping the inertia

term entirely but keeping a linearized form of it, i.e U∇u where U is the far

field velocity that needs to be matched and u is the ”near” the sphere velocity.

This idea was reasoned on the basis of scaling arguments showing inertia terms

dominating in the region far from the perturbation of the flow imposed by the

presence of the cylindrical structure. Oseen furthermore predicted an even bet-

ter estimate for the drag around such a cylinder than the one coming form the

sphere analysis, when compared to the experimentally acquired values. Lamb

(1911) picked up from Oseen and many researchers ever since have contributed

in studying this mathematical problem. Theoretical work was done by Faxen,

Godstein [23] and Tomotika [24], providing exact analytical solutions for the ve-

locity field and estimates on the drag force.

Returning to eq.2.16, as we will soon see, the addition of the viscosity term

actually resolves the issue, and a matching with the far field velocity can be

achieved naturally and without the need of similar to Oseen’s ideas. In fact,

we propose that this can be a universal treatment of similar problems, under a

certain scaling condition.

Moving along, our goal is to formulate the relative modified biharmonic/shifted

equation. As a first step we present the velocity and vorticity fields. In all the

analysis that follows we refer to cylindrical-polar coordinates.

ur =
1

r

∂Ψ

∂θ
(2.19)

uθ = −∂Ψ

∂r
(2.20)

− χz =
∂2Ψ

∂r2
+

1

r

∂Ψ

∂r
+

1

r2

∂2Ψ

∂θ2
(2.21)

Taking the Laplacian of χz as:

∇2χz =
1

r
∂r(r∂rχz) +

1

r2
∂θ

2 + ∂z
2 (2.22)
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By doing the appropriate substitution and performing the successive differ-

entiations presented in the Appendix, we finally get the following expression for

∇2χz = L2Ψ:

∇2χz = −∂4
r4 −

2

r
∂3
r3Ψ +

2

r3
∂3
θ2rΨ−

2

r2
∂4
r2θ2 −

1

r3
∂rΨ +

1

r2
∂2
r2 −

4

r4
∂2
θ2Ψ− 1

r4
∂4
θ4Ψ

(2.23)

Taking a look at the boundary conditions required to be fulfilled, these are

that both the r and θ components of the velocity be zero on the cylinder’s bound-

ary, which we assume to be of radius R, and very far from the body to acquire

the freestream velocity U. Translated into equations for the stream function we

have the following:

Ψ(R, θ) = 0 (2.24)

Ψ(R, θ)

∂r
= 0 (2.25)

Ψ(r →∞, θ) = Ursin(θ) (2.26)

From eq. 2.26 we get the inspiration to look for the stream function solutions

of the form

Ψ(r, θ) = f(r) · sin(θ) (2.27)

Taking into account eq. 2.27,eq. 2.23,eq. 2.21 and substituting into eq. 2.16

gives an ordinary differential equation for the function f which encompasses the

spatial variation of the Ψ.

− µf ′′′′ − 2µ

r
f ′′′ +

(
3µ

r2
+ α

)
f ′′ +

(
−3µ

r3
+
α

r

)
f ′ +

(
3µ

r4
− α

r2

)
f = 0 (2.28)

In the above, we notice that the terms multiplied with the mere viscosity,

originate from the differentiation of Ψ in χ2
z. The terms originating from the χz

term are naturally of lower order, so they contribute up to the second order.

At this point, we make a slight pause in the solution process to demonstrate

what the problem is in the 2d case of the cylinder as discussed above. In this

way we can easier introduce the solution procedure and we can easily draw the

conclusion that inclusion of the damping term has substantially benefited the

existence of a solution for our case.

If in eq. 2.28 we take away all the terms involving α we get an equation which

corresponds to the biharmonic ∇4Ψ = 0.
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− f ′′′′ − 2µ

r
f ′′′ +

(
3

r2

)
f ′′ +

(
− 3

r3

)
f ′ +

(
3

r4

)
f = 0 (2.29)

As it is suggested by the form of f in eq.2.29 we are looking for solutions of the

form f = arn. Substitution in eq.2.29 reveals the following algebraic equation:

−an(n− 1)(n− 2)(n− 3)rn−4 − 2

r
an(n− 1)(n− 2)rn−3 +

3

r2
an(n− 1)rn−2 − 3

r3
anrn−1 +

3

r4
arn = 0

arn−4(−n(n− 1)(n− 2)(n− 3)− 2n(n− 1)(n− 2) + 3n(n− 1)− 3n+ 3) = 0

The roots of the expression in the parenthesis are 3, 1, 1 (double)and −1. This

suggests that f should take the form:

f(r) = Ar3 +Brlnr + Cr +
D

r
(2.30)

A,B,C and D are the constants that we need to define through fulfilment of

the boundary conditions.

Lets first translate the boundary conditions given for Ψ to the relevant to f

form.

f(R) = 0 (2.31)

f ′(R) = 0 (2.32)

f(r →∞) = Ur (2.33)

From eq.2.33 we immediately conclude that A and B must be set to zero.

Using the other two condition on the boundary of the cylinder it is easy to

calculate that they are identically zero as well. This is the mentioned above

inability for this solution, known as Stokes solution, to adequately resolve the

flow near the cylinder and satisfy in the same time the far field condition.

Closing this slight deviation from the solution of our actual problem, we state

that we will implement the same reasoning as indicated above. For the solution

of eq. 2.28 we assume a similar separation of variable since the same boundary

condition at infinity has to be satisfied and use again the trial function arn for

the function f. Substitution yields:

aµrn−4(−n(n−1)(n−2)(n−3)−2n(n−1)(n−2)+3n(n−1)−3n+3)+aαrn−2(n(n−1)+n−1) = 0

(2.34)

To go further we recall the definition of α = 12µ
h2

. With a glance we observe

that the last expression makes in this way sense dimensionally. On top of that

we are able to solve eq. 2.34 by examining three different cases depending on the

ratio of r/h.
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• r < h
2
√

3
. In this case the contribution to eq. 2.34 from the damping term

becomes insignificant. Hence the solution is dominated by the contribution

coming from the viscous term and the damping one can be dropped. This

case corresponds directly to the case already examined for the pure viscous

term balancing the pressure, and as we have seen does not accept a solution

in closed form. In this case it is required that we revert to ideas similar to

the one applied by Oseen or other later researchers.

• r ∼ h
2
√

3
. Both contributions are important and the solution must be sought

by collecting all the alike terms together.

• r > h
2
√

3
. In this case we can depend only on the term originating form the

damping, for the solution and neglect the viscous part of eq. 2.34.

From the above analysis, it is obvious that as long as we choose the radius

of our study greater or equal to an order of magnitude less than our channel’s

height, we can hopefully escape from the pitfalls of the mere viscous flow around

a cylinder. We proceed by analyzing all the above cases separately.

2.1.1 Case r < h
2
√

3

In what follows we briefly present the solution obtained in the relevant literature.

It was found convenient to define some new quantities. These are k = U
2ν and

ξ = kr. If by definition the Re is Re = UD
ν then ξ = 1

4Re . Proudman [28] proposes

the use of an approximation for the stream function, normalized by (U · R), of

the flow originally suggested by Lamb:

ψ =

(
r +

1

2Bor

)
sinθ −

∞∑
n=1

1

2B0
φn

(
1

2
Rer

)
rsinnθ

n
+O(B−2

0 ) (2.35)

where in 2.35 Bo = 1
2 − γ0 − ln(ξ) and φ(n) = 4K1In + 2K0(In+1 + In−1), K

and I being the modified Bessel functions and γ0 the Euler-Mascheroni constant

which up to 5 digit reads 0.57721. Let us also note that in eq.2.35 the used radius

r is also normalized with the cylinder’s radius R.

This approximation is sufficient since the accuracy sought from any analytical

solution cannot exceed the order of magnitude of the dropped inertia terms.

However, ignoring such considerations, Tomotica et al. in [24] have provided

such analytical solutions.

ψ = U

(
r − R2

r

)
sinθ+

1

4

∞∑
m=0

∞∑
n=1

Bm

((
R

r

)n+1

Φm,n(ξ0)− Φm,n(kr)

)
rsinnθ

n

(2.36)
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In eq. 2.36 ξ0 = kR = 1
4Re , and the coefficients B′ms are determined through

the following expression.

∞∑
m=0

Bmλm,n(ξ0) =

{
4 n = 1

0 n = 2, n = 3
(2.37)

where, λm,n(ξ0) = Im−n(ξ0)Km−1(ξ0)+Im+n(ξ0)Km+1(ξ0)+Im−n+1(ξ0)Km(ξ0)+

Im+n−1(ξ0)Km(ξ0)

For sufficiently small Reynolds numbers however and taking into account that

flow is non-symmetric in the vertical to the flow direction, leading to cancellation

of the double series terms in 2.36 corresponding to m = 0, n = 1, 2, there has also

been proposed an approximation for the normalized stream function as function

of the normalized distance, the angle and the Reynolds number that we deem

sufficient for the purposes of our analysis.

ψ = (A(r1 −
1

r1
)−Br1ln(r1))sinθ + (F (r2

1 −
1

r2
1

)−Gr2
1lnr1)sin2θ (2.38)

the constants A,B,C and D are all functions of the Reynolds number. More

specifically, A = B
2 = 1

2(lnRe−2.02223) , F = Re
16 , G = −BC.

With eq. 2.38 at our disposal we can calculate the velocity components:

ur =
−cosθ

(
ArR(−r2 +R2) +Br3Rln( rR) + (2F (−r4 +R4) + 2Gr4ln( rR)sinθ)

)
r3R

(2.39)

uθ =
sinθ

(
rR(Br2 −A(r2 +R2)) +Br2ln( rR) + (Gr4 − 2F (r4 +R4) + 2Gr4ln( rR))sinθ

)
r3R

(2.40)

Knowing the velocity field we can now calculate the viscous dissipation. This

expression originating from straight-forward differentiations of the above velocity

components by the definition eq.2.54 is at our disposal as well. The drag force

on the cylinder per unit depth in the z axis is found to be:

FD = 2πµU

∞∑
m=0

Bm (2.41)

Keeping the first term from the above sum, we get the Bairstow approxima-

tion:

FD =
4πµU

I0(kR)K0(kR) + I1(kR)K1(kR)
(2.42)
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By recognizing B0 as the denominator of the last equation, we get the well

known Lamb approximation for the drag:

FD =
4πµUh

1
2 − γ0 − ln(kR2 )

(2.43)

2.1.2 Case r ∼ h
2
√

3

In this case we perform the substitution h2 = 12r2 and by factorization and

combining alike terms we get:

−n(n− 1)(n− 2)(n− 3)− 2n(n− 1)(n− 2) + 4n(n− 1)− 2n+ 2 = 0

(n− 1) · (−n(n− 2)(n− 3)− 2n(n− 2) + 4n− 2) = 0

(n− 1) · ((−n2 + 2n)(n− 3)− 2n2 + 4n+ 4n− 2) = 0

(n− 1) · (−n3 + 3n2 + 2n− 2) = 0

(n− 1) · (n+ 1) · (n− 3.414213562373094) · (n− 0.585786437626905) = 0

In other words the roots of the algebraic expression, are not imaginary and

more specifically are 3.414213562373094, 1, 0.585786437626905 and −1, in de-

scending order. To an accuracy of 2
1000 we substitute the decimals with the

fractions, 3.414213562373094 → 41
12 and 0.585786437626905 = 10

17 . Hence we

rewrite:

(n− 1) · (n+ 1) · (n− 41

12
) · (n− 10

17
) = 0 (2.44)

As a result we can now state that the spatial variation of the stream function

adopts the form:

f(r) = Ar
41
12 +Br + Cr

10
17 +

D

r
(2.45)

We now apply the boundary equations eq.2.31-2.33. More specifically from

eq.2.33 we conclude that A = 0 and B has to be identically equal to U, B =

U . Solving the simple two by two system for C and D from application of the

boundary on the perimeter of the cylinder of radius R, we get, C = −34
27UR

7
17

and D = 7
27UR

2. Thus we rewrite f as,

f(r) = Ur − 34

27
UR

7
17 r

10
17 +

7

27

UR2

r
(2.46)

Now we can also give the exact form of the stream function as:

Ψ = f(r)sinθ = (Ur − 34

27
UR

7
17 r

10
17 +

7

27

UR2

r
)sinθ (2.47)

Combining eq. 2.47 with eq.2.19 and with eq.2.20 we get:
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ur =

(
U − 34U

27

(
R

r

) 7
17

+
7U

27

(
R

r

)2
)
cosθ (2.48)

uθ =

(
−U +

20U

27

(
R

r

) 7
17

+
7U

27

(
R

r

)2
)
sinθ (2.49)

At this point we also note that the above calculated velocity field satisfies the

incompressibility assumption of ∇ · u = 0. With this notice we can safely return

to the Navier-Stokes eq.2.15 and after inserting the acquired for the velocity

expressions we can integrate to gain the pressure. Having the pressure will then

allow us to compute the drag force on the body and the drag coefficient. We find:

p =

(
1

r
− 239R

7
17

162r
24
17

+
7R2

81r3

)
Uµcosθ (2.50)

The normal and shear stress components are given respectively by:

σrr = 2µ
∂ur
∂r

=
28

27

(
R7/17

r24/17
− R2

r3

)
Uµcosθ (2.51)

τrθ = µ

[
r
∂(uθ/r)

∂r
+

1

r

∂ur
∂θ

]
=

14R7/17(7r27/17 − 34R27/17)

459r3
Uµsinθ (2.52)

The drag force now is given by integration of the projections of the pressure,

normal and shear stresses in the direction of the flow, on the cylinder’s surface

multiplied with the channel’s height, i.e:

FD = h

∫ 2π

0
(−pcosθ + σrrcosθ − τrθsinθ)Rdθ =

371

306
hπµU. (2.53)

Finally we can deduce the viscous dissipation function for our flow.

ψD = µ

[
2

[(
∂ur
∂r

)2

+

(
1

r

∂uθ
∂θ

+
ur
r

)2
]

+

[
r
∂

∂r

(uθ
r

)
+

1

r

∂ur
∂θ

]2
]

(2.54)

ψD =
196

289

U2µ

R2
sin2θ (2.55)
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2.1.3 Case r > h
2
√

3

In this case we neglect the terms coming from ∇2u in the Navier-Stokes equation

and hence by dropping the relevant terms not including α in eq. 2.34 the algebraic

equation for the indices reads:

(n− 1)(n+ 1) = 0⇒ n = ±1 (2.56)

The meaning of the last result is that the sought spatial variation of Ψ is

going to be of the form:

f(r) = A1r +
B1

r
+ C1 (2.57)

and in combination with the boundary conditions used above eq. 2.31 - 2.33

it yields:

f(r) = Ur +
UR2

r
− 2UR (2.58)

Finally, the stream function is:

Ψ(r, θ) =

(
Ur +

UR2

r
− 2UR

)
sinθ (2.59)

the velocity profile now is:

ur = Ucosθ

(
1− 2R

r
+
R2

r2

)
(2.60)

uθ = −Usinθ
(

1− R2

r2

)
(2.61)

Integration of the Navier-Stokes from h
2
√

3
reveals the pressure field according

to:

P (r, θ) = −2Uµcos(θ)

rh3

(√
3h2r(1− 2

√
3) + 6R2(h− 2

√
3r) + 6hrRln

12r2

h2

)
(2.62)

An interim check of our theoretical derivations is that besides the velocity’s

divergence being zero, computation of the curl of pressure gradient for the derived

formula gives zero, i.e. ∇×∇P = 0.

The new normal and shear stress components are given respectively by:

σrr = 2µ
∂ur
∂r

= 4Uµcosθ
R

r2

(
1− R

r

)
(2.63)

τrθ = µ

[
r
∂(uθ/r)

∂r
+

1

r

∂ur
∂θ

]
= 2Uµsinθ

R

r3
(r − 2R) (2.64)
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As before, we are interested in the projections of the pressure and the normal

and shear stresses in the far field’s flow direction.

FD = h

∫ 2π

0
(−pcosθ+σrrcosθ−τrθsinθ)Rdθ =

2πUµ

h2

(
h3 +

√
3R(h2 − 12R2) + 6hR2ln

12R2

h2

)
(2.65)

The viscous dissipation function (per unit length) now is given by:

ψD =
4R2U2µ

r6
(3r2 − 8Rr + 6R2 + (r2 − 2R2)cos(2θ)) (2.66)

Integration of the above expression for the height of the channel accounts

for the total dissipation from the surface of the cylinder to an outer radius R2.

Assuming that R is greater than the height:

ΨD = h

∫ R2

R

∫ 2π

0
ψDrdθdr =

4πhU2µ

3R4
2

(−9R4 + 16R3R2− 9R2R2
2 + 2R4

2) (2.67)

If the radius of the cylinder is smaller than h/
√

12 then we need to add the

dissipation for the viscous dissipation form the calculations for the inner part of

the cell.
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Figure 2.2: 3d geometry of the gas channel and the SOFC’s anode and anode
support layers below

2.2 Electrical Problem

The second major function of the interconnect is the electronic conduction be-

tween the cells electrodes and to the external circuit. The geometry to which we

refer to is a half cell, with one end on the anode/electrolyte interface and the

other on the far outer end of the current collector fig.2.2.

In the analysis to follow later on, regarding the potentials associated with

the operation of the fuel cell and its losses exact connection between the current

density and the electrode’s overpotential will be provided. In this point we need

to stress that the choice for a linear function instead of a Buttler-Volmer like

equation, among other requirements, has to meet the assumption of overall linear

Partial Differential Equations (PDEs) for the potential of different parts of the

cell as it will become clear from this section.

The electrical conductivity problem in the current collector in three dimen-

sions is described by a Laplace PDE [1]: for the potential Φ.

σic∇2Φic = 0 (2.68)

Where in eq. 2.68 and hereafter the index ”ic” stands for interconnect. The
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boundary conditions for this problem is flux continuity through the interface

between current collector and the electrode and a fixed potential on the other

side, such that a current can be established and in the anode side a drain of

electrons is being achieved while on the cathode side an electronic influx.

Since we are restricted for the purposes of our approach to two dimensions we

need a two dimensional version of eq. 2.68. We claim that the accurate transition

of the full three dimensional case to the two dimensional one is accomplished by

the addition of a source term, corresponding to the drain of electrons, confining

ourselves to the anode from now on, to the two dimensional Laplace equation.

Determination of this extra term follows our physical intuition and understanding

of the problem as well as scaling arguments. Assuming without loss of generality

that the other than the current collector’s/anode’s interface of the current collec-

tor is grounded, the current that is being drawn is given by diving the potential

difference of top and bottom with the relevant area specific resistance, which is
σic
hic

. Hence the equation that we solve for in the areas where current collector

material will appear in our domain is the following:

hicσic∇2Φic = σic
Φ− V0

hic
(2.69)

In eq. 2.69 as already noted V0 = 0.

In a similar way, the three dimensional equation for the anode is a Poisson

equation in the potential of the anode, with boundary conditions insulation at the

interface with the electrolyte and all around and flux continuity on the interface

with the anode support.

σan∇2Φan = Saanict (2.70)

and a Laplace for the anode support With boundary conditions influx and

outflux of charge in the parallel to the current flow direction (z axis), electrical

insulation on the periphery and potential connected to the grounded edge of the

current collector.

σas∇2Φas = 0 (2.71)

Another equivalent modeling strategy is also to treat the current generation

as boundary influx in the anode’s interface with the electrolyte. In eq. 2.70, ict
is the charge transfer current accounting for the generation of electrons from the

charge transfer reaction and Saan is a geometric parameter related to the path

of the species involved in the reaction rendering the product Saanict the local

volumetric current generation. While due to its definition, Saan’s units may

vary, depending on whether the reaction is believed to be taking place at a triple

phase boundary (1/m2) or at the surface of a Mixed Ionic Electronic Conductor

(1/m), overall the term Saanict has always units of current per volume.
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The collapse of this fully 3 dimensional model in 2 dimensions cannot preserve

all the information conveyed by the full picture and more specifically, we cannot

distinguish between the 3 different potentials on the interfaces of the cell’s layers

entering our calculations. As imposed by our decision to study thus the problem

in 2 dimensions comes the fact that we have to treat the anode and the anode

support areas as a single lumped element. This approximation though unwanted

and far from the truth in terms of conventional Ni/YSZ anodes and anode support

materials, it is not too far though for other MIEC like for example CGO. From

a mathematical point of view, this treatment can be accepted because of the

linearity of eq.2.71 and eq.2.70 and the similarity of the electrical conductivities

of the anode and anode support. An ”addition” of the two equations is that

possible leading to a single potential variable for the combined region. Now

taking advantage of the transition from the volumetric current production to the

current density i, locally for every point in the x-y plane in the anode, we can

write Saanict = i
han+has

.

Combining these arguments we reach the following two dimensional analog of

the governing equation in the lumped element:

(han + has)σan∇2Φan−as = i (2.72)

From now on we re-assign to the potential of the combined anode-anode

support the symbol Φans.

It is also interesting to note that eq.2.72 is in essence an implicit Helmholtz

equation, because of the assumed linear dependence of the current density on the

electrode’s potential as it will be later explained. By a closer look in equation

2.72

Apart from the physical reasoning, we also provide quantitative proof for the

validity of eq. 2.69. For the purposes of checking the adopted expressions, we

can safely assume a constant generation of electrons throughout the cell. This

assumption is valid only in this paragraph alone.

Out of need to link these results to the afore-presented fluid flow analysis,

we choose an axially symmetric geometry for the current collector pillar and the

anode-anode support layer below. In the simulations to follow, unless otherwise

noted, we use the sets of parameters as given in the table 2.1.

Table 2.1: SOFC parameters

hic has han σic σan ictan

350µm 300µm 20µm 104 S
m 106 S

m 104 A
m2

In fig.2.3,2.4,2.5 we show a solution of the two dimensional model which in-

cludes all the reasoning developed so far. During the parametric runs we used
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a fixed circular domain for the anode-anode support domain of 1cm, outer di-

ameter, and a varying ric from 1mm to 9mm,inner circle depicted by a black

line. The boundary conditions are flux and voltage continuity at the two areas

interface and insulation on the outer diameter.

From these figures we are able to see at once that our 2D model accurately

accounts in all cases for the grounded potential inside the interconnect pillar.

The other two major checks that need to be made are to test the matching of the

current through the different areas and their deviation from a full three model.

Very important for our analysis is also figure 2.6 which shows a cross section

along any diameter, of the computational domain (because of its symmetry). It

is evident that in the anode/anode support region the profile of the potential

is a parabolic one, while in the interconnect it has another profile with a very

saddle, compared to the outer region, decrease. From a first glance this profile

looks like an exponential one and actually it can be fitted nicely using this law,

but the analytical solution we achieve later in the context of this analysis will

also reveal the exact mathematical formula for the potential in the inner domain.

Returning to checking the vertical fluxes we find the relative errors by comparing

the integral of the fluxes through the inner domain with the integral of the flux

through the top boundary of an axisymmetric model, again for a parametric study

of varying pillar radius. The potential distribution for a typical 3D case can be

found in fig.2.7 and a direct comparison with fig.2.5 shows how well our model

overall compares with a full model for which current generation takes place in

part of the outer lower domain. Stressing this important fact by looking closer at

the relative figures, we see that the achieved minimum values in the 2D model is

−0.0398V while in the 3D (the axisymmetric model is in every aspect a 3D model

and we treat and refer to it as such), the minimum value is −0.0388V . Overall,

the computed relative errors are in the range of 1− 5% for most part of the span

of the parametric study and thus we deduce a good agreement between the two

models. As another subtle assumption for our model comes the fact that because

of the dimensionality of our analysis, we cannot account for current generation

below the current collector pillars.

We now proceed in deriving an analytical solution for our model. for this

derivation we refer to fig.2.8 and we name, for ease of writing the relevant equa-

tions, the combined anode-anode support as region 1 and the current collector

area 2 assigning the corresponding index to all the magnitudes used. The major

steps of the analysis are presented here. For the potential in area 1 the following

PDE is true:

σ1∇2Φ1 = σ1
1

h1
2 Φ1 ⇒ ∇2Φ1 = c2

1Φ1 (2.73)

where we have set:
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Figure 2.3: 2D solution for potential Φ.
r = 3 · 10−3m

Figure 2.4: Height representation of 2D
solution for potential Φ. r = 310−3m

Figure 2.5: 2D solution for potential Φ.
r = 5 · 10−3m

Figure 2.6: Cross section representation
of potential Φ along a diameter

(c1)2 =
1

h1
2 (2.74)

Because of the axial symmetry,

Φ1(r, θ) = Φ1(r) (2.75)

And we get the bessel ODE:

σ1∇2Φ1 = σ1
1

h2
1

Φ1 (2.76)

Φ′′1 +
1

r
Φ′1 = c1

2Φ1 (2.77)

r2Φ′′1 + rΦ′1 − r2c1
2Φ1 = 0 (2.78)

With general solution
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Figure 2.7: Axisymmetric electrical problem, r = 5 · 10−3m

Φ1 = A1Jn(0, ic1r) +A2Yn(0, ic1r) (2.79)

From the condition that the solution at the center needs to be bounded we

conclude that A2 = 0 Hence,

Φ1 = A1Jn(0, ic1r) (2.80)

Turning to area 2 if we are given the vertical current density i,

σ2∇2Φ2 =
i

h2
⇒ ∇2Φ2 = c2

2 (2.81)

where we set:

(c2)2 =
i

σ2h2
(2.82)

Given the axial symmetry of the problem,

Φ2(r, θ) = Φ2(r) (2.83)

We acquire the Euler ODE,
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Figure 2.8: 2D model fixed geometry
Figure 2.9: Total Flux for 2D fixed
model

Figure 2.10: potential cross section in-
side the pillar, analytical solution

Figure 2.11: potential cross section for
domains 1 and 2, analytical solution

Φ′′2 +
1

r
Φ′2 = c2

2 (2.84)

With general solution,

Φ2 =
c2

2r
2

4
+B2 +B1lnr (2.85)

The boundary conditions of our problem, given by the next three equations

are respectively,flux and potential continuity at the interface, and zero flux at the

outer boundary of area 1.

~J(r = r2)n̂ = 0⇒ ∇Φ2(r = r2) = 0 (2.86)

Φ1(r = r1) = Φ2(r = r1) (2.87)
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~J1(r = r1)n̂1 = − ~J2(r = r1)n̂2 (2.88)

By substitution and doing the necessary algebra we get:

σ1A1ic1Jn(1, ic1r1) = σ2(
c2

2r1

2
+
B1

r1
) (2.89)

B1 = −c
2
2r

2
2

2
(2.90)

A1 =
σ2

σ1

1

ic1Jn(1, ic1r1)
(
c2

2r1

2
+
B1

r1
) (2.91)

B2 = A1Jn(0, ic1r1)− c2
2r

2
1

4
−B1lnr1 (2.92)

With the determination of the 4 constants A1, A2, B1, B2 we have an analyt-

ical solution for our two dimensional problem. Dimensionally, these constants

have all dimensions of potential. Predictions for this model for the case of in-

terconnect radius 5 · 10−3m is given in figures 2.10,2.11,2.9. In these figures we

can see respectively the same qualitative trends that we have seen in the two

and the three dimensional models solved earlier by Comsol. Since this analytical

solution provides exactly the same results as the two dimensional relative numer-

ical model, our analytical solution is also quantitatively well established. One of

the conditions fulfilled by the model is the equality of current through the two

domains as expressed by:∫
Ω1

i1dΩ1 =

∫
Ω2

i2dΩ2 ⇒
∫

Ω1

σ1
Φ1

h1
dΩ1 =

∫
Ω2

i2dΩ2 (2.93)

An important feature of our solution, as presented in fig.2.10 is the fact that

the change in the potential from the value on the boundary with the anode-anode

support, takes place only in a portion of the pillar, on a thin ”skin”, rendering

the rest of the material practically useless. An important goal thereafter, should

be to decrease the waste material as far as possible, if there are no mechanical

stability requirements prohibiting such reduction. Another crucial comment is

the fact that because of the form of the drain term, the interconnect conductivity

cancels out from the equation the PDE and it only enters our problem through the

continuity boundary conditions. Despite this fact, the potential Φ1 is proportional

to the ratio σ2
σ1

as we can see from eq.2.92 and eq.2.80 and hence this ratio is an

important parameter of our problem.

In figures 2.13 and 2.12 we can see the fitting by non-linear squares method

of the negative of the analytical solution by an exponential exp(a) ·exp(b ·r) with

constants :b = 2.5416e + 003, a = −22.3435. Although we will not make use of
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Figure 2.12: Potential in pillar in loga-
rithmic scale and fitted line

Figure 2.13: Potential in pillar and fitted
line

this exponential fit it is useful because it facilitates a qualitative analysis when

it is necessary on the fly.

From a conceptual but also practical point of view, having an analytical so-

lution for the potential at our disposal is a great asset for a twofold reason. On

the one hand, it allows the theoretical calculation of the power of the (half) cell

and on the other, it offers a theoretical estimate for the length-scale of the pillar.

Dealing in the first place with the calculation of the characteristic length scale

of the potential drop inside the interconnect we make use of the known from the

relevant theory approximations of the modified Bessel function of zero order of

the first kind. In the two distinct limits of the scaled variable c1r taking values

much less and much more than one it is proven that [30] it can take too distinct

forms. By substitution for our Φ1 = A1J0(c1r) we get,

Φ1 = A1J0(c1r) =

 A1

∞∑
k=0

1
k!

2
(

(c1r)2

4

)k
, c1r � 1

A1
exp(c1r)√

2πc1r
, c1r � 1

(2.94)

In eq.2.94 having experimented with both the expressions we were able to

conclude that for the series expansion actually 11 terms were sufficient. Since

however the value of the constant c1 being the reciprocal of the interconnect

height is quite big, this means that for radii comparable to the parametric stud-

ies performed above, we can safely rely on the second approximation for our

estimation. The calculation of the length-scale is done as usually, by extrapolat-

ing the line of the boundary rate of change at the interface with region 2 until

it meets the horizontal axis. Estimation of the relative derivative and executing

the necessary algebra, reveals the following expression for the meeting distance

r∗ at which the drop realized is approximately 63% of the boundary value.
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r∗ = r1
2c1r1 − 3

2c1r1 − 1
(2.95)

We can use eq.2.95 to calculate the minimum element size that can capture

the given structure of radius r1. Another interesting notion by inpsection of

eq.2.95 is that the length scale that determines the exponential rise (or decay

depending on whether we are looking at actual Φ or its negative) solely depends

on the chosen height of the interconnect gas channel.

As a quick validation of the last expression let us state that comparing the

results with the exponential fit for r1 = 5 · 10−3m earlier described we get accor-

dance more than 10−4%. Of course expression 2.95 is much more powerful and

generic and does not necessitate solving and fitting each time the solution. As a

result it is of much greater significance and so is the approximation 2.94.

2.3 SOFC Anode Potential

In open circuit conditions, the potential drop between anode and cathode in any

cell is equal to the theoretical maximum of the voltage that any H2 fuel cell

can provide. This in turn is known [3] to be given as the ratio of the maximum

electrical energy that can be produced (Gibbs free energy) to the charge that is

being transferred in the electrochemical reaction, resulting in:

VN = V 0 +
RT

2F
ln

(
PH2P

1/2
O2

PH2O

)
(2.96)

where in the above V 0 =
−∆ḡ0f

2F , −∆ḡ0
f is the change of molar Gibbs free energy

of formation at standard pressure, F is the Faraday constant, R the universal gas

constant, and Pk, k = H2, O2, H2O are the inlet partial pressures of hydrogen,

oxygen and steam respectively. Assuming standard inlet conditions of weight

fractions wH2 = 0.8, wH2 = 0.2 which in molar fractions are xH2 = 0.9728

xH2O = 0.0272, and on the cathode side a surplus of air with λ = 2 we get a

value for the Nerst potential: VN = 1.1V .

Taking into account the various losses in the half cell, implicitly assuming a

perfect cathode and electrolyte, and in general adopting the modeling procedure

of [31] we can written:

Vcell = VN − V an
p − V an

conv − V an
diff + Φ (2.97)

where V an
p ,V an

p and V an
p are the modeled potential drops of the voltage, trans-

lating also to power losses, because of polarization, conversion and diffusion mech-

anisms in the half cell’s operation. It is true that the assumption especially of

the perfect cathode is not realistic, since the cathodic losses in general are con-

siderable. However, by the time we have completed this work it will have become
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obvious that a similar model for the cathode can be built and by including the

linearity of the ohmic contribution to the resistance by the electrolyte, we can

thus model the whole fuel cell in steady state in two dimensions.

In the next few paragraphs we explain the nature of each term appearing in

eq.2.97 and how and under which circumstances it is included in our calcula-

tions. In all the expressions that will follow we will be looking at values for the

non-constant field variables, which are the concentrations (or equivalent molar

fractions) and the potential in a random point p in the x-y plane. the index

”inlet” refers at the inlet in the gas channel compositions of hydrogen and steam

and the the ”gc” to gas channel.

For all of this losses we assume an Ohmic dependence with the current density

through the cell of the form:

V an
m = i2 ·Ranm , m = p, conv, diff. (2.98)

• Polarization Loss. This term includes the heat generation coming from

all the reaction steps of the hydrogen anode oxidation. This loss can be

considered as independent of the electrode’s potential.

Ranp = Aanexp

(
Eana
RT

)
(xH2)nH2

(xH2O)nH2O (2.99)

The coefficients in eq.2.99, dependent on the the micro-structure and the

gas composition, are taken from [31] to be: nH2 = 0, nH2O = −0.35,

Aan = 8.5 · 10−6[Ωcm2], Eana = 77 kJ
mol . The operational temperature of

the cell is for all our study T = 1023K and R = 8.31451 J
molK The molar

fractions will emerge from solving the mass balance problem and it will be

handled in the following section.

• Conversion Loss. This loss accounts for the drop in the electromotive force

that drives the reaction because of the change of composition as the fuel

flows from left to right, in the direction of the flow. We thereby have:

V an
conv =

RT

2F
ln

(
xinletH2

xH2

xH2O

xinletH2O

)
(2.100)

• Diffusion Loss. This term accounts for the drop in the driving electro-

chemical force by the fact that at the reaction sites, the molar fractions of

hydrogen and steam are not the same as in the same location in the x,y

plane in the gas channel. It holds that:
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V an
diff =

RT

2F
ln

(
xgcH2

xH2

xH2O

xgcH2O

)
(2.101)

In our implementation we distinguish three different levels of approaching

the problem at hand. At each level we add one more of the afore-mentioned

losses. i.e. At level 1 we include the polarization loss, at level 2 we add the

conversion and at level 3 we add the diffusion loss. We can regard this splitting

as 3 subproblems of the original one.

The current density through the cell can be calculated from the following linear

equation:

i =
VN − Vcell − V an

conv − V an
diff + Φ

Ranp
(2.102)

It is generally known this simplification emerges from a linearization of the

Butler-Volmer equation at equilibrium conditions. So it is very likely that this

assumption breaks down and that eq.2.102 is not globally valid throught the

whole range of the design space explored. However, as already mentioned in our

case the use of eq.2.102 is not dictated by simplicity arguments, but by our need

to decompose it in a part that depends on the overpotential u and a constant

part. i.e. we wish to write:

i =
VN − Vcell − V an

conv − V an
diff

Ranp
+

Φ

Ranp
(2.103)

so that we can include this decomposed form into eq.2.72. Treating an expres-

sion like the Butler-Volmer or more complicated ones suggested in the literature

is also an option and a proposed extension of our work. Computing the current

for each point in our design domain, necessitates the calculation of the involved

potential losses. The potential of the cell, Vcell is treated as an input parameter

in our problem. From here on we can drop the index denoting the anode that

was used only for introductory purposes, since we are treating just the anode side

of the cell.

2.4 Mass Transport

Depending on the just above described level of precision on the calculation of

the current density by gradual inclusion of the different terms in eq.2.102 the

adequacy of the level of the physics to account for mass balance and transport

changes as well.

• At level 1 at which we neglect both Vconv and Vdiff the mass balance in the

gas channel of the interconnect can be adequately described by ∇ · u = 0,
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since at this approximation there are no reactions and no change in the gas

composition in our problem. For the solution of this subproblem it suffices

to take into account equations 2.14 setting the gradient of the density to

zero, 2.72 and 2.69 (combined they describe the potential both in areas

with current collector pillars and anode-anode support) and 2.102 setting

the diffusion and conversion losses to zero. This is a system with four

unknowns, velocity pressure and potential and four equations. For this case

alone, an analytical solution of the velocity the pressure and the potential

fields is possible.

• At level 2, the conversion loss is included. This means that we need to

have access to the molar fractions of the species in the gas mixture. This

is accomplished by solving the convection-diffusion-reaction equation, [1]:

uj∂j(ρwk) = ∂j(ρDk∂j(wk)) + ωk (2.104)

wk is the corresponding mass fraction, k = H2, H2O, Dk is the binary

diffusion. The assumption that we make at this point is that the gas is

a binary mixture and consequently the diffusion can be considered to be

adequately described by Fick’s law. We also note that equation 2.104 is in

essence the same as eq.2.1.

The density ρ now is a variable density in every point p in our domain

and needs to be calculated from its constituents. Under the perfect gas

assumption for the mixture and its individual constituents, we have:

ρ = ρH2 + ρH2O =
P (xH2MH2 + xH2OMH2O)

RT
(2.105)

where by M we have denoted the molecular weights and P the gas channel’s

pressure.

The term ωpk in eq.2.104 is the reaction term that is given by

ωk =

{
− iMH2

2F , k = H2

+
iMH2O

2F , k = H2O
(2.106)

The Peclet number of this setup defined as Pe = UL
D for typical values of our

simulations is in the order of magnitude of 100 so convection is dominating

and the convective flux boundary condition at the outlet is also valid. The

closed system of coupled equations to be solved has now been expanded

and includes 2.104, 2.106, 2.105, 2.3, 2.14, 2.72 and 2.69. Overall there are

6 independent equations form a system with additional unknowns from the
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previous case the two concentrations. This model because of its coupled

form is solved only numerically in Comsol.

• At the third more sophisticated and also more realistic level of our treat-

ment, inclusion of diffusion on the vertical to the flow plane direction is

required. Since our model is a two dimensional model, we incorporate the

computation of the concentrations and molar fractions at the anode by

assuming for every point of the x,y plane a one dimension linear relation

between the gas channel and the anode taking the mass flux in each case

to be equal to the local reaction generation or consumption.

ωk ·Mk = Jk = Deff c
an
k − c

gc
k

has
(2.107)

The closed system now has two more variables and two more equations, in

total 8.

In eq.2.107 we have assumed a Fickian diffusion form. However, unlike

before, this is not a good approximation for the tortous path that the gases

follow inside the porous anode support material. This is due to the fact that

the collision frequency between the molecules of the mixture has changed

in comparison to the value of the open channel and the collisions with the

wall depending on the pore size must also be included (Knudsen diffusion).

In order to correct this we use an effective corrected diffusivity based on

the literature e.g. [32] on the Bosanquet approximation.

Deff =

(
1

Deff
ij

+
1

Deff
K

)−1

(2.108)

where Deff
ij is the effective binary diffusivity and Deff

K is the effective Knud-

sen diffusion. These effective diffusivities accounting for the tortous paths

include the term ε/τ , ε being the porosity of the material and τ the tortu-

osity. By making the common assumption of ε/τ = ε1.5 we get:

Deff
ij = ε1.5

0.0143T 1.75

P · (103Mij)
(

Σi
1/3 + Σj

1/3
)2 (2.109)

Deff
k = ε1.5

97

2
dp

(
T

103Mij

)1/2

(2.110)

In the above, Mij = 1
1

Mi
+ 1

Mj

is the average molecular mass and Σi,Σj are

the diffusion volumes of species i and j respectively. Finally, the pore size dp
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is calculated as function of the particle size of which the anode constitutes

of according to:

dp =
2dpartε

3(1− ε)
(2.111)

Using the values , ε = 0.3, dpart = 3µm we compute the following values

which are included in our model: DH2,H2O = 3.5682 · 10−4, Deff
H2,H2O

=

5.8631 · 10−5, DK = 1.1751 · 10−4 and finally Deff = 3.9114 · 10−5

2.5 Energy balance

The analysis made so far in the context of this work has demonstrated that under

certain accepted in the most part simplifications, it is possible to derive analytical

expressions for the solution of the first of the three subproblems we are dealing

with. Still the theoretical derivations made are powerful and allow for calcu-

lations over a wide range of sizes of geometries exhibiting axial symmetry. Our

primary interest in taking advantage of what we have discussed so far, is to derive

expressions that offer the possibility to grasp the direction that an optimized cell,

in terms of the net power generated, should lead. The temperature distribution

has not been included in this approach, but having the gas concentrations and

velocity field everywhere, the addition of the thermal balance is a natural and

imminent extension of our work. However, this does not mean that we cannot

perform accurate power calculations, because we have taken into account all the

heat generation emerging in the cell. More specifically we have accounted for:

• The electrochemical conversion of H2 and all its steps modeled by the po-

larization resistance as well as all the other electrode losses that eventually

also get converted to heat.

• The fluid power dissipation transformed to heat.

• The current collector’s joule heating is easy to be added having computed

the power density that goes through it.

We refer to the net power generated by the cell (without the current collector)

PGEN .

PGEN = Vcell ·
∫

Ω2

i2dΩ2 = Vcell ·
∫

Ω2

VN − Vcell + Φ2

Rp
dΩ2 (2.112)

Rp is a fixed value for the whole domain relying on the inlet steam molar

fraction. Because of the power law, using a lower than what it should be H2O

molar fraction results in a higher than what it should be value for Rp, resulting

in underestimating the current. On the other hand, omission of the conversion
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and diffusion losses over estimates the current, so some kind is achieved and the

current is actually more realistic than one would expect.

The current collector Joule heating:

PJHIC =

∫
Ω1

(Φ1 − V0) · i1dΩ1 =

∫
Ω1

Φ1 · i1dΩ1 (2.113)

The net power that we get out from operating a cell with the afore-mentioned

contributions, takes the form:

PNet = PGEN − ΦD − PJHIC (2.114)

Which because of eq.2.54, eq.2.112 and eq.2.113 can be rewritten as:

PNet = Vcell ·
∫

Ω2

VN − Vcell + Φ2

Rp
dΩ2 −

∫
Ω1

Φ1 ·
σ1Φ1

h1
dΩ1

−
∫

Ω2

µ

[
2

[(
∂ur
∂r

)2

+

(
1

r

∂uθ
∂θ

+
ur
r

)2
]

+

[
r
∂

∂r

(uθ
r

)
+

1

r

∂ur
∂θ

]2
]
dΩ2

(2.115)

To conclude these theoretical investigations and in order to show how these

derivations can bee of service when dealing with energetic concepts, we confine

ourselves in studying a case that fulfils the criterion of r > h√
12

from the flow

perspective and c1r � 0 from the potential perspective. To satisfy both these, we

will do a parametric study similar to the one done in the context of the electrical

problem. We fix the radius of area 2 to 1cm and the radius of area 1 will range

with a step of 1mm from 2mm to 8mm.

By doing the necessary integrations over the appropriate domains we get,

PGEN =
2πVcell
Rp

([
VN − Vcell +

B2

2
− B1

4

]
(R2

2 −R2
1) +

c2
2

16
(R4

2 −R4
1) +

B1

2
(R2

2ln(R2)−R2
1ln(R1))

)
(2.116)

PJHIC =
σ1A

2
1

2c1

(
e2c1R1 − 1

)
(2.117)

The valid expression for the fluid flow dissipation function in this case is given

by eq.2.67. Finally, the expression that provides the net power that we get out

of the cell is:

PNet =
2πVcell
Rp

([
VN − Vcell +

B2

2
− B1

4

]
(R2

2 −R2
1) +

c2
2

16
(R4

2 −R4
1) +

B1

2
(R2

2ln(R2)−R2
1lnR1)

)
− σ1A

2
1

2c1

(
e2c1R1 − 1

)
− 4πhU2µ

3R4
2

(−9R4
1 + 16R3

1R2 − 9R2
1R

2
2 + 2R4

2)

(2.118)
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Equation 2.118 is an analytical expression whose thorough investigation can

lead in the determination of the set of parameters that lead to the maximization

of the net power we can get out of the cell. A full scan with the parameters

entering the closed analytical expression of the PNet will reveal its rich content.

From the analysis we have performed so far, it has become evident that the

important parameters of the problem are, the ratios r1
r2

and σ1
σ2

, the channel’s

height h1,cell’s potential Vcell, and the inflow velocity U in the channel. Be-

low we present characteristic plots of the power expressions derived for a set of

parameters (additionally to those described in table 2.1 and the constants for

the calculation of Rp as explained in the mass transport section), Vcell = 0.8V ,

U = 2.5ms , viscosity and density corresponding to the inlet gas compositions,

ρ = 0.0278 kg
m3 , µ = 6.4 · 10−5Pa · s

Figure 2.14: Joule Heating of the inter-
connect pillar as a function of the cylin-
der’s diameter

Figure 2.15: Fluid dissipation of the flow
around the pillar as a function of the
cylinder’s diameter

Two very interesting trends that we can see at once, is that the power gener-

ated dominates by far over the two extra losses terms and the viscous dissipation

i far from competing, mainly due to the very low viscosity of the gas at the given

temperature. Furthermore, we are able to see that for the set the specific set of

parameters, the power generated and consequently the net power exhibit a dis-

tinct maximum at r1 = 0.0032mm of 6.9070W and 6.9068W respectively. Such

and other similar optimizations can emerge by sweeping through a well selected

parametric space based on eq.2.118 as well as from deriving the corresponding

expressions for the the whole range of possible variations of the cylinder’s size

and this is an on going work. ∗

∗To be submitted for publication soon after the end of the PhD
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Figure 2.16: Cell Power Generation as a
function of the cylinder’s diameter

Figure 2.17: Net Cell Power as a func-
tion of the cylinder’s diameter





Chapter 3

Topology Optimization

Introduction

3.1 Literature overview

Topology optimization was initially introduced in the context of structural me-

chanics by Bendse and Kikuchi [33]. The primal objective of those early appli-

cations where problems for the optimization of the performance of beams under

various loading situations, given some volumetric constraints for the amount of

material to be used. The method’s versatility and universality resulted in its

expansion in may fields where optimal designs are sought, with more pronounced

examples the design of optical and acoustics devices, structural mechanisms and

fluidic applications. Full overviews of the subject are presented in [34], [35] and

[36]. The goal of the method in each case, is to introduce and define the shape

and size of material in a computational domain where on the background the

solution of a physical problem takes place, usually in the form of some coupled

together PDE’s with their boundary conditions. To distinguish between areas of

solid and free areas, we usually assign black color to the sold phase and white

to its complementary. The discretization of the problem, usually through the

handy finite elements analysis, implies that the domain consists of a group of

elements (e.g. triangular, quadrilateral). Hence, the introduction of material in

an element or a sub-group of elements and its absence in other areas, would re-

sult in an integer problem. This would be highly undesirable, because of the non

differentiable and highly discontinuous nature of the stiffness matrix even under

regularization. Thus, it has been proposed to use instead a continuous density

function. In this way, it is expected to have a smooth transition between the

black and the white, resulting in gray areas in the design domain. This approach

is known as the Solid Isotropic Material Penalization Method (SIMP).

47



48 CHAPTER 3. TOPOLOGY OPTIMIZATION INTRODUCTION

The branch of topology optimization in fluid mechanics was introduced by

Borvall and Petersson [20]. In their original work, they provided theoretical proof

of the well posedness of the solution coming from the application of the method

on a Stokes flow in two dimensions and they made the transition of the necessary

concepts from the already advanced solid mechanics field to fluid mechanics. The

realization of the continuous interpolation between areas of material and of no

material was based on a Brinkman model for porous media, at which the local

permeability was linked to the design continuous design variable. This means

that in free channel areas the local permeability should be zero while when a

solid obstacle is created, the local permeability increases enormously, penalizing

the flow and almost shutting it off in this region. An extension from the Stokes

flow regime to moderate Re was made by [37] and [38].The theoretical backup

for the use of the incompressible Navier-Stokes equations in the laminar regime

was provided by [39] while in [40] the mathematical foundation of the original

Stokes problem was also expanded. An alternative approach using a combined

Stokes-Darcy equation and equal order quadrature for velocity and pressure (for

stabilization purposes) as found in [41], was applied for the whole range of incom-

pressible Navier-Stokes. Three dimensional work in fluid problem has also been

reported e.g. [42], [43] although the increase in the size of the problem requires

significantly more computational power compared to the 2d simulations. A dif-

ferent than ours description for the damping term accounting for the collapse of

the the third dimension of the fluid flow relies on mapping and parameterization

on the midplane of the height and finally renormalization using the parabolic

velocity profile from lubrication theory [38].

The idea of applying topology optimization in fuel cells modeling has emerged

lately as a natural extension of the progress in modeling fluid/porous media flows.

However the level of complexity of the necessary modeling to take into account

the multiplicity of physical phenomena involved, is by definition cumbersome.

Two relative works found in the literature are [44] and [45] . In the former, op-

timization of gas channels for SOFC cathodes in the perpendicular to the flow

direction is studied. They included a convection-diffusion equation in the gas

channel and an ionic potential field with diffusivity and electrical conductivity

dependent on the design variable. Their design parameter was the channel aspect

ratio. As objective function was chosen the maximum current output from the

cathode and they recorded an 8% − 9% increase of the optimized results when

compared to a reference case. In the later work, optimization of anode gas chan-

nels in PEM Fuel Cell was attempted in the same as before direction, in terms

of optimizing the route of the gas introduction and branching in the cell. The

applied equations used where Navier-Stokes, convection diffusion reaction for the

hydrogen being the only constituent of the fuel gas.
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3.2 Mathematical Formulation of Optimization Problems

Any optimization problem consists of some fundamental pieces of information

and a problem’s setup that has to be put into mathematical form if we are

about to treat it in a generic and efficient way in order to allow us to treat

problems for all the scope of science and engineering. Assuming that we have a

space of n design parameters, xn whose full determination completely defines all

the expression entering our problem. Let us further assume now, that there is

function of these design parameters, that we wish it to accomplish a maximum or

a minimum value. Since this maximization or minimization is the purpose, or in

other words, the objective of our study, we call this function, objective function,

and we denote it by Φobj(x1, x2, .., xn). The design parameters will in the general

case satisfy a set of equality constraints and another set of inequality constraints.

As a result the optimization problem consists exactly of the determination of the

design parameters vector, that while satisfying all the constraints, accomplishes

the sought optimization. Since maximization of any function can be considered

as the minimization of its negative, the standard convention of the formulation

of any optimization problem, acquires the following form [46]:

min Φobj(x) = Φobj(x1, x2, ..., xn)

hj(x) = hj(x1, x2, ..., xn) = 0, j = 1 to p

gi(x) = gi(x1, x2, ..., xn) ≤ 0, i = 1 to m

(3.1)

We note that the inequality constraints contain the so called, ”box” con-

straints for the xn as well, i.e. constraints of the form, xnlow ≤ xn ≤ xnupper





Chapter 4

Topology Optimization

Methodology

The purpose of this chapter is to present all the necessary steps for the formulation

of our problem, the definition of all the equality and inequality constraints and

derive the appropriate form for the objective to be by convention minimized

according to the common practised adopted in eq.3.1.

4.1 Fluidic Power Dissipation

In all cases, the dissipated in the fluid power is given by [37], [47]:

ΨD(u, P, γ) =

∫
Ω

1

2
µ
∑
i,j

(
∂ui
∂xj

+
∂uj
∂xi

)2

+
∑
i

α(γ)u2
i

 dr (4.1)

The late expression, under the condition of steadiness of the flow and no slip

condition on the walls parallel to the flow direction, is equal to the work by

external forces (pressure) and the increase in the kinetic energy:

ΨD(u, P, γ) =

∫
∂Ω
−nu

(
p+

1

2
ρu2

)
ds (4.2)

4.2 Governing Equations

In the context of deriving the necessary equations, following the convention of the

previous chapter, we continue referring to the areas where solid material arises

as area 1 and its complementary open for fluid flow and also anode and anode

51
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support power generation, as area 2. We highlight however that these indices do

not refer to different design domains.

As already discussed in the theoretical investigations on the mass transport

we have attempted to solve numerically 3 different subproblems.

4.2.1 Subproblem 1

Only the fluid flow for a constant composition gas and the electrical problem

are treated, cut off from any connection to the actual electrochemistry of the

problem. This can be of relevance when in general it can be argued that the

average fluctuations of the density in the flow and of the current in the electrical

problem do not deviate significantly from the values used here. Similar works

e.g.[48] point to this conclusion of week coupling between the gas channel fluid

flow and the electrochemical processes, making this approach particularly handy.

The form of the Navier-Stokes equation for this case is:

ρ(u · ∇)u = ∇P + µ∇2u− αu (4.3)

The boundary conditions used are constant inlet flow-rate on the left edge,

symmetry on the top and bottom and atmospheric pressure at the outlet.

The LHS in eq.4.3 is the convective term and the RHS consists of the pressure

gradient, the viscous term and finally the damping term. This last term has a

dual role. In the area of the fluid flow (γ = 1)the damping comes from adequately

describing in the two dimensions the suppression of the flow in the third (flow

through a slit) with:

αmin =
12η

h2
ic

(4.4)

as described in the theory chapter. In the area where interconnect regions are

created by the topology optimization (γ = 0)the extreme damping experienced

by the flow is linked to the local permeability and design parameter γ and the

value of the damping term acquires its maximum value:

αmax =
η

DaL2
(4.5)

L being the length scale of the problem. This is done by defining a sufficiently

low Darcy number which in all cases for our numerical investigations was taken

to be Da = 10−5

The interpolation between these maximum and minimum values for α is done

by:

α = αmax + (αmin − αmax) · α0 (4.6)

where:
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α0 =
γ(q + 1)

q + γ
(4.7)

The value of the parameter q defines the convexity of the interpolation of α

between its minimum and maximum values as γ changes. For q << 1 the inter-

polation is very convex while for q > 1 becomes linear as shown in fig.4.1 for some

indicative values. These values are generally problem dependent. In our case we

used the following vector q = [10−4, 10−3, 10−2, 10−11]. The progressive increase

and finally the use of an almost linear interpolation emanates from the conclusion

of Borvall and Petersson that for the Stokes regime a linear interpolation scheme

ensures a full discretization between areas of zero and one in the design domain.

Figure 4.1: α − γ interpolation with different values of parameter q. αmax =
10000, alphamin = 0

The equation that describes in two dimensions the electrical problem is writ-

ten as follows:

(γh2σ2 + (1− γ)h1σ1)∇2Φ−
(

(1− γ)
σ1

h1
+

γ

Rp

)
Φ =

VN − Vcell
Rp

(4.8)

As also discussed earlier, the top of the interconnect is assumed to be grounded.

The boundary condition is electrical insulation in all four edges of the design do-

main, i.e. ∂Φ
∂n , n being the normal to the edge outward vector.

The coupling for the two problems, though solved simultaneously, is indirect

through the geometry. Along with the continuity equation:

∇ · u = 0 (4.9)
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we have a system of four equations and four unknowns the velocity (u,v),

pressure P and potential Φ.

The objective function is:

Φobj =

∫
Ω

[
γ · Vcell ·

VN − Vcell + Φ

Rp
− γ · ΦD − (1− γ)

σ1

h1
Φ2

]
(4.10)

4.2.2 Subproblem 2

In this case we include as a novelty of our work the changing density gradient and

also account for the varying concentrations of the constituents of the gas anode

mixture. The Navier-Stokes now reads:

u(u∇)ρ+ ρ(u · ∇)u = ∇P + µ∇2u− αu (4.11)

The convection-diffusion-reaction problem is written as:

u∇(ρwk) = γ ·Dk∇2(ρwk) + ωk (4.12)

where k = H2, H2O, Dk the binary diffusion. The boundary conditions for

the concentrations are: fixed concentration multiplied with a Heaviside function

to smooth the transition at the inlet, symmetry on top and bottom and convec-

tive flux at the outlet. In the above, the velocity field is already carrying the

information on γ. The information of γ in reaction rates is passed through:

ωk =

{
− i2MH2

2F , k = H2

+
i2MH2O

2F , k = H2O
(4.13)

where the current and potential are:

i2 = γ
VN − Vcell − Vconv + Φ

Rp
(4.14)

(γh2σ2 + (1− γ)h1σ1)∇2Φ−
(

(1− γ)
σ1

h1
+

γ

Rp

)
Φ =

VN − Vcell − Vconv
Rp

(4.15)

From the extra equations in comparison to subproblem 1, only two are inde-

pendent. Finally, we have a system of 6 coupled equations for 6 unknowns.

The problems objective function reads:

Φobj =

∫
Ω

[
γ · Vcell ·

VN − Vcell − Vconv + Φ

Rp
− γ · ΦD − (1− γ)

σ1

h1
Φ2

]
(4.16)
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4.2.3 Subproblem 3

The two additional equations in this subproblem are:

cank = cgck
ωkMkh2

Deff
(4.17)

and the potential includes the relevant losses:

(γh2σ2 + (1− γ)h1σ1)∇2Φ−
(

(1− γ)
σ1

h1
+

γ

Rp

)
Φ =

VN − Vcell − Vconv − Vdiff
Rp

(4.18)

as well as the current:

i2 = γ
VN − Vcell − Vconv − Vdiff + Φ

Rp
(4.19)

We now have a 8 by 8 system of independent coupled equations.

The objective function for this cases takes the form:

Φobj =

∫
Ω

[
γ · Vcell ·

VN − Vcell − Vconv − Vdiff + Φ

Rp
− γ · ΦD − (1− γ)

σ1

h1
Φ2

]
(4.20)

4.3 Problem in divergence form

Following the formulation of [37] the problem is set in the convenient for finite

elements analysis, divergence form as follows:

∇Γi = Fi, in Ω,Governing equations (4.21)

Ri = 0 on ∂Ω,Dirichlet B.C. (4.22)

− n · Γi = Gi +
3∑
j=1

∂Rj
∂ui

λj , Neumann B.C (4.23)

In the above, Γi is a 2 by 1 vector in each case, which is associated with the

diffusive term in each one of the PDEs introduced at the governing equations

section. More specifically, it is taken as the ith column of the relative tensor (the

projection in the x and y directions). The vector F contains all the other terms

of the governing equations moved to the right hand side.

4.4 Objective function

It is worth noticing now, how each one of the terms involved in the expression

of the objective function behaves in terms of material emerging in the design
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domain as the optimization process moves along. We will analyze this behavior

in the context of subproblem 1 because it exemplifies sufficiently for all the cases.

Though we use in our calculations eq.4.1, we will use eq.4.2 to derive our

conclusions in the context of this discussion because it is much offers a much

more illustrative way of the energy interplay of the fluid.

Referring to eq.4.10 we examine each term separately.

• γ ·Vcell · VN−Vcell+Φ
Rp

. This term comes form the anode-anode support material

and is governed by the difference VN −Vcell+Φ everything else being a con-

stant. In fig.2.6 and in the analytical solution we derived for the potential

in this region, it was evident that the potential follows a parabolic profile

which deepens the further two hypothetical pillars are put. In this way, by

increasing the distance between these two pillars, the value of VN−Vcell+Φ

will decrease and so will the power generated by the anode-anode support

layers. In other words, bringing up new material in the domain ΩS or bring-

ing closer existing increases this term. Hence maximization of this term,

introduces material in the domain.

• γ · ΦD. In order to assess the effect of changes in this term, we refer as

mentioned to eq.4.2. From this expression, it can be deduced that under

the constant flowrate boundary condition at the inlet, minimization of this

term, requires minimization of the hydraulic resistance and hence it favors

removing material from the domain.

• (1 − γ)σ1h1 Φ2. This term comes form expressing the thermal losses in the

current collector. Its role, according to the reasoning for the anode-anode

support first term, is that its minimization also favors introduction of new

material

From the above analysis, it is obvious that two out of the three terms are

responsible for the introduction of material in our domain while only the term

coming from the fluid’s dissipated power tends to create free passage. All the

above are also from an intuitive point of view correct.

4.5 Optimization

Our problem with respect to mathematical optimization theory is formulated as

follows:
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min Φobj(u(γ), γ)∫
Ω
γ(rdr− β|Ω|) ≤ 0,

0 ≤ γ(r) ≤ 1,

eq.4.9, 4.3, 4.8, 4.11, 4.12, 4.15, 4.18, 4.17

(4.24)

where, β is the fraction of the design domain that is not to be covered by

material and the cited equations are the governing equations of our in total. So

each subproblem is taking the above form with each one governing equations and

boundary conditions.

In mathematical optimization, the literature on strategies to solve an opti-

mization problem, is enormous. Factors on which the choice of the algorithm

usually are the existence or no existence of constraints, the order and the lin-

earity or non-linearity of the system of equations and the constraints, accurate

access to information for computing the gradient and the Hessian, the degrees

of freedom of the problem and so on. Usually information of the Hessian or to

its approximation is computationally expensive, so gradient based methods like

the steepest descent or conjugate gradient are preferable. In the case of topol-

ogy optimization however, with many degrees of freedom and few constraints a

more efficient choice is the Method of Moving Asymptotes (MMA) developed by

Svanberg [49] and it is the choice that we also make in the context of our work in

order to update in each iteration the design variable γ, based on the information

and the sensitivity analysis of the previous step.

4.6 Sensitivity Analysis

According to standard finite element theory, the generalized vector of the solution

V of the governing equations is approximated by a set of basis functions, φi,n
and so is the design variable γ with corresponding expansion coefficients. This

approximation results in a discretized, linear or non-linear system of equation

according to the choice of the basis functions and the form of the PDEs.

We used the well known Taylor-Hood scheme for satisfying the Ladyszhenskaya-

Babuska-Brezzi (LBB) stability criterion [50]. The scheme imposes a second order

quadrature for the velocity and first order for the pressure [20], [37], [42] built in a

combined way to ensure the convergence of the discrete solution to the continuous

one.

For the potential Φ, and the concentration fields second order elements were

also used. For the gamma field, it suffices to use Lagrange elements of first order.

The sensitivity analysis is dealing with calculating the gradient:
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d

dγ
[Φobj(V(γ), γ)] =

∂Φobj

∂γ
+

∫
Ω

∂Φobj

∂V
· ∂V
∂γ

dr (4.25)

This gradient provides information of the dependence of the objective function

on the design variable and the solution (which is also a function of the design

variable) and it is a necessary input in the gradient based routine, in our case

MMA, in order to update the design variable for the next step in the iteration

process. The calculation of
∂Φobj

∂γ employs the standard adjoint method [51], [37].

4.7 Implementation

4.7.1 Numerical Setup-Geometry-Boundary conditions

The implementation was realized using the scripting interface of Comsol to Mat-

lab. In the codes used, which are set up for minimization, the objective function,

that we wish to be maximized, is entered as its negative.

Figure 4.2: Design domain Figure 4.3: Typical mesh

The domain used in depicted in fig. 4.2It is a two dimensional rectangle of

dimensions w = 5mm (y axis) and length L = 2cm (x axis). The domain was

taken so small because of the fine meshing needed because of the concentration

fields which were very demanding and of the absence of stabilization techniques.

A typical mesh for Subproblem 1 is shown in fig.4.3. The maximum element size

is 10−4 and an unstructured mesh like the one presented here is always used.

The boundary conditions are as follows:

• Fluid Flow. Uniform inlet velocity Uoin (edge 1) and atmospheric pressure

condition at the outlet (edge 4). Symmetry boundary conditions on the

top and bottom (edges with numbers 2 and 3). The severe damping of the

flow by the extreme aspect ratio of the channel, makes indifferent actually

if the incoming condition is a parabolic or bulk uniform value in terms of

the designs achieved.

• Electrical Helmholtz. Zero flux condition on all the four edges of the do-

main.
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• Concentrations in the gas channel. Fixed concentration inlet weight fraction

for fuel gas, smoothed by a Heaviside function to alleviate discontinuities.

However, this alleviation proved to be more challenging than expected.

The exit condition is convective flux while edges 3 and 4 are zero Neumann

conditions.

• Concentrations in the anode. This values are a mere numerical linear map-

ping of the gas channel’s concentrations as already explained and the same

holds for the boundary conditions.

The parametric sweep performed for our numerical experiments are depicted

in the following table.

Table 4.1: Values of parameters used in simulations

Parameters Vcell(V ) Uoin
(
m
s

)
σic
(
S
m

)
Values 0.7, 0.8 0.25, 0.5 1 102, 103, 104, 105, 106

The low electrical conductivities appearing in our parameters space emerge

from the fact that the pillar that collect and conduct the electronic current are in

real designs covered by protective to corrosion layers. Assuming that these coat-

ings have a significantly lower conductivity than the one of the metallic material

of the interconnect, we treat the two as single material with an electronic con-

ductivity interpolated between the minimum, (coating), and maximum, (steel),

values.

We also stress out the fact that all our numerical work, in the same way as

our theoretical one before, that we do not take into account the gradients in the

temperature T, meaning that we assume the whole cell to operate on isothermal

conditions.

4.7.2 Algorithm Flowchart

The flow chart of the algorithm used is presented below:

1. Initialization of Subproblem Geometrical setup, Physical and numerical

constants definition (iteration counter, q, maximum number of iterations

etc), assign initial guess for γ.

2. Possibly apply density filter to γ

3. Solve for the current γ the coupled PDEs by FEM in Comsol and acquire

the solution (V (γ)).
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4. Compute the objective functionΦobj

5. Compute the sensitivities
∂Φobj

∂γ by the adjoint method, formulating appro-

priately the problem in Comsol

6. Update design variable by calling the relevant MMA routines.

7. check for convergence. If maximum number of iterations not reached or if

convergence not accomplished return to 2 and increase iteration counter by

1

8. Post processing.

4.7.3 Stabilization-Filtering-Convergence Criterion-Starting Conditions

No stabilization method was used, nor for the fluid flow nor for the convective

mass transfer. For the fluid flow this was not an issue, since the speeds in our

implementation are fairly low, and the LBB criterion is satisfied. However, the

absence of stablization technique for the convective transport, means that a very

refined mesh had to be used and since our computational resources were limited,

in many circumstances we witnessed instabilities when treating subproblems 2

and 3.

On occasions we applied a density filter as described in [43] and [34] because at

some instances the results were giving an impression of slight mesh dependance.

However, because of the non-linearities of the problem it did appear to pay off

usinf the filtering and so it was not a general treatment.

The convergence criterion to change to another value q defining the linearity of

the interpolation as already explained, in the process of the algorithm was the

the absolute value of the difference between two successive γ values to be less

than 10−3. The maximum iteration number was set to 500.

In all subproblems, the codes demonstrated robustness in the initial conditions,

i.e. for diffferent initial conditions for the original guess for the design parameter

γ the same result was always produced.



Chapter 5

Topology Optimization Results

and Discussion

The main focus of this discussion, is out of the three subproblems earlier set,

subproblem 1. The reason for this is that the scripts for this case exhibit both

stability and very good convergence for all the range of our design parameters on

the one hand. On the other hand, the level of complexity of the models involved

in subproblems 2 and 3 resulted in the models finalization and fine tuning only

near the end of this work. Not to mention that the complexity and the non-

linearity, invoked many instabilities whose partial alleviation was achieved also

but recently. So only a very few indicative cases are available for the moment.

However, the exploration of the full scan of the design domain and a quantitative

analysis of all subproblems is an on going process that we wish to conclude soon

after the completion of this work.

5.1 Subproblem 1

In figure 5.1 we see a typical example of the distribution in our design domain

This image was generated after a 150 iterations.

As we are able to observe in this figure, the contrast between values of 0, i.e.

interconnect material and values of 1, i.e. fluid or anode/anode support layer,

is ideal and almost no grey areas appear with values in-between. Next, we take

a look at the potential distribution corresponding to the same parameters and

design domain.

In the first place, in accordance to the the models developed in the theory

chapter, we see that in the areas where interconnect material is introduced by the

topology optimization, the potential value reduces to 0 while in the anode/anode

61



62 CHAPTER 5. TOPOLOGY OPTIMIZATION RESULTS AND DISCUSSION

Figure 5.1: γ distribution in design domain, Vcell = 0.8V , Uoin = 0.5ms , σic =
103 S

m

support region it accomplishes negative values. It is more illustrative, if we look

at the same values in a 3D height representation, fig.5.3

Furthermore, we see that for this setting, the minimum value of the potential

is −0.036V .

Crucial to the accuracy of our results is the sign of the difference Vnet =

VN − Vcell + Φ to always remain constant, fig.5.4. Indeed, this is always true,

since the values of Φ are in general one to two orders of magnitude smaller than

VN − Vcell.
Since the fluctuations in Vnet are minute, the current density,in A

m2 , of the

domain with γ = 1 appears consequently more or less uniform in the anode/anode

support, fig.5.5. The maximum value computed here is 1.5 A
cm2 , which obviously

is over estimated compared to real life values.

The integral of the current density over this domain must be equal to the

current density of the current going through the interconnect as the conservation

of charge dictates. Since the area available for current collection is smaller the

(negative) current through it must be significantly larger. Indeed, this is true,

and more specifically as we see in 5.6 almost an order of magnitude larger.

We now take on the fluidic part of our problem. In the first place the velocity

distribution looks like this:

The maximum value of the velocity in the domain is 3.96042ms . Calculating
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Figure 5.2: Φ distribution in design domain, Vcell = 0.8V , Uoin = 0.5ms , σic =
103 S

m

the Reynolds number of the flow, we find that Re = 0.6081. Hence we can say

that we are not so far away form our original argument that the fluid flow can be

considered as a Stokes flow. We can also take a look at the pressure drop that

takes place as we move with the fuel gas in a plot where we are omitting the γ

so as to reveal the slight change fig.5.8 and a contour plot fig5.9.

Turning our attention to the energy calculations, as expected by the preceded

analytical calculations in the theoretical investigations chapter, the orders of

magnitude of the fluid dissipated power, the joule heating of the interconnect and

the power generated from the MEA having subtracted all the included in each

subproblem losses, are quite different. This is evident in the following typical

examples of the same set of parameters.

In fig.5.10 we observe that the power given by the cell, is around 12kW
m2 =

1.2 W
cm2 . In fig.5.11 we depict the actual value that is being minimized during

the optimization process, i.e. the negative of Pgen − Pfluid − Pjhic. The close

proximity between absolute values of Pgen and Pnet is due to the lower values of

the other two losses included, i.e. Pfluid fig.5.12 and Pjhic, fig5.13.

In these figures we see that the order of magnitude of Pfluid is 0.01 W
cm2 and

that of the joule heating of the interconnect material is 0.36 W
cm2

In order to demonstrate how the iteration process evolves, we show in figure

5.14, some characteristic instances for a slightly different set of parameters. The
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Figure 5.3: Φ height representation of distribution in design domain, Vcell = 0.8V ,
Uoin = 0.5ms , σic = 103 S

m

satisfaction of convergence criteria for the vector q used, gave 163 iterations. It

is apparent from these figures that progressively, as q changes, the gray areas are

successfully giving their position to more discrete ones.

In fig.5.15 we vary the conductivity of the interconnect and the potential

of the cell for a fixed Uoin = 0.25ms . An obvious observations which is also a

general trend of our findings is that the higher the used conductivity the thinner

the areas of interconnect material grow. However, we are able to see the distinct

difference between Vcell = 0.7 and Vcell = 0.8. The later one assists the better

contrast between regions of solid and open space, while the former has a tension

for giving more homogenized and grey areas. In any case, this tendency concurs

with our physical intuition that the the larger the conductivity of the interconnect

material, the lesser material is needed to give passage to the same as before charge

per area per time.

5.2 Subproblems 2 and 3

Subproblem 2, was actually built as an intermediate step for subproblem 3. Qual-

itatively the solutions they produce are quite similar so we proceed in presenting

directly some indicative results from the simulations performed on subproblem

3.
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Figure 5.4: Vnet distribution in design domain, Vcell = 0.8V , Uoin = 0.5ms ,
σic = 103 S

m

In fig.5.16 we see the γ distribution produced after500 iterations, for the following

set of parameters: Vcell = 0.8V , Uoin = 1ms , σic = 106 S
m

A general observed tendency, was that the convergence for these problems

benefited from increase of σic. Returning to fig.5.16 we see that by comparison

with the previously observed trend, the high interconnect electronic conductivity

does not result in an as scattered pattern of small structures, but rather gives

rise to thicker and more rounded structures. Furthermore, we see that the there

are gray areas and hence the discretization could probably be enhanced by the

application of the relevant filter.

By inspection of the potential hight representations fig. 5.18 and 5.19 we see

that in the case of subproblem 3 a slightly lower potential is achieved. This is

totally what we would expect from just observing at the γ distribution, in com-

bination with the theoretical results and the comments we made on the effect of

the different terms entering the objective function, according to which increasing

the separation between the interconnect pillars would deepen the second order

potential drop in area 2. The values we observe are −3.5 · 10−3 for subproblem 1

and −4.5 · 10−3 for subproblem 3.

Turning our attention to fig.5.20 and 5.21, we see how the current distribu-

tion increases as we go downstream. This is also something expected from the

expression eq.4.19. The denominator Rp decreases as water vapor is produced
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Figure 5.5: Anode/anode support current density distribution in design domain,
Vcell = 0.8V , Uoin = 0.5ms , σic = 103 S

m

downstream and hence this results in an increase in the current.

This higher current, has as a natural consequence the increase, of the net

power we are able to extract from the cell as indicated in figures 5.22 and 5.23

where the negative net power in subproblem 3 is about 0.2 W
cm2 more than the one

in subproblem 3. Next, we demonstrate the concentration fields calculated in our

simulations. In fig.5.24 we see the slight variation in the hydrogen concentration

from the fixed at the inlet value of 11.23mol
m3 to 10.7mol

m3 at the outlet. In fig.5.25

we see the same figure multiplied by γ

In fig.5.26 we observe the increase of the mass fraction of water vapor down-

stream, from 0.2 at the inlet to 0.36 at the outlet. In fig.5.27 we show the molar

fraction of H2 ranging from 0.9727 at the inlet to 0.9323 at the outlet.

The reaction rate in mol
m2·s , is shown in fig.5.28

We have stressed in our theoretical derivations and in the numerical simula-

tions’ setup that the density is variable in the design domain, depending on the

variable concentrations of H2 and H2O. In fig.5.29 we see the increase from the

inlet value of 0.0278 kg
m3 to the outlet value of 0.0334 kg

m3 . This increase of 20.14%

is due to the steam production and participation with a higher molar fraction in

the calculation of the outlet compared to the inlet one.

To conclude this qualitative analysis, we show in fig. the variation in the cell

of the conversion and diffusion losses.
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Figure 5.6: Current collector current density distribution in design domain,
Vcell = 0.8V , Uoin = 0.5ms , σic = 103 S

m

By inspection it is evident that the conversion losses are almost two orders of

magnitude greater and hence more important in our calculations.
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Figure 5.7: Velocity distribution with stream lines in design domain, Vcell = 0.8V ,
Uoin = 0.5ms , σic = 103 S

m

Figure 5.8: Pressure distribution in de-
sign domain, Vcell = 0.8V , Uoin = 0.5ms ,
σic = 103 S

m

Figure 5.9: Pressure contours in design
domain, Vcell = 0.8V , Uoin = 0.5ms ,
σic = 103 S

m
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Figure 5.10: Pgen distribution in design
domain, Vcell = 0.8V , Uoin = 0.5ms ,
σic = 103 S

m

Figure 5.11: −Pnet distribution in de-
sign domain, Vcell = 0.8V , Uoin = 0.5ms ,
σic = 103 S

m

Figure 5.12: Fluid dissipation,Pfluid,
distribution in design domain, Vcell =
0.8V , Uoin = 0.5ms , σic = 103 S

m

Figure 5.13: Current collector joule
heating Pjhic, in design domain, Vcell =
0.8V , Uoin = 0.5ms , σic = 103 S

m



70 CHAPTER 5. TOPOLOGY OPTIMIZATION RESULTS AND DISCUSSION

Figure 5.14: γ after, 50, 100, 150 and finally 163 iterations, Vcell = 0.7V , Uoin =
0.5ms , σic = 103 S

m

Figure 5.15: Variation of γ with Vcell and σic for fixed Uoin = 0.25ms
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Figure 5.16: γ distribution in design do-
main for subproblem 3, Vcell = 0.8V ,
Uoin = 1ms , σic = 106 S

m

Figure 5.17: γ distribution in design do-
main for subproblem 1, Vcell = 0.8V ,
Uoin = 1ms , σic = 106 S

m

Figure 5.18: height representation of po-
tential Φ in design domain for subprob-
lem 3, Vcell = 0.8V , Uoin = 1ms , σic =
106 S

m

Figure 5.19: height representation of po-
tential Φ in design domain for subprob-
lem 1, Vcell = 0.8V , Uoin = 1ms , σic =
106 S

m

Figure 5.20: Area 2 current distribu-
tion in design domain for subproblem 3,
Vcell = 0.8V , Uoin = 1ms , σic = 106 S

m

Figure 5.21: Area 2 current distribu-
tion in design domain for subproblem 1,
Vcell = 0.8V , Uoin = 1ms , σic = 106 S

m
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Figure 5.22: Area 2 net power distribu-
tion in design domain for subproblem 3,
Vcell = 0.8V , Uoin = 1ms , σic = 106 S

m

Figure 5.23: Area 2 net power distribu-
tion in design domain for subproblem 1,
Vcell = 0.8V , Uoin = 1ms , σic = 106 S

m

Figure 5.24: cH2 distribution in gas
channel design domain for subproblem 3,
Vcell = 0.8V , Uoin = 1ms , σic = 106 S

m

Figure 5.25: cH2 distribution in gas
channel design domain for subproblem 1
with embedded γ, Vcell = 0.8V , Uoin =
1ms , σic = 106 S

m
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Figure 5.26: H2O mass fraction distri-
bution in gas channel design domain for
subproblem 3, Vcell = 0.8V , Uoin = 1ms ,
σic = 106 S

m

Figure 5.27: H2 distribution in anode de-
sign domain for subproblem 3, Vcell =
0.8V , Uoin = 1ms , σic = 106 S

m

Figure 5.28: H2O reaction rate distribution in mol
m2·s , Vcell = 0.8V , Uoin = 1.0ms ,

σic = 106 S
m
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Figure 5.29: Density distribution in kg
m3 , Vcell = 0.8V , Uoin = 1.0ms , σic = 106 S

m

Figure 5.30: Conversion potential loss
distribution in gas channel design do-
main for subproblem 3, Vcell = 0.8V ,
Uoin = 1ms , σic = 106 S

m

Figure 5.31: Diffusion potential loss dis-
tribution in anode design domain for
subproblem 3, Vcell = 0.8V , Uoin = 1ms ,
σic = 106 S

m



Chapter 6

Homogenization

6.1 Overview

The goal in this work is to define optimal micro-structures for a Solid Oxide Fuel

Cell Cathode through modeling. This modeling relies on homogenization for the

derivation of the up-scaled equation describing the diffusion of oxygen vacancies

in the cathode under steady state conditions. Solution of this equation leads

to correlation of the Area Specific Resistance of the cathode to the geometric

features of the micro-structure such as the porosity and the area available for

oxygen surface exchange reaction and the tortuosity. We focus on studying four

geometries that are of specific interest due to their ease of manufacturing, i.e.

a cylinder, inverse opal, sphere and inverse sphere. The structures radius, for

given specific material and micro-cell length scale proves to be the important pa-

rameter of our problem. Thus, it is natural to investigate the effect of sweeping

through different radii on the electrodes resistance for each one of the selected

structures. Calculation of the tortuosity is achieved by means of a relevant ex-

pression, emanating from the performed homogenization, while the other two

structural-geometric elements, i.e. porosity and reaction available area can be

directly computed, either during simulation or analytically. Combination of the-

oretical and computational results will reveal the optimum geometry exhibiting

the lowest non-dimensional resistance among the ones studied.

6.2 Modeling of SOFC Cathodes-Cathode micro-structure

manufacturing and control

When our interest is focused on an electrode, these loses mainly come from charge

transfer processes, both electronic and ionic, gas diffusion, as well and chemical
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reactions and they are quantified by the notion of generalized resistance conve-

niently defined on a per surface basis as Area Specific Resistance (Rchem). The

minimization of Rchem through modeling for a Solid Oxide Fuel Cell (SOFC)

cathode under certain assumptions is the primary goal of this work. Many dif-

ferent mechanisms have been proposed as governing the oxygen cathode reaction

[52], [53]. In our analysis we assume that the bulk pathway of oxygen ion trans-

port is the dominant one as oxygen absorption and inclusion and bulk diffusion

are facile. Out of the components of which any hydrogen/oxygen fuel cell consists

of, it is known that the rate limitations come from the cathode and that it is the

main origin of the activation overpotential [54], due to the high oxygen reduction

activation energy. These cathodic losses can reach a fraction of up to 65% in some

cases of the total losses measured in a SOFC [55]. For material such as LSCF it

has been reported that the gas diffusion influence on the overall polarization re-

sistance of the cathode is minimal [56], [57] and that the charge transfer process

in a LSCF/GDO interface is also facile and favored by reducing temperatures

[57]. In this context, we focus our study on the minimization of the Area Spe-

cific Resistance due to the ionic solid state diffusion and the chemical exchange

mechanism alone, i.e. not including the interfacial charge transfer at the elec-

trodes boundaries for a SOFC cathode model with no gas diffusion limitations.

Some of the numerous modeling attempts of SOFC cathodes published earlier

are summarized in [58]. According to [53] the different modeling approaches

can be classified within the following categories depending on the level of so-

phistication and length-scale utilized: continuum electrode, many particles, local

current density distributions and chemical kinetics. Another more general cate-

gorization in micro- [59] and macro-models [5]-[60] is proposed in [58]. Modeling

validation is often done through comparison with experiments and Electrochem-

ical Impedance Spectroscopy (IES) results. Combination of experimental data

and macro-modeling is also very often since the former can provide the values of

properties necessitated by the macro-models or direct use of theoretical results

derived through modeling are combined with experiments as in [61]. Another

classification for the models used for simulations of SOFC cathodes emanates

from the level of general complexity and whether the totality of electrochemi-

cal and physical processes is involved or simplified assumptions are taken into

consideration regarding some of them as well as whether their target is simu-

lating the steady state regime or the transient one. Accounting for all or some

of the steps that the oxygen reduction reaction consists of and determining the

rate limiting one in each case, is another way to distinguish between modeling

approaches. The advancement in computational techniques and power has ren-

dered possible the transition from simplified analytical solutions coming from one

dimensional models to resolution of two [62] or even full three dimensional ones

[63] via commercial packages or in house codes. Research regarding manufactur-
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ing energy conversion systems in general does not exclusively rely anymore on the

conventional approach of inventing new materials with outstanding properties in

a pure chemical sense, but has also been boosted by incorporating micro-and

nano-structured materials. Thus, methods have been proposed [64]-[65] and [66],

[67] that lead to control of the morphology on the micron scale.

6.3 Homogenization on Fuel Cell modeling

The phenomena involved in the study of fuel cells electrodes concern flows of

gases or liquids through pores as well as conduction of electrons and ions through

complex networks of appropriately interconnected solid phases. In this sense, it is

natural that the shaping of the micro-structure is of ultimate importance to the

observed electrode properties and it is also expected that the material of which

the electrode consists, exhibits heterogeneity in these properties. Approaching

this problem from a theoretical point of view, one method to make a transition

from equations describing the problem on a micron scale to a macroscopic de-

scription is to resort to Volume Averaging. This is technique is used in [68] for

deriving effective electronic conductivity and gas effective diffusivity for a model

of a SOFC anode composed of the cermet Ni/YSZ. Another more general, theo-

retically rigorous and versatile alternative is Homogenization. Homogenization is

a frequently used analytical tool when two distinct length scales are present in a

problem. It is a methodology originally designed to account for periodic distribu-

tion of heterogeneities but can also be extended to the non periodic cases. Based

on the assumptions of periodicity and of approaching the solution by an asymp-

totic expansion of the function of interest e.g. concentration of ions in the case

when the studied property is ionic conductivity, it comes up with effective prop-

erties for a homogenized material. In this way, homogenization also predicts how

the macroscopic properties are affected by the micro-structure [28]. It has been

used lately in modeling the behavior of battery electrodes [69]. Along the same

lines homogenization of the Poisson-Nerst-Plank equations combined with Stokes

flow can be found in [70]. The only other attempt to apply homogenization on

fuel cells can be found in [71] where homogenization is used in modeling the pore

geometry of a cathode in PEM fuel cells. Consequently, to the best of our knowl-

edge, this is the first time that homogenization is applied in modeling of a SOFC.

In the papers [5], [72] a one dimensional model for a SOFC cathode was derived.

In the steady state, solution of the linearized ac response of this model leads to

the calculation of the penetration depth: the depth beyond which the electrode

is not any more significantly reduced. In addition, it leads to the derivation

of an expression for Rchem whose chemical and bulk ionic diffusive mechanisms

are shown to be the dominating ones for materials like LSCF. This expression

reveals dependence of Rchem on the length scale of the micro-structure and the
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micro-structures geometry. The homogenization analysis given in appendix A,

assuming the electrode to be a porous medium with considerable scale separa-

tion, provides us with an upscaled equation for the ionic diffusion identical to

the one derived by Adler in the afore mentioned model, subsequently leading

to the same expression for the Area Specific Resistance as the one provided by

Adler. In the same time, upscaling this ionic diffusion equation does not only

provide the Rchem expression but on top of that, it provides an expression for the

calculation of the necessary solid phase tortuosity which is in general very hard

to be calculated either computationally or experimentally. The calculation of

the tortuosity, necessitated for the Rchem calculation, is performed analytically

and confirmed computationally for the cylinder and inverse cylinder case and

computationally for all other cases using the commercial package Comsol. The

purpose of our work is to apply the mathematical rigorousness of homogenization

securing by construction of the method that our model incorporates the effects

of the micro-scale, benefiting from distinguishing between time scales present in

the problem at hand and then calculate for different distinct but fundamental

micro-geometries the dimensionless R̃chem as a function of the radius of these

geometries.



Chapter 7

Homogenization Modeling and

Methodology

7.1 Model Description/Simulation setup

7.1.1 Adler’s model

The model proposed by Adler [5], concerns the symmetric cell geometry depicted

in fig. 7.1 described as follows. The cell consists of an electrolyte layer and two

identical oxygen electrodes, having a thickness of Lel and L respectively. An

intermediate gas layer separates the electrodes surfaces and the perfectly mixed

two component gas (oxygen and a diluent gas) on both sides. The thickness of

this boundary layer is Lbl. The main interfacial reaction mechanisms involved in

a typical electrode like the one under discussion are the following:

• charge-transfer of oxygen ion vacancies across the mixed conductor/electrolyte

interface,

• charge-transfer of electrons across the current-collector/mixed conductor

interface, and

• the chemical exchange of oxygen at the gas/mixed-conductor interface.

From these three, we concentrate on investigating the cells resistance due to the

oxygen exchange alone. Furthermore, the model is derived on the basis of the

following assumptions:

• Fast gas diffusion. This means that the oxygen concentration can be con-

sidered constant everywhere in the electrode.

79
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• Conductivity of electrode is infinite resulting in uniform electrochemical

potential of electrons in the mixed conductor.

• Oxygen surface exchange is slow.
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Figure 7.1: Geometry of model cited in [5]

The transport phenomena present in the porous electrode material are depen-

dent on a series of geometric and reaction related features such as: the surface

reaction rate r, the porosity ε, the average internal surface area α, and the solid-

phase tortuosity τ . The porosity is the volume fraction available for gas diffusion

in the material; the internal surface area is the specific area available for reac-

tion; while the tortuosity is a measure quantifying how tortuous the trajectory

followed by a particle is, e.g. in our case by an oxygen anion. According to [5],

the unsteady diffusion reaction equation for the oxygen vacancies in the bulk is

given by:

(1− ε)∂tcV =
1− ε
τ

DV ∂
2
ycV − αr (7.1)

Where, cV is the vacancy concentration andDV is the vacancy diffusion coefficient.

The surface reaction rate is proportional to cV according to:

r = ro(αf + αb)A
cV
c∗V

(7.2)

Where, ro is the exchange neutral flux density (in analogy to exchange-current

density), αf and αf are dimensionless kinetic parameters that depend on the spe-

cific mechanism of the surface chemical exchange reaction; A is a thermodynamic

factor and c∗V refers to some reference concentration value. Equation 7.1, first in
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a series of a six equations followed by six relevant boundary conditions, allowed

Adler et al. to solve for the vacancies, and gas concentrations for the fuel cell of

the system described above, in one dimension which is indicated by the y axis

in fig. 7.1. A time dependent potential excitation was supposed for the general

case, which in the steady state regime, i.e. ω = 0, revealed the nature of two

important features of the problem. In the first place, the non-charge-transfer

resistance (Area Specific Resistance due to the chemical mechanism) for a porous

single-phase mixed conducting cathode reduces to:

Rchem =
RT

2F 2

√
τ

(1− ε)αcVDV ro(αf + αb)
(7.3)

As seen from this last expression, the magnitude of the overall impedance

equally depends on both surface reaction and solid state diffusion. Furthermore,

increase of any of the factors on the denominator of equation 7.3 is beneficial

for the electrode’s performance. In addition, we notice that both a very fast

reaction and a material with high ionic conductivity impose a decrease on the

cell’s resistance which is also physically and conceptually correct.

As a second consequence of the model’s assumptions, comes the fact that the

vacancies’ concentration follows an exponential decay with the distance from the

electrolyte-electrode interface. This active zone for oxygen reduction is described

by a lengthscale called penetration length, δp which is defined as:

δp =

√
cVDV (1− ε)

α
ro(αf + αb)τ (7.4)

We note that despite that in the afore-analyzed model the axis of interest for

the conduction of oxygen vacancies is the y axis, in our theoretical and compu-

tational implementation we rename it as the z axis.

7.1.2 Derivation of model describing the SOFC cathode through Ho-

mogenization

We now proceed by describing the way in which homogenization can provide

us with an analytical expression for the bulk diffusion of oxygen vacancies in

the SOFC cathode. The cathode material is a porous medium which can be

assumed to be of parallelepiped geometry without loss of generality, containing

pore networks through which gas oxygen diffusion takes place and solid phases

through which ions and electrons are conducted. It can be furthermore proved

that by performing a periodic expansion in all directions in space of a fundamental

cell, called the Y-cell, in which we can accurately describe in the micro-scale

the property of our interest, in this case the diffusivity of oxygen vacancies, we

can acquire an expression about the macroscopic description of the material’s

behavior with respect to the chosen property. In this way we make sure that
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Figure 7.2: Y cell nomenclature
Figure 7.3: Macro and micro homoge-
nization scaling

the heterogeneities spanned throughout our material are incorporated into the

so called, ”up-scaled” description. The Y-cell shown in fig. 7.2 consists for the

sake of demonstrating the introduced concepts of a solid phase of inverse sphere

structure and the complementary area inside it with respect to the unit cube is

the pore available for gas diffusion. This cell consists of two components. The

solid phase denoted by S and the gas phase (pore) denoted by P. The (lateral)

surface available for reaction is denoted by Γ. By the above, it is understood

that periodic expansion of this unit cell in x, y, and z produces the bulk electrode

material. As already mentioned, all the boundary conditions on this unit cell

are periodic. By comparison of the model in Fig. 1 and our unit cell in Fig.

2a the direction of oxygen diffusion of interest is y in the first case and z in the

second and this explains why the convection, diffusion reaction equation for the

first contains derivatives with respect to y and the second one with respect to z.

The argument regarding the periodic expansion of the Y-cell implies a coordinate

scaling shown graphically in fig. 7.3 for one dimension, i.e. y = x
δ where y is

the coordinate in the micro-scale characterized by the length Lmicro, x is the

coordinate at the macro-scale characterized by the length LMACRO, and δ is the

pore size. The homogenized limit is then achieved for δ → 0i.e. for high number

of Y-cells as depicted in fig. 7.5-fig. 7.7, where a cross section of spherical solid

phase is shown for simplicity. The shape of the geometry in the Y-cell though,

can be more complicated without affecting the validity of the method. Another

fundamental assumption is the fact that ∂δ
∂t i.e. the pore size does not change

with time for our analysis. As a natural consequence of our reasoning comes the

fact that on the boundaries of our Y-cell, indicated as ∂Y periodic conditions are

enforced.

Moving along and we focus on the local Y-cell ỹ ∈ Y = [0, Lmicro]
3 and write
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the oxygen vacancies’ convection, diffusion reaction equation namely: ∂tcV =

∇(DV∇cV ) accompanied by a proper boundary condition, DV∇cV ν̂ = k(cV −
cV ref ). In the boundary condition equation ν̂, see fig. 7.4, is the normal unit

vector to the solid phase surface pointing from the surface to the pore and cV ref )

is a concentration reference value. In addition, we non-dimensionalize the above

equations by using the transformations x̃ = LMACROx and ỹ = Lmicroy. In this

way, we are dealing from now on with cubic cells of length one, i.e. ỹ ∈ Ỹ = [0, 1]3

and we allow for the relevant time scales of the problem to come to the front.

The basic ansatz of the method then states that the solution of the vacancies’

concentration can be written in an asymptotic expansion of functions of both

the micro and the macro scales as in: cV = cV 0( x,y) + δcV 1 + δ2cV 2( x,y) +

O(δ3), which when substituted into the local, diffusion reaction equation and

its boundary condition equation, properly differentiated and combined with time

scaling arguments, concludes in revealing the sought bulk convection, diffusion

reaction equation. All the above steps are explicitly and analytically presented

in the Appendix of this paper.

Figure 7.4: Fundamental cell and
nomenclature in two dimensions, δ = 1 Figure 7.5: δ = 1/2

Derivation of Adler’s Formula via Homogenization We refer to literature

sources [73],[69] for what follows. The model developed concerns the fuel cell

system depicted in fig. 7.1 and the length scaling arguments are understood as

presented in fig. 7.2 to fig. 7.7.

The equation that describes the diffusion of oxygen vacancies in the solid

phase is described by:

∂tcV −∇(DV∇cV = 0) (7.5)
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Figure 7.6: δ = 1/4 Figure 7.7: δ = 1/8

Accompanied by the boundary condition:

DV∇cV ν̂ = k(cV − cVref ) (7.6)

In the above formulas cV is the vacancy concentration, DV is the coefficient

of vacancy diffusion and ν̂ is the unit normal vector to the interface of solid to

gas phase on which the exchange of oxygen takes place, k is the oxygen exchange

surface reaction rate (m/s), while cV ref is a reference value.

For a typical pore size d the micro and macro scale in terms of homogenization

theory are related as follows:

y =
x

δ
(7.7)

The length scales of the problem are related to the pore size as follows:

δ =
x

y
=

Lmicro
LMACRO

(7.8)

We will seek for solutions of this problem to be approximated by the following

asymptotic expansion:

cV = cV 0( x,y) + δcV 1 + δ2cV 2( x,y) +O(δ3) (7.9)

Any function of x and y as in:

f( x,y) = f(x,
x

δ
) (7.10)

, has derivatives which are given by:

∇f = ∇xf +
1

δ
∇yf (7.11)
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One can further make the assumption that the ability of the oxygen vacancies

to diffuse is uniform throughout the cathode material, i.e.:

DV = const (7.12)

Before proceeding any further it would be convenient to put eq. 7.5and eq.

7.6 into dimensionless form with respect to the spatial coordinates. Applying

scaling of the coordinates according to x̃ = LMACROx where LMACRO is the

characteristic length scale of the macro system, we introduce the ion diffusion

time scale:

TV =
L2

MACRO

DV
(7.13)

And the surface reaction time scale:

TRXN =
LMACRO

k
(7.14)

If we further denote the gas diffusion time scale in the pore by TG and the

electronic one by Te the assumptions of our model stated in the introduction take

the form: TRXN � TV � TG � Te Since the reaction is the slowest of all process

involved we can write:

TV
TRXN

=
kLMACRO

DV
� 1 (7.15)

In dimensionless coordinate form we can then write:

TV ∂tcV = ∇̃(DV ∇̃cV ) (7.16)

∇̃cV ν̂ =
kLMACRO

DV
(cv − cVref )⇒ ∇̃cV ν̂ =

TV
TRXN

(cv − cVref ) (7.17)

where ∇̃f = ∇x̃f + 1
δ∇ỹf means differentiation with respect to the new

dimensionless coordinates. Applying now the differentiation rule once we get:

∇̃cV = ∇x̃cV 0 + δ∇x̃cV 1 + δ2∇x̃cV 2 +
1

δ
∇ỹcV 0 +∇ỹcV 1 + δ∇ỹcV 2 (7.18)

And for the calculation of the Laplacian of cV applying the differentiation

rule eq. 7.11 to eq. 7.18,
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∇̃(∇̃cV ) = δ−2∇2
ỹcV 0

+ δ−1(∇x̃∇ỹcV 0 +∇ỹ∇x̃cV 0 +∇2
ỹcV 1)

+ δ0(∇2
x̃cV 0 +∇x̃∇ỹcV 1 +∇ỹ∇x̃cV 1 +∇2

ỹcV 2)

+ δ(∇2
x̃cV 1 +∇x̃∇ỹcV 2 +∇ỹ∇x̃cV 2)

+ δ2∇2
x̃cV 2

(7.19)

Equation 7.16 through means of eq. 7.9 eq. 7.19 gives:

TV (∂tcV 0 + δ∂tcV 1 + δ2∂tcV 2) = DV (δ−2∇2
ỹcV 0

+ δ−1(∇x̃∇ỹcV 0 +∇ỹ∇x̃cV 0 +∇2
ỹcV 1)

+ δ0(∇2
x̃cV 0 +∇x̃∇ỹcV 1 +∇ỹ∇x̃cV 1 +∇2

ỹcV 2)

+ δ(∇2
x̃cV 1 +∇x̃∇ỹcV 2 +∇ỹ∇x̃cV 2)

+ δ2∇2
x̃cV 2)

(7.20)

As the homogenization is achieved for the limit of δ → 0 we have to set the

terms multiplied by 1/δ and 1/δ2 equal to zero:

∇2
ỹcV 0 = 0 (7.21)

Differentiation of boundary condition eq. 7.6 according to eq. 7.9 and eq.7.11

provides:

−
(

1

δ
∇ỹcV 0 + (∇x̃cV 0 +∇ỹcV 1) + δ(∇x̃cV 1 +∇ỹcV 2) + δ2∇x̃cV 2

)
ν̂ =

kLMACRO

DV
((cV 0 − cV ref ) + δcV 1 + δ2cV 2)

(7.22)

Because of the δ−2 in 7.20(A-16) and the δ−1 in 7.22, and of the periodicity

of cV 0(x̃, ỹ) in y, we conclude that:

cV 0(x̃, ỹ) = cV 0(x̃) (7.23)

From the last equation, we see that any mixed derivative of cV 0(x̃)involving

differentiation with respect to y will be zero.

∇x̃∇ỹcV 0 = ∇ỹ∇x̃cV 0 = 0 (7.24)

In this way, from eq. 7.17 we get:

∇2
x̃cV 1 = 0 (7.25)
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We seek solutions of the form,

cV 1(x̃, ỹ) = wj(ỹ)∂xjcV 0(x̃) + cV 1(x̃) (7.26)

∇ỹcV 1(x̃, ỹ) = ∇ỹwj(ỹ)∂x̃cV 0(x̃) = êj∂ỹiwj(ỹi)∂x̃cV 0(x̃) (7.27)

∇ỹ∇ỹcV 1(x̃, ỹ) = ∂ỹiỹiwj(ỹi)∂x̃jcV 0 (7.28)

In eq. 7.27 and eq. 7.28 we have used the Einstein index notation where a

repeated index conveys to summation over this index. i, j = 1, 2, 3.

From eq.7.28 wanting eq.7.29 to be true we get:

∇2
ỹ(ỹi) = 0, y ∈ S (7.29)

The boundary condition for eq.7.29 is acquired by order δ0 terms of eq.7.22

− (∇x̃cV 0 +∇ỹcV 1)ν̂ =
TV

TRXN
(cV 0 − cV ref ), x̃, ỹ ∈ Γ (7.30)

Which taking into consideration eq. 7.15, finally gives for the boundary con-

dition:

∂ỹν̂wi = −êiν̂i, y ∈ Γ (7.31)

Returning to eq.7.20 we now treat the δ0 order terms, which by integration

over the domain of the solid S, gives:

TV

∫
S
∂tcV 0dỹ =∫

S
DV (∇2

x̃cV 0 +∇x̃∇ỹcV 1 +∇ỹ∇x̃cV 1 +∇2
ỹcV 2)dỹ =∫

S
DV∇x̃(∇x̃cV 0 +∇ỹcV 1)dỹ +

∫
S
DV∇ỹ(∇x̃cV 1 +∇ỹcV 2)dỹ

(7.32)

Applying Green’s theorem on the second integral of the right hand side reveals:

TV

∫
S
∂tcV 0dỹ =

∫
S
DV∇x̃(∇x̃cV 0 +∇ỹcV 1)dỹ +

∫
Γ
DV∇ỹ(∇x̃cV 1 +∇ỹcV 2)ν̂dl

(7.33)

The boundary condition for eq.7.33 comes from the δ terms of eq.7.22.

− (∇x̃cV 1 +∇ỹcV 2)ν̂ =
TV

TRXN
(cV 0 − cV ref ) (7.34)

Meaning that because of time scale arguments the second integral of the right

hand side of eq.7.33 can be dropped.
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The first integral of the right hand side of eq.7.33 because of eq.7.27 is:

∫
S
DV∇x̃(∇x̃cV 0 +∇ỹcV 1)dỹ =

∫
S
DV (∂x̃j∂x̃jcV 0 + ∂x̃i∂ỹiwj(ỹi)∂x̃jcV 0)dỹ

=

∫
S
DV (∂x̃2

jcV 0 + ∂ỹiwj(ỹi)∂x̃j∂x̃jcV 0)dỹ

=

∫
S
DV (δi,j∂x̃i∂x̃jcV 0 + ∂ỹiwj(ỹi)∂x̃j∂x̃jcV 0)dỹ

= ∂x̃i∂x̃jcV 0

∫
S

(δij + ∂ỹiwj(ỹi))dỹ

(7.35)

The following substitution, serves as a definition for tortuosity:

1

τ
=

∫
S

(δij + ∂ỹiwj(ỹi))dỹ (7.36)

From eq.7.35 and eq.7.36 we get:

DV

∫
S
∇x̃(∇x̃cV 0 +∇ỹcV 1)dỹ =

1

τ
∂x̃i∂x̃jcV 0 (7.37)

Collecting everything together, eq.7.33 reads:

TV ∂t

∫
S
cV 0dỹ =

|S|
τ
DV ∂x̃i∂x̃jcV 0 + k

∫
Γ
(cV 0 − cV ref )dl

TV |S|∂tcV 0 =
|S|
τ
DV ∂

2x̃jcV 0 + k|Γ|(cV 0 − cV ref )

(7.38)

Where |S| is the volume fraction of the solid, equal to 1− ε. Returning to di-

mensional coordinate system, the upscaled equation for the diffusion of vacancies

is:

(1− ε)∂tcV 0 =
1− ε
τ

DV ∂
2
zcV 0 + k|Γ|(cV 0 − cV ref ) (7.39)

where cV 0 is the vacancies concentration of order zero in the asymptotic ex-

pansion and |Γ| is the surface available for reaction. Equation 7.39 is the exact

same equation as Adlers equation (1) in his paper. By comparing equation eq. ??

coming from Homogenization with equation 7.1, taking into consideration equa-

tion eq.7.2, coming from [5], we observe that the two expressions are identical.

The porosity for the unit cell in this context can be expressed as the volume

fraction available for gas diffusion, i.e. as the ratio of the volume occupied by

pores divided by the total area, taking LY = 1 It will simply be:

ε = 1−
∫
S
dx (7.40)
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A is given by the total area in the Y-cell of fig.7.2 where reactions occur:

A =

∫
Γ
dA (7.41)

The z component of the invert tortuosity is:

1

τ
=

∫
S

(
1 +

∂w

∂z

)
dy (7.42)

And hence,

τ =
1∫

S

(
1 + ∂w

∂z

)
dy

(7.43)

Summarizing, we can conclude that our approach of the cathode model under

the same as Adler’s assumptions is dictated by homogenization for a different than

Adler’s derivation for the reaction diffusion equation of the oxygen vacancies in

the bulk, which however gives the same expression, i.e. equation 7.39. Moreover

computation of the solid phase tortuosity, which is in general non-trivial, can be

achieved from homogenization eq.7.29, by solving the relevant Boundary Value

Problem for a Y-periodic auxiliary variable w(y) in the mixed conductor phase

for a given structure.

7.2 Non-dimensionalization of Area Specific Resistance

and Penetration Depth

Returning to equation eq. 7.3, we rewrite the specific area available for reaction

in a way to get into the expression the micro-cube structure edge Y . If SY is

the surface available for reaction and VY is the volume of the solid phase in the

Y-cell, then by the definition of specific area the following holds: α = SY
VY

= A 1
LY

,

where A is a rescaling of the area divided by the volume in the case LY = 1.

This gives that

Rchem =
RT

2F 2

√
τ

(1− ε)A

√
LY

cVDV ro(αf + αb)
(7.44)

Equation 7.44 is fundamental for our work and a better understanding of it

is necessary. It encompasses the fact that there are major factors that affect

the cell’s resistance and correspondingly three major routes that one can follow

to apply changes to it. The first term is the square root of the micro-scale

length,LY . Given that the behavior of the material is limited by the chemistry,

by minimizing the microstructure size LY one is able to continuously decrease

Rchem. This is intuitively plausible, because if we decrease LY , we will increase

the amount of area available for reactions per unit volume. LY is the length which

we are free to choose limited only by manufacturing constraints. The next factor
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is of electrochemical nature, i.e.
√
cVDV ro(αf + αb). As already mentioned

before, fast reaction kinetics and high ionic conductivity lower the area specific

resistance of the cell. The last factor involved is geometry, as quantified by

the term
√

τ
(1−ε)A . This dependence directly suggests that the choice of micro-

structure is crucial for the finally observed Rchem. A very tortuous path proves

to be unfavorable, while the same is true when there is not a lot of surface for the

exchange oxygen reaction to take place or when the ionic diffusion takes place

through a narrow solid phase whose volume is 1 − ε in the context of our non

dimensionalized Y-cell.

If the size of the Y-cell value and the electrochemical properties appearing in

7.44 are fixed, i.e. having a constant LY and for a given material, then we will be

able to reduce Rchem if and only if the quantity τ
(1−ε)A is reduced. This reduction

will be weak as it will go with the square root of the latter quantity. The constant

value of LY is dictated by the requirements and constraints of our manufacturing

capabilities as described in references [66], [64], [74], [75], [76], [65], [67].

Therefore the task of minimizing the Rchem can be rewritten as:

min

(√
τ

(1− ε)A

)
(7.45)

We note however that the limitation for applying the formula above can be

reached if the Rchem becomes gas-diffusion limited. In this case, the expression

above can no longer be used. By the same manipulation the expression for the

penetration depth gives:

δp =

√
1− ε
Aτ

√
cVDV

ro(αf + αb

√
LY (7.46)

i.e. δp increases with the square root of LY and with the square root of the

micro-structural parameter 1−ε
Aτ .

By dividing eq.7.44 and eq.7.46 by RT
2F 2

√
LY

cVDV ro(αf+αb) and
√

1−ε
Aτ

√
cVDV

ro(αf+αb

√
LY

respectively, we non-dimensionalize the quantities that drive the optimization and

from hereafter we refer to them as R̃chem and LRXN i.e.

R̃chem =

√
τ

(1− ε)A
(7.47)

And

LRXN =

√
1− ε
Aτ

(7.48)

7.3 Numerical Calculations Strategy

The employed strategy to achieve the desired R̃chem minimization consists of the

following steps:
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1. Selecting 4 fundamental micro-geometries which according to [66], [64], [74],

[75], [76], [65], [67] are already feasible for manufacturing. These geometries

are: cylinder, inverse cylinder, sphere and inverse sphere.

2. Solving the boundary value problem of the Laplace equation 7.29 with

its boundary condition eq.7.31 for these geometries and then numerically

acquire the z component of the gradient of the unknown field w leading to

the tortuosity. Additionally, we calculate the porosity and the specific area

of reaction either analytically or numerically.

3. Computing R̃chem as a function of the radius of the geometry under study

and then acquiring graphs relating all the desired quantities involved in

equations 7.47 and 7.48.

The numerical calculations and the solutions’ visualizations are performed

using the commercial package Comsol and the software’s interface to Mat-

lab. Indicative meshes for the geometries studied are shown in fig. 7.8,7.10,

7.11, 7.9. For each case and radius we used at least 5 mesh points in

the shortest dimension of the problem while in the areas of big gradients

care was taken to insure tightening of the discretization (sphere and in-

verse sphere). For a typical cylinder, e.g r = 0.5, mesh consists of 81485

tetrahedral, 5536 triangular, 192 edge and 8 vertex elements, while the min-

imum element quality was 0.3842, the average element quality 0.8281, the

minimum element size was 0.018 and the maximum element size 0.1

Figure 7.8: Mesh for a typical cylinder
geometry, r = 0.5

Figure 7.9: Mesh for a typical sphere ge-
ometry, r = 0.62

The same figures for a typical sphere calculation, e.g. r = 0.62, are 40267

tetrahedral, 6798 triangular, 544 edge and 24 vertex elements, the minimum ele-

ment quality was 0.3443, the average element quality 0.7834 while the minimum

element size was 0.0223 and the maximum element size is 0.124. As already
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Figure 7.10: Mesh for a typical inverse
cylinder geometry, r = 0.55

Figure 7.11: Mesh for a typical inverse
sphere geometry, r = 0.61

mentioned, the boundary conditions are all symmetry conditions. The algorithm

used was the direct solver UMFPACK.

7.4 Simulation Setup-Agreement between theoretical deriva-

tions and computational implementation

We now proceed with proving the validity of our method and with outlining the

most significant aspects of the computational implementation in Comsol. The

intersection of the solid phase with the unit cell edges significantly affects the

derived formulas concerning the porosity, specific area and tortuosity. In addition,

we have to deal with Comsols geometries and their edges definition requirements

regarding the appropriate meshing of the computational domain [0, 1]3. These

two facts dictate the discrimination of different radii regimes as follows. For all

the cylinders, the sweeping of the radius ranges from zero to
√

2/2 while we need

to distinguish between radius of less and greater than 0.5. For the spheres, the

sweeping ranges from 0.5 to
√

3/2 and we have to distinguish between radius less

and greater than
√

2/2. The boundary value problem discussed in the previous

section leads to the calculation of the z component of the gradient of w. In the

case of the cylinder and inverse cylinder, since the boundary condition means

that there is no flux coming into or going out of the lateral cylinder surface, w

is trivially shown to be constant everywhere and hence ∂w
∂z = 0everywhere as

also shown for example in fig. 7.12 where we see 5 slices of the z component of

the gradient of w. The tortuosity from its definition equation 7.36 reduces to:

τcylinder = 1
1−ε . For all other cases we rely to Comsol for the calculation of ∂w

∂z .

Therefore, for the cylinder and inverse cylinder cases we have at our disposal

theoretical formulas as well as the computational values for the porosity, the

tortuosity, the specific area, and the non-dimensional reaction length and area

specific resistance. For the sphere and inverse sphere cases and only for 0.5 ≤
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Figure 7.12: ∂w
∂z = 0 for a cylinder geom-

etry, r = 0.30
Figure 7.13: Representation of ∂w∂z for an
inverted spherical geometry, r = 0.62

r ≤
√

2
2 we have analytical expressions just for the geometric features in which

we are interested in (ε,A) and τ . In fig.7.13 we show slices of the computational

solution for ∂w
∂z for a typical inverse sphere of r = 0.62 with arrows indicating

the gradient of the field. We observe that the z component of the gradient of

w is almost everywhere positive and hence so is the integral
∫
S
∂w
∂z dy which is of

specific interest to us since it affects significantly the calculation of the tortuosity

as earlier demonstrated. On the other hand this integral in the spherical case is

negative.

• Cylinder

Figure 7.14: Horizontal cross section for a typical cylinder geometry with 0.5 ≤
r ≤

√
2

2
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The upper limit value for the cylinder radius is equal to the half diagonal

of the Y-cell cross section, i.e.
√

2/2. The absolute accordance between the

theoretical and the computational result for R̃chem is presented in Fig.7.15

and for LRXN in fig.7.16 for a cylinder. This agreement also implies the

agreement between computation and analytical calculation of the porosity

and the specific area.

Figure 7.15: Agreement between ana-
lytical and computational calculation of
R̃chem for cylindrical geometries

Figure 7.16: Agreement between ana-
lytical and computational calculation of
LRXN for cylindrical geometries

• Inverse cylinder The upper limit value for the inverse cylinder radius is

again
√

2/2. The expected exact agreement between computational and

theoretical results is demonstrated for R̃chem in fig.7.17 and for LRXN in

fig. 7.18. The agreement between theory and computations in the cases of

cylinder and inverse cylinder gives us confidence about using the computa-

tions in other micro structures cases, where the analytical solution cannot

be obtained. This fact brings us to the examination of the sphere and

inverse sphere micro structure

• Sphere 0.5 ≤ r ≤
√

2/2 By performing again some straight forward ge-

ometric calculations for the computation of the porosity and the specific

area available for reaction for this case, we get good agreement between

these theoretically calculated and computed geometric features. In this

case however we do not employ any analytical calculation for the τ and

correspondingly for the R̃chem and the LRXN and rely to Comsol entirely

for their calculation. Another issue for the sphere is the realization of the

boundary condition eq.7.31. By analysis of the problem we get the expres-

sion:

∂w

∂ν
= −z − z0

R
(7.49)
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Figure 7.17: Agreement between ana-
lytical and computational calculation of
R̃chem for inverse cylindrical geometries

Figure 7.18: Agreement between ana-
lytical and computational calculation of
Lrxn for inverse cylindrical geometries

Figure 7.19: Composite object from
Boolean difference of a sphere and the
unit cube.

Figure 7.20: 3-dimensional representa-
tion of a sphere geometry for the calcu-
lation of the spherical caps volume and
area
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Equation 7.49 is the implementation of the boundary condition incorpo-

rated into Comsol scripts for Cartesian coordinates.

• Sphere
√

2
2 ≤ r ≤

√
3

2 For this case we acquire all the necessary geometric

features computationally from Comsol. This is done through surface and

volume integrations across the appropriate surfaces and volumes.

• Inverse Sphere The inverse sphere, being the complementary of the sphere

in the unit cell when 0.5=r=v2/2 has analytically calculated porosity and

specific area. The porosity is complementary to the spheres one while the

specific area is exactly the same as in the sphere case. The case at which

the radius ranges between
√

2
2 ≤ r ≤

√
3

2 is treated only numerically.



Chapter 8

Homogenization Results and

discussion

Before focusing on the LRXN and the R̃chem we turn our attention to the geo-

metric features of our problems. In Fig. 8a we show the effect of changing radius

on the porosity for the different geometries. From a qualitative perspective it is

apparent that the trends appearing following the corresponding change of volume

of the solid phase of our structure are right and we have argued about the agree-

ment between computational and analytical results at those cases where both are

available.

Figure 8.1: Dependence of porosity on
radius for all cases

Figure 8.2: Dependence of specific area
on radius for all cases

The same holds for the specific area and the tortuosity as presented in fig.8.2

and in fig.8.3 respectively. As shown earlier in equation eq.7.43, the tortuosity’s

calculation relies on computing the integral of the z component of gradient of

w. This integral is negative for the sphere case and positive for the inverse

97
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Figure 8.3: Dependence of tortuosity on
radius for all cases

Figure 8.4: Dependence of LRXN on ra-
dius for all cases

sphere with absolute value which decreases with increasing radius for both cases.

Hence, in the sphere case increasing the radius decreases the tortuosity while in

the inverse sphere case it increases it. These results are depicted in the above

fig. 8.3. As commented before, in the cases of cylinder and inverse cylinder this

integral is trivially shown to be zero.

Increasing the radius of a structure for a cylinder and a sphere, within the

limits of their bounds, results in a significant increase, of orders of magnitudes,

of the penetration depth. More specifically, as seen in fig.8.4, while the cylinder

of radius r = 0.1 has a LRXN = 0.001248, the cylinder of radius r = 0.7 has

a LRXN = 4.182307. For a sphere of r = 0.51 the non-dimensinal penetration

depth is LRXN = 0.184510, while the one with r = 0.85 has LRXN = 13.555356.

This is conceptually also aligned with our expectations because the increase of

the volume of the solid phase results in a better connected material with better

access for ions to penetrate in great depth and thus the reducing capacity of the

bulk extends further out from the boundary with the electrolyte. The trend is

completely inverted following the exact same reasoning, for the cases of inverse

cylinder and sphere.

Turning our attention to fig.8.5 which depicts the dependence of the change

of radius on the R̃chem we observe various trends. In the beginning, for a cylinder

and an inverse cylinder of r = 0.5 we see that for very small radii their resistance

becomes unbounded. This is to be expected since it is exactly what the theoretical

expressions for these cases predict, as shown by the following equations:

R̃chemcyl.,r≤0.5
=

1

πr2
√

2πr
(8.1)

And

R̃cheminv.cyl.,r≤0.5
=

1

(1− πr2)
√

2πr
(8.2)
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Figure 8.5: Dependence of R̃chem on radius for all cases

These expressions belong to the theoretical derivations mentioned earlier and

depicted for example in fig.7.15 and fig.7.17 of the previous section. From the

same analytical expressions one finds that in both cases, the scaling of the radius

coming from the active surface term contributes with a −1
2 power scaling while

in the case of the cylinder, the cross sectional area, gives an additional scaling of

−2, rising through the porosity term, making it −21
2 in total. Furthermore, in

the limit of r approaching infinity,R̃chem of both sphere and inverse sphere also

approaches infinity. Another immediate conclusion coming from fig.8.5 is that

for 3 out of the 4 studied geometries a minimum can be achieved. These minima

for each case are in Table 8.1 below:

Table 8.1: R̃chem minima for the different micro-structure geometries

r Minimum Value

Cylinder 0.5 0.7180

Inverse Cylinder 0.25 0.9928

Inverse Sphere 0.63 0.8969

Cylinder of radius r = 0.5 is the one that will present the smaller loses out

of all the geometries included in our study, followed by the sphere of r = 0.63

and the inverse cylinder of r = 0.25. In order to comprehend the location of

the local minimum in each of the above cases, we revert to the fact that all this

analysis has come down to a very simple one dimensional optimization problem

with independent variable just the radius of the micro structure. Hence by first

order differentiation we get the necessary condition for local optimum and the
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corresponding location. The first order derivative for the cylinder for r = 0.5

from equation 8.3(15) is calculated to be: − 5
2
√

2π3/2r7/2
. However the derivative

from the right with respect to r = 0.5 is very complicated to be calculated

analytically, not to mention that there is definitely a jump between the left and

right derivatives at r = 0.5 as we can see from fig.8.5. We can however verify

the existence of a minimum for r = 0.5 for the cylinder as follows. We see

from the porosity fig. 8.1 that the porosity is continuously diminishing, so it

applies a decrease in R̃chem and from the tortuosity Fig.8.3 that it affects the

R̃chem exactly as the porosity. Hence, any variation in the tangent of the R̃chem
equation is provoked by the specific area, which indeed at 0.5 has a maximum

and hence its square inverse present in R̃chem, a minimum. As far as the inverse

cylinder is concerned, the derivative in the range 0 ≤ r ≤ 0.5 we can differentiate

and acquire the candidate minimum point. The derivative is:

R̃′chem =

√
2π
√
r

(1− πr2)2
− 1

2
√

2πr3/2(1− πr2)
(8.3)

with an analytically calculated root root at r =
√

1
5π = 0.2523

as we can see in fig.8.6.

Figure 8.6: Derivative of R̃chem for an inverse cylinder with r ≤ 0.5

Regarding the minimum observed for the sphere, since we do not have in

our possession analytical expressions for the R̃chem we focus on studying the

independent pieces that affect it according to its definition in the range of interest

which is 0.5 ≤ r ≤
√

2
2 . In this range, the porosity and the tortuosity have

again both a decreasing effect on R̃chem but the inverse square of the specific

area an increasing one. The balance of these competing tendencies produces the
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observed minimum. At that point the porosity is ε = 0.139491, the tortuosity is

τ = 1.315110 and the specific area A = 1.900042 giving the observed minimum

value for R̃chem. Finally, using as starting point the observation that the case of

the inverse sphere is the only one of those studied exhibiting no minimum for the

non-dimensional R̃chem, we state that further investigation is needed repeating

the same calculations for more fundamental geometries, to check if a correlation

can be established between the existence of a minimum and the sign of the integral

of the z component of the w field.





Chapter 9

Conclusions and Outlook

9.1 Conclusion

In the context of the PhD at hand, the core activities were aimed at the applica-

tion of multi-scale modeling on SOFCs. In the first place we derived accurate 2D

models for the electrical potential distribution and the fluid flow for the operation

of an anode SOFC interconnect. This theoretical work paid off by providing us

with a closed form analytical expression for the cell’s net power. Furthermore,

the theoretical investigations served as the background for applying the same

model in an FEM commercial package for the solution of the PDEs and succes-

sively combine it with the popular method of topology optimization to derive

geometrical patterns that would enhance our chosen objective, i.e. maximize the

cell’s net power. The emerging configurations are irregularly spaced and shaped

interconnect material. Out of the parameters studied the more pronounced effect

of the geometry was offered by the electrical conductivity of interconnect, which

in any case justifies the importance that the design of this component of the

whole cell, should receive. The stable working model was extended to include

the (varying) mass transport in the channel and the diffusion between the gases

concentrations, with limited so far reward but with good possibility for greater

one in the imminent future. Finally, we have produced by homogenization the

up-scaled convection diffusion reaction equation for the oxygen vacancies for a

typical cathode material in a SOFC. Our work is aligned with earlier theoreti-

cal results which provide an expression for the calculation of the Area Specific

Resistance. We then selected four different fundamental micro-structures and

calculated for these cases the non-dimensional Area Specific Resistance of the

electrode as a function of the structures geometry, for fixed micro-length scale

and electrochemical properties. We have been able to minimize the Area Specific

Resistance of this electrode in the cases at which the microstructure was a cylin-

103



104 CHAPTER 9. CONCLUSIONS AND OUTLOOK

der, an inverse cylinder and a sphere. Out of these 3 structures better kinetics

are exhibited in the case of cylinder of radius 0.5 situated symmetrically in the

center of a non-dimensionalized unit cell. We have further laid the foundation

for extending this work in investigating other fundamental structures and also to

treat the case of a Mixed Ionic and Electronic Conductor with finite electronic

conductivity.

9.2 Outlook

Many directions of possible extensions of our work can be developed and taken.

With actual implementation and assisting real mass scale production of SOFCs

into mind, a first step could be to exhaust the limits of the theoretical investiga-

tions by applying a full scan on the parameterized expressions for all three cases

of comparison between the radius of the cylinder and the gas channel’s height

divided by the square root of twelve. This can serve as a guide in the early design

phase of any SOFC interconnect. The derivations made on the anode side, from

a theoretical and simulations’ point of view, implicitly suggests that a similar

model for the cathode is also feasible in 2D as well. Hence, the whole cell’s oper-

ation can be described following the same as ours reasoning.

One path of particular interest that would make a full 2D model could come in

two steps. Relatively easy as first step, is the addition of the PDE that describes

the temperature distribution in the cell. This is one extra equation with just

only one extra unknown. Acquiring access on the temperature, opens the door

to addition of a full structural analysis of the cell, where the support that should

be offered by the pillars to the planar rectangular plate of the interconnect above

the channel can be calculated. Our method’s of dealing the suppression of the

third dimensions of the fluid flow by introducing the damping term coming form

lubrication theory can handle variable channel heights as well, with just a simple

modification of the continuity equation, as similar work in the context of our

group’s and personal activities have shown, in model cases of combining fluid

flow with membranes’ mechanical support, structurally optimized.

One step further, having the solid tool founded here, it would be very inter-

esting to perform the numerical calculation for a multiplicity of other objective

functions. The efficiency of the cell and the interconnect should be the first cases

examined in this respect. The quantitative analysis missing in some aspects of

the work on the simulations part of all subproblems, like for example the area of

material in total as a percentage of the cell’s area and the average area of each

structure introduced by the topology optimization, as a variable of the numerical

runs parameters is natural and straight forward. Another future challenge would

be the broadening of those parameters, to include the height of the gas channel,
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synonymous to the height of the current collector’s pillars, which has proven to

be so catalytic in our theoretical approach. Industry for example would certainly

be interested to find out what are the limits of this extreme aspect ratio of the

channel (the ratio between the height and the length of the channel) and how low

it should get and with what expected gain. However, this would require extra

care in resolving numerical hardships that would also arise as a consequence of

introducing smaller and smaller length scales.

Our work on homogenization has laid the ground for what is a straight forward

extension, i.e. the treatment of MIEC material for the cathode with finite elec-

trical conductivity in the steady state. By preliminary work on this topic, we

have already seen that the result will include the solution of a system of two cou-

pled up-scaled PDE’s for the electronic and the ionic electrochemical potentials.

At the next level of what is a harder problem to deal with, we wish to attack

the problem of modeling the impedance response of grain and grain boundaries.

Here we will use asymptotic analysis similar to the one exhibited in the relevant

chapter, to study samples composed by many grains assuming that we have still

two distinct macro and micro length scales.
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a b s t r a c t

Hydrogen is a promising alternative energy carrier that can potentially facilitate the

transition from fossil fuels to sources of clean energy because of its prominent advantages

such as high energy density (142 MJ kg�1), great variety of potential sources (for example

water, biomass, organic matter), and low environmental impact (water is the sole com-

bustion product). However, due to its light weight, the efficient storage of hydrogen is still

an issue investigated intensely. Various solid media have been considered in that respect

among which magnesium hydride stands out as a candidate offering distinct advantages.

Recent theoretical work indicates that MgH2 becomes less thermodynamically stable as

particle diameter decreases below 2 nm. Our DFT (density functional theory) modeling

studies have shown that the smallest enthalpy change, corresponding to 2 unit-cell

thickness (1.6 �A Mg/3.0�A MgH2) of the film, is 57.7 kJ/molMg. This enthalpy change is

over 10 kJ/molMg smaller than that of the bulk. It is important to note that the range of

enthalpy change for systems that are suitable for mobile storage applications is 15e24 kJ/

molH at 298 K.

The important key for the development of air-stable Mg-nanocrystals is the use of

PMMA (polymethylmethacrylate) as an encapsulation agent. In our work we use laser

ablation, a non-electrochemical method, for producing well-dispersed nanoparticles

without the presence of any long-range aggregation. The observed improved hydrogena-

tion characteristics of the polymer-stable Mg-nanoparticles are associated to the prepa-

ration procedure and in any case the polymer-laser ablation is a new approach for the

production of air-protected and inexpensive Mg-nanoparticles.
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1. Introduction

The continuous growth of world population and the intense

economic expansion of developing countries are among the

major causes of the increasing demand for energy and the

alarming and continuous release of greenhouse gases. Among

several scenarios, hydrogen is the most promising energy

carrier to satisfy the required conditions for the ideal fuel. It is

the cleanest fuel and has a heating value three times higher

than petroleum. While it seems to be the ideal means of

transport and conversion of energy for mobile and stationary

applications, a major problem is the storage of hydrogen

which presents several issues mainly related to safety and

amount of stored hydrogen [1].

In recent years a lot of research has been done onmaterials

for hydrogen storage. Magnesium-based alloys have attracted

much attention due to high hydrogen capacity and low cost. It

is reported that pureMg can store up to 7.6 wt% [1e3]. For pure

Mg, the hydrogenation enthalpy is around�74.7 kJ/mol H2 and

its activation energy is evaluated to be 86 kJ/mol H2 [4,5].

Despite the relatively high capacity, there are certain

important disadvantages of using Mg alloys such as slow ki-

netics, high operation temperatures and high reactivity with

oxygen [6e10] which constitute significant obstacles for

practical on-board applications.

Considerable research has been conducted on magnesium

metals to synthesize new high performance materials and

develop more efficient techniques. These studies are mainly

focused on the (a) element substitution [11]; (b) new produc-

tion methods by using for example different hydrogen pres-

sures [12,13]; (c) preparation of composite materials through

the addition of dopants in order to improve microstructure/

microchemistry [14]; and (d) annealing [15] in order to improve

hydrogen storage characteristics [16].

It is known that preparation and synthesis methods are

important factors which can influence the characteristics of

the samples. Mechanical alloying (MA) and ball milling (BM)

are widely used for preparation of Mg materials [8,11,17e19].

For powder metallurgy (PM) an important step to synthesize

these compounds is sintering which improves the bonding

between the powders and minimizes the porosity [20]. Un-

fortunately, all these methods require long times and can

cause contaminations to the alloys even under protective

atmosphere.

Another known technique is the hydriding combustion

synthesis (HCS) which can produce much purer samples but

needs a stable temperature for several hours [12,21e23].

In order to eliminate the problems caused by conven-

tional methods, a new rapid heating technique should be

used. Microwave heating is a technology that is mostly used

for ceramics, carbides and ferrites and has not been applied

for metals due to the fact that metals reflect microwaves.

Gupta et al. [20] reported for the first time that Mg alloys can

be synthesized by hybrid microwave heating [24e26]. Li

et al. [27] prepared Mg2Ni alloys using microwave-assisted

activation synthesis (MAAS) and showed that these mate-

rials can absorb 3.2%wt of H2 in only 50 s at 523 K under

3 MPa H2. Wong et al. [28] studied the effect of microwaves

on the structural and microstructural characteristics of Mg-

based compounds. His team revealed that there were no

defects and the surface was smooth and free of radial and

circumferential cracks. They also showed that there was an

increase in hardness with the addition of nanometer e

scale reinforcements. In short, heating by microwaves

has certain advantages over the conventional methods

such as (a) reduction of processing time, (b) uniform heat-

ing, (c) improved properties and (d) environmental friend-

liness [29].

Recently, nanomaterials have attracted a great interest

because of their unique characteristics, different from bulk

materials. Therefore, a wide range of synthetic approaches

regarding the preparation of metal nanoparticles in various

matrices, including reduction method, solegel process,

solvent evaporation of hydrophobic colloids have been re-

ported [30e32]. Laser ablation which is usually applied to

in-situ elemental analysis [33], forming thin film (PLD:

pulsed laser deposition) [34] has been also used to prepare

nanoparticles [35e42]. In particular, the temperature and

pressure of the plume induced by pulsed laser irradiation

onto the metal target surface in liquid are very high [43,44]

compared to their values in vacuum or atmosphere because

of the confinement effect. Since there are ablated particles

in this plume, crystalline nanoparticles can be obtained

without any heat treatments [45]. The laser ablation

method offers a great advantage regarding the production

of nanoparicles while aggregation and dispersion can be

controlled by using surfactant or any appropriate liquid

[36,46,47]. So, by this technique pure nanoparticles can be

obtained and be captured in principle in any liquid.

As ablated particles go through the plume induced by

laser ablation in liquid in which the temperature and

pressure are very high, nanoparticles with new optical,

electrical and mechanical properties can be expected to be

fabricated.

The development of new Mg-type of materials or com-

sposites via nanoscale fabrication techniques for more effi-

cient hydrogen storage systems has been extensively studied

by other groups [48e57]. By decreasing theoretically the

particle size diameter below 2 nm, the nanoparticles of

magnesium hydride have less thermodynamic stability

[58,59]. Density functional theory studies have shown that the

smallest enthalpy change is 57.7 kJ/molMg and corresponds to

a two unit-cell thickness (1.6�AMg/3.0�AMgH2) of the thin film.

It is really important that this enthalpy change is over 10 kJ/

molMg smaller than that of the pure bulk magnesium. At

room temperature, the desired and targeted range of enthalpy

change for mobile storage systems technology is 15e24 kJ/

molH [60].

According to the published information on hydrogen

storage technology, there is a need of air-stable materials and

especially in magnesium hydrides with relatively nanosize

grains, the key for the development of the air-stable nano-

crystals [61] is the PMMA (polymethylmethacrylate) polymer.

In order to overcome chemical or electrochemical ways of

producing air-stable nanoparticles we used the laser ablation

technique. It is suggested as one of the most reliable tech-

niques for having well dispersed nanoparticles with no long-

range aggregations.
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2. Experimental

Laser ablation of solid targets into liquids is a quite new

alternative physical method for fabrication of nanoparticles.

The metal target was placed on the bottom of a glass cuvette

filled with 1.5 mL of pure deionized water and in polymer

matrices. The rod was irradiated with the fundamental

(1064 nm) of a Nd:YAG laser (Quanta-Ray GCR-190, Spectra

Physics) operating at 10 Hz on a rotating base with speed 4.5�/
s. The laser beamwas focused 1 mm below the surface target,

and the irradiation time was kept constant (30 min). Upon

irradiation, the solution gradually turned in different experi-

ments from light red to wine red. The absorption spectra of

the colloidal solutions were measured immediately after

fabrication by a Cary UVeVisible spectrophotometer. The

above procedure in polymer matrix may reveal very well

dispersed nanoparticles below 5 nm.

X-ray diffraction analysis of the alloys was carried out on

the powders at room temperature by using Cu-Ka radiation, in

a SIEMENS D500 X-Ray diffractometer. Rietveld analysis has

been performed on the XRD patterns with the use of the RIE-

TICA software. Nanoanalysis has been performed by using an

HR-TEM operating at 200 kV and equipped with a spherical

aberration corrector in the objective lens, to ensure a point

resolution of 1.2 A. The SCION image software has been used

for the particle size analysis. The hydrogenation/dehydroge-

nation kinetics and cycle stability of the sample have been

studied, using aMagnetic Suspension Balance (Rubotherm). In

this equipment, hydrogen desorption and re-absorption, can

be investigated at constant hydrogen pressures in the range

from 1 to 20 MPa (flow-through mode).

3. Results and discussion

The nanoMg/PMMA composites were synthesized at room

temperature from a homogeneous tetrahydrofuran (THF)

solution containing the gas-selective polymer poly(methyl

methacrylate) (PMMA). This polymer has been used in the

solegel type technique elsewhere [61] and air-stable high

quality nanoparticles have been produced. Laser ablation has

been used to produce rapidly and more efficiently well

dispersed nanoparticles for upscaling purposes in the

hydrogen storage technology. We target on the development

of low cost and air-stable high surface metal nanodispersions

in polymer matrix.

The principle of the laser-based synthesis of nanoparticles

in liquids is illustrated in Fig. 1. Here a pulsed laser beam is

focused on a target in a solvent. After absorption of the laser

pulse energy, the target material is vaporized and condenses

in the solvent thus forming nanoparticles. The use of ultra-

short pulses enables application of volatile organic solvents

ormonomers. In general, every combination of targetmaterial

and dispersion phase is possible.

By varying the manufacturing process numerous material

combinations can be tested in short time. The laser process

can be called “rapid nanomaterial prototyping” or regarding

the composite synthetics as “rapid nanocomposite

manufacturing”, both because of the nearly unlimited mate-

rial variety and because it is easy to adapt the parameters [62].

Either metallic or ceramic nanoparticles can be generated in

aqueous or organic solvents [63].

The X-ray diffraction pattern of the as ablated nano-

particles in the PMMA matrix, as shown in Fig. 2, shows

characteristic reflexes of a single phase hexagonal magne-

sium. This is attributed to a very high quality ablation in the

composite matrix so that the nanoparticles do not react with

the air. As an inset, it can be seen that there are no reflexes

that belong to MgeO or MgeOH phases that deteriorate the

hydrogenation capacity (it is well known the negative effect of

oxidations on the metal hydride efficiency).

As revealed from the analysis of the XRD line profile

broadening of each reflex, the grain size can be estimated. By

using the well-known Scherrer’s formula we estimated that

the grain-particle size of the nanoparticles is below 7 nm. This

Fig. 1 e Laser-generated nanoparticles for nanocomposites (solution turns darker with the experiment, which implies the

increase in nanoparticle concentration).
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means that the particles in our analysis present almost half

the size in comparison to the chemically produced air-stable

composite Mg-nanoparticles, as it reveals from an already

published work [61]. In our case, as shown in Fig. 3, the esti-

mated particle size from the TEM analysis is very close to the

experimental value. The results of the line profile analysis of

the reflexes showed that the particles are much better

dispersed and this should be associated to the fact that the

absorption/desorption analysis is faster and more efficient in

the laser ablated nanoparticles, as shown in Fig. 4, compared

to other published results [61].

The fact that the particle size estimation from the TEM

micrograph analysis by using the SCION image software and

the XRD grain size calculations are very close suggests that the

particle dispersion is much better than the solegel method

discussed in the recently published literature ([61] and Sup-

plementary data). As shown in Fig. 4, the kinetics and

hydrogen capacity for the laser ablated Mg-nanoparticles of

this work are very comparable to those of Ref. [61] but the

reversible hydrogen content is considerably better (w96% of

the absorbed hydrogen amount was desorbed at 250 �C in less

than 20 min) since full re-chargeability has been found in our

case under similar conditions. Grain-particle size distribution

in the polymer matrix seems to play a mandatory role in the

hydrogen reversibility and kinetics, as expected. After acti-

vation procedure, in all three charges we obtain fully satu-

rated nanostructured materials since no difference in the

curves was found in the hydrogenation/dehydrogenation

procedure. A slight difference in the desorbed amount of

hydrogen under both 1 bar and 10�2 bar (vacuum) was

observed after each discharging. The absorbed amount is the

same at the highest pressure of 25 bar of hydrogen. The

reversibility is almost the same in all three curves and the

slight difference between the three discharges could be

attributed to the Mg to MgeH ratio in the polymer matrix or to

the hydrogenmolecules remaining as adsorbed amount at the

boundaries of Mg to polymer. Those assumptions are ac-

cording to the fact that realistically, at the nanoscale,

Fig. 2 e XRD pattern of Mg-nanoparticles and as inset are

shown the PCPDF cards of the Mg, MgO and Mg(OH)2. Only

Mg (hkl) planes have been traced and indexed. Cards:

Hexagonal Mg (solid black line, JCPDS 04-0770), cubic MgO

(dashed black line, JCPDS 89-7746), and hexagonal Mg(OH)2
(pale grey line, JCPDS 07-0239). Crystallographic

characteristics: a [ 3.212 (2) A, c [ 5.218 (4) A.

Fig. 3 e TEM (up), HR-TEM micrograph and particle size

estimation (down) of laser ablated nanoMg/PMMA

composite.
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Fig. 4 e Hydrogenation/dehydrogenation process in the

magnetic suspension balance equipment: Mg composite

nanoparticles in PMMA.
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hydrogen may be adsorbed also on the surface of the particle

(or film).

4. Conclusions

Novel Mg-nanoparticles have been synthesized in a polymer

matrix by using laser ablation, an ultrafast and highly efficient

method. The latter is found to be a powerful tool to produce

very fine, well dispersed, single phase nanoparticles. It is also

suggested as a potential efficient technique for upscaling the

production of high surface metallic particles in the hydrogen

storage technology. By encapsulation in a polymer matrix, the

Mg-nanoparticles exhibit more rapid, compared to other Mg-

pure types, uptake of hydrogen (<20 min at 250 �C) with a

high capacity (6 wt. % in Mg, 5.5 wt. % overall). Compared to

the solegel obtained nanoparticles published elsewhere [61],

the laser ablated nanoparticles have excellent reversibility

under vacuumand at 250 �C, a relatively low temperaturewith

regard to the necessary w330 �C for Mg-bulk materials.

In future work other types of intermetallic hydrides or

polymer-types could be considered for the development of

novel materials for hydrogen storage purposes.
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Abstract 

Accurate identification of the physical parameters describing the surface exchange kinetic 

coefficient k and oxygen diffusion coefficient D can shed light on the development of solid state 

ionics, as many ionic devices highly rely on the behavior of such parameters. In this work we 

extend and generalize the concept of identifiability in Isotope Exchange Depth Profiling (IEDP), an 

important characterization tool in the ionics field by exploring the measurability of k and D as a 

function of two dimensionless quantities, the Biot number, and the annealing time divided by the 

diffusional time scale. In addition we show a novel approximate computation for the confidence 

intervals for k and D. The new estimator, which is proportional to the error done in the IEDP 

measurement and inversely proportional to the number of measurement points, gives a generalized 

estimate for the confidence bands of both parameters. 

KEYWORDS: Diffusion, Isotope Exchange, Identification, Biot number, Mixed conductor. 
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1 Introduction 

The identification of the desired parameters k and D is usually performed by fitting the results of a 

relevant experimental technique against a model sufficiently describing the incorporation of oxygen 

through a surface and its transport through the bulk of a material. Researchers and practitioners in 

the area of ionics often employ Electrical Conductivity Relaxation (ECR) [1], Electrochemical 

Impedance Spectroscopy (EIS)  and Isotope Exchange Depth Profiling (IEDP) [2-4]. IEDP has 

received a lot of attention [5], since it is the only of the relevant methods described above that can 

directly probe the isotope profile on mixed conducting materials.   

By mapping the IEDP with secondary ion mass spectrometry (SIMS), the aforementioned 

parameters k and D can be successfully determined. This technique has already been widely applied 

for the characterization of bulk samples. Recently, thin film samples, e.g., Ba0.5Sr0.5Co0.8Fe0.2O3-δ, 

[6], PrBaCo2O5+δ [7], and La1-xSrxCoO3-δ [8], were also performed by using this method, but special 

attention should be paid to obtain the accurate parameters when considering the characteristic 

length. 

Establishing the confidence regions for the estimated parameters in IEDP and determining how to 

improve the measurement accuracy is critically important for further development of the technique. 

Sensitivity analysis, asymptotic statistics and heuristic methods are some of the tools that have been 

employed in the past. Strategies to understand the measurability of both k and D in the context of 

IEDP [9-11] and ECR [12, 13] have been discussed in previous reports. This work generalizes 

previous results by framing the identification problem in terms of non-dimensional time and Biot 

number, hereby making it applicable to nearly all thin film IEDP works. In particular we prove that 

our k and D standard deviation estimates depend linearly on the number N of IEDP measurement 

points and on the standard deviation of the measurement error. 



3 
 

2 Theory  

 

2.1 Model 

 

The concept of the Biot number is well established in heat transfer problems coupling both 

convection and conduction. In an analogous way, the Biot number Bi for reaction/diffusion 

problems arising in ionics may be defined as the ratio of the diffusion and the reaction time scales 

[13]. If the former is defined as    
  

 
 and the latter as    

 

 
, where L is a characteristic time 

scale, then the chemical Biot number is given as     
  

  
 

  

 
.  

IEDP measurements are typically fitted against an analytical model describing one-dimensional 

unsteady Fickian diffusion coupled with linearized surface kinetics. Such model outputs the 

normalized concentration   (      ) of tracer     as a function of position x and annealing time 

    . The corresponding diffusion equation describing the IEDP response can be solved to give the 

following expression [8, 10, 14] 

       
     

 

 
    ∑

       (      
 
 
 )         

     

   
                  

 

   

     ( 1 ) 

where the   ’s are the positive roots of the transcendental equation           and    is the 

normalized time defined as     
  

    

  
.  

2.2 Statistical Analysis of k and D Estimation 
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Since the goal of a typical IEDP experiment is to evaluate both parameters k and D with good 

confidence, we need to address the confidence bands of these parameters. For that, we take the 

classical (frequentist) statistical approach . That is we assume that the measured normalized isotope 

concentration is given by the stochastic process       
         

     
 

 
   , where    (    

    ̅ 
 

 
) 

is the noise-free outcome of a measurement and   is a uncorrelated Gaussian error with standard 

deviation   . We recall that we have denoted with k and D the parameters that we need to identify 

and with    the corresponding Biot number. On the other hand,  ̅ and   ̅ , the “exact” or “true” 

values of the same parameters, correspond to the “exact” or “true” Biot number   ̅ . A previous 

publication showed that the relative errors on the parameters k and D can be obtained from the 

following asymptotic covariance matrix  

             ( 2 ) 

where         
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,        

   (    
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1
. In this last expression we have denoted 

with xj  the location of the j-th spatial measurement. Furthermore we note that the      may be seen 

as 
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1 It is also easy to show that  
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It is easy to prove that the matrix V is in general positive semi-definite and the isosurfaces of the 

corresponding quadratic form (the confidence regions) are ellipsoids [15]. Typically, one may map 

these ellipsoids into scalar quantities, which describe one of their geometric features. The function  

           is commonly used to assess the overall quality of the experiment since it is closely 

linked to the volume of the confidence region[16] . We shall employ this quantity later in the 

manuscript. 

An alternative to the asymptotic covariance matrix     is derived by recalling the definition of 

trapezoidal quadrature rules and by assuming that the spacing between the experimental points is 

uniform. In order to keep the notation compact we shall define the square of the sensitivity with 

respect to k at a location xj as    
 (

  

 
)  ( 

   (    
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)

 

  . This allows us to rewrite ( 3 ) as 
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The mid-term in the right hand side of the previous expression can be further approximated as
2
 

   

 
∫   
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( 7 ) 

If we eliminate the first and last term of ( 6 ) and substitute back the last expression then we can 

approximate the         as N-1 times the average k-sensitivity squared 〈  
 〉 (〈 〉 indicates the space 

average over the sample depth) 

        
   

 
∫   

 
 

 

        〈  
 〉 

( 8 ) 

More generally we can write 

         (
〈  

 〉 〈    〉

〈    〉 〈  
 〉

) 
( 9 ) 

where    is the relative sensitivity on D. This leads to the following approximated asymptotic 

covariance matrix 

 
      

 
  

   
(

〈  
 〉 〈    〉

〈    〉 〈  
 〉

)

  

 ( 10 ) 

This formulation has a main advantage over expression ( 2 ) in that V is directly proportional to N. 

In addition it indicates that if the integral of the sensitivities over the domain increases, then k and D 

can be captured with greatest confidence. This is intuitive and useful for assessing identifiability of 

IEDP. An alternative option in order to assess measurability is to monitor the actual  sensitivity of 

both k and D.  If the maximum sensitivity of the parameter is above a certain threshold value, then 

one may infer that the parameter is measurable. This alternative approach, while useful and 

                                                           
2
 Note that analogous expressions can be found for non-uniform    spacing. 
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particularly suitable for ECR [13], was not employed here as it required the plot of a quantity 

depending on three variables. 

3 Results  

In contrast with earlier work which addressed the identifiability of the parameters k and D as a 

function of dimensional quantities, here we generalize identifiability results to be a function of Bi 

and t* and we plot the relative asymptotic standand deviation of both parameters in Figure 1. In  

Figure 1 (a) we report the relative standard deviation for k; in particular, we depict the log10 of the 

following quantity 

  
  √

   

  ( 
      

)
  

 ( 11 ) 

We note that identifiability of k is greatest (lowest   
 ) for     . This is because, when       

the behavior of the system is controlled entirely by the reaction kinetics and the any diffusional 

perturbation has sufficent time to relax, hence  the optimal time      is found to be of the order of 

  . More specifically the optimal identifiability is found for         and for              

within the bounds of Figure 1. 

We perform a similar analysis on the normalized standard deviation on the estimated D by plotting 

the        
 , where   

  is 

  
  √

   

  ( 
      

)
  

 ( 12 ) 

It is clear from Figure 1 (b), that the parameter D is characterized by lowest relative error for 

    . This is consistent with intuition. In fact, if        the system is diffusion-controlled, in 

other words chemical reaction kinetics is extremely fast and the system will only witness changes 
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due to diffusion. This entails that the system will be sensitive solely to D. In addition, the optimal 

time is found for        . More specifically, in the Figure the identifiability of D is optimal for  

       in the domain and for              . Figure 1 is also significant because it provides an 

actual quantitative value for the  
      

. If one has N, the number of experimental points, a suitable 

guesses for the experimental error   , the Biot number and experimental time, then one may be 

able to quickly quantify the confidence on the k and D obtained by IEDP, and example determine if 

different anneal time is required. 

Some of the information contained in the two panels is also show in Figure 2 (a) , where the minima 

of   
  and   

   for Biot numbers ranging from 10
-2

 to 10
2
 are shown. The minima are computed with 

respect to the experimental anneal time     
 . This quantity is in turn reported Figure 2 (b). The 

same trend as above is retrieved: k is identifiable for     , and D is identifiable for     . 

Identifiability for both parameters is achievable only for     . Aside from that this figure is 

significant because for a given Bi it provides the minimum error that can be obtained when 

identifying either k and D. As shown in Figure 2 (b), optimal identifiability of k is achieved for 

        (     ), while the minimum D-error is obtained for        . 

In Figure 3 we report of the dimensionless conterpart of    defined as    
  

   

     ( 
      

). 

This quantity provides a measure of the confidence region volume. Thereby, it defines a criterion 

for simulataneous identifiability of k and D.  A minimum can be seen at    2.35 and      

       . This minimum is in the region where the dynamics of IEDP is controlled by both the 

diffusion and the reaction processes. As already mentioned above, if this is the case, then the 

concentration of tracer atoms is sensitive to both D and k, allowing identification of both 

parameters. It should be noted though that the heuristic criterion that states that optimality for IEDP 
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identification occurs at      (       ) and for          seems to be only qualitative, 

confirming earlier ECR results 

Lastly, we checked whether the computed   
  and   

  match the corresponding quantities computed 

using the approximation given by ( 2 ); the latter were shown to capture estimated parameter 

distributions well for synthetic EIS, IEDP and ECR experiments [10, 13, 17, 18]. For this purpose 

we compared the following two quantities:    
   

|√( 
      

)
  

 √     |

√( 
      

)
  

  and  

   
   

|√( 
      

)
  

 √     |

√( 
      

)
  

. These  represent of the errors we make on approximating the 

confidence bands ( 2 ) with ( 10 ) for k and D respectively. We find that the error decays both cases 

with N and that in a log-log plot this decay is linear. In Figure 4 we report    
  for Bi = 1 and  

    
    and note that similar trends are found for    

  

4 Conclusions  
 

In this article we address the identifiability of parameters k and D obtained from IEDP experiments. 

We take a frequentist approach and we compute the relative errors on the estimated   and   

through asymptotic analysis. We also propose an additional approximation for the covariance 

matrix    which is based on the space-averaged sensitivities of the normalized concentration with 

respect to the parameters k and D.  

While sensitivity analysis provides only a qualitative view on the identifiability of    and  , our 

present approach generalizes such concepts. We found a novel estimator which provides the 
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standard deviations on k and D. Such standard deviations are shown to be proportional to the 

experimental error and inversely proportional to the square root of the number of experimental 

points measured. In addition the normalized errors are shown to be dependent only on the Biot 

number and dimensionless experimental time. This generalizes concepts derived in previous work 

and provides a quick reference for assessing the identifiability of k and D in IEDP experiments. 
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(a) 

 

(b) 

 

Figure 1 

(a) Contour plot of        
 , the log10 of the normalized relative standard deviation on k as a 

function of Bi, the Biot number, and     
 , the anneal time normalized with respect to the diffusional 

timescale. (b) Contour plot        
 , the log10 of the normalized relative standard deviation on k, 

versus Biot number and     
 . The corresponding minima are highlighted in the plots with a red dot. 
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(a) 

  

(b) 

 

Figure 2 

(a) Plot of the minimal values of   
  and   

  as a function of the Biot number.The mimimum is 

obtained by mimizing     
  . (b) Plot of the     

  at which the minimum   
  and   

  are achieved. The 

corresponding k-minimal time is plotted as     
         . 
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Figure 3 

Contour plot of        
  as a function of Bi and     

 . The minimum is shown with a red dot. 
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Figure 4 

Relative    
  error, expressed in percent, due to the novel confidence band approximation versus 

the number of experimental points N. 
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