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Resumé (in Danish)

Mange forskellige tekniske områder skal medtages i en designproces af store gearløse

drev til mineindustrien for at kunne beskrive drevs elektrisk-mekanisk-termiske opførsel

korrekt. Indtil videre behandles disse forskellige tekniske områder mere eller mindre sep-

arat, og ingen beskrivelser eller citationer er fundet vedrørende modellering af disse store

drev ved brug af koblede multi-fysiske modeller, hvilket giver mulighed for en samlet op-

timering af den slags maskineri. Målet har derfor været at skabe pålidelige og sammen-

hængende tværfaglige matematiske modeller baseret på en multi-fysisk tilgang. Afhan-

dlingens originalitet findes i den fuldstændige sammenkoblede model af et gearløst drev.

Yderligere er anvendelsen af ”Evolution Strategies” i optimering af et gearløst drev også

en nyhed. Den foreslåede matematiske multi-fysiske model inkorporerer de fysiske hov-

edområder som et gearløst drev består af. Disse tekniske områder er elektromagnetisme,

strukturdynamik, varme- og massetransport, hvilket er tæt sammenkædet med hinanden,

da resultater fra et område har indvirkning på et andet og omvendt. Denne model er

derefter blevet anvendt i en meta-heuristisk optimering ved hjælp af ”Evolution Strate-

gies”. Den elektromagnetiske, termiske og strukturelle opførelser er blevet modeleret

med Finite Element Metode i både 2D og 3D. Massetransporten er blevet beskrevet ved

hjælp af en diskret model og løst ved hjælp af Newton-Raphsons Metod. En af de store

udfordringer har været at få simplificeret de forskellige undermodeller for at minimere

beregningstiden uden at miste præcisionen på de endelige resultater. Dette har muliggjort

at modellerne kan anvendes i en iterativ optimeringsproces. Det er vist at den foreslåede

multi-fysiske model fører til andre resultater end de hidtidigt anvendte afkoblede mod-

eller, da disse anvender konstante værdier fra de andre fysiske områder selv om disse

værdier er afhængige af hinanden. Den multi-fysiske model fører derfor til en mere præ-

cis bestemmelse af de forskellige parametre. Afhandlingen giver et klart overblik over de

koblede modellers nødvendighed og afgørende parametre. Det største bidrag til model-

lering af gearløse mølle drev, skal findes i den fulde integration af de forskellige tekniske

områder, der muliggør en mere nøjagtig bestemmelse af de forskellige værdier, der karak-

teriserer mølledrevet. Dette muliggør samtidig en samlet optimering som ellers ikke ville

have været mulig. Denne optimering er i dette tilfælde minimering af massen og tabene

i drevet som i sidste ende vil være en minimering af købs- og driftsomkostningerne. Op-

timeringen resulterede i en massereduktion på 4,0% og en formindskelse af tabene på

9,9% i forhold til det oprindelige drev. Afhandlingen åbner også nye forskningsfronter

og fremhæver tre nye nødvendige forskningsaspekter for videre udvikling af designpro-

cesser af store gearløse drev baseret på multi-fysik: a) eksperimentelle test på det fysiske

mølledrev til verifikation og tilretning af de præsenterede modeller er af afgørende be-

tydning, da modellerne kun er blevet sammenlignet med andre matematiske modeller; b)

simulering af den termiske del i 3D for at undersøge effekten af den aksiale varmefluks;
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c) undersøgelse af effekten af ende-vindingerne og køle-luft-kanalerne i rammen med en

detaljeret 3D CFD model.



Abstract

Many different technical areas are involved in the design process of large gearless drives

for the mining industry, aiming at correctly describing the electrical-mechanical-thermal

behavior of the drive. So far, these various technical areas are being treated more or less

separately, and no descriptions or references are found concerning the modeling of these

large drives using coupled multi-physics models, which allow an overall optimization of

this kind of machinery. In this framework, the goal of this thesis is to create reliable

and coherent interdisciplinary mathematical models based on a multi-physics approach.

The originality of the thesis is to be found in the full interlinked model of a gearless

drive. The use of ”Evolution Strategies” in the optimization is also an original contribu-

tion to the field of gearless drive design. The proposed mathematical multi-physics model

incorporates the key technical areas of a gearless drive. These technical areas are electro-

magnetism, structural dynamics, heat and mass transfer. Such technical areas are closely

linked to each other, with results from one area affecting the others and vice-versa. The

multi-physics model of the drive is connected to a meta-heuristic optimization procedure

based on ”Evolution Strategies”. The electromagnetic, thermal and structural behaviors

have been modeled using the Finite Element Method in 2D and 3D. The mass transport

has been described by means of a discrete model and solved using the Newton-Raphson

method. One of the major challenges has been to simplify the different sub-models to

minimize calculation time without losing accuracy of the final results. This has allowed

the models to be utilized in an iterative optimization process. It is shown that the proposed

multi-physics model leads to different results than the decoupled models previously used,

as the decoupled models use constant values from the several technical areas even though

these values are interdependent. The multi-physics model therefore leads to a more pre-

cise determination of the design parameters. The thesis gives a clear overview of the

necessity of the coupled models and highlights the vital design parameters. As already

mentioned, the main contribution to the modeling of gearless mill drives is to be found in

the full integration of the various technical areas, enabling a more accurate determination

of the different physical parameters that characterize mill drive behavior. This enables an

overall optimization that would not have been possible by other means. In this work, the

optimization is based on the minimization of the mass of the drive components and losses

in the drive, leading to a minimization of purchase and operating costs. The optimiza-

tion resulted in a mass reduction of 4.0% and a decrease of losses of 9.9% compared to

the original drive design. The thesis also opens new research fronts and highlights three

new necessary research aspects for further development of the design processes of large

gearless drives based on a multi-physics approach: a) experimental tests on the physical

mill drives for verification and adjustment of the presented models are crucial, since the

multi-physics models have only been compared with other mathematical models; b) 3D

iv



v

simulation of the thermal part in order to investigate the effect of the axial heat flux; and

finally c) investigation of the effect of the end-windings and the cooling-air channels in a

frame with a detailed 3D CFD model.
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i Index i ∈ [x, y, z] axis of rotation, [-]

˜ Mutated parameter, [-]

α Thermal diffusivity, [m2/s]

αu Slot angle, [Rad]

αz Phasor angle, [Rad]

αk Kinetic energy coefficient, [-]

αL Thermal linear expansion coefficient

[ 1
◦C
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F Electromagnetic force, [N]
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S Maxwell stress tensor, [N/m2]

Si Maxwell stress tensor component,
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T Torque tensor, [Nm]
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N Random number from the standard

normal distribution, [-]
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F Function, [-]
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μ0 Reference viscosity at reference tem-

perature T0, [(N· s)/m2]

μd Dynamic viscosity, [(N·s)/m2]
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μs Dynamic viscosity at the heat trans-

fer boundary surface temperature,
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∇ Del operator, [-]

ν Kinematic viscosity, [m2/s]
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ω Frequency, [Hz]
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ρd Density, [kg/m3]

ρair Density of dry air at altitude halt,

[kg/m3]

ρele Element density, [kg/m3]

ρref Electrical resistivity, [Ω·m]

σ Standard deviation, [-]

τ Learning factor, [-]

τ0 Learning factor, [-]

a Individual parameter vector, [-]

F Fitness value vector, [-]

r Recombinant, [-]

s Strategy parameter vector, [-]

y Object parameter vector, [-]

g Generation number, [-]

�n Unit vector normal to the surface, [-]

�r Vector from origin of torque to current

position, [m]
�i,�j, �k Unit vectors, [-]
∗ Base winding, [-]

A Area, [m2]

Ar Copper cross section area of parallel

strands (rotor), [m2]
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ACoil,r Cross-section area of the coil packs
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ACoil,s Cross-section area of one coil pack
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ACu,r Cross-section area of the copper part

of one rotor pole [m2]
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Chapter 1
Introduction

1.1 State of the art

All electric motors generate heat due to losses in windings and iron core which, if not

predicted correct, could have fatal consequences for the operation of the device. This is

increasingly important for large and very expensive motors like gearless mill drives in

mineral mining mills, Nieto and Ahrens (2007), Boughey et al. (2000), Hamdani (2000),

which is also very costly in downtimes and therefore require high reliability. It is of com-

mon practice in thermal modeling of motors to use the lumped thermal method, Nerg et al.

(2008), Galea et al. (2012), Mellor et al. (1991), Staton et al. (2003), Bracikowski et al.

(2012), however, if higher level of details is desired one needs to move to more refined

methods like finite difference Drubel and Runge (2004), Baehr and Stephan (2011) and/or

finite element method Li et al. (2012), Galea et al. (2012), Srinivas and Arumugam (2001),

Mezani et al. (2001). These types of methods can give a highly accurate and clear view of

the temperature distribution within the motor, if the convection coefficient has been deter-

mined with a high accuracy which is one of the major hurtles in heat transfer simulations.

This convection coefficient is highly dependent on the fluid properties, channel geometry

and the channel flow rate and can only be determined through experiments. Several empir-

ical equations, Incropera et al. (2006), Kreith (2000), Stephan et al. (2010) have, however,

been formulated which are especially optimized for different channel geometries and pa-

rameter ranges. Before the convection coefficient can be determined, knowledge of the

flow is needed. If high level of detail is desired, numerical CFD can be used for predicting

the flow as in Jungreuthmayer et al. (2011), however, these 3D simulations are very com-

putationally expensive and less suited for iterative optimization. Another and fast way of

determine the flow is as described in Fox et al. (2004) by the use of Bernoulli’s energy

equation where the pressure losses from the different channel segments can be summed

up. These losses are split into what is called major and minor losses, where the major

losses are head losses in straight channel with constant cross section and minor losses are

head losses due to inlet/outlet condition, fittings, valves, bends and other devices which

create a resistance in the fluid flow. These head losses can again only be determined

through experiments, but as before some empirical equations and constants for common

components can be found in the literature, Stephan et al. (2010), White (1998). The elec-

tromagnetic losses in the motor are what is generating the heat and consist of two main

types of losses. The core losses which are generated by eddy current and hysteresis in the

iron parts as the magnetic field oscillates and the resistance losses as current flow through

the coils. The core losses can be determined through a series of static finite element sim-

ulations as described in Meeker (2009), Dlala (2009), Bertotti (1988), Chen and Pillay

(2002), Zhao et al. (2011) and the resistance losses can be found when the resistance and

1



2 Chapter 1 Introduction

the current are known, Bouheraoua et al. (2012). The electromagnetic forces and heat

expansions can then be applied to a structural model where it is customary to model the

structural part of a gearless mill drive by the use of the finite element method as in EAnD

(2000), EAnD (1999), Meimaris and Boughey (2001), Dreher et al. (2004). This can be

accomplished by the use of many different mesh element types or combination of these

which can be more or less suited for modeling the different cases. According to Benzley

et al. (1995) it is shown that an all hexahedron finite element mesh is superior to an all

tetrahedral finite element mesh for stress, deformation and natural frequency estimation.

Based on this investigation it is preferable to keep the structural mesh of the mill drive in

an all hexahedron mesh. Many different types of optimization algorithms can be used in

the optimization of a gearless mill drive, where one of them is with the use of metaheuris-

tic optimization. One of these metaheuristic algorithms is called Evolution Strategies and

has proven to give good results in a previous optimization of a PM motor, Andersen and

Santos (2012). This optimization algorithm does not guarantee that the optimal solution

is ever found, but it will find a good solution. One of the benefits of using this algorithm

is that it can optimize several parameters at the same time, where none of these have to be

in the same physical area, as long as the solution can be given a fitness value explaining

the goodness of the solution. Another benefit of using this metaheuristic algorithm is that

it is very easy to implement into any previous made model.

1.2 Goals and main originality of this work

A computational multi-physics tool is created to aid gearless drive design, taking into

consideration electromagnetism, fluid mechanics, mass and heat transfer, which has been

closely linked to the flexible structural behavior of stator and rotor (solid mechanics

model). The different models are validated against data and results presented in selected

literatures. The global multi-physics model is afterwards used in a single and multi-

objective optimization process with the goal of minimizing the mass and losses in the

drive.

The presented model, roughly illustrated in Fig.1.1, is a completely integrated multi-

physics model incorporating electromagnetic losses, forces, torques, cooling flow, mass

transfer, fluid characteristics, temperature, heat transfer, structural deformation, stresses

and natural frequencies. Grinbaum (2012) and Bermudez (2012), used for comparison

of the flow and thermal submodels, only use partly interconnected models. The model

in Grinbaum (2012) only include one cooling channel for the rotor and one for the stator

with constant fluid properties and it is based on a lumped model looking only at one cross-

section of the drive. The model in Bermudez (2012) is based on several lumped models at

different cross-section positions and also uses constant fluid properties and losses found

by Grinbaum (2012). The presented electromagnetic submodel is a numerical model

which predict the core losses with higher accuracy than Grinbaum (2012) as it takes all

the losses for the desired number of harmonics into account and not just the losses due to

the fundamental frequency as in Grinbaum (2012). The integrated electromagnetic-flow-

thermal model is therefore an improvement of the previously used models of a gearless
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mill drives as it predict the losses with higher accuracy and the intermediate results are it-

eratively updated between the submodels for a more precise determination of the different

parameters. This has also been presented in Andersen et al. (2012c) and is one of the orig-

inal contributions to the modeling of gearless drives. As finite element models can be very

time consuming to solve, especially when used in an iterative process, it is also important

to be able to minimize the computation time by making simplifications to the models. It

has therefore been examined how this can be performed without loosing significant accu-

racy in the final results and has been described in the thesis and in Andersen et al. (2012c)

and Andersen et al. (2012b). The structural model is a finite element model created in For-

tran using GMSH as a mesh generator and MATLAB solver to solve the large system of

linear equations. The forces, torques and heat expansion found in the other submodels are

automatically added to the structural model when the model is run, where Casado (2012)

used for comparison, do not include the heat expansion and the forces and torques have to

be added manually making it impossible to make a fully automated global optimization

using the model in Casado (2012). However, this is possible and has been done for the

presented completely integrated multi-physics model. The work performed in this thesis

therefore gives a theoretical contribution to the application of metaheuristics in a global

optimization process of gearless mill drives, more specifically with the use of evolution

strategies. The use of evolution strategies has also been proven to be applicable in the

Electromagnet ic m odel

Therm al m odelHydraulic m odel

St ructual m odel

Loss model
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Figure 1.1 Rough overall description of the global multi-physics model of the gearless mill drive
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optimization of PM motors as shown in Andersen and Santos (2012) which is an other

original contribution as this also has not been performed before on a complete PM motor.

Verification of the different models are important but has only been done against other

mathematical models. To truly verify the models, experimental validation are essential

as it has been shown in Andersen et al. (2012a) who model and experimentally verify

the analysis of a rotor levitated by passive cylinder-magnet bearings which is one of the

original contributions.

1.3 Structure of this work

This thesis is split up in chapters each corresponding to the different physical disciplines

of the multi-physics model of the gearless mill drive. At the start of each section the basic

theory of the specific physical area is explained followed by the results from the presented

model and finally the results are verified against data received from ABB Switzerland Ltd.

Chapter 2 gives an introduction to the main components of a gearless drive and describe

how a gearless drive work.

Chapter 3 describe the electromagnetic part of the gearless drive beginning with the the-

ory, then model description and finally verification. The main goal of the electromagnetic

model are to estimate losses, forces and torques of the drive under different conditions

which are used in the structural part and the optimization part of the global model.

Chapter 4 describe how the air cooling flow of a gearless drive can be modeled. The

chapter starts by presenting the used theory, then how the cooling flow model was created

and finally the model is verified against results from an external source. The main goals of

the flow model are estimations of air flow rate and the pressure drop through the cooling

channels in the drive. These parameter values are needed in the thermal model and for

estimating the electric power loss in the cooling system.

Chapter 5 describe the thermal model of the gearless drive using two different methods

(FEM and FD). Initially the theory is explained followed by the model description and

finally a verification of the model against results from an external source is performed.

The main results from this model are the maximum coil temperature which must not ex-

ceed a certain value, the average core temperature which is used for estimating the heat

expansion for the structural part of the global model and the heat flux entering the cooling

flow which is used in the cooling flow model.

Chapter 6 describe the structural model of the frame and the rotor of the gearless drive.

The chapter starts by explaining the theory used for building the FEM code to model the

structural part of the drive. Then the modeling of the different elements in the model are

described followed by a verification against an external source. The main results of the

structural model of the drive are the mass, rotor/stator air gap distortion, deformation,

stresses and natural frequencies of the drive which are used for validating a solution in the
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optimization part of the global model.

Chapter 7 describe the two optimizations performed on the drive in an attempt to mini-

mize the masses and losses. The chapter starts by presenting the theory behind the opti-

mization algorithm used followed by a description on how the algorithm have been im-

plemented for both the single- and multi-objective optimization. Finally the results are

presented and the optimized drives are compared against the drive with the original di-

mensions.

Chapter 8 summarize the main results and conclusion of the thesis and suggest possible

future research directions.



Chapter 2
Gearless mill drives

Figure 2.1 Explanation of components of a pedestal mounted SAG mill, ABB Switzerland Ltd.

(2009)

The following sections will briefly describe the main components of a mill used in

the mining industry to give an overall understanding of how such machines are build and

work, Fig. 2.1 and Fig. 2.2. There are several types of mills where the most commonly

used in the mineral mining industry can be split up in three groups: ball mills, Autoge-

nous Grinding (AG) mills and Semi-Autogenous Grinding (SAG) mills. AG and SAG

mills usually have a large mill drum diameter (up to 40ft∼12.2m 28MW, ABB Commu-

nications (2011)) compared to their length and are mainly used in a first stage grinding

process with large rocks. The ball mill has a smaller diameter (up to 28ft∼8.5m 22MW,

ABB Communications (2011)) than the AG and SAG mill, but is usually several times

longer than their diameter and are mainly used in a second stage grinding process with

6
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(a) Drawing of a SAG mill

(b) Exploded view of a gearless drive

Figure 2.2 1© Stator cover, 2© Sealing system, 3© Sealing protection cover, 4© Rotor cover,

5© Stator winding, 6© Stator core, 7© Rotor poles, 8© Stator frame (with holding plates and key

bars), 9© Rotor cover with slip rings, 10© Sealing protection cover, 11© Sealing system, 12© Stator

cover with brush holder, 13© Sole plate, 14© Anchor bolts, 15© Mill drum, 16© Fan and coolers, 17©
Inlet side chamber, 18© Outlet side chamber, 19© Frame stiffeners.



8 Chapter 2 Gearless mill drives

smaller rocks. Both the SAG and the ball mill are partially filled with balls of steel or

stone to improve the grinding process where as the AG mill rely entirely on the rocks

grinding themself when they tumble around inside the drum. All of these mills can be

fitted either with ring motor or with ring gears where the trend is moving towards the

use of gearless drives due to smaller maintenance requirements and due to the structural

integrity of geared drives when torque requirements increase. All of the mills can come

as pedestal mounted Fig. 2.1 or foot mounted Fig. 2.2 and are just a question of how the

frame is attached to the concrete foundation. The drive which is modeled in this thesis is

a foot mounted gearless ball mill and the following will refer to such a mill drive if not

otherwise stated.

Balloon 1© - 4© and 9© - 12© in Fig. 2.2 are sealing and covers to keep external

dust out of the frame and for creating a closed cooling system. 5© is the stator windings

consisting of a lot of copper bars which are fitted into sluts in the stator core 6© consisting

of laminated steel sheets. Balloon 9© and 12© also include the slip ring and brushes which

powers the coils in the rotor poles 7©. The frame 8© consist of mainly steel plates and

some stiffener tubes 19© and has two main purposes which are to hold the stator and to

create a closed cooling system. The frame is fixed on the sole plates 13© which again are

bolted firmly to the concrete foundation by the anchor bolts 13©. Cooling fans and coolers

16© are placed at both bottom corners of the frame forcing cooling air up the inlet side

chamber 17© through the stator and rotor cooling channels and down the outlet chamber

18©.

2.1 Mill drum

The mill drum is more or less like a very large drum from a washing machine with a

feed and discharge hole in either end of the drum. This drum is supported at the feed

and discharge trunnions by two large hydrostatic bearings. The teller shaped end plates

called the head extend a bit further than the diameter of the cylindrical part of the drum

to form the mill flange for the rotor pole attachment. Liners are screwed onto the inside

of the heads and cylinder to protect the mill from wear as the rock and balls tumble

around inside the drum. The liners are screwed onto the cylinder and heads to make the

maintenance easier as these liners will be worn down in time and will have to be replaced.

Figure 2.3(a) show the inside of a SAG mill with rock load and Fig. 2.3(b) show how the

rock will tumble around inside the drum under optimal conditions.

2.2 Rotor pole

The rotor poles, Fig. 2.4, are more or less just very large electromagnets with copper coils

feed with a DC current (IDC = 490 A) to create a constant magnetic field. Each rotor pole

weighs approximately 2 tons and the modeled drive has 60 of these poles which is fare

1http://www.infomine.com/minesite/minesite.asp?site=bingham
2http://ffden-2.phys.uaf.edu/211 fall2002.web.dir/keith palchikoff/sag physics 2.html
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(a) Inside a SAG mill, Bingham Canyon1 (b) DEM software simulated SAG

charge2

Figure 2.3 Inside view of a mill drum.

from that of a common synchronous motor. The poles consist of a middle plate which

is used for attaching the poles to the mill flange. Profile cut St.42 steel are stacked on

each side of this middle plate to the desired length of the pole. Press plates are added at

the end of each stack and bolts are run through the whole length of the pole pressing the

entire pole firmly together. Copper coils are then wound around the pole in three groups

creating two air gaps between the coil packs for the cooling of the coils. The two upper

coil packs consist of 3 x 18 square copper strands wrapped in insulation where the lower

coil pack only consist of 3 x 17 square copper strands. The bushings used for the fixation

of the poles are eccentric to ease the alignment of the poles on the mill flange.

2.3 Frame

The frame consists of several steel plates with some internal stiffeners, Fig. 2.5. The

frame have four main functions which are to form a rigid connection to the concrete

foundation, to fixate the stator, to form chambers, to guide the cooling flow and as housing

for the cooling system. The frame consists of 3 internal plates which are the ones holding

the stator in place and form the internal walls of the chamber for the cooling flow. On

each side of these internal plates are the end plates which form the outside walls of the

chambers for the cooling flow. Side and bottom plates are added around these vertical

plates fixating the plates and closing the cooling flow chambers. Just behind the stator

a series of equally spaced stiffener tubes are placed in a circle around the stator and

connected to all the vertical plates. The frame, including the stator, are manufactured in

four quarters where the final assembly is performed at the plant due to transportation of

such a large structure.
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Figure 2.4 Rotor pole, 1© Core (Segments), 2© Winding, 3© Connections, 4© Middle Pole

Plate, 5© Press Plate, 6© Bolts (1 hided), 7© Fixation Bolt, 8© Eccentric Bushings (2 Positions),

9© Washer, 10© Round Nut, 11© Mill Flange

(a) Cross-section of frame (b) End view of frame

Figure 2.5 Explanation of frame components
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2.4 Stator

The stator consists of several thousands of profile cut 0.5 mm thick electric steel sheets

like the one shown in Fig. 2.6. These sheets overlap each other and are fixated by the

keybars which are slided into the slot at the outer diameter of the sheets. In the core back

two rows of holes are cut, which will form the cooling channels and holes for bolting the

sheets together. On the inner diameter of the sheet a series of square slots are cut, which

are used for the two stator coil bars which are to be added to each slot to form the stator

windings. In each stator finger (material between square slots) three holes are cut along

the finger. These holes will form the cooling channels needed for cooling the stator coils.

Small cuts into the end of the stator fingers form grooves where a fiberglass composite

strip can be slided in, locking the copper bars firmly inside the slots. Due to the high

currents in the copper bars (IRMS = 2480 A) the end windings which protrudes about

half a meter out from the stator will have to be tied together to prevent them attract each

other which can be seen in Fig. 3.4(a). The stator is attached to the frame by the use of

the mentioned keybars, which are bolted to the 3 internal plates mentioned in the previous

section forming a small air gap between the stator and the frame to compensate for some

of the heat expansion, Fig. 2.5(a). Furthermore, bolts are run through the entire stator and

through one of the 3 internal plates.

Figure 2.6 Stator sheet

2.5 Fan and cooling system

The cooling system consists of several coolers and cooling fans located inside the frame

at each bottom corner. The path of the cooling flow is illustrated in Fig. 2.7 for a pedestal

mounted GMD, however, the principle is the same for a foot mounted GMD which is the

one modeled. The warm air is sucked through the coolers and pas the cooling fans before

it is send up through the large chamber in the frame. From this chamber the air is pressed

through the mentioned cooling channels and the air gap between the poles and stator and

between the poles themself. The warm cooling air then exits into the large chamber at the

other side of the frame where it is sucked through the cooler again. Due to the fact that

the cooling fans are placed on the cold side of the coolers, the cooling air will initially be
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Figure 2.7 Gearless mill drive cooling system, ABB Switzerland Ltd. (2009)

heated due to losses in the cooling system before it is send up in the frame chamber. This

initial heating of the cooling air cannot be neglected as the losses of the cooling system

are relatively large.



Chapter 3
Electromagnetic forces, torque and losses in gearless
drives - Electromagnetic model

The electromagnetic part of a motor is the heart of the complete unit as it is the component

which produces the torque specified by the costumer. It is therefore also this part which

usually is the first to be dimensioned in a design phase. However, the produced torque

is only one of many parameters which can be obtained from the electromagnetic model

and are needed for an optimal design. There are a lot of parameters which needs to be

determined in the design of a motor as for example the type of winding of the stator

which if chosen correctly can minimize the harmonics in the motor and thereby reducing

the losses and torque ripples as show in EL-Refaie and Shah (2011) for an induction

motor. Another example is the type of motor used which for example could be induction

motor, Li et al. (2010), permanent magnet motor, Rahideh and Korakianitis (2012), Wu

et al. (2012) or DC excited synchronous motor as the one simulated.

The three most important results from the electromagnetic model needed in the further

design of a complete motor are the torque, the pole radial magnetic pull and the losses

from the copper windings and core material. The torque and the pole radial magnetic pull

are needed in the structural calculations for dimensioning the frame which support the

stator and rotor as a too low stiffness would result in a critical reduction of the rotor/stator

air gap. The electromagnetic induced losses in the core material and the losses in the

copper windings as current flow through the coils are needed in the thermal model as heat

generation. These electromagnetic models can be created as both analytical and numerical

models. If high level of details of the magnetic flux within the iron core is needed or the

core geometry is complex it is of common practice to use a 2D finite element model as

presented by Cundev and Cerovsky (2007) for a salient poles synchronous motor and by

Arumugam et al. (1985) for a switched reluctance motor.

This chapter start by explain the basic theory of electromagnetism and how to estimate

forces and torques in a finite element magnetostatic model followed by a description on

how the winding diagram for the simulated drive can be found. As the drive has a lot of

poles which result in a relatively large model, it will be described how it is possible to

reduce the model without loosing any significant accuracy in the results achieved. Results

from the full and the reduced models will be compared against each other and results

achieved at ABB to demonstrate the validity and limitations of the reduced model. Finally,

it will be described how the core and resistive losses in the drive can be found through

a series of magnetostatic simulations which will be verified against values received from

ABB. All finite element magnetostatic simulations in this thesis are performed with the

program “Finite Element Method Magnetic” and will in subsequent sections be referred

to as FEMM.

13
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3.1 Basic equation

Magnetostatic problems are problems in which the fields are time-invariant. In this case,

the field strength H and flux density B must obey Eq. 3.1 and 3.2:

∇×H = J (3.1)

∇ ·B = 0 (3.2)

The relationship between B and H is given in Eq. 3.3 where the proportionality constant

μp is the permeability of the material:

B = μpH (3.3)

In cases where the material is nonlinear, the permeability, μp is a function of B and is

given by:

μp =
B

H(B)
(3.4)

The software program FEMM goes about finding a field that satisfies Eq. 3.1-3.3 via a

magnetic vector potential approach. Flux density is written in terms of the vector poten-

tial, A, as:

B = ∇×A (3.5)

This definition of B always satisfies Eq. 3.2 and Eq. 3.1 can be rewritten as:

∇×
(

1

μp(B)
∇×A

)
= J (3.6)

For a linear isotropic material (and assuming the Coulomb gauge, ∇ · A = 0), Eq. 3.6

reduces to:

− 1

μp

∇2A = J (3.7)

FEMM retains the form of Eq. 3.6, so that magnetostatic problems with a nonlinear B-H

relationship can be solved. In the general 3-D case, A is a vector with three components.

However, in the 2-D planar and axisymmetric cases, two of these three components are

zero, leaving just the component in the ”out of the paper” direction. The advantage of

using the vector potential formulation is that all the conditions to be satisfied have been

combined into a single equation. If A is found, B and H can then be deduced by differen-

tiating A.

For calculating the forces, one can use Maxwell’s stress tensor which is particular suited

for this purpose, as the integral depends only on the field distribution outside the object in

question. For this reason, it is not necessary to know the exact current density distributions

within complex anisotropic or nonlinear materials. From the theory of electromagnetism

the Lorentz force and Ampere’s law are expressed respectively by Eq. 3.8 and Eq. 3.9.

f = J ×B (3.8)
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∇×B = μ0J (3.9)

Inserting Eq. 3.9 into Eq. 3.8 and integrating over the volume of the object, an expression

for the force on the object expressed solely by the B-field is achieved.

F =
1

μ0

∫∫∫
(∇×B)×B dV (3.10)

Expanding the curl and the cross product, the x, y and z component of Eq. 3.10 is

Fx =
1

μ0

∫∫∫ (
Bz

∂Bx

∂z
− Bz

∂Bz

∂x
− By

∂By

∂x
+By

∂Bx

∂y

)
dV (3.11)

Fy =
1

μ0

∫∫∫ (
Bx

∂By

∂x
− Bx

∂Bx

∂y
− Bz

∂Bz

∂y
+Bz

∂By

∂z

)
dV (3.12)

Fz =
1

μ0

∫∫∫ (
By

∂Bz

∂y
− By

∂By

∂z
− Bx

∂Bx

∂z
+Bx

∂Bz

∂x

)
dV (3.13)

Introducing Maxwell’s stress tensor, Eq. 3.14, where E is the electric field, B is the

magnetic field, ε0 is the vacuum permittivity and μ0 is the vacuum permeability.

Sij = ε0

(
EiEj − 1

2
δijE

2

)
+

1

μ0

(
BiBj − 1

2
δijB

2

)
(3.14)

If the field is only magnetic, which is largely true in motors, some of the terms cancel out

resulting in Eq. 3.15:

Sij
∼= 1

μ0

(
BiBj − 1

2
δijB

2

)
(3.15)

Expanding this for the x, y and z directions result in Eq. 3.16 to Eq. 3.18:

Sx =
1

μ0

[(
B2

x −
B2

x +B2
y +B2

z

2

)
�i +BxBy

�j +BxBz
�k

]
(3.16)

Sy =
1

μ0

[
ByBx

�i +

(
B2

y −
B2

x +B2
y +B2

z

2

)
�j +ByBz

�k

]
(3.17)

Sz =
1

μ0

[
BzBx

�i +BzBy
�j +

(
B2

z −
B2

x +B2
y +B2

z

2

)
�k

]
(3.18)
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Now taking the divergence of vector Eq. 3.16 to Eq. 3.18 results in Eq. 3.19 to Eq. 3.21

∇ · Sx =
1

μ0

[
Bx

(
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z

)

−By
∂By

∂x
− Bz

∂Bz

∂x
+By

∂Bx

∂y
+Bz

∂Bx

∂z

]
(3.19)

∇ · Sy =
1

μ0

[
By

(
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z

)

−Bx
∂Bx

∂y
− Bz

∂Bz

∂y
+Bx

∂By

∂x
+Bz

∂By

∂z

]
(3.20)

∇ · Sz =
1

μ0

[
Bz

(
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z

)

−Bx
∂Bx

∂z
− By

∂By

∂z
+Bx

∂Bz

∂x
+By

∂Bz

∂y

]
(3.21)

According to Eq. 3.2 the therm
(

∂Bx

∂x
+ ∂By

∂y
+ ∂Bz

∂z

)
is equal to zero and the first part of

the right hand side can be canceled. The remaining right hand side expressions are similar

to the ones in Eq. 3.11, 3.12 and 3.13. The force in the x, y and z direction on the object

can therefore be expressed as:

Fx =

∫ ∫ ∫
∇ · Sx dV (3.22)

Fy =

∫ ∫ ∫
∇ · Sy dV (3.23)

Fz =

∫ ∫ ∫
∇ · Sz dV (3.24)

Using the divergence theorem to convert the volume integral to a surface integral one

achieves:

Fx =

∫ ∫
Sx · �n dA (3.25)

Fy =

∫ ∫
Sy · �n dA (3.26)

Fz =

∫ ∫
Sz · �n dA (3.27)

where n is the unit vector normal to the surface. In a general 3D FE case this normal

vector can be expressed as:

�n =
(p2 − p1)

|p2 − p1| ×
(p3 − p1)

|p3 − p1| (3.28)

when looking at a triangular segment as shown in Fig. 3.1(a). p1 to p3 in Eq. 3.28

are vectors and marked by arrows in the figure pointing from the reference system to the
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(a) (b)

Figure 3.1 (a) General case unit vector, (b) FEMM unit vector

corner points of the triangle marked by dots. FEMM, however, is a 2D solver and assume

no variation of the B-field in the ”out the paper” direction and the depth into the paper Δz
is constant. In this case, the normal vector is as shown in Fig. 3.1(b) where the contour

between the two dots defines the edge of the surface. In this case, the normal vector can,

according to Fig. 3.1(b), be found as:

�n = �nz × (p1 − p2)

|p1 − p2| (3.29)

where �nz is a unit vector pointing in the z-direction. It is now possible to write a general

force law expressed as:

F =

∫ ∫
S · �n dA (3.30)

The quantity S is the Maxwell stress tensor for magnetostatic fields

S =
1

μ0

⎡
⎣ B2

x − B2/2 BxBy BxBz

ByBx B2
y − B2/2 ByBz

BzBx BzBy B2
z − B2/2

⎤
⎦ (3.31)

where B2 = B2
x +B2

y +B2
z .

The torque on a differential element can be expressed as:

dt = �r× dF (3.32)

where �r is a vector pointing from the origin of torque to the current position

�r =

⎧⎨
⎩

rx
ry
rz

⎫⎬
⎭ =

⎧⎨
⎩

x− xt

y − yt
z − zt

⎫⎬
⎭ (3.33)

Inserting Eq. 3.30 into this, results in:

t =

∫ ∫
�r× (S · �n) dA (3.34)
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Expanding the cross product, a torque tensor T can be found, which satisfy Eq. 3.35

and is a function of the stress tensor Eq. 3.31 and the components of the vector from the

torque origin Eq. 3.33:

t =

∫ ∫
T · �n dA (3.35)

T =

⎡
⎣ (ryS31 − rzS21) (ryS32 − rzS22) (ryS33 − rzS23)

(rzS11 − rxS31) (rzS12 − rxS32) (rzS13 − rxS33)
(rxS21 − ryS11) (rxS22 − rrS12) (rxS23 − ryS13)

⎤
⎦ (3.36)

Further information on Maxwell’s stress tensor can be found in Humphries (2010); Jr.

(2010); Bastos and Sadowski (2003).

3.2 Rotor and stator windings

The following explains how the winding configuration for the FEMM calculation of the

simulated drive is found. It will only be described how this can be performed for the

specific drive and will refer to Pyrhönen et al. (2008) for other drive configurations.

The winding design of the simulated drive is a double-layer winding which means that

there are two copper coil bars in each stator slot. The main parameters of the drive are:

• Number of slots: Qs = 504

• Number of pole pair: pp = 30

• Number of phases: mp = 3

This result in the following number of slots per pole and phase:

qs =
Qs

2ppmp

= 2 +
4

5
(3.37)

As qs /∈ N means that the winding is a fractional slot winding in this case with the divider

nd = 5. The conditions of symmetry (Table 2.6, Pyrhönen et al. (2008)) pp/nd = 30/5 =
6 ∈ N and nd/mp = 5/3 /∈ N are met. According to Table 2.7, Pyrhönen et al. (2008), if

nd is an odd number nd = 5 ∈ Nodd, a first-grade fractional slot winding is to be created.

The parameters of the voltage phasor diagram of such a winding are:

• Number of layers in the voltage phasor diagram for the base winding t∗ = 1

• Number of pole pairs in the base winding p∗p = nd = 5

• Number of slots in the base winding Q∗
s = Qs · nd/pp = 84

• Number of radii Q′
s = Q∗

s/t
∗ = 84

• Slot angle αu = 2 · π · p∗/Q∗
s = 0.374

• Phasor angle αz = 2 · π · t∗/Q∗
s = 0.0748

• Number of phasors skipped in the numbering (p∗p/t
∗)− 1 = 4
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Since t∗ = 1 the number of radii Q′
s is the same as the number of phasors Q∗

s and we

obtain Q∗
s/mp = 84/3 = 28 phasors for each phase which are then divided into negative

Z− and positive Z+ phasors. The number of phasors per phase in the first-grade base

winding is Q∗/mp = Qs/mpt ∈ Neven. In normal cases, there are no zone variation and

the phasors are evenly divided into positive and negative phasors. For the specific case,

the number of phasors of both types are therefore 14, Z− = Z+ = 14. By employing

a normal zone order −U , +V , −W , +U , −V , +W it is possible to divide the voltage

phasor diagram into zones with 14 phasors in each, Fig. 3.2.

When the voltage phasor diagram is ready, the bottom layer of the winding is set. The

positions of the coil sides in the top layer are defined when an appropriate coil span is

selected. For fractional slot windings, it is not possible to construct a full-pitch winding,

because qs is not a member of N. For the winding in question, the full-pitch coil span yQ
of a full-pitch winding would be y slot pitches

y = yQ = mp · qs = 3 · 2.8 = 8.4 /∈ N (3.38)

This is not possible in practice because the step has, of course, to be an integer number

of slot pitches. The double pitch has to be an integer, here defined as y1 + y2, and the

difference between y1+ y2 and 2 · y has to be less than 0.5. Either y1 or y2 has to be equal

to βoptimal · y = 5/6 · 8.4 ≈ 7. One can now choose one of the two cases: y1 < y or

y1 > y. In the case of the specific drives winding it is chosen that y1 < y. This results in:

y1 + y2 = 2 · y (3.39)

7 + y2 = 2 · 8.4 => y2 = 10 (3.40)

Double-layer fractional slot windings are thus short-pitched windings. When constructing

a two-layer fractional slot winding, there are two coil sides in each slot. Hence, there are

as many coils as slots in the winding. Initially the -U-phase bottom coil side is located in

slot 9 to match the numbering used in the simulated drive. The other coil side is placed

according to the coil span of y = 10 at a distance of 10 slots in the upper part of slot 19.

Similarly, coils run from 10 to 20. The coils to be formed in the base winding are listed

in Tab. 3.1 and are repeated 6 times to fill out the 504 slots of the stator. A complete

winding diagram can be seen in Fig. 3.3 and Fig. 3.4 show pictures of the windings at a

plant with a similar drive.

3.3 Full and reduced finite element motor model

As the full magnetostatic model of the simulated drive seen in Fig. 3.5(a) is relatively

large due to the large number of poles, it is desirable to find a way to reduce it without

loosing accuracy in the final results. The most obvious reduction will be to only model

the part of the drive corresponding to the base winding found in Sec. 3.2 consisting of 10

poles (5 pole pairs) by applying symmetric boundary conditions at the end of the section.

However, looking closer at the winding diagram Fig. 3.3, it can be seen that it is possible
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+U -U +V -V +W -W

18 - 28 9 - 19 12 - 22 21 - 31 23 - 33 15 - 25

19 - 29 10 - 20 13 - 23 22 - 32 24 - 34 16 - 26

20 - 30 11 - 21 14 - 24 37 - 47 25 - 35 17 - 27

35 - 45 26 - 36 29 - 39 38 - 48 40 - 50 32 - 42

36 - 46 27 - 37 30 - 40 39 - 49 41 - 51 33 - 43

51 - 61 28 - 38 31 - 41 54 - 64 42 - 52 34 - 44

52 - 62 43 - 53 46 - 56 55 - 65 57 - 67 49 - 59

53 - 63 44 - 54 47 - 57 56 - 66 58 - 68 50 - 60

68 - 78 45 - 55 48 - 58 71 - 81 59 - 69 65 - 75

69 - 79 60 - 70 63 - 73 72 - 82 74 - 84 66 - 76

70 - 80 61 - 71 64 - 74 73 - 83 75 - 85 67 - 77

85 - 95 62 - 72 79 - 89 88 - 98 76 - 86 82 - 92

86 - 96 77 - 87 80 - 90 89 - 99 91 - 101 83 - 93

87 - 97 78 - 88 81 - 91 90 - 100 92 - 102 84 - 94

Table 3.1 Base winding table

Figure 3.2 Phasor diagram
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Figure 3.3 Winding diagram

(a) End windings (approximately

one pole)

(b) Section of stator with windings

Figure 3.4 Stator windings from a similar drive as the one simulated
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to reduce the model even further by modeling only half of the base winding, as the second

part of the base winding is just a repetition of the first half with opposite signs. It is

thereby possible to simulate the full drive with 60 poles by only modeling 5 poles with

anti-symmetric boundary conditions at the ends of the section. To handle different rotor

angles the reduced model is split into two sub-models consisting of the rotor including half

of the air gap and the stator including the other half of the air gap. The rotor sub-model

can now be rotated to the desired angle and an anti-symmetric boundary condition applied

to the newly formed air gap boundary. Figure 3.5(b) shows the reduced model of the drive

where the red, blue and green lines indicate the anti-symmetry boundary conditions. It is

obvious that this simplification does not reduce the accuracy of the final results, as it is

just an exploitation of symmetry in the drive configuration and has reduced the model size

by a factor of 12 compared to the full model. The last statement is, however, only correct

as long as the rotor is not placed at an eccentricity compared to the stator. But as will be

shown in Sec. 3.4.2 the loss is accuracy by also using the reduced model for cases with

an eccentric rotor is minimal and can for the overall picture be accepted to be sufficient

accurate.

(a) Full finite element motor model (b) Reduced finite element motor model

Figure 3.5 Full and reduced FEMM magnetostatic models

3.4 Estimation of force and torque

3.4.1 Zero torque phase angle

A series of magnetostatic calculations are performed for finding the phase angle at which

the stator currents will produce the maximum rotor torque. This is done by keeping the

rotor fixed while the phase angle is rotated. The rotor torque is estimated and recorded for



3.4 Estimation of force and torque 23

each phase angle as described in Sec. 3.1, with a build-in function in FEMM. Figure 3.6

shows the found torque/phase angle relationship, where the blue line with dots represent,

the finite element results. A spline is drawn through the finite element results (red curve)

to smoothen the curve an thereby get a more accurate determination of the phase angle

which produce the maximum torque. The remaining simulations in this thesis use the

phase angle which produce the maximum torque if not otherwise stated.

Figure 3.6 Rotor torque vs. phase angle (Constant rotor angle at 0◦)

3.4.2 Torque & magnetic pull

Several magnetostatic simulations are made to examine the validity of the reduced model

described in Sec. 3.3 when the rotor is placed at an eccentricity compared to the stator.

The way the eccentricity is introduced for the reduced model is to shift the rotor sub-

model in the direction of the 3rd pole and calculate the resulting magnetic pull due to air

gap size for that pole. Assuming a linear relationship between the produced magnetic

pull and the air gap size, it is possible to determine the magnetic pull of the individual

poles by finding the air gap at the different poles due to the eccentricity. Figure 3.7(a)

shows the magnetic pull found by the full and the reduced model for 5 different load

cases when the rotor has no eccentricity. As expected, the magnetic pull for all the poles

in the reduced model has the same value equal to the magnetic pull for the 3rd pole in the

full model, as the force is found for the 3rd pole in the reduced model. However, as can

be seen from the full model, the magnetic pull is not constant for the different poles even

though the air gap is the same for all the poles. This difference in magnetic pull from one

pole to another can be explained by the number of slots per pole in the stator which is a

fraction and result in different stator surface area per pole area. This area will change as

the rotor rotate creating a pulsating magnetic pull, when looking at one specific pole. In

other words, the magnetic pull for a pole depend slightly on the angular position of the

rotor. However, the difference between the maximum and minimum magnetic pull within

the different load cases are relatively small making the reduced model acceptable for zero

eccentricities. Figure 3.7(b) shows the same load cases but now with a rotor eccentricity

of 6 mm in the direction of pole 1. Before continuing, it should be mentioned that the drive

will never in reality reach this eccentricity as an automated security system will have shut
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down the drive before this happens. From the figure it can be seen that the magnetic

pull for the full model again is pulsation from pole to pole due to the same reason as

before, but otherwise following an offset sinus curve nicely corresponding to the change

in air gap due to eccentricity of the rotor. The results of the reduced model of course

also follow an offset sinus curve, as it is based solely on a linear relationship between

magnetic pull and the air gap and correspond nicely with the results found by the full

model. It has been shown that the reduced model can be used for cases with and without

rotor eccentricities assuming a linear relationship between magnetic pull and the air gap.

Figure 3.7(c) shows this linear relationship for the 5 simulated cases. The reason for this

linear relationship can be explained by the fact that the drive is running in a saturated

state and is therefore less sensitive to changes in air gap as the magnetic flux in the core

material remain almost constant. Another interesting fact which can be concluded from

the two figures, Fig. 3.7(a) and 3.7(b), is that the produced torque is almost independent

of the rotor eccentricity. Due to the fact that a linear relationship between the magnetic

pull and the air gap can be assumed, it is possible to find an equivalent spring stiffness for

modeling the change in stator/pole forces due to change in air gap. Table 3.2 shows the

spring stiffnesses for the 5 cases. These equivalent spring stiffnesses for changes in force

will later on, together with the static forces, be used in the structural model for calculation

of both deformation and natural frequencies.

Stiffness [kN/m] Torque [kNm]

-8216.66 ∼52

-8258.99 ∼4785

-8176.50 ∼9013

-8134.07 ∼12076

-8518.47 ∼13601

Table 3.2 Equivalent stiffness per pole

3.4.3 Verification of force & torque model

For validation of the presented force and torque model, ABB has provided their results,

as this is the only possible validation of the model due to the fact that the drive is not yet

in operation and therefore no measurements are available at the time. Table 3.3 shows

the results provided by ABB together with the results from the presented model. As it is

Reduced FEMM model ABB results Deviation

Force [N] Torque [Nm] Force [N] Torque [Nm] Force [%] Torque [%]

259.9·103 13.6·106 249·103 13.3·106 4.4 2.3

Table 3.3 Comparison of force and torque (@ max. torque zero eccentricity)

known that the results from ABB are found solely by analytical equations, whereas the

results from the reduced model are found by finite elements which have a more detailed

knowledge of the flux densities, a deviation of only 4.4% is assumed to be an acceptable

diviation.
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(a) Magnetic pull, 0.0 mm eccentricity

(b) Magnetic pull, 6.0 mm eccentricity

(c) Magnetic pull per pole as a function of air gap size

Figure 3.7 Magnetic pull per pole

3.5 Core and coil resistive losses

The global loss model consists of two types of losses, the core losses and the resistance

losses. The core losses are losses in the iron part due to oscillation of the magnetic B-

field within the material and the resistance losses are losses in the coils as current passes

through them.
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3.5.1 Eddy current & hysteresis losses

There are two major types of core losses in electrical machines. One is due to eddy

currents and the other is due to hysteresis. The eddy currents are currents that are induced

in the electric conducting core material when it is exposed to a varying magnetic field.

These currents causes resistive losses in the core material which can be minimized either

by increasing the resistance in the material and/or laminating the core material. Hysteresis

loss in the core material is the energy expended to magnetize and demagnetize the core

as it will resist to becoming magnetized. The losses in the material in one cycle of a

applied field is proportional to the area inside the hysteresis loop formed by the B-H

curve for the core material in question. One way of determine these losses is described in

the following based on the procedure described in Meeker (2009), Dlala (2009), Bertotti

(1988) and Chen and Pillay (2002). Through a series of static FEM calculations applied

to the principle of separation of losses, it is possible to estimate the core losses. This

principle is commonly used in estimation of losses in motors and transformers and state

that it is possible to treat the different losses separately by assuming that the average losses

in a material can be split up into hysteresis losses and eddy current losses. The hysteresis

losses are defined as the oscillation frequency of the B-field in the material times the

square of the peak value of the B-field times a loss coefficient times the mass, Eq.3.41.

The equation for the eddy current losses looks almost the same, however, it is not just a

function of the frequency, but of the square of the oscillation frequency, Eq.3.42. The two

loss coefficients Ch and Ce, for hysteresis and eddy current losses respectively, are based

on material loss curves provided by the material manufacture and will be determined in

Sec.3.5.2.

Ph = Ch · ω · B2 · ρ · V (3.41)

Pe = Ce · ω2 ·B2 · ρ · V (3.42)

With the equation for hysteresis and eddy current losses, it is possible to estimate the

total losses in a material experiencing a sinusoidal induced B-field with the oscillation

frequency ω and peak value B by the use of Eq.3.43:

Ploss = Ph + Pc =
(
Ch · ω + Ce · ω2

)
B2 · ρ · V (3.43)

This equation is only valid for sinusoidal B-field with a constant oscillation frequency and

amplitude. However, in most cases the material is not just exposed to one frequency, but

several frequencies at the same time. By creating a series of magneto static simulations

Andersen et al. (2012b), where the rotor is rotated at least one pole pitch and the B-field in

the centroid of every finite element cell is recorded for each step, it is possible to extract

the amplitude of the B-field of each harmonic frequency in each cell by applying Fast

Fourier Transformation, Fig. 3.8(b). If the rotor is rotated only one pole pitch the vector

containing the B-field for the FFT has to be extended to cover 2 pole pitches by adding a

copy of the calculated value with a sign change for the stator as the B-field in the stator

for the next pole pitch would be the same as the first, but with opposite sign. The rotor

will, however, experience the same B-field for the second pole pitch which therefore has
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(a) Field density @ time: 3 ms (b) Harmonics and time signal of one stator tooth

FEM cell

Figure 3.8 B-field in the center of a finite element cell in the stator tooth at rated currents, speed

and torque.

to be added without a sign change. The square of the amplitude of each harmonic at the

centroid of each element cell can now be found by the use of Eq. 3.44, 3.45 and 3.46:

Bx,fft = |fft ([Bx;±Bx])| · 2

2 · nstep

(3.44)

By,fft = |fft ([By;±By])| · 2

2 · nstep

(3.45)

B2 = Bx,fft ◦ Bx,fft + By,fft ◦ By,fft (3.46)

where Bx and By are matrices containing the B-field for every element cell and steps for

the x and y direction respectively. The corresponding frequency associated with each of

the harmonic can be found by Eq. 3.47 where the last half of the entries are zeroed out

as not to count each harmonic twice, as the upper half of the FFT is just a mirror of the

lower half.

ω =
npoles

2
· Ωbase · ωm ◦ ωm (3.47)

where

ωm = [0, 1, 2, . . . , nstep, 0, . . . , 0]
1×2·nstep

(3.48)

With the use of Eq. 3.43 for each of the above found frequencies and corresponding

amplitude of each finite element cell, it is possible by summation to find the total iron
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loss, Eq. 3.49.

PFe,total =
(Ch ◦ ω + Ce ◦ ω ◦ ω) · B2 · (ρele ◦ Vele)

T

Cs,ele

· npoles

npolepair

(3.49)

where ρele and Vele are vectors containing the density and volume of every element cell.

The Cs,ele in Eq. 3.49 is the element stacking factor and is introduced in the equation to

take the reduced iron volume into account. The last fraction in Eq. 3.49 is to be added if

the FEM model is a reduced model as the one shown in Fig. 3.8(a) where npoles in this

case i equal to 5. A flow diagram of the loss calculation procedure is shown in Fig. 3.9.

Figure 3.9 Flow diagram of the core loss calculation procedure
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Figure 3.10 SURA - M400-50A Loss Curve Surahammars Bruks AB (2009)

3.5.2 Determination of hysteresis & eddy current loss coefficients

Before the losses can be determined by Eq. 3.49 the two loss coefficients Ch and Ce has

to be estimated. This can be done with the help of the loss curves provided by the manu-

facturer/distributor of the core material. As an example, the loss curves for electric steel

SURA M400-50A which is used for the stator core can be seen as the full bold curves in

Fig. 3.10. These curves show the losses in W/kg in this case for four different sinusoidal

oscillations frequencies of the B-field. By using Eq. 3.43 as an approximation polyno-

mial, one can achieve the loss coefficients as the values which best fit the manufacture

provided curves. In this case, the loss coefficients have been found to Ch = 0.019831
W/(kg·T2·Hz) and Ce = 0.00018393 W/(kg·T2·Hz2) and the approximation polynomial

with these values are indicated by the dotted curves in Fig. 3.10).

3.5.3 Copper resistive losses

The majority of losses in an electrical motor originate from the resistive losses in the

copper coils of the stator and the rotor. For this, the resistance of the coils has to be

determined initially. The resistance of a material with a constant cross section area is

proportional to the length and can be found by Eq. 3.50 where ρref is the proportionality

constant called electrical resistivity.

Rref = ρref · Lwire

Awire

(3.50)
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The subscript “ref” refers to the reference temperature Tref at which the resistance Rref is

found. This reference temperature is in the literature usually 20◦C. As the coil temperature

in the motor most likely is much higher than this, the resistance of the copper has to be

corrected for this increase in temperature. If the temperature change is not to large, this

can be accomplished by the use of Eq. 3.51 where αref is an empirical found constant

called the temperature coefficient of resistance. As Eq. 3.51 is a linear approximation, it

is important that αref has been found for the same reference temperature as Rref has been

calculated, respecting the Taylor approximation of Rwire(T ) around T = Tref .

Rwire = Rref · (1 + αref · (Twire − Tref )) (3.51)

Once the temperatures of the copper coils are found the resistive losses can be found by

Eq. 3.52 and Eq. 3.53 for stator and rotor coils respectively.

LossCu,s = Rwire,s ·
(
Iph√
2

)2

(3.52)

LossCu,r = Rwire,r · I2exc (3.53)

The reason for the
√
2 in Eq. 3.52 is that Iph is the peak phase current which needs to be

the RMS current before it is squared according to Veltman et al. (2007).

3.5.4 Verification of loss models

The estimation of the coil length for calculating the resistance losses consists of several

different length contributions to the most obvious active coil length. These contributions

come from the twisting of the copper strands in the active part of the stator, connec-

tion between upper and lower coil segments, jump between slots in the stator and finally

the end windings. The found lengths and cross section areas of the coils are listed Tab.

3.4 and are the values used in the following calculations. To evaluate the presented loss

model, a simulation is made with rated currents, speed and torques of the gearless drive

while assuming that the copper coils are kept at a constant temperature of 75◦C. Similar

calculation has been carried out by Grinbaum (2012) using the same assumptions, but

based on analytical equations. Results from Grinbaum (2012) can be seen in Tab. 3.5

and results from the finite element model can be seen in Tab. 3.6. Before a comparison

can be made, it is important to note that the loss model used in Grinbaum (2012) only

takes the first harmonic into account, when estimating the losses where the finite element

model can estimate as many harmonics as the machine precision allows. For this reason,

two simulations are made to estimate the losses coming only from the fundamental fre-

quency and losses coming from the first 80 harmonics. Both results are listed in Tab. 3.6.

As can be seen, there is a significant increase in the estimated core losses when using

the first 80 harmonics as basis for the calculation compared to only the fundamental fre-

quency. However, in order to allow a comparison between the different loss calculation
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Parameter Value Description

Ltwist [mm] 25.0 Twist of copper strand in active length (stator per bar)

Lcon [mm] 120.0 Connection of coil bars at the ends (stator per bar)

Ljump [mm] 72.12 Jump of coil bars between slots (stator per bar)

Lend,s [mm] 1173.0 End windings (stator per bar)

Lactive,s [mm] 1250 Active coil length (stator per bar)

As [m2] 9.8658·10−4 Copper cross section area of parallel strands (stator)

Lend,r [mm] 3313 End windings (rotor all poles)

Lactive,r [m] 7950 Active coil length (rotor all poles)

Ar [m2] 245.85·10−6 Copper cross section area of parallel strands (rotor)

Table 3.4 Electromagnetic losses - Data of length and cross section areas of copper coils

Stator Rotor

Yoke [kW] 19.1 Pitch [kW] 4.9

Teeth [kW] 20.6 Pitch SC [kW] 3.8

Teeth SC [kW] 1.8

Coil DC [kW] 328.7 Field windings [kW] 229.2

Coil AC [kW] 4.4

Total Fe losses [kW] 41.5 Total Fe losses [kW] 8.7

Total Cu losses [kW] 333.1 Total Cu losses [kW] 229.2

Table 3.5 Electromagnetic losses - Losses at 75◦C calculated by Grinbaum Grinbaum (2012)

using only the 1st harmonic.

Parameter Value

Rotor core loss [W] 536.42

Rotor core loss (only 1st harmonic taken into account) [W] 0.00

Stator core loss [kW] 48.80

Stator core loss (only 1st harmonic taken into account) [kW] 41.86

Total core loss [kW] 49.27

Loss/core volume (rotor) [W/m3] 41.15

Loss/core volume (stator) [W/m3] 4251.14

Stator resistance loss @ 75 ◦C (incl. end windings) [kW] 347.72

Stator resistance loss in active part @ 75 ◦C [kW] 167.92

Stator resistance loss/coil pack volume @ 75 ◦C [kW/m3] 77.1

Rotor resistance loss @ 75 ◦C (incl. end windings) [kW] 230.54

Rotor resistance loss in active part @ 75 ◦C [kW] 162.72

Rotor resistance loss/coil pack volume @ 75 ◦C [kW/m3] 76.8

Average torque [MNm] 13.61

Mechanical power [MW] 15.96

Table 3.6 Electromagnetic losses - Results from the FEMM loss calculation using the first 80

harmonics at rated current, speed and torque based on Andersen et al. (2012b).

approaches, namely presented in Grinbaum (2012) and in this work, only the fundamental

frequency will be initially considered. Table 3.7 lists the results from the finite element

model and the results from Grinbaum (2012) both considering only the fundamental fre-

quency. Good agreement for stator core losses, rotor and stator resistance losses can be

seen in Tab. 3.7 with only minor deviations, except for rotor core losses. However, as

the rotor core is not experiencing a B-field with the fundamental frequency, it is obvious

that the losses for this will be zero. The reason for this is that the only oscillation of the

B-field in the rotor core comes from the rotor passing the slots and the fractional stator

windings where the stator is experiencing the fundamental frequency due to the pulsating

phase currents in the stator. However, taking the first 80 harmonics into account, it is seen

that the total losses are not zero even though the losses are small, as the B-field is almost
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Parameter Value FEM Value Grinbaum (2012) Deviation

Rotor core loss (only 1st harmonic) [kW] 0.0 8.7 ∞
Stator core loss (only 1st harmonic) [kW] 41.9 41.5 0.95%

Rotor resistance loss @ 75 ◦C [kW] 230.5 229.2 0.6%

Stator resistance loss @ 75 ◦C [kW] 347.7 333.1 4.2%

Table 3.7 Electromagnetic losses - Comparison of loss results, Grinbaum (2012).

constant within the rotor core material and only small oscillations occur at the top of the

pole shoes. All in all, the finite element model has been verified against analytical results

and proved to give similar results under similar assumptions.
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Estimation of cooling flows in gearless drives - Flow model

To be able to predict the temperatures within a motor an accurate determination of the

cooling air flow is needed. This can be achieved in many different ways both numerical

and analytical. If it is desired to get a detailed determination of the flow in complex

structures CFD can be used as in Srinivas and Arumugam (2005) who model a switched

reluctance motor in 3D. However, these 3D models can be quite computational expensive.

A more fast and a more commonly used method is by the use of a lumped model adding

up the losses for the different components of the flow system. This method has proven

in several instances to be sufficient accurate for modeling the cooling flow in electric

motors as for example shown in Traxler-Samek et al. (2008) and Traxler-Samek et al.

(2010) who model a hydro-generator. The articles also show that these flow calculations

should be closely connected with the electromagnetic and thermal model as these has an

influence on each other.

This section will explain the theory behind the hydraulic calculation needed for deter-

mining the pressure losses in the cooling channels which later will be used in combination

with the thermal model to determine the properties of the cooling flow. Furthermore, it

will be possible to use the results to find a suitable cooling system for the drive.

4.1 Energy equation - Bernoulli’s equation

The energy equation, Fox et al. (2004), also called Bernoulli’s equation named after

Daniel Bernoulli who first proposed it, can be written as:(
p1
ρd

+ αk,1
V̄ 2
1

2
+ gz1

)
−
(
p2
ρd

+ αk,2
V̄ 2
2

2
+ gz2

)
= hlT =

∑
hl +

∑
hlm (4.1)

The two first terms in brackets on the left hand side represent each the mechanical energy

at a specific cross sections of a pipe and the terms on the right hand side represent the

irreversible losses between two cross-sections due to heat generation and heat transfer

losses. This equation can be used for calculating the pressure losses between two cross-

sections of a pipe with constant cross section area. Assuming that αk,1 · V̄ 2
1

2
= αk,2 · V̄ 2

2

2

and neglecting the effect of the gravitation, z1 = z2 the equation can be simplified to:

p1
ρd

− p2
ρd

= hlT =
∑

hl +
∑

hlm (4.2)

These assumptions will be used throughout the entire thesis. As indicated in the equation

the total energy loss, hlT , can be split up as the sum of minor losses, hlm , plus the sum of

major losses, hl. The next sections will explain how these losses can be determined.

33
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Figure 4.1 Loss coefficient for expansion and contraction, White (1998)

4.2 Head losses

Head losses can, as explained, be divided into minor losses and major losses. Minor losses

consist of losses due to inlet and outlet conditions, sudden expansion and contraction of

pipes, bends in pipes, valves and fittings. These losses are usually small compared to

the total loss in systems consisting of long pipes with constant cross section areas, hence

the name minor losses. Major losses, which are usually the dominant losses, are due to

viscous friction between the pipe and the fluid, which generate heat which is stored in the

fluid and/or dissipated through the pipe walls.

4.2.1 Minor losses

The minor losses can be defined in two ways, either by the loss coefficient or an equivalent

length as shown in Eq.4.3

hlm = K
V̄ 2

2
= f

Le

D

V̄ 2

2
(4.3)

where K is the loss coefficient and Le is the equivalent pipe length which results in equiv-

alent losses. These constants can only be determined experimentally and are shown in Fig.

4.1 (Eq. 4.4) and Fig. 4.2 (Eq. 4.5) for pipe enlargement and contraction and Fig.4.3 for

pipe bends. Loss coefficient for other fittings, valves and so on can be found in Fox et al.

(2004) and White (1998).

KSE =

(
1− d2

D2

)2

(4.4)

KSC ≈ 0.42

(
1− d2

D2

)2

(4.5)
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Figure 4.2 Loss coefficient for gradual contractions, Fox et al. (2004)

(a) Flanged elbow (b) 90◦ pipe bend

Figure 4.3 Equivalent length for pipe bends, Fox et al. (2004)

4.2.2 Major losses

Major losses are losses due to viscous friction between a fluid and its boundaries, which

generate heat that is stored in the fluid itself and/or dissipated through its boundaries. The

major losses are dependent on the length/diameter ratio of the pipe, the mean velocity of

the flow and the friction factor which tell something about the friction between the fluid

and the inner surface of the pipe. For a fully developed flow in a round pipe, the major

loss can be determined by:

hl = f
L

D

V̄ 2

2
(4.6)

4.3 Reynolds number

Before it is possible to determine the friction factor, the Reynolds number for the fluid

has to be found. The Reynolds number, named after its inventor Osborne Reynolds, is a

number that can, among other things, be used for determining if a fluid is in the laminar

or turbulent regime. It is a measure of the ratio of inertial forces to viscous forces and is

defined as:

Re =
ρd · V̄ ·D

μd

(4.7)
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4.4 Friction factor

There are two ways of determining the Darcy-Weisbach friction factor, either by the use

of the Moody’s diagram Fig. 4.4 or by the use of Darcy-Weisbach equation, Eq. 4.8, for

the laminar regime and Colebrooks equation, Eq. 4.9 for the turbulent regime. Before

the friction factor can be determined, the Reynolds number has to be known, as explained

above, to determine if the flow is in the laminar of turbulent regime.

4.4.1 Laminar flow

When the Reynolds number for a fluid flow is below 2300, the flow is in the laminar

regime. In this regime, the friction factor is easily determined as it is a linear function of

the Reynolds number and is defined as:

f =
64

Re
(4.8)

4.4.2 Turbulent flow

When the Reynolds number for a fluid flow is above 2300, the flow is in the tubular

regime. The friction factor is not linear dependent on the Reynolds number anymore, but

is a function of the diameter and roughness of the pipe walls as well. The equation for

determining the friction factor for the turbulent regime is defined as:

1

f 0.5
= −2.0 · Log

(
e/D

3.7
+

2.51

Re · f 0.5

)
(4.9)

This equation can not be solved analytically and has to be solved iteratively.

4.4.3 Moody’s diagram

The Moody’s diagram shown in Fig. 4.4 is a diagram showing the friction factor curves

for pipes with different Reynolds numbers and relative roughness. The Moody’s diagram

can be reproduced with the use of Eq. 4.8 and Eq. 4.9. A small table of common relative

roughness can be found in the bottom left corner of Fig. 4.4.

4.5 Volume flow

The volume flow for a pipe with constant cross section area and mean velocity can be

calculated by Eq. 4.10. If the volume flow is given, it is a simple matter to calculate the

mean velocity which is needed for the above heat transfer calculations by isolating V̄ .

Q =

∫
A

V̄ · dĀ = π
D2

4
V̄ ⇒ V̄ =

4Q

πD2
(4.10)
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Figure 4.4 Moody diagram

4.6 Non-circular channels and hydraulic diameter

All the above theory and equations explain how it is possible to calculate flow and pressure

losses in circular pipes. As this is far from the only type of channels used for fluids, there

is a need for estimating an equivalent diameter for other geometries. This diameter is

called the hydraulic diameter and is defined as, White (1998):

Dh =
4A

P
(4.11)

where A is the cross section area and P is the wetted perimeter of the channel. For a

rectangular channel the hydraulic diameter would therefore be:

Dh =
4 · h · w

2 · (h+ w)
(4.12)

where h is the height and w is the width of the channel. The above equation will, ac-

cording to Fox et al. (2004), give results with acceptable accuracy for a height/width ratio

of approximately 1/4 ≤ h/w ≤ 4. Beyond this ratio and for irregular shaped channels

experimental values must be used.
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Channel no. 1 2 3 4 5 6

a, width [mm] 28.1 137.5 428.0 94.0 94.0 2.5

b, height [mm] 193.0 72.0 18.0 11.0 11.0 180.0

D, diameter [mm] - - - - - -

L, length [mm] 1250.0 1250.0 1250.0 1250.0 1250.0 1250.0

e, roughness [mm] 0.3 0.3 0.3 0.3 0.3 0.3

No. of channels 60 60 60 120 120 60

Channel no. 7 8 9 10 11

a, width [mm] - - 6.0 6.0 6.0

b, height [mm] - - 52.0 52.0 52.0

D, diameter [mm] 23.5 19.5 - - -

L, length [mm] 1250.0 1250.0 1250.0 1250.0 1250.0

e, roughness [mm] 0.3 0.3 0.3 0.3 0.3

No. of channels 504 252 504 504 504

Table 4.1 Fluid flow model - Channel dimensions

Parameter Value Description

Halt 4100 Altitude [m]

Cs,ele 0.97 Lamination stacking factor

AFe,r 179.90 ·10−3 Cross-section area of the iron part of one rotor pole [m2]

AFe,s 9.6548 Cross-section area of the iron part of the stator [m2]

ACu,r 26.060 ·10−3 Cross-section area of the copper part of one rotor pole [m2]

ACu,s 0.9866·10−3 Cross-section area of the copper part of one stator coil pack [m2]

ACoil,r 28.254 ·10−3 Cross-section area of the coil packs in one rotor pole [m2]

ACoil,s 1.728 ·10−3 Cross-section area of one coil pack in the stator

Lmotor 1.250 Axial length of the motor [m]

Tini 36.4 Initial temperature after the cooler [◦C]

npoles 60 Number of poles [-]

Qs 504 Number of slots [-]

Table 4.2 General parameters

4.7 Cooling channel geometry model

Figure 4.5(a) shows a section of the rotor and the stator of the electric motor which is

analyzed and Fig. 4.5(b) shows a close-up of approximately one stator tooth including

coils. The green rectangles and circles indicate the cooling flow channels which are used

in the calculations. Even though not all of the channels are rectangles, it is assumed to

only have minor effect on the accuracy as long as the cross section area of the channels

and the perimeter are comparable. Each of the channels is numbered according to the

number in the blue circle beside the channels. It is this number that has been referred to

in Tab. 4.1 which shows the dimensions used for the channels. Every subsequent content

will use this numbering of the channels for both the flow and heat calculation. Table 4.1

also shows how many parallel channels there are of the different channels based on the

number of poles and number of slots of the motor which can be found in Tab. 4.2. It is

assumed that the system only consists of two nodes, one at each end of the motor. All the

channels are connected to these two nodes resulting in a pressure drop between the nodes.

To counteract this pressure drop, a fan has been connected between the nodes as well. A

diagram of the system can be seen in Fig. 4.6. The justification for the assumed two node

model is that the chambers in each side of the frame is much larger than the described

cooling channels which result in considerable lower flow velocities and pressure losses in

these chambers.
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(a) Rotor flow (b) Stator flow

Figure 4.5 Flow channels through motor

Figure 4.6 Flow diagram for motor cooling
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4.8 Mathematical model

Newton-Raphsons method is used for solving the hydraulic system of equations as these

cannot be solved analytically. In this case, there are 11 functions for the channels of the

form:

F1−11 =
8 ·Q2

π2 ·D4
h

(
f
L

Dh

+KSE +KSC

)
− p1 − p2

ρd
= 0 (4.13)

which are based on Bernoulli’s energy equation, Eq. 4.1. Furthermore there is 1 function

for the fan which says that the flow through the fan must be equal to the sum of flow

through the cooling channels:

F12 = Qtot −
11∑
i=1

Qi ·Nochannels,i = 0 (4.14)

By assuming that the total flow though the fan is known, it is possible to set up a vector

x containing all the unknown parameters which here are the 11 volume flows, Q1−11, and

the differential pressure between node 1 and node 2, Δp:

Unknown: x = {Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11,Δp}T

By making some initial guesses for the unknowns, it is possible iteratively to get closer to

the correct value by the use of Eq. 4.15:

J · q = −F (4.15)

J is the Jacobian matrix which is defined as the partial derivatives of the functions,

F1−12(x), with respect to the unknown parameters and F is a vector containing the func-

tion values calculated with the initial guessed values. In matrix form, this will look as

shown in Eq. 4.16 where n is the number of functions, in this case n = 12.⎡
⎢⎢⎢⎢⎣

∂F1(x)
∂x1

∂F1(x)
∂x2

. . . ∂F1(x)
∂xn

∂F2(x)
∂x1

∂F2(x)
∂x2

. . . ∂F2(x)
∂xn

...
...

. . .
...

∂Fn(x)
∂x1

∂Fn(x)
∂x2

. . . ∂Fn(x)
∂xn

⎤
⎥⎥⎥⎥⎦ ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q1
q2
...

qn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ = −

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
F1

F2
...

Fn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.16)

Solving this for the q vector, it is possible to get values which are closer to the correct

values by adding the q vector to the x vector consisting of the current values for the

unknown.

xi+1 = xi + qi (4.17)

The new values for the unknown can then be used for another iteration until the absolute

value of the q vector falls below a certain predefined limit determining the precision of

the results in the x vector.

As the friction coefficient f in Eq. 4.13 has to be determined iteratively it is not possible
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to form the Jacobian matrix analytically which is therefore done numerical with a dx =
10−10. On the other hand, the equation for the fan can be solved analytically and the

Jacobian matrix for the fan is therefore also made analytically. However, a problem in

the iteration can arise, as the function of the friction coefficient f is discontinuous, as it

jumps between the laminar and turbulent regime. For this reason, it has been necessary

to introduce a transition region to make the function continuous. This transition region is

set to be between Reynolds numbers of 2300 to 3300 and the friction coefficient in this

range is defined as:

f =

(
1− Re− 2300

1000

)
· flaminar +

Re− 2300

1000
· fturbulent (4.18)

4.9 Fan/cooler losses

As the fans and coolers are placed inside the frame, the losses from these components

will contribute to the heating of the air and can therefore not be neglected in neither the

flow nor the thermal calculations which will be described in the next section. Initially,

these losses will, however, be kept constant at a value of Lossfan = 106.3 kW due to

verification against results received from ABB. However, as the fan/cooler losses obvi-

ously increase as the produced flow increases, it would be wrong to maintain a constant

loss. These losses will also later be part of a multi objective optimization for minimizing

masses and losses, which is another reason why it can not be kept constant. As the de-

sign of the fan/cooling system is out of the scope of this thesis and no loss curves have

been available it is just assumed that there is a linear relationship between the produced

flow and the fan losses. The fan loss of 106.3 kW should according to ABB come from

a fan/cooler system which could cool the coils to 90◦C. Several simulations of the final

global model have been performed to find the cooling flow which would achieve this goal,

Q ≈ 53 m3/s. Drawing a straight line from (0 m3/s, 0 kW) through (53 m3/s, 106.3 kW)

would result in this linear relationship, Fig. 4.7, which is used in the global optimization

Figure 4.7 Fan losses as a function of volume flow
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Channel Hydraulic flow rate Mean Pressure

number diameter [m] [m3/s] vel. [m/s] drop [Pa]

1 0.0491 4.89 15.04 170.0

1 Bermudez (2012) 0.0634 5.77 15.98 170.0

Deviation 22.6% 15.3% 5.9% 0.0%
2 0.0945 9.19 16.84 170.0

3 0.0346 7.70 14.18 170.0

2+3 Bermudez (2012) 0.0585 16.03 15.72 170.0

Deviation 5.4% 1.3% 0.0%
4+5 0.0197 2.72 10.96 170.0

4+5 Bermudez (2012) 0.0208 2.68 11.08 170.0

Deviation 5.3% 1.5% 1.1% 0.0%
6 0.0049 0.06 2.94 170.0

6 Bermudez (2012) - - - 170.0

7 0.0235 2.56 11.70 170.0

7 Bermudez (2012) 0.0235 2.56 11.73 170.0

Deviation 0.00% 0.0% 0.3% 0.0%
8 0.0195 0.81 10.77 170.0

8 Bermudez (2012) 0.0195 0.81 10.76 170.0

Deviation 0.00% 0.0% 0.1% 0.0%
9+10+11 0.0108 3.68 7.80 170.0

9+10+11 Bermudez (2012) 0.0110 3.58 7.78 170.0

Deviation 1.8% 2.8% 2.6% 0.0%

Table 4.3 Fluid flow model - Results and comparison to Bermudez (2012), (same input).

model, Sec. 7. If the assumption of the linear relationship is far from the truth, it is a sim-

ple matter at a later point to exchange this relationship in the model with a more correct

one.

4.10 Verification of flow model

Before any comparisons are made for verification of the flow model, it has to be mentioned

that not all of the channels fulfill the criteria for the height/width ratio stated for the use

of Eq. 4.12. However, in lack of any better determination of the hydraulic diameter, it has

been chosen to use Eq. 4.12 anyway, keeping in mind that this is a possible course of error.

Even though the limit for Eq. 4.12 has been exceeded, the results seem reasonable based

on for example the flow in channel 6, Tab. 4.3. This channel is a very narrow channel

compared with the other channels and, as expected, it also has a much smaller flow than

the other channels. For validation of the fluid flow model, preliminary results have been

received from ABB Bermudez (2012) using the same input values for both models, Tab.

4.4. These results are listed in Tab. 4.3 where the channel numbers refer to the numbering

in Fig. 4.5. It has to be mentioned that these results are only for verification purposes and

do not reflect the results of the final flow for the drive. The results show a deviation of

the fluid flow rate of less than 3%, except for channel 1 and 2+3 which have a deviation

of 15.3% and 5.4%. However, adding up the flow rate in these channels and comparing

the total flow rate for these channels result in a deviation of 0.1%, which could indicate a

different split-up of the air gap at the rotor. The large deviation in the hydraulic diameter

for channel 1 also backup this theory. Accepting this as the cause of deviation, there is
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Parameter Value

Rotor core loss [W] 536.42

Stator core loss [kW] 48.80

Stator resistance loss @ 75 ◦C (incl. end windings) [kW] 347.72

Rotor resistance loss @ 75 ◦C (incl. end windings) [kW] 230.54

Altitude of drive [m] 4100

Axial length of the motor [m] 1.250

Initial temperature after the cooler [◦C] 36.4

Final differential pressure [Pa] 170

Table 4.4 Input values used in flow model comparison

a relatively good agreement in all the cases. The reason for the lack of comparison of

channel 6 in Tab. 4.3 is due to the fact that this channel has been neglected by ABB in

their model.



Chapter 5
Determination of heat distribution in gearless mill drives -
Thermal model

Accurate determination of the temperature distribution in electric motors is very important

as this will have an impact on many different areas in the motor. For example, when the

temperature increases, the resistance losses and needed cooling flow will also increase

and so will the thermal expansion of the different motor parts which again has an im-

pact on other areas. Several different methods of determine the temperature distribution

are possible where the most common one are the lumped thermal model Boglietti et al.

(2008), Boglietti et al. (2003), Trigeol et al. (2006), Chin and Staton (2004). If higher

detailed knowledge of the temperature distribution within complex parts are needed two

other methods can be used namely the finite difference method Drubel and Runge (2004)

and the more commonly used finite element method Chin and Staton (2004), Boglietti

et al. (2009), Minghui and Weiguo (2010). Each of these methods have their advantages

and disadvantages. The advantage of the lumped thermal model is that it is extremely fast

in estimating the temperatures within the different motor parts. However, it less suited

for complex geometries where the other two mentioned methods are superior. The finite

difference and the finite element methods are more computational expensive, however, it

is still manageable with todays computers if they are kept in 2D. As a last check one could

redo the final motor design in a 3D finite element model as has been done in Komȩza et al.

(2010) for a three-phase induction motor, however, this will be to time consuming to do

in the initial design phase as several iterations might be needed.

This section will derive and present the thermal models which are used for the de-

termination of the temperature distribution in the rotor and stator of the ring motor in

question. Two different models are made for modeling the heat distribution in the gear-

less drive. The first assume that it is sufficient to look only at a cross section in the center

of the gearless drive, assuming that the cooling flow temperature can be kept constant

at an elevated temperature compared to the outlet temperature of the cooler, equivalent

to that half of the losses are transferred into the fluid. Furthermore, the coil losses used

are assumed to be constant in the axial direction and are calculated at an assumed 90◦C
copper temperature. The second model is more refined, as it is sliced in several pieces in

the axial direction as shown for the pole in Fig. 5.1. The cooling flow temperature in the

different channels are constantly updated by the heat flux transfered to the fluid from the

previous cross section slice. Furthermore, the coil losses are updated iteratively according

to the coil temperature of the current slice. The cooling flow temperature of the first slice

is determined as the temperature of the flow from the cooler, where the losses from the

end windings are added. The temperatures of the end winding are assumed to be the same

as the winding temperature of the first slice, which again is found iteratively. The mass

44
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Figure 5.1 Sliced rotor pole in axial direction

flow for both models is determined with air properties equivalent to the air properties in

the different channels in the center of the drive, which is the same for all the channels in

the center slice model and different for the different channels in the multi sliced model.

If the initial guesses of these air properties are not within an acceptable error the whole

model is run again with updated air properties from the previous calculation. A flow di-

agram of the calculation procedure for the multi sliced model can be seen in Fig. 5.2.

The center slice model is simulated with both the explicit finite difference method and

the finite element method, where the multi sliced model is only modeled with the finite

element method due to the time consuming explicit finite difference method. The explicit

finite difference model is programed in Fortran and the finite element models is created

in the program FEMM. The following will briefly describe the models with major focus

put on the finite difference model as it is programmed completely in Fortran, whereas the

finite element model is created with the commercial software FEMM. An in depth expla-

nation of the finite difference method can be found in Incropera et al. (2006), however, a

short description is in place.

5.1 Finite difference thermal calculations

The energy balance equation state that the energy that enters a control volume, plus the

energy that is generated in the control volume must equal the energy stored in the control

volume. This can be written as:

Ėin + Ėgen = Ėst (5.1)

where energy that leaves the control volume is added as negative energy flow. The energy

that enters/leaves the control volume could be due to conduction between the control

volume and the neighbor material through the control volume’s sides. Another source

of energy leaving/entering the control volume is through convection between the control

volume’s sides and a heating/cooling fluid.
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Figure 5.2 Flow diagram for iterative flow and temperature calculations
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When solving for the nodal temperature, Tm,n, there are 4 general situations which are

illustrated in Fig. 5.3. In case a) the node is an internal node where only heat generation

in the control volume indicated by the colored box and conduction between neighbor

control volumes can occur.

The energy flow done by conduction can be found by:

qcond = L ·Δy
km+1,n

Δx
(T t

m+1,n − T t
m,n)︸ ︷︷ ︸

Conduction with nodem+1,n

+L ·Δx
km,n−1

Δy
(T t

m,n−1 − T t
m,n)︸ ︷︷ ︸

Conduction with nodem,n−1

+ L ·Δy
km−1,n

Δx
(T t

m−1,n − T t
m,n)︸ ︷︷ ︸

Conduction with nodem−1,n

+L ·Δx
km,n+1

Δy
(T t

m,n+1 − T t
m,n)︸ ︷︷ ︸

Conduction with nodem,n+1

(5.2)

where the 4 terms on the RHS are conduction through the control volume’s 4 edges.

The term for the energy generation, if there is any, is just the volumetric energy rate

multiplied by the volume of the control volume as shown in Eq. 5.3.

qgen = q̇ · L ·Δx ·Δy (5.3)

The stored energy in the control volume can be expressed as the density multiplied by

the heat capacity multiplied by the volume multiplied by the time derivative of the tem-

perature as shown in Eq. 5.4

qst = ρsolid · Csolid · L ·Δx ·Δy
T t+dt
m,n − T t

m,n

dt
(5.4)

In case b), c) and d) in Fig. 5.3 some of the control volume has been removed compared

with case a) where convection has been added. Due to the smaller control volume Eq.

5.2, 5.3 and 5.4 have to be corrected for this reduction. As an example, the conduction in

the (m+ 1, n) and (m,n− 1) directions of case b), under the assumption that Δx = Δy,

would only be half of that of case a), as the area has been reduced to half in these two

directions. For the heat generation in case b), again under the assumption that Δx = Δy,

would be reduced to 3/4 of that of case a), as the volume has been reduced to 3/4.

The convective energy from a fluid at constant temperature where Δx = Δy can be

determined by:

qconv = h · L ·Δx(Tconv − T t
m,n) (5.5)

This expression for the convective energy is independent of being in case b), c) or d) as

long as Δx = Δy. This is due to the fact that the convective area is the same for the three

different cases.

Combining Eq. 5.1 to Eq. 5.5 and rearranging, it is possible to determine the temperature

at time t+ dt when the temperature distribution at time t is known.

T t+dt
m,n =

(qcond + qconv + qgen) · dt
ρsolid · Csolid · L ·Δx ·Δy

+ T t
m,n (5.6)
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(a) Interior node (b) Internal corner node

(c) Side node (d) Exterior corner node

Figure 5.3 Finite difference cases

For modeling an adiabatic or symmetry line boundary condition the expression for the

conduction Eq. 5.2 has to be corrected. This is most easily done by adding this bound-

ary effect to the thermal conductivity constant of the solid. If looking at case d) as an

example and assuming that the convection surface has been perfectly insulated. This

will result in km+1,n = km,n+1 = 0, as no convection occurs in these direction and

km−1,n = km,n−1 = ksolid/2 as only half of the conductive area is available under the

assumption that Δx = Δy. The generated and stored energy, Eq. 5.3 and Eq. 5.4, has of

course to be corrected as well according to the volume of the control volume.

In cases where two different materials meet in a control volume, the thermal conduc-

tivity in the direction of the boundary between the two materials has to be changed to

kequivalent = (ksolid,1 + ksolid,2)/2.

5.2 Forced convection

To be able to calculate the convection between a fluid and a solid, the heat transfer coeffi-

cient h has to be determined. This is normally done by the use of empirical equations and



5.2 Forced convection 49

is defined by:

h =
kf
Dh

·Nu (5.7)

There are many different empirical equations for determining the Nusselt number, Nu,

which is especially optimized for different geometries and parameter ranges. This thesis

will, however, only focus on the determination of the Nusselt numbers for forced convec-

tion in internal duct flows.

For internal turbulent flow Kreith (2000) suggests that the Nusselt number is to be found

by the empirical equation:

Nu =
(f/2) · (Re− 1000) · Pr

1 + 12.7 · (f/2)0.5 · (Pr2/3 − 1)
·
(
1 +

(
D

L

)2/3
)

·
(
Tf

Ts

)0.45

(5.8)

which is valid for the following ranges:

0.6 ≤ Pr ≤ 2000, 2300 ≤ Re ≤ 106, 0 ≤ D
L
≤ 1

and f is defined as:

f = (1.58 · Ln(Re)− 3.28)−2
(5.9)

The Prandtl number, Pr, can be found by Eq. 5.12.

For internal laminar flow Incropera et al. (2006) suggest that the Nusselt number is to be

found by the empirical equation:

Nu = 1.86 ·
(
Re · Pr

(L/D)

)1/3

·
(
μd

μs

)0.14

(5.10)

which is valid for the following ranges:

0.6 ≤ Pr ≤ 5, Re ≤ 2300, 0.0044 ≤ μd

μs
≤ 9.75, Nu ≥ 3.66

In the case that the Nusselt number found by Eq. 5.10 falls below Nu = 3.66, Incropera

et al. (2006) suggest that Eq. 5.11 is to be used instead.

Nu = 3.66 +
0.0668 · (D/L) ·Re · Pr

1 + 0.04 ((D/L) ·Re · Pr)2/3
(5.11)

which is valid for the following ranges:

Re ≤ 2300, Nu < 3.66

The Prandtl number used above to find the Nusselt number is another dimensionless num-

ber frequently used in heat calculation and is defined as the ratio of momentum and ther-

mal diffusivity:

Pr =
ν

α
=

Cp · μd

kf
(5.12)
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5.3 Heat transfer in the solid parts

The schematics of the motor for the heat transfer analysis is shown in Fig. 5.4 with the

dimensions listed in Tab. 5.1. The different colors indicate the different material where

gray is iron, M400-50A for the stator and St.42 for the rotor. The yellow color is the

insulation material and the brownish color is the copper/coil packs. The red lines on the

edges of the solids indicate surfaces which have convection with the cooling flow found in

previous section. The blue lines indicate adiabatic boundary conditions which are either

a symmetry line or a surface which is considered to have no heat flux passing through

it. The stator section is modeled with parallel symmetry lines at the sides, which are

acceptable assumptions as the radius of the rotor is large and the error in connection with

this assumption will therefore be minimal. The coils in the rotor and stator do not just

consist of copper, but of copper bars wrapped in one or several layers of insulation. Figure

5.5 show the schematics of the coil packs for the stator and rotor. The different layers of

insulation are assumed to be made of the same material (glass fiber composite, 66% glass

fiber, 33% epoxy). Looking at Fig. 5.5(b) it can be seen that each copper bar in the rotor

coil pack is wrapped in 0.105 mm of insulation. By taking the sum of the insulation length

and dividing it by the sum of length per conductivity of the different materials, one can

(a) Rotor pole geometry (b) Stator tooth and coil geometry

Figure 5.4 Stator and rotor geometry



5.3 Heat transfer in the solid parts 51

Parameter Stator [m] Rotor [m] Parameter Stator [m] Rotor [m]

R1 5.400 4.955 R12 5.750 5.372

R2 5.415 5.135 R13 0.012 -

R3 5.410 5.328 R14 0.010 -

R4 5.462 5.384 W1 4.830·10−2 0.2584

R5 5.470 1.870 W2 1.970·10−2 0.2679

R6 5.522 5.145 W3 6.000·10−3 0.2140

R7 5.530 5.196 W4 - 0.2605

R8 5.582 5.207 W5 - 0.1620

R9 5.585 5.258 W6 - 0.1665

R10 5.659 5.269 W7 - 0.2553

R11 5.700 5.320

Table 5.1 Rotor and stator dimensions cf. Fig. 5.4

(a) Stator coil pack (b) Rotor coil pack

Figure 5.5 Rotor & stator coil packs

achieve an equivalent conductivity. For the x and y direction of the rotor copper pack this

can be found as:

x-direction:

keq,rx =
Lins + LCu

Lins/kins + LCu/kCu

=
18 · 2 · 0.105 · 10−3 + 18 · 5.0 · 10−3

18·2·0.105·10−3

0.3
+ 18·5.0·10−3

393

= 7.6539 W/(m·K) (5.13)

y-direction:

keq,ry =
Lins + LCu

Lins/kins + LCu/kCu

=
3 · 2 · 0.105 · 10−3 + 3 · 16.5 · 10−3

3·2·0.105·10−3

0.3
+ 3·16.5·10−3

393

= 23.565 W/(m·K) (5.14)

In a similar way, this can be done for the stator pack Fig. 5.5(a). In the x direction this

will, however, just be done starting from the copper bar of one of the columns and to

the outer surface of the insulation, as no conduction will occur through the center due to
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symmetry. The equivalent conductivity for the stator coil packs are found to:

x-direction:

keq,sx =
Lins + LCu

Lins/kins + LCu/kCu

=
2.13 · 10−3 + 0.105 · 10−3 + 7.20 · 10−3

2.13·10−3+0.105·10−3

0.3
+ 7.20·10−3

393

= 1.2633 W/(m·K) (5.15)

y-direction:

keq,sy =
Lins + LCu

Lins/kins + LCu/kCu

=
2 · 2.13 · 10−3 + 30 · 2 · 0.105 · 10−3 + 30 · 2.36 · 10−3

2·2.13·10−3+30·2·0.105·10−3

0.3
+ 30·2.36·10−3

393

= 2.2996 W/(m·K)

(5.16)

5.4 Losses in the solid parts

As the heat from the copper losses is generated in the copper of the coil packs which

have a smaller volume than that of the coil packs, due to the insulation, it is necessary

to estimate an equivalent heat generation per volume of the coil pack. Initially the losses

per volume of pure copper will be found, which then will be multiplied by the ratio of

pure copper volume per coil pack volume, to achieve the equivalent heat generation per

volume. The heat generation in the iron part is simpler, as it is just the iron losses per iron

volume. The heat generation per volume for the different parts can be found as:

Rotor:

Volume of pure copper per rotor pole:

VCu,r = mCu,r/ρCu (5.17)

Loss per volume in pure rotor copper:

LossCu,r

VCu,r

=
LossCu,r/npoles

VCu,r

(5.18)

Ratio of copper/coil pack:

RCu/coil,r = ACu,r/ACoil,r (5.19)

Loss per volume in rotor coil pack:

LossCoil,r

VCoil,r

=
LossCu,r

VCu,r

·RCu/coil,r (5.20)
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Volume of iron in rotor poles:

VFe,r = AFe,r · Lmotor · npoles (5.21)

Loss per volume in rotor iron:
LossFe,r

VFe,r

(5.22)

Stator:

Volume of pure copper in stator:

VCu,s = mCu,s/ρCu (5.23)

Loss per volume in pure stator copper:

LossCu,s

VCu,s

(5.24)

Ratio of copper/coil pack:

RCu/coil,s = ACu,s/ACoil,s (5.25)

Loss per volume in stator coil pack:

LossCoil,s

VCoil,s

(5.26)

Volume of iron in stator:

VFe,s = AFe,s · Lmotor (5.27)

Loss per volume in rotor iron:
LossFe,s

VFe,s

(5.28)

5.5 Dependency of fluid characteristics on temperatures and altitude
changes

As the properties of air changes at different temperatures and pressures, which has a

significant influence on the flow and heat transfer results, it is of utmost importance that

these are estimated as precise as possible. As all calculations are made in 2D, the most

correct air temperature to use for the calculations must be the average air temperature in

the center of the motor. By using the found losses in the iron, copper and fan together

with the initial temperature after the cooler, it is possible to estimate the temperature in

the center of the motor by assuming that half of the copper and iron losses are at that point

transferred to the fluid. The losses of the fan have to be added to these losses as the fan is
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placed after the cooler and therefore contribute to the increase in temperature. The center

temperature can be found as:

Tmid =
Lossfan + (LossFe,s + LossFe,r + LossCu,s + LossCu,r) /2

ṁ · Cp

+ Tini (5.29)

This equation has to be solved iteratively as the center air temperature is dependent on the

mass flow and specific heat capacity which again is dependent on the center air tempera-

ture. As air pressure decrease with the altitude the pressure has to be determined with the

help of Eq. 5.30 and the altitude from Tab. 4.2.

palt = p0 ·
(
1− Tlap · halt

T0

) g·M
R·Tlap

(5.30)

It is now possible to calculate the remaining needed properties by the use of Eq. 5.31 to

5.34:

ρair = palt · M

R · (273.15 + Tmid)
(5.31)

μd = μ0
T0 + C

(273.15 + Tmid) + C

(
273.15 + Tmid

T0

)3/2

(5.32)

Cp = 4.44 · 10−7 · (273.15 + Tmid)
3 − 3.33 · 10−5 · (273.15 + Tmid)

2

− 6.99 · 10−2 · (273.15 + Tmid) + 1.02 · 103 (5.33)

kf = 7.6686 · 10−5 · (273.15 + Tmid) + 3.0438 · 10−3 (5.34)

Figure 5.6 and 5.7 show the air properties dependency on the temperature and have been

added to give a quick overview of their trends.

Figure 5.6 Properties of air at atmospheric pressure
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Figure 5.7 Properties of air at atmospheric pressure

5.6 System parameters

Table 4.2 shows the general parameters which are used in the calculations and are mainly

values to determine the heat generation and cooling air properties. Table 5.2 shows the

material parameters used for the materials in the rotor and stator and Tab. 4.1 shows the

channel dimensions and number of channels for the flow calculation. These parameters

have been kept constant throughout the entire calculation.

Parameter Value Description

kCu 393 Thermal conductivity of copper [W/(m·K)]

ρCu 8933 Density of copper [kg/m3]

CCu 397 Specific heat capacity of copper, [J/(kg·K)]

kins 0.3 Thermal conductivity of insulation [W/(m·K)] (glass fiber 66% glass, 33% epoxy)

kFe 56.7 Thermal conductivity of carbon steel [W/(m·K)]

ρFe 7854 Density of carbon steel [kg/m3]

CFe 487 Specific heat capacity of carbon steel [J/(kg·K)]

kM400 26.0 Thermal conductivity of M400-50A steel [W/(m·K)]

ρM400 7800 Density of M400-50A steel [kg/m3]

CM400 487 Specific heat capacity of M400-50A steel [J/(kg·K)]

Table 5.2 Material parameters

5.7 Heat expansion

As it is common knowledge that steel expand as it is heated up, this can not be neglected

as it has an influence on the air gap in the drive. The thermal linear expansion can be

expressed as shown in Eq. 5.35 where the thermal linear expansion coefficient αL for steel

is αL = 13 · 10−6 1
◦C

. Is only the stator and the rotor which is at an elevated temperature

and the frame and the mill drum remain at almost room temperature, Fig. 5.8.

The stator can only expand slightly in the radial direction corresponding to the build

in initial gap between the stator and the vertical frame plates surrounding the stator, Sec.

2.4. As the outer diameter of the stator then becomes restricted by the cold frame plates,



56 Chapter 5 Determination of heat distribution in gearless mill drives - Thermal model

it will instead begin to expand inward again and in the circumferential direction where a

build in gap between the four quarters of the stator begins to decrease. If the stator for

some reason get hotter than estimated and the mentioned gaps decrease to zero, the stator

which is build of sheet metal will begin to bugle in the circumferential direction. This

has been experienced at a few plants. As the stator initially expand in an outward radial

direction until it reaches the frame plate after which it starts to expand inward again, it is

assumed that the resulting change in stator inner diameter remain zero, thereby neglecting

the impact of the stator heat expansion on the rotor/stator air gap. Under this assumption,

it is only the heat expansion of the rotor core which will have an impact on the rotor/stator

air gap.

The temperature increase ΔT used in the simulations is the average rotor core tem-

perature of the final slice in the thermal model, as this is the warmest section of the pole

core. The thermal expansion is subtracted from the original rotor/stator air gap which has

an influence on the forces between the poles and the stator, Sec. 3.4.2 which again has an

influence on the air gap. The change in rotor/stator air gap is also used for the more obvi-

ous check to examine if the minimum air gap has been exceeded. If the assumption that

it is only the heat expansion of the rotor core which has an influence on the rotor/stator

air gap, does not hold, it will at least give the worst case scenario and predict the absolute

minimum air gap, thereby not harming the drive.

Figure 5.8 Cross-section of mill drive

ΔL = LαLΔT (5.35)

5.8 Verification of thermal models

For the center slice thermal model four different grid sizes are used for the finite differ-

ence model, two for the stator and two for the rotor. The grid sizes are chosen as to best

represent the geometry of the different parts with the coarsest grid possible. To examine

the accuracy of the results with the coarse grid, an extra simulation is carried out with a
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Δx = 2.5 [mm] Δx = 1.25 [mm] Dev. [%] FEMM Dev. [%]

Cu rotor max. [◦C] 113.8 113.4 0.4 114.3 0.4

Cu rotor min. [◦C] 103.9 102.7 1.2 102.4 1.5

Fe rotor max. [◦C] 87.7 87.2 0.6 87.7 0.0

Fe rotor min. [◦C] 83.8 85.0 1.4 84.3 0.6

Δx = 2.0 [mm] Δx = 1.0 [mm] Dev. [%] FEMM Dev. [%]

Cu stator max. [◦C] 94.6 95.5 2.0 96.4 1.9

Cu stator min. [◦C] 89.2 90.0 0.9 91.3 2.3

Fe stator max. [◦C] 91.5 92.3 0.9 93.2 1.8

Fe stator min. [◦C] 86.9 87.7 0.9 87.9 1.1

Table 5.3 Rotor and stator max. and min. temperatures, Center slice model

twice as fine grid. The entire grid used is of equal side length, Δx = Δy. The following

grid sizes are used for the stator and the rotor:

Stator : Δx = Δy = 2.00 mm

Δx = Δy = 1.00 mm

Rotor : Δx = Δy = 2.50 mm

Δx = Δy = 1.25 mm

Figure 5.9 shows the results of the converged steady-state temperature of the rotor and

stator achieved with the finite difference method together with results from the finite ele-

ment model. Figure 5.9(a) is for the coarse grid, Fig. 5.9(b) is for the fine grid and Fig.

5.9(c) is for the finite element model. As a proof of convergence of the finite difference

model the coldest and warmest part of the copper and iron are plotted in Fig. 5.10. Here

it can be seen that the steady-state has been reached after approximately 30 simulated

hours and it converges toward the finite element results. As it is difficult to read the ex-

act temperatures from Fig. 5.9, the coldest and warmest temperatures are listed in Tab.

5.3. Furthermore, the deviation between the achieved temperature values for the fine and

coarse grid and between the FD and FEM model are added to the table. It can be seen that

the increase in refinement does not make a large change in the found temperatures, only

a deviation of approximately 1.5%. However, looking at the increase in computational

time spend per iteration and the maximum possible time step Δt shown in Tab. 5.4, it

is not worth the effort, as other part of the calculations are connected with higher errors.

One obvious reason for the deviation in the stator temperature for the two different grid

sizes is that the cooling channels in the tooth for the coarse grid is actually modeled with

a width of 8 mm, due to the size and placement of the grid, where it is modeled as 6 mm

in the fine grid case which are the actual width of the cooling channels. This increase in

modeled cooling channel width will of course increase the surface area for the convection

slightly and thereby decrease the temperature in the solid parts. From Tab. 5.3 it must be

concluded that the three models produce results with almost same accuracy. To validate

the results obtained by using the three models, comparisons are done with results and data

presented by Grinbaum (2012) under almost the same conditions as the one used in the

simulations. Table 5.5 shows these results together with the ones found by the FEMM

model. As can be seen, there is only minor deviation between the temperature results.

It must therefore, with a high probability, be concluded that the models produce similar
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(a) Finite difference, Rotor:

Δx = Δy = 2.5 mm, Stator:

Δx = Δy = 2 mm

(b) Finite difference, Rotor:

Δx = Δy = 1.25 mm, Stator:

Δx = Δy = 1 mm

Density Plot: Temperature (K)
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(c) Finite element method

Figure 5.9 Finite difference Steady-State and finite element temperatures of rotor and stator,

Center slice model
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Figure 5.10 Maximum and minimum temperatures in stator and rotor poles, Center slice model
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Δx [mm] Max. Δt [ms] CPU time/step [ms] Steady-state CPU time [h]

Rotor 1.25 20 10.25 15.375

Stator 1.00 20 3.16 4.740

Rotor 2.50 100 2.49 0.747

Stator 2.00 100 0.78 0.234

Table 5.4 Finite difference model computation time, Intel core I5 CPU M450@2.4GHz, OS

Windows 7 64-bit, Steady-state @ 30 simulated hours

FEMM Grinbaum (2012) Deviation Deviation

Rotor max. 109.1 ◦C 109.5 ◦C 0.4 ◦C 0.4%

Stator max. 104.7 ◦C 104.9 ◦C 0.2 ◦C 0.2%

Volume flow 31.4 m3/s 32.9 m3/s 1.5 m3/s 4.6%

Loss/coil vol. stator 96891 W/m3 96891 W/m3 0.0 W/m3 0.0%

Loss/vol. stator iron 5729 W/m3 5729 W/m3 0.0 W/m3 0.0%

Loss/coil vol. rotor 70657 W/m3 70657 W/m3 0.0 W/m3 0.0%

Loss/vol. rotor iron 621 W/m3 621 W/m3 0.0 W/m3 0.0%

Table 5.5 Temperature comparison with data and results provided by Grinbaum (2012), Center

slice model

results under the same assumptions. The multi-sliced model which updates cooling flows

and copper losses due to the increasing temperatures in the axial direction is only modeled

by FEMM. This is due to the fact that it is highly time consuming to run the explicit finite

difference model, as many iterations have to be performed. As a comparison between

the computational time for one slice the two finite difference models take 20 hours and

1 hour respectively, where the FEM model takes approximately 1 second to compute 1

slice. The multi sliced model consists of 40 slices evenly distributed over the total length

of the gearless drive. Figure 5.11 shows the temperature distribution of the center and the

two end slices found by the FEMM model. Figure 5.12 shows the cooling flow tempera-

tures in the different channels. From this, it is obvious that the center slice model is too

simple, as the temperature difference between the two end slices is 31.1◦C for the highest

part. Furthermore, the highest temperature is 30.0◦C warmer than what was found by the

first model. For validating the multi sliced model, comparisons with data and results ob-

tained in Bermudez (2012) using the same input as the present model are carried out and

presented in Tab. 5.6. The difference between the results could, among other things, be

explained by the fact that Bermudez (2012) uses Dittus-Boelters equation for calculating

the Nusselt number which is for smooth channels with a Reynolds number above 10,000

and is therefore less suited for these cases. Furthermore, there is a difference in the mass

flow at the same differential pressure, which could be explained by the fact that the author

FEMM Bermudez (2012) Deviation Deviation

Rotor max. 144.3 ◦C 147.7 ◦C 3.4 ◦C 2.3%

Stator max. 127.5 ◦C 123.8 ◦C 3.7 ◦C 3.0%

Mass flow 20.45 kg/s 19.55 kg/s 0.90 kg/s 4.6%

Vol. flow 31.60 m3/s 31.43 m3/s 0.17 m3/s 0.5%

Pressure loss 170.0 Pa 170.0 Pa 0.0 Pa 0.0%

Table 5.6 Temperature comparison of multi sliced model against Bermudez (2012) results, (same

inputs)
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Figure 5.11 Temperature distribution with updated copper resistance losses, Multi sliced model

of Bermudez (2012) assumes that the air properties in the channels are the same for all

the channels. Moreover, small discrepancies in the geometry used for the flow calculation

are also verified. For further verification of the FORTRAN code see Appendix A.2.

Figure 5.12 Cooling air temperatures, Temperature updated copper resistance losses, Multi

sliced model

5.9 Effects of neglecting the axial heat flux

It is assumed in all the models that no axial heat flux is present in the solid parts of the

drive. The only axial heat transfer occurring is in the cooling fluid, as heat is transferred



5.9 Effects of neglecting the axial heat flux 61

Figure 5.13 FEM of rotor coil pack in axial direction (z-dir.) to examine heat flux along copper

strands

Figure 5.14 Conductivity coefficient normal to Si-steel sheet surface, Filippov (1974)

from the solids to the fluid through the walls of the cooling channels. To investigate the

error in connection with this assumption, a simulation has been carried out where the ax-

ial heat flux of the warmest coil has been found (bottom rotor coil), Fig. 5.11. The axial

heat flux for this coil is found to be 41.6 W which is approximately 8.6% of the total loss

in that coil segment. However, as the maximum allowed coil temperature at ABB is 90◦C
a simulation has been made where the flow has been changed to achieve this goal. This

simulation show that as the flow increase the temperature difference between the cold and

hot end decreases and thereby the error due to the neglection of axial flux also decreases.

The new simulation shown in Fig. 5.13 now results in an axial heat flux of 17 W which is

approximately 2.6% of the total loss in that coil segment. The axial heat flux in the core

material is much smaller than in the copper coils, as this is laminated steel sheets. Figure

5.14 show the conductivity coefficient in a direction perpendicular to the sheet plan as

a function of the compression pressure, Filippov (1974). According to ABB, the com-

pression pressure used in their drives is approximately 1.5 kg/cm2 ∼ 147.1 kPa, which

results in a conductivity coefficient of approximately 0.5658 W/(m·K). The conductivity

coefficient parallel to the sheets plan is 26 W/(m·K) which is 46 times larger than the con-

ductivity perpendicular to the sheet plan. The error due to this assumption will, however,

only overestimate the temperature rise in the gearless drive and will therefore not predict

lower temperatures which could be fatal for the operation and lifespan of the drive.



Chapter 6
Structural investigations of gearless drives - Structural
model

When modeling large devices like a gearless mill drive it is important also to include a

structural investigation as it otherwise could have catastrophic and high economic conse-

quences. Even though a structural calculation has been performed it is no guarantee that

no problem will occur as was experienced at Cadia Hill gold mine in Australia which had

severe vibration problems in their gearless mill drive, Meimaris et al. (2001). Vibrations

investigation is only one of the important examinations which has to performed. Defor-

mation of the structure due to forces and torque between rotor and stator is another and

highly important factor as it can seriously distort the relatively small air gap between the

rotor and stator and if not determined correct could be the reason for a complete destruc-

tion of the entire unit. Another important thing to investigate is that none of the parts of

the gearless drive experience stresses beyond the yielding stress.

The natural frequencies and their corresponding mode shapes can for simple struc-

tures be found analytically as described in Blevins (1979) which for example shown it for

a solid ring. However, for more complex devices as the gearless mill drive which cannot

be assumed to behave as one of these simple structural cases one need to move to more

refined methods as the finite element method. A 3D FEM model is also the most com-

monly used in the structural modeling of gearless mill drives, Dreher et al. (2004), Warner

(2006) and several books have been written on the subject, Bathe (1982), Bhatti (2005),

Cook et al. (2002). The benefit of using FEM in the structural calculation of a gearless

drive is that the FEM model can use the same structural mesh to estimate all the above

mentioned main results and thereby saving setup time. Furthermore it is highly suited for

modeling complex geometries.

The structural model of the mill is a 3D FEM programmed entirely in Fortran using

20 nodes hexahedron isoparametric elements. For this reason, the section will start by

presenting the basic equations needed for building a finite element model using hexahe-

dron elements followed by an explanation for the choice of using this type of element.

Finally, the results of the structural model will be presented and compared against results

received from ABB. These results are deformation, Von Mises stress, air gap distortion,

eigenvalues and their corresponding mode shapes.

6.1 Hexahedron 20 nodes isoparametric

This subsection describes in detail how the hexahedron 20 nodes element shown in Fig.6.1

is modeled. Basically whats need to be solved is a system of linear equations as the one

shown in Eq. 6.1 which is the equation of motion. For the static displacement case the first

62
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part of the equation of motion is neglected as the accelerations are zero and the equation

reduces to Eq. 6.2. For the determination of the eigenvalues the forces in the equation of

motion are zero and what needs to be solve is Eq. 6.3.

[M] {a}+ [K] {d} = {R} (6.1)

[K] {d} = {R} (6.2)

− [K] {d} = λ [M] {d} (6.3)

The following subsections will describe how the stiffness matrix K, the mass matrix M
and the force reaction vector R can be determined.

Figure 6.1 Isoparametric 20 nodes hexahedron cell

6.1.1 Element stiffness matrix

The element stiffness matrix can be found by the volume integral in Eq.6.4:

[ke] =

∫ 1

−1

∫ 1

−1

∫ 1

−1

[B]T [C] [B] J dξ dη dζ (6.4)

where B is the strain-displacement relationship matrix, C is the constitutive matrix and

J is the determinant of the Jacobian matrix J. This element stiffness matrix ke can then

later be assembled into the global stiffness matrix K corresponding to the location of the

specific degree of freedom.

Initially the 20 shape functions are found, Sec.6.1.2, together with their derivative with

respect to ξ, η and ζ , Sec.6.1.3, 6.1.4 and 6.1.5, which are used to form the Jacobian and

the strain-displacement relationship matrix. Then the Jacobian matrix and its inverse are

assembled and the determinant calculated, Sec.6.1.6. The strain-displacement relation-

ship matrix B can now be assembled, 6.1.7 and the constitutive matrix C can be found by

derivation of Hooke’s law in 3D and is shown in Sec.6.1.8 for both a isotropic as well as

for a anisotropic material.
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6.1.2 Shape functions

As the hexahedron 20 nodes element consists of 20 nodes, it must have 20 shape functions

which are listed in Eq. 6.5 - 6.24:

N1 =
1

8
(1− ξ) (1− η) (1− ζ) (−ξ − η − ζ − 2) (6.5)

N2 =
1

8
(1 + ξ) (1− η) (1− ζ) (+ξ − η − ζ − 2) (6.6)

N3 =
1

8
(1 + ξ) (1 + η) (1− ζ) (+ξ + η − ζ − 2) (6.7)

N4 =
1

8
(1− ξ) (1 + η) (1− ζ) (−ξ + η − ζ − 2) (6.8)

N5 =
1

8
(1− ξ) (1− η) (1 + ζ) (−ξ − η + ζ − 2) (6.9)

N6 =
1

8
(1 + ξ) (1− η) (1 + ζ) (+ξ − η + ζ − 2) (6.10)

N7 =
1

8
(1 + ξ) (1 + η) (1 + ζ) (+ξ + η + ζ − 2) (6.11)

N8 =
1

8
(1− ξ) (1 + η) (1 + ζ) (−ξ + η + ζ − 2) (6.12)

N9 =
1

4

(
1− ξ2

)
(1− η) (1− ζ) (6.13)

N10 =
1

4

(
1− η2

)
(1 + ξ) (1− ζ) (6.14)

N11 =
1

4

(
1− ξ2

)
(1 + η) (1− ζ) (6.15)

N12 =
1

4

(
1− η2

)
(1− ξ) (1− ζ) (6.16)

N13 =
1

4

(
1− ξ2

)
(1− η) (1 + ζ) (6.17)

N14 =
1

4

(
1− η2

)
(1 + ξ) (1 + ζ) (6.18)

N15 =
1

4

(
1− ξ2

)
(1 + η) (1 + ζ) (6.19)

N16 =
1

4

(
1− η2

)
(1− ξ) (1 + ζ) (6.20)

N17 =
1

4

(
1− ζ2

)
(1− ξ) (1− η) (6.21)

N18 =
1

4

(
1− ζ2

)
(1 + ξ) (1− η) (6.22)

N19 =
1

4

(
1− ζ2

)
(1 + ξ) (1 + η) (6.23)

N20 =
1

4

(
1− ζ2

)
(1− ξ) (1 + η) (6.24)
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6.1.3 Derivative of shape functions with respect to ξ

To be able to form the Jacobian matrix the previously mentioned shape functions has be

differentiated with respect to ξ, η and ζ and result in Eq. 6.25 - 6.84.

N1,ξ =
1

8
(ζ − 1)(η − 1)(ζ + η + 2ξ + 1) (6.25)

N2,ξ = −1

8
(ζ − 1)(η − 1)(ζ + η − 2ξ + 1) (6.26)

N3,ξ =
1

8
(ζ − 1)(η + 1)(ζ − η − 2ξ + 1) (6.27)

N4,ξ = −1

8
(ζ − 1)(η + 1)(ζ − η + 2ξ + 1) (6.28)

N5,ξ =
1

8
(ζ + 1)(η − 1)(ζ − η − 2ξ − 1) (6.29)

N6,ξ = −1

8
(ζ + 1)(η − 1)(ζ − η + 2ξ − 1) (6.30)

N7,ξ =
1

8
(ζ + 1)(η + 1)(ζ + η + 2ξ − 1) (6.31)

N8,ξ = −1

8
(ζ + 1)(η + 1)(ζ + η − 2ξ − 1) (6.32)

N9,ξ = −1

2
(ζ − 1)(η − 1)ξ (6.33)

N10,ξ =
1

4
(ζ − 1)

(
η2 − 1

)
(6.34)

N11,ξ =
1

2
(ζ − 1)(η + 1)ξ (6.35)

N12,ξ = −1

4
(ζ − 1)

(
η2 − 1

)
(6.36)

N13,ξ =
1

2
(ζ + 1)(η − 1)ξ (6.37)

N14,ξ = −1

4
(ζ + 1)

(
η2 − 1

)
(6.38)

N15,ξ = −1

2
(ζ + 1)(η + 1)ξ (6.39)

N16,ξ =
1

4
(ζ + 1)

(
η2 − 1

)
(6.40)

N17,ξ = −1

4

(
ζ2 − 1

)
(η − 1) (6.41)

N18,ξ =
1

4

(
ζ2 − 1

)
(η − 1) (6.42)

N19,ξ = −1

4

(
ζ2 − 1

)
(η + 1) (6.43)

N20,ξ =
1

4

(
ζ2 − 1

)
(η + 1) (6.44)



66 Chapter 6 Structural investigations of gearless drives - Structural model

6.1.4 Derivative of shape functions with respect to η

N1,η =
1

8
(ζ − 1)(ξ − 1)(ζ + 2η + ξ + 1) (6.45)

N2,η = −1

8
(ζ − 1)(ξ + 1)(ζ + 2η − ξ + 1) (6.46)

N3,η =
1

8
(ζ − 1)(ξ + 1)(ζ − 2η − ξ + 1) (6.47)

N4,η = −1

8
(ζ − 1)(ξ − 1)(ζ − 2η + ξ + 1) (6.48)

N5,η =
1

8
(ζ + 1)(ξ − 1)(ζ − 2η − ξ − 1) (6.49)

N6,η = −1

8
(ζ + 1)(ξ + 1)(ζ − 2η + ξ − 1) (6.50)

N7,η =
1

8
(ζ + 1)(ξ + 1)(ζ + 2η + ξ − 1) (6.51)

N8,η = −1

8
(ζ + 1)(ξ − 1)(ζ + 2η − ξ − 1) (6.52)

N9,η = −1

4
(ζ − 1)

(
ξ2 − 1

)
(6.53)

N10,η =
1

2
(ζ − 1)η(ξ + 1) (6.54)

N11,η =
1

4
(ζ − 1)

(
ξ2 − 1

)
(6.55)

N12,η = −1

2
(ζ − 1)η(ξ − 1) (6.56)

N13,η =
1

4
(ζ + 1)

(
ξ2 − 1

)
(6.57)

N14,η = −1

2
(ζ + 1)η(ξ + 1) (6.58)

N15,η = −1

4
(ζ + 1)

(
ξ2 − 1

)
(6.59)

N16,η =
1

2
(ζ + 1)η(ξ − 1) (6.60)

N17,η = −1

4

(
ζ2 − 1

)
(ξ − 1) (6.61)

N18,η =
1

4

(
ζ2 − 1

)
(ξ + 1) (6.62)

N19,η = −1

4

(
ζ2 − 1

)
(ξ + 1) (6.63)

N20,η =
1

4

(
ζ2 − 1

)
(ξ − 1) (6.64)
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6.1.5 Derivative of shape functions with respect to ζ

N1,ζ =
1

8
(η − 1)(ξ − 1)(2ζ + η + ξ + 1) (6.65)

N2,ζ = −1

8
(η − 1)(ξ + 1)(2ζ + η − ξ + 1) (6.66)

N3,ζ = −1

8
(η + 1)(ξ + 1)(−2ζ + η + ξ − 1) (6.67)

N4,ζ =
1

8
(η + 1)(ξ − 1)(−2ζ + η − ξ − 1) (6.68)

N5,ζ = −1

8
(η − 1)(ξ − 1)(−2ζ + η + ξ + 1) (6.69)

N6,ζ =
1

8
(η − 1)(ξ + 1)(−2ζ + η − ξ + 1) (6.70)

N7,ζ =
1

8
(η + 1)(ξ + 1)(2ζ + η + ξ − 1) (6.71)

N8,ζ = −1

8
(η + 1)(ξ − 1)(2ζ + η − ξ − 1) (6.72)

N9,ζ = −1

4
(η − 1)

(
ξ2 − 1

)
(6.73)

N10,ζ =
1

4

(
η2 − 1

)
(ξ + 1) (6.74)

N11,ζ =
1

4
(η + 1)

(
ξ2 − 1

)
(6.75)

N12,ζ = −1

4

(
η2 − 1

)
(ξ − 1) (6.76)

N13,ζ =
1

4
(η − 1)

(
ξ2 − 1

)
(6.77)

N14,ζ = −1

4

(
η2 − 1

)
(ξ + 1) (6.78)

N15,ζ = −1

4
(η + 1)

(
ξ2 − 1

)
(6.79)

N16,ζ =
1

4

(
η2 − 1

)
(ξ − 1) (6.80)

N17,ζ = −1

2
ζ(η − 1)(ξ − 1) (6.81)

N18,ζ =
1

2
ζ(η − 1)(ξ + 1) (6.82)

N19,ζ = −1

2
ζ(η + 1)(ξ + 1) (6.83)

N20,ζ =
1

2
ζ(η + 1)(ξ − 1) (6.84)
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6.1.6 Jacobian matrix

The Jacobian matrix and its inverse can now be formed as shown in Eq. 6.85 and Eq. 6.86

by the use of the above found derivatives of the shape functions:

[J] =

⎡
⎣ x,ξ y,ξ z,ξ

x,η y,η z,η
x,ζ y,ζ z,ζ

⎤
⎦ =
∑
i

⎡
⎣ Ni,ξxi Ni,ξyi Ni,ξzi

Ni,ηxi Ni,ηyi Ni,ηzi
Ni,ζxi Ni,ζyi Ni,ζzi

⎤
⎦ (6.85)

⎧⎨
⎩

φ,x
φ,y
φ,z

⎫⎬
⎭ =

⎡
⎣ Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 Γ33

⎤
⎦
⎧⎨
⎩

φ,ξ
φ,η
φ,ζ

⎫⎬
⎭ where [Γ] = [J]−1

(6.86)

J = det [J] (6.87)

6.1.7 Strain-displacement relationship

By the use of Eq. 6.88, Eq. 6.89 and Eq. 6.90 the strain-displacement relationship matrix

B can now be assembled as shown in Eq. 6.91.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εx
εy
εz
γxy
γyz
γzx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
L

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u,x
u,y
u,z
v,x
v,y
v,z
w,x
w,y
w,z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.88)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u,x
u,y
u,z
v,x
v,y
v,z
w,x
w,y
w,z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ11 Γ12 Γ13 0 0 0 0 0 0
Γ21 Γ22 Γ23 0 0 0 0 0 0
Γ31 Γ32 Γ33 0 0 0 0 0 0
0 0 0 Γ11 Γ12 Γ13 0 0 0
0 0 0 Γ21 Γ22 Γ23 0 0 0
0 0 0 Γ31 Γ32 Γ33 0 0 0
0 0 0 0 0 0 Γ11 Γ12 Γ13

0 0 0 0 0 0 Γ21 Γ22 Γ23

0 0 0 0 0 0 Γ31 Γ32 Γ33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Γ̃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u,ξ
u,η
u,ζ
v,ξ
v,η
v,ζ
w,ξ
w,η
w,ζ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.89)



6.1 Hexahedron 20 nodes isoparametric 69

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u,ξ
u,η
u,ζ
v,ξ
v,η
v,ζ
w,ξ
w,η
w,ζ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1,ξ 0 0 N2,ξ 0 0 ... N20,ξ 0 0
N1,η 0 0 N2,η 0 0 ... N20,η 0 0
N1,ζ 0 0 N2,ζ 0 0 ... N20,ζ 0 0
0 N1,ξ 0 0 N2,ξ 0 ... 0 N20,ξ 0
0 N1,η 0 0 N2,η 0 ... 0 N20,η 0
0 N1,ζ 0 0 N2,ζ 0 ... 0 N20,ζ 0
0 0 N1,ξ 0 0 N2,ξ ... 0 0 N20,ξ

0 0 N1,η 0 0 N2,η ... 0 0 N20,η

0 0 N1,ζ 0 0 N2,ζ ... 0 0 N20,ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Ñ

{d}

(6.90)

{ε} = [L][Γ̃][Ñ]︸ ︷︷ ︸
B

{d} (6.91)

6.1.8 Constitutive matrix

The appearance of the constitutive matrix depends on which type of material is used in the

model. The materials used in this thesis are linear elastic isotropic materials and linear

elastic orthotropic materials and the constitutive matrix for these types of materials are

defined in Eq. 6.92 and Eq. 6.93 below.

Linear elastic isotropic material:

[C] =
E

(1 + ν)(1− 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎣

1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 (1− 2ν)/2 0 0
0 0 0 0 (1− 2ν)/2 0
0 0 0 0 0 (1− 2ν)/2

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.92)

Linear elastic orthotropic material:

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎦ (6.93)
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C11 = E1

(
1− ν2

23E3

E2

)
γ (6.94)

C22 = E2

(
1− ν2

13E3

E1

)
γ (6.95)

C33 = E3

(
1− ν2

12E2

E1

)
γ (6.96)

C12 = E1

(
ν12E2

E1

+
ν23ν13E3

E1

)
γ (6.97)

C21 = C12 (6.98)

C13 = E1

(
ν13E3

E1

+
ν12ν23E2E3

E1E2

)
γ (6.99)

C31 = C13 (6.100)

C23 = E2

(
ν23E3

E2

+
ν12ν13E3

E1

)
γ (6.101)

C32 = C23 (6.102)

C44 = G23 (6.103)

C55 = G13 (6.104)

C66 = G12 (6.105)

γ =
1

1− ν212E2

E1
− ν223E3

E2
− ν213E3

E1
− 2ν12ν23ν13E2E3

E1E2

(6.106)

6.1.9 The principal stresses in three dimensions

The principal stress calculation in three dimensions are a bit more cumbersome than for

two dimension cases, however, it is still manageable and can be expressed as:

x

x

x1
2

3

11
12

13

21

22

23
31

32

33

Figure 6.2 Stress in 3D
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σ1 =
I1
3
+

2

3

(√
I21 − 3I2

)
Cos (φ) (6.107)

σ2 =
I1
3
+

2

3

(√
I21 − 3I2

)
Cos

(
φ+

2π

3

)
(6.108)

σ3 =
I1
3
+

2

3

(√
I21 − 3I2

)
Cos

(
φ+

4π

3

)
(6.109)

where the angle φ and the stress invariants I1, I2 and I3 are given by:

φ =
1

3
Cos−1

(
2I31 − 9I1I2 + 27I3

2 (I21 − 3I2)
3/2

)
(6.110)

I1 = σ11 + σ22 + σ33 (6.111)

I2 = σ11σ22 + σ22σ33 + σ33σ11 − σ2
12 − σ2

23 − σ2
31 (6.112)

I3 = σ11σ22σ33 − σ11σ
2
23 − σ22σ

2
31 − σ33σ

2
12 + 2σ12σ23σ31 (6.113)

6.1.10 Von Mises stress

From the theory it is known that the Von Mises stress is defined as in Eq. 6.114 and is

used for validating if the material has exceeded its yield strength.

σv =

√
1

2
{(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2} (6.114)

6.1.11 Surface traction

Surface traction on a solid hexahedron element can be converted to nodal loads. The

theory below will explain how this is done for a surface load normal to the surface ξ=1.

However, it is easily expanded to the other two directions in the plane. If V = xi+yj+zk

(a) Surface unit vectors (b) Nodal loads HEX20

Figure 6.3 Surface traction on a hexahedron 20 nodes solid

is an arbitrary vector on the surface in Fig. 6.3(a) where i, j and k are unit vectors in the
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x, y and z direction, the vectors normal (V1) and tangential (V2 and V3) to the surface can

be expressed as:

V1 =
∂V
∂ξ

dξ = (x,ξ i + y,ξ j + z,ξ k) dξ = (J11i + J12j + J13k) dξ (6.115)

V2 =
∂V
∂η

dη = (x,η i + y,η j + z,η k) dη = (J21i + J22j + J23k) dη (6.116)

V3 =
∂V
∂ζ

dζ = (x,ζ i + y,ζ j + z,ζ k) dζ = (J31i + J32j + J33k) dζ (6.117)

The direction cosines l, m and n of a normal to the surface can now easily be found by

the cross product:

li +mj + nk =
V2 × V3

|V2 × V3| =
V2 × V3

dS
(6.118)

We now have {Φ} dS = {l,m, n}T σdS which inserted in the equation for the nodal load

vector, Eq.6.119, result in Eq. 6.120 which can be integrated numerically. This will result

in the surprising results shown in Fig. 6.3(b) where the nodal loads in the corners are

actually pointing in the opposite direction of the surface load. The resulting force on the

surface is divided between the nodes with the weights shown in the figure. To calculate

the nodal forces for surface traction in the two other direction one only has to calculate

the appropriate cosines for that direction by cross products of the vectors V1, V2 and V3.

{re} =

∫
[N] {Φ} dS (6.119)

⎧⎨
⎩

rxi
ryi
rzi

⎫⎬
⎭ =

∫ 1

−1

∫ 1

−1

Niσ

⎧⎨
⎩

J22J33 − J23J32
J23J31 − J21J33
J21J32 − J22J31

⎫⎬
⎭ dη dζ (6.120)

6.1.12 Volume forces

As for the surface traction on a solid hexahedron element, the volume forces can also

be converted to nodal loads. This can be achieved by the volume integral shown in Eq.

6.121. ⎧⎨
⎩

rxi
ryi
rzi

⎫⎬
⎭ =

∫ 1

−1

∫ 1

−1

∫ 1

−1

NiF |J| dξ dη dζ (6.121)

6.2 Performance of hexahedron 8 nodes and 20 nodes elements

This section will compare the performance of the hexahedron 8 nodes and 20 nodes el-

ements which made the foundation for choosing the hexahedron 20 nodes elements for

the structural model. Initially the elements performance are examined when considering

computational time vs. error and degree of freedoms vs. error. The finite element model
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(a) Sketch of cantilever beam case (b) FEM model

Figure 6.4 Bending cantilever beam test case

Element size Dofs Computational time [s] Displacement

Assembly Solving Total Numerical sol. Analytical sol. Relative error [%]

0.5000 1107 0.1720 0.1710 0.3430 2.80608 3.2000 12.31

0.3333 2928 0.6250 0.7350 1.3600 3.00742 3.2000 6.031

0.2500 6075 1.4690 2.2340 3.7030 3.08574 3.2000 3.752

0.1667 17787 4.9370 10.563 15.500 3.14485 3.2000 1.751

0.1250 39123 11.703 33.516 45.219 3.15273 3.2000 1.051

Table 6.1 Computational time and displacement - hexahedron 8 nodes

Element size Dofs Computational time [s] Displacement

Assembly Solving Total Numerical sol. Analytical sol. Relative error [%]

1.0000 744 0.047 0.812 0.859 3.17804 3.2000 0.686

0.5000 3663 0.514 4.493 6.007 3.191045 3.2000 0.280

0.3333 10200 1.233 14.913 8.047 3.192958 3.2000 0.220

0.2500 21975 2.558 42.47 45.02 3.19374 3.2000 0.197

0.1667 65919 8.080 192.2 200.2 3.19446 3.2000 0.173

Table 6.2 Computational time and displacement - hexahedon 20 nodes
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used for these comparisons is a simple model of a cantilever shown in Fig. 6.4. The

parameters used for this test case of a bending cantilever beam are P = 0.0001, h = 1,

b = 1, L = 20, E = 1 and ν = 0.3 where the element size has been varied. Table 6.1 and

6.2 show the computational time and displacement for each of the tested element sizes.

Here we need to consider that the Poisson’s ratio is set to 0.3 instead of 0 therefore the

analytical solution in this case does not conform exactly to the actual displacement of the

beam, however, the effect will be relatively small. From the table it can be seen that the

hexahedron 20 nodes element shows a significantly increase in precision compared to the

hexahedron 8 nodes element for the same number of degree of freedoms. Because of this

characteristic of hexahedron 20 nodes element, it is possible to save solving time using

20 nodes elements instead of 8 nodes elements. A glance at Fig. 6.5 will reveal that the

computational time decreased more than tenfold with the use of the 20 nodes elements

compared to the 8 nodes elements to achieve the same accuracy. A final test is made to
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Figure 6.5 Comparison of hexahedron 8 nodes and hexahedron 20 nodes elements

examine the hexahedron 8 nodes and 20 nodes elements performance when looking at the

determination of natural frequencies vs. degree of freedoms. The parameters used for this

comparison are the same as in the previous case. Table 6.3 and 6.4 show the found natural

frequencies for the different element discretization for the hexahedron 8 nodes and 20

nodes elements respectively. Figure 6.6 shows the natural frequencies from these tables

plotted against the degree of freedoms. What can be seen from these plots are that the

hexahedron 20 nodes elements has converged with the lowest number of freedoms tested

where the hexahedron 8 nodes elements need a larger degree of freedoms to converge.

It can also be seen that the hexahedron 8 nodes elements are inferior in determining the

bending modes than the 20 nodes elements, as it can be seen that the 8 nodes elements

quickly converted to the longitudinal mode (ω8), but needed more degree of freedoms to

converge for the bending modes (ω1 to ω6). An other thing which can be concluded from

the plot with the 8 nodes elements is that one needs an increasingly finer discretization

to determine increasingly higher modes. As a final conclusion, if one is modeling some-

thing to examine the bending modes, one should use the 20 nodes elements to decrease

the number of elements needed. Due to the conclusions from these tests it is decided to
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Element Dofs ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

size x 10−3 x 10−3 x 10−3 x 10−3 x 10−3 x 10−3 x 10−3 x 10−3

0.5000 1107 2.6874 2.6874 16.710 16.710 46.241 46.241 55.540 78.545

0.3333 2928 2.6029 2.6029 16.170 16.170 44.672 44.672 53.282 78.542

0.2500 6075 2.5727 2.5727 15.976 15.976 44.106 44.106 52.362 78.541

0.1666 17787 2.5509 2.5509 15.836 15.836 43.696 43.696 51.650 78.540

0.1250 39123 2.5432 2.5432 15.787 15.787 43.551 43.551 51.389 78.540

Table 6.3 Natural frequencies - hexahedron 8 nodes

Element Dofs ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

size x 10−3 x 10−3 x 10−3 x 10−3 x 10−3 x 10−3 x 10−3 x 10−3

0.5000 3663 2.5333 2.5333 15.725 15.725 43.375 43.375 51.261 78.540

0.3333 10200 2.5333 2.5333 15.723 15.723 43.367 43.367 51.082 78.540

0.2500 21795 2.5333 2.5333 15.723 15.723 43.365 43.365 51.054 78.540

Table 6.4 Natural frequencies - hexahedron 20 nodes

model the structural model of the mill with hexahedron 20 nodes elements.

(a) Hexahedron 8 nodes (b) Hexahedron 20 nodes

Figure 6.6 Natural frequencies vs. degree of freedoms

6.3 External programs

A couple of external programs are used in conjunctions with the Fortran finite element

program. These programs are:

• GMSH, Geuzaine and Remacle (2010)

• ParaView, Kitware, Inc. (2011)

• MATLAB solvers

GMSH is a free 3D finite element mesh generator with a build-in CAD engine and post-

processor. GMSH is used for generating the finite element mesh for the Fortran program
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through script files. The program is capable of auto-generating mesh consisting of trian-

gle, tetrahedron and pyramid elements and to some extent collapse these into hexahedron

elements. However, as the finite element program is written for pure hexahedron mesh,

the mesh is created completely manually through the mentioned script files.

ParaView is an open-source, multi-platform application designed to visualize data sets

of varying sizes from small to very large. It is used for visualizing the results from the

Fortran finite element program for the deformation, stress, strain and natural frequency

mode shape results. The program even has the capability to animate the mode shapes for

quick and better visualizing of the modes.

MATLAB solvers are used for solving the large system of equations created by the finite

element program. The reason why MATLAB solvers are used is due to the failure to find

an effective sparse matrix solver for Fortran. Due to the size of the problem, it is necessary

to store the mass and stiffness matrices in sparse format which makes the use of full ma-

trix solvers unsuitable. To speed up the data transfer between the Fortran and MATLAB

the matrices are written as unstructured binary data dumps from the Fortran program.

The MATLAB solvers solve both the linear system of equations for displacements and

the eigenvalues and their corresponding eigenvectors.

6.4 Stator & frame

The model of the frame including stator is shown in Fig. 6.7. It consists of the following

main items:

• Side, bottom and top plates (red)

• Feed side end plate (gray)

• Discharge side end plate (gray)

• 3 internal plates (blue)

• Frame stiffener tubes (not visible)

• Stator (green)

6.4.1 Frame model

The frame consists of 5 vertical plates in the axial direction, Fig. 6.8(a), 6.8(b), 6.8(c),

6.8(d) where the three internal plates are attached to the stator. The bottom and side

plates, Fig. 6.8(e), keep these plates at a fixed distance between each other and further

more create the closed champers for the cooling flow. The bottom half of the 5 vertical

plates is a bit thicker than the upper half and therefore consists of two elements in the

axial direction where the upper part only consist of one element. The cut outs in the three

internal plates are for the cooling fans and coolers which are neglected in this model. The

material for the plates are modeled as linear elastic isotropic material with the following

material parameters: E = 200 · 109 N/m2, ρ = 7850 kg/m3 and ν = 0.3.
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Figure 6.7 Frame with stator

6.4.2 Frame stiffener model

The stiffener tubes between the frame plates are modeled as springs to minimize the num-

ber of elements and to ease the modeling of the tubes, Fig. 2.2(b) 19©. To estimate an

equivalent spring stiffness of these tubes the two elementary beam cases in Fig. 6.9 are

used. The displacement due to bending of a fixed-free cantilever beam with a force and a

moment at the end, Fig. 6.9(a), can be expressed as shown in Eq. 6.122 where the inertia

for a beam with a cross-section shown in Fig. 6.9(c) can be found by Eq. 6.123.

δ(L) =
PL3

12EI
(6.122)

I =
π

64
(D4 − d4) (6.123)

By inserting Eq. 6.123 into Eq. 6.122 and rearranging, an equivalent stiffness due to

bending of one stiffener tube can be found to:

kx,eq = ky,eq =
3Eπ(D4 − d4)

16L3
(6.124)

In a similar fashion the displacement of a beam in tension/compression, Fig. 6.9(b), can

be expressed as in Eq. 6.125 where the cross-section area in Fig. 6.9(c) can be found by

Eq. 6.126.

δ(L) =
PL

EA
(6.125)

A =
π

4
(D2 − d2) (6.126)

By inserting Eq. 6.126 into Eq. 6.125 and rearranging one can again find an equivalent

stiffness this time for tension/compression of the stiffener tube:

kz,eq =
Eπ(D2 − d2)

4L
(6.127)
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(a) Feed & discharge side end plate (b) 1. internal plate

(c) 2. internal plate (d) 3. internal plate

(e) Side, bottom and top plates

Figure 6.8 Frame plates mesh
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(a) Bending (b) Tension/compression (c) Cross sec-

tion

Figure 6.9 Elementary beam cases

Parameter Value Unit

D 0.100 m

d 0.080 m

L 0.530 m

E 200 · 109 N/m2

kx,eq , ky,eq 46.72 · 106 N/m

kz,eq 1066.95 · 106 N/m

Table 6.5 Equivalent stiffness of one frame stiffener pipe

The parameter values and the found equivalent stiffnesses of one stiffener tube are listed

in Tab. 6.5. As the stiffener tubes are closely spaced in a circle a bit larger than the stator

outer diameter, it is assumed that the best way of applying these equivalent stiffnesses to

the model are to distribute them evenly to two circles spaced with the distance of the di-

ameter of the stiffener tubes, Fig. 6.10. In this way, the moment from the bending motion

of the stiffener tubes is to some extent also taken into account. These distributed stiff-

nesses have been added to the stiffness matrix as both diagonal and off diagonal elements

to take the relative movement of the different frame plates into account.

Stator outer
diameter

Stiffener tube

Equiv. stiffness
circles

Figure 6.10 Circles for applying equivalent stiffness
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6.4.3 Stator model

The stator is build up of M400-50A steel sheets with a thickness of 0.5 mm like the one

shown in Fig. 6.11(a). These sheets are stacked on top of each other with an overlap to

form the complete stator core. The slots are then filled with the copper bars to form the

stator windings. As the stator is modeled as a solid ring, Fig. 6.11(b), but is actually build

of sheets with copper bars, it can not be modeled as an linear elastic isotropic material. It

is therefore modeled as a linear elastic orthotropic material with different radial and axial

Young’s modulus. According to ABB, the elasticity modulus in the axial direction is a

factor 10 smaller than that of the radial direction. Erad = 100 ·109 N/m2, Eaxial = 10 ·109
N/m2. Due to the fact that the real stator consists of both steel with holes and copper, the

density of the modeled stator is corrected to give an equivalent mass. This is done by

splitting the stator in two parts. One consisting of the core back (iron with holes) and the

other consisting of stator teeth (iron with holes) and the copper bars. The densities used

for the two parts are: ρFe = 5588 kg/m3, ρFe−Cu = 8389 kg/m3. The stator is modeled

as rigidly attached to the 3 internal plates described in Sec. 6.4.1. However, the stator is

in fact attached to a lot of beams on the outer diameter which again are attached to the 3

internal plates. Furthermore, the stator is bolted to one of the internal plates. However, as

the stator heats up the outer diameter of the stator will be pressed up against the 3 internal

plates which make this simplification valid.

(a) Stator sheet (b) Stator

Figure 6.11 Stator mesh

6.5 Mill drum, rotor poles & bearings

The model of the mill drum, including poles, is shown in Fig. 6.12. It consists of the

following main items:
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• Feed head & trunnion (red)

• Discharge head & trunnion (blue)

• Cylinder (gray)

• Rotor poles (green)

• Feed cone liners (not visible)

• Discharge cone liners (not visible)

• Cylinder liners (not visible)

Figure 6.12 Mill drum with poles

6.5.1 Mill drum model

The mill drum consists of the feed/discharge head & trunnion shown in Fig. 6.13(a) and

cylinder Fig. 6.13(b). As the rock load tumble around inside the drum, causing a lot

of wear, the drum is fitted with replaceable liners which are a lot of plates bolted to the

inside of the drum. These liners do not contribute significantly to the stiffness of the drum,

however, the weight of them can not be neglected. The way that this additional mass is

added to the model is by creating an equivalent density for both the feed/discharge head &

trunnion and the cylinder. The following material parameters are used for the mill drum,

Tab. 6.6 A drawing of the mill drum can be seen in Fig. A.1 in appendix.

Feed/discharge head & trunnion Cylinder

E = 172.5 · 109 N/m2 E = 200 · 109 N/m2

ρ = 10975 kg/m3 ρ = 21222 kg/m3

ν = 0.275 ν = 0.3

Table 6.6 Mill drum material parameters
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(a) Feed/discharge head &

trunnion

(b) Cylinder

Figure 6.13 Mill drum model mesh

6.5.2 Rotor pole model

A rotor pole, Fig. 6.14(a), consists of a middle plate where several profile cut St.42 steel

sheets are stacked on each side of the plate. A press plate is added at each end of the poles

and bolts are run through the entire stack pressing it firmly together. The copper windings

are then wrapped around the entire pole core. The end of the middle plate is bolted to the

mill flange with 3 bolts. This is simplified to the model shown in Fig. 6.14(b) where the

bottom element of the middle plate is completely fixed to the mill flange at all merging

surface nodes. The density of the pole core is modified to take into account that density

of copper is larger than steel. The material parameters used for modeling the pole are:

E = 200 · 109 N/m2, ρ = 8613 kg/m3 and ν = 0.3.

(a) Pole incl. windings (b) Pole

Figure 6.14 Pole mesh
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6.5.3 Bearings

Two large hydrostatic bearings are wrapped around the trunnion at each end of the mill

drum. The stiffness of these bearings are provided by ABB and listed in Tab. 6.7. These

stiffnesses are added to the model with a sinusoidal distribution at the surface indicated

in Fig. 6.15 as to obtain a gradually transition from the horizontal stiffness to the vertical

stiffness. The surface stiffness is applied to the model in a similar way as the surface

traction described in Sec. 6.1.11.

Figure 6.15 Bearing surface on the trunnion

Direction Stiffness [N/m] Damping [k·s/m]

Vertical 1.9455 · 1010 817.89 · 106
Horizontal 1.2010 · 1010 505.38 · 106

Table 6.7 Bearing stiffness includes all components from the oil film down to the bottom plate.

Damping values are for the oil film only

6.6 Stator/rotor/frame forces and torque

The forces between the poles and the stator, estimated in Sec. 3.4, have for the static

simulations been applied as distributed surface forces on top of the pole and on the inner

surface of the stator as described in Sec. 6.1.11. In addition to these forces, springs with

a negative stiffness have been applied between the pole and stator surfaces equivalent to

the change in forces due to change in air gap. As shown in Sec. 3.4, the relationship

between forces and air gap size is very linear, which makes it a good assumption to use

linear springs for the change in forces due to displacement. These surface distributed

spring stiffnesses have been added to the stiffness matrix as both diagonal and off diagonal

elements to take the relative movement of the poles and stator into account and have been

distributed in a similar fashion as the forces described in Sec. 6.1.11.

The static forces between the poles and the stator will not be taken into account when
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estimating the natural frequencies and their corresponding mode shapes due to the way

the natural frequencies are calculated, see Sec. 6.1 Eq. 6.3. However, the change of forces

due to change in air gap are still applied as negative stiffness between the pole and stator

as described above.

The forces from the rock charge inside the mill drum have been applied to the inside

bottom half of the drum as downward acting distributed surface forces. As the majority of

forces act on the lowest part of the drum, the forces have not been added evenly but with

a sinusoidal distribution. Again, the distribution of the forces on the different elements

have been done as described in Sec. 6.1.11.

As the whole mill is very large and extremely heavy, it would be wrong to neglect the

effect of gravity. The mass of every finite element in the model has for this reason been

calculated and the gravity forces have been distributed to the nodes of the elements as

described in Sec. 6.1.12.

The torque has only been applied to the inner surface of the stator in the mill drive. There

are two reasons for this. The first is that the exact distribution of the torque opposing the

rotor pole torque, which comes from the rock load, is unknown as the exact distribution

of the rock load is unknown. The second and more important reason is that an even slight

difference between the values of the torque from the rotor poles and the torque from the

rock load would result in the mill drum beginning to rotate and a static solution would not

be possible. The torque has been applied to the inner surface of the stator as equivalent

nodal forces which sum multiplied by the radius result in the produced torque. These

equivalent forces are applied to the surface as described in Sec. 6.1.11.

A list of the used forces, torque and spring constants are listed in Tab. 6.8.

Parameter Value Unit

Pole force, one pole no eccentricity 259.9 kN

Equivalent pole stiffness, one pole -8518.5 kN/m

Rock charge 14.32 MN

Frame/stator gravity force 2.4 MN

Drum/pole gravity force incl. liners 12.3 MN

Torque 13.6 MNm

Table 6.8 Forces, torque and equivalent stiffnesses

6.7 Static deflection

By using the model described above, it is possible to calculate the static deflection of the

entire mill due to heat, torque and forces applied to it. Due to the different magnitude

of deflection of the frame and the rotor, the results are split up in deflection of the frame

and deflection of the rotor to clearly show the deformation of these two parts. The parts
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(a) Frame deformation [m], undeformed rotor

eccentricity (x,y)=(0,0) [mm]

(b) Drum deformation [m], undeformed rotor

eccentricity (x,y)=(0,0) [mm]

(c) Frame deformation [m], undeformed rotor

eccentricity (x,y)=(1.4142,1.4142) [mm]

(d) Drum deformation [m], undeformed rotor

eccentricity (x,y)=(1.4142,1.4142) [mm]

Figure 6.16 Deformation of the full structural model due to gravity, pole forces, torque, heat

expansion and rock charge
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(a) Mill drive deformation [m], undeformed rotor

eccentricity (x,y)=(1.4142,1.4142) [mm]

(b) Frame deformation [m], undeformed rotor ec-

centricity (x,y)=(1.4142,1.4142) [mm]

Figure 6.17 Deformation of the mill drive due to gravity, pole forces, torque and rock charge,

Source: ABB Switzerland Ltd.

are, however, still completely interconnected through the forces and surface springs be-

tween the poles and the stator. Figure 6.16(a) shows the deformation of the frame when

the undeformed rotor has zero eccentricity. The figure shows a maximum magnitude of

deflection of approximately 0.763 mm in the top of the frame. The reason that the defor-

mation is not completely symmetric around the center of the frame as could have been

expected when dealing with a rotor eccentricity of zero, is due to the applied torque on

the stator. Figure 6.16(b) shows the deflection of the mill drum and rotor poles which

are highly dominated by the mass of the liners and forces from the rock charge inside the

drum. As expected, the maximum deflection is in the center bottom part of the drum and

has a maximum deflection magnitude of approximately 5.10 mm. Due to the bending of

the drum, the poles are turned from their undeformed state which is most obvious in the

lower part of the drive. This results in an air gap which is not the same for the entire pole

surface of a specific pole and will be determined in Sec. 6.9. To examine the effect of an

eccentric rotor on the deflection of the mill, a case is performed where the rotor eccen-

tricity is set to 2 mm in a direction of 45◦ from the horizontal plane (x-axis). The results

from this case are shown in Fig. 6.16(c) and 6.16(d) for the frame and drum respectively.

Looking at the frame, Fig. 6.16(c), it is clear that the resulting force has increased the

maximum magnitude of the deflection in the direction of the eccentricity. The magnitude

of the deflection has increased to approximately 0.941 mm, as the air gap in the top of

the drive has decreased and the pole forces have therefore increased, pulling the top of

the frame in a downward direction. Looking at the drum, Fig. 6.16(d), it can be seen that

the maximum magnitude of the deflection (5.08 mm) is only slightly smaller than that of

the zero eccentricity case. ABB Switzerland Ltd. has provided their results of a similar
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case as the one with the 2 mm eccentricity in a direction of 45◦ from the horizontal plane

(x-axis). These results can be seen in Fig. 6.17(a) and Fig. 6.17(b) which shows the

deformation of the complete drive and the frame alone, respectively. These results show a

maximum deformation of the mill drum of 3.565 mm and a maximum deformation of the

frame of 1.215 mm. A comparison of these results with the results from the Fortran model

will show a relatively large deviation which will be further described and commented on

in Sec. 6.13.

6.8 Static stress

The Von Mises stresses, Sec. 6.1.10, in the mill are calculated to make sure that the

material does not yield due to gravity and forces between the poles and the stator. Figure

6.18 shows the resulting Von Mises stresses for the two cases examined in the previous

section, Sec. 6.7. It can be seen from the figures that the stresses for the two cases are

almost identical with slightly smaller stresses for the eccentric case. The highest stresses

are mainly concentrated at the center bottom part of the drum and at the top where the mill

flange meets the pole middle plate. However, as the maximum Von Mises stress for the

two cases is σv,max = 27.86 MN/m2 and the yield strength for ordinary construction steel

normally used for plates, bars and pipes is approximately σy = 250 MN/m2, no yielding

will occur for the two cases as σv,max ≤ σy. A similar check is performed later in the

optimization of the drive to discard invalid solutions due to yielding of the material, Sec.

7. As for the deformation case, ABB has also provided stress results from their model

with the eccentric mill drum which can be seen in Fig. 6.19. From this plot it can be seen

that the maximum stress on the frame is located at the bottom of the side plate just as in

the results from the Fortran program however the size of the stress is higher in the ABB

model, approximately 25 MN/m2. A further discussion on this deviation are found in Sec.

6.13.

6.9 Rotor/stator air gap

The air gap between the rotor and stator is extremely critical for the operation of the

drive and must for this reason be within some specific limits. The air gap is not identical

at the different poles nor in the axial direction of a specific pole, as result of the heat

expansion and the deformation of the entire structure. A model is therefore created in

which to determine the air gap at the maximum and minimum z-values of each pole (feed

side/discharge side), Fig. 6.20. Figure 6.21(a) shows the found air gap around the drive

due to gravity, pole forces, torque, heat expansion and rock charge where the effect from

the deformed rotor is clearly reflected, as the air gap in the feed end is not the same as in

the discharge end and none of them are nice sinus shaped curves.
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(a) Von Mises stresses [N/m2], undeformed ro-

tor eccentricity (x,y)=(0,0) [mm]

(b) Von Mises stresses [N/m2], undeformed ro-

tor eccentricity (x,y)=(1.4142,1.4142) [mm]

Figure 6.18 Stresses of the full structural model due to gravity, pole forces, torque, heat expan-

sion and rock charge

(a) Von Mises stresses [N/m2],

undeformed rotor eccentricity

(x,y)=(1.4142,1.4142) [mm]

(b) Von Mises stresses [N/m2], undeformed rotor ec-

centricity (x,y)=(1.4142,1.4142) [mm]

Figure 6.19 Stresses of the mill drive due to gravity, pole forces, torque and rock charge, Source:

ABB Switzerland Ltd.
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Figure 6.20 Explanation for air gap determination
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(a) Undeformed rotor eccentricity (x,y)=(0,0) [mm], angle CCW from x-axis
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(b) Undeformed rotor eccentricity (x,y)=(1.4142,1.4142) [mm], angle CCW from x-axis

Figure 6.21 Rotor/stator air gap due to gravity, pole forces, torque, heat expansion and rock

charge
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6.10 Natural frequencies & mode shapes

The natural frequencies of the mill drive are independent of the eccentricity of the rotor,

as all the forces are set to zero due to the way the natural frequencies are calculated. For

a undamped system with forces equal to zero (free vibration) Newtons second law state

that the equation of motion can be expressed as:

Mẍ+ Kx = 0 (6.128)

This differential equation can be solved by assuming the following type of solution

x = X · eiωt (6.129)

Inserting Eq. 6.129 in Eq. 6.128 and exploiting that eiωt �= 0 result in:[
K − ω2M

]
X = 0 (6.130)

This is referred to as an eigenvalue problem and when solved will give the undamped

natural frequencies. By inserting the found eigenvalues into the equation their corre-

sponding eigenvectors can be found representing the mode shapes of the system. The

only connection between the rotor poles and the stator are therefore the surface springs

with the negative stiffnesses described in Sec. 3.4.2 and Sec. 6.6 and as these are linear

springs the initial position of the rotor has no influence on the results. The reason for

estimating the natural frequencies are to make sure that none of the “critical” natural fre-

quencies match those of the potential excitation frequencies like mill speed, pole passing

and power supply output. The word “critical” in this context should be understood as

natural frequencies with mode shapes that seriously distort the air gap between the rotor

and stator. Mode shapes where the majority of the vibrations come from the frame plates,

for example, are not categorized as “critical”, as these do not directly have an influence

on the operation of the mill drive. The way that this categorization of “critical” and “non-

critical” natural frequencies are performed is by estimating the air gap between the rotor

and stator created by plotting the normalized eigenvectors. If the maximum air gap ex-

ceed a value of 0.05 it is categorized as “critical” which has proved to give consistent and

accurate evaluation of the modes. Figure 6.22 shows a couple of the “critical” modes

of the frame alone, assuming that the rotor remains rigid and fixed. Similar mode shapes

are supplied by ABB for comparison and are plotted in the figure next to the Fortran esti-

mated modes. It is seen from the plots that the shape of the modes correspond relatively

well between the ABB provided results and that of the Fortran program, however, their

corresponding natural frequency differs significantly from each other. An explanation for

these discrepancies are to be found in the boundary conditions between the stator and

frame used for the Fortran and the ABB model respectively. In the Fortran model, the

stator is rigidly attached to the frame plates, which is an acceptable assumption, as the

heat expansion of the stator leads to a high pressure between the frame and the stator,

as described in Sec. 5.7. In the ABB model, the stator is not pressed against the frame

plates, as it is modeled in cold condition without heat expansion. The stator is instead
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(a) 2. mode, Fortran,

Frequency: 9.06 Hz

(b) 1. mode, ABB,

Frequency: 4.15 Hz

(c) 3. mode, Fortran,

Frequency: 10.63 Hz

(d) 2. mode, ABB,

Frequency: 7.76 Hz

(e) 5. mode, Fortran,

Frequency: 18.32 Hz

(f) 6. mode, ABB, Fre-

quency: 16.19 Hz

(g) 50. mode, Fortran,

Frequency: 39.57 Hz

(h) 10. mode, ABB,

Frequency: 22.32 Hz

Figure 6.22 Comparison of mode shapes of the frame

(a) 4. mode, Fortran,

Frequency: 9.06 Hz

(b) 1. mode, ABB,

Frequency: 3.79 Hz

(c) 5. mode, Fortran,

Frequency: 10.63 Hz

(d) 5. mode, ABB,

Frequency: 7.31 Hz

(e) 6. mode, Fortran,

Frequency: 15.06 Hz

(f) 4. mode, ABB, Fre-

quency: 7.20 Hz

(g) 8. mode, Fortran,

Frequency: 16.28 Hz

(h) 37. mode, ABB,

Frequency: 16.36 Hz

Figure 6.23 Comparison of mode shapes of the frame and mill drum
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Figure 6.24 Critical speeds diagram

Source of excitation Frequency [Hz]

Nominal mill speed 0.19

Nominal power supply output 5.60

Nominal mechanical pole passing 11.20

Table 6.9 Excitation frequencies

attached to a lot of beams on the outer diameter of the stator, which then again is attached

to the 3 internal plates of the frame. As the ABB model of the drive is modeled in cold

condition and the stator is not pressed against the 3 internal frame plates, this results in a

smaller overall stiffness of the frame/stator model compared to the Fortran model. This

corresponds well with the fact that the natural frequencies found by ABB in general are

lower than those of the Fortran program found values, due to the smaller general stiffness

of the ABB model. As the natural frequencies of the mill drive is unimportant if the mill is

not in operation, it has been found to be more correct to model the drive in a hot condition

and thereby with the stator rigidly attached to the frame. Figure 6.23 shows a couple of

the “critical” modes of the complete coupled rotor-frame system. The results shown in

the figure are again from the Fortran program and results received from ABB for com-

parison. It is seen from the plots that the shape of the modes again correspond relatively

well between the ABB provided results and that of the Fortran program. However, their

corresponding natural frequency again differs significantly from each other, as would be

expected, as the frame alone had considerable deviations. The explanation for these dis-

crepancies is the same as described for the frame alone. The major potential excitation

frequencies of the drive are listed in Tab. 6.9 which has been provided by ABB. These

potential excitation frequencies are visualized in Fig. 6.24 together with the “critical”

natural frequencies that are close to any of these potential excitation frequencies within

the operational speed range of the mill drive. Even though this plot has the appearance of

a Campbell diagram it must not be mistaken for such a diagram, as the gyroscopic effects

on the natural frequencies are neglected in this case. The diagram can, however, be used

in a similar way as a Campbell diagram to find the critical speeds of the system. It can

be seen that the system has two critical speeds at 9.1 Hz and 10.6 Hz respectively, due
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to the pole passing frequency. However, as the damping of these natural frequencies are

unknown, further examination has to be performed to determine if the damping of these

natural frequencies are sufficiently high to safely run the mill at these speeds. This is,

however, beyond the scope of this thesis.

6.11 On damping sources in mill drives

There are many types of damping in mills coming from different sources. The most easiest

to obtain is the damping in the bearings as equations for the estimation of damping in oil

lubricated bearings are well established. Another source is the material damping in the

structure of the mill and a third source is the damping due to rock charge in the mill drum.

The latter one is also the most difficult to determine as it depends on a lot of factors like

rotational speed, size and density of the rocks, amount of water and steel balls added to

the rock charge and the size of the rock load to name a few. Two Bachelor projects have

examined the forces and damping in a downscaled model of a mill drum due to the charge

inside the drum, Olsen (2011) and Christensen (2012). The outcome of these projects,

regarding the damping, were that it was very difficult to determine the damping, however,

it was clear that as the percentage of particles were increased an increase in damping was

observed. Furthermore, it was observed that as the speed of the drum increase and the

charge was centrifuged the damping of the system would decrease.

A way to apply structural damping to a system can be accomplished by the Rayleigh

damping also called proportional damping. Rayleigh damping is based on a damping

matrix that is proportional to the mass and stiffness matrices as shown in Eq. 6.131 where

the proportionality constants α and β can be found by use of Eq. 6.132.

C = αM + βK (6.131)

ξi =
α

2ωni

+
βωni

2
i = 1, 2, ..., n (6.132)

By picking two natural frequencies and determine how fast each should be damp and

apply this to Eq. 6.132 results in two equation with two unknowns. This can be solved

giving the proportionality constants α and β. Figure 6.25 show the influence of the pro-

portionality constants α and β on the damping factor

6.12 Simulating in time

If it is desired to model a start-up of the drive, a short-circuit in one of the rotor poles or

any other time varying phenomena, the above described theory can be used in a iterative

process with small time increments stepping through time. The following sections will

explain how this can be performed and how it is possible to reduce the computational time

by use of pseudo modal reduction although no analysis in time domain is performed in

this work.
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Figure 6.25 The influence of α and β on the damping factor

6.12.1 Equation of Motion

As described before, the equation of motion can be expressed as:

Mẍ+ Cẋ+ Kx = F (6.133)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, F is

the force vector and ẍ, ẋ and x are the acceleration, velocity and position vectors. The

velocity ẋt and position xt at time t can be determined by Eq. 6.134 and Eq. 6.135

together with the acceleration ẍt−1, velocity ẋt−1 and position xt−1 from previous time

step. The observant reader might have noticed that the velocity used on the right hand

side in Eq. 6.135 is for time t and not for time t − 1 as expected. This is, however, done

on purpose and result in a better convergence. Inserting Eq. 6.134 and Eq. 6.135 into the

equation of motion Eq. 6.136 together with the initial values of the acceleration, velocity

and position at time t−1, one gets a linear system of equation in the form of [A] {x} = [B]
which can be solved for {x} in this case the acceleration ẍt.

ẋt = ẋt−1 + ẍt−1Δt (6.134)

xt = xt−1 + ẋtΔt (6.135)

Mẍt = Ft − Cẋt − Kxt (6.136)

6.12.2 Pseudo modal reduction

Modeling in time can be highly time consuming as the maximum stable time step Δtmax

decreases as the model’s degree of freedom increase. To reduce the size of the model

and increase the maximum stable Δtmax, the pseudo modal reduction can be applied.

The following will explain how this can be performed and is a reduction method based

on the modes of the natural frequencies which are significant for the specific case. Eq.

6.137 again shows the equation of motion where M, C and K are the mass, damping

and stiffness matrix, x is the displacement vector, ẋ and ẍ are the 1st and 2nd derivative

of the displacement vector respectively. This equation can be solved to get the natural

frequencies ωi and its corresponding eigenvectors φi

Mẍ+ Cẋ+ Kx = 0 ⇒ ωi, φi (6.137)
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It is now possible to transform the Cartesian coordinates to modal coordinates as illus-

trated in Eq. 6.138 and Eq. 6.139, using only eigenvectors up to the highest important

mode and thereby reducing the system of equations. However, one has to be careful not

to exclude important modes, as this will result in misleading results.

x (t) = φ∗ · η (t) (6.138)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 (t)
x2 (t)

...

xn (t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

n

=

⎡
⎢⎢⎢⎣

φ∗
1,1 (t) · · · φ∗

1,m (t)
φ∗
2,1 (t) · · · φ∗

2,m (t)
... · · · ...

φ∗
n,1 (t) · · · φ∗

n,m (t)

⎤
⎥⎥⎥⎦
n×m

·
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⎪⎪⎪⎩

η1 (t)
η2 (t)

...

ηm (t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

m

(6.139)

where n is the total degree of freedoms and m is the highest mode of interest.

The equation of motion now takes the form of Eq. 6.140 in modal coordinates.

φ∗TMφ∗︸ ︷︷ ︸
Mr

η̈ (t) + φ∗TCφ∗︸ ︷︷ ︸
Cr

η̇ (t) + φ∗TKφ∗︸ ︷︷ ︸
Kr

η (t) = φ∗TF (6.140)

The transformation of the initial conditions to modal coordinates can be performed by use

of Eq. 6.141 - 6.143:

η0 = φ∗−1 · x0 (6.141)

η̇0 = φ∗−1 · ẋ0 (6.142)

η̈0 = φ∗−1 · ẍ0 (6.143)

The numerical integration in modal coordinates can now be performed with the use of Eq.

6.144 - 6.146 in a similar way as for the integration in time domain.

η̇(t+1) = η̇(t) + η̈(t)Δt (6.144)

η(t+1) = η(t) + η̇(t+1)Δt (6.145)

η̈(t+1) = M−1
r

(
φ∗TF − Crη̇(t+1) −Krη(t+1)

)
(6.146)

The transformation from modal coordinates and back to Cartesian coordinates can be

accomplished by the use of Eq. 6.147.

x(t+1) = φ∗ · η(t+1) (6.147)

6.13 Verification of structural model

This section will compare the results of the presented Fortran structural finite element

model of the gearless mill drive with results from ABB’s finite element model. Table

6.10 and Tab. 6.11 compare the masses of the different parts of the mill. As the drum is

manufactured outside ABB regime, the manufacture reported masses have been added to
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the table with the drum parts as well. From this table it can be seen that the masses found

by the Fortran and ABB correspond very well with each other with a maximum deviation

of only 1.1%. Howerver, comparing with the manufacture provided masses the deviation

is a lot larger. But as no information is avaliable on how these masses are obtained or if it

is just an estimate, no further conclusions can be drawn from this. Looking at Tab. 6.11

for the masses of the frame and stator it can be see that significant higher deviations are

achieved with a differance of nearly 10%. Some of this can be explained by the fact that

the masses of the stiffener tubes were neglected in the Fortran model, as these tubes have

just been added as spring stiffness’s. However, this can not explain the large difference

alone, as the total mass of these tubes only amount to approximately 2.5 tons, where the

difference in mass of the frame is approximately 14 tons. A possible reason for the larger

mass of the stator in the ABB model could be that they have forgot to compensate for

the lack of material from the cooling channels, which would overestimate the mass by

approximately 7.6 tons, where the deviation is approximately 12.2 tons. Another option,

that may apply to both the stator and the frame, is that the supplied densities of the mate-

rial do not comply with the used values in the ABB model and/or the dimensions on the

drawings might not be up to date. It might as well be a combination of the above men-

sioned possibilities, however, the main cause of it has unfortunatly not been determined

yet. Table 6.12 show the stresses and deformations achieved by the Fortran and the ABB

Rotor part Manufacture ABB FEM Fortran FEM Diff. Fortan vs.

Weight [kg] Weight [kg] Weight [kg] Man. ABB

Feed head & trunnion 119415 129146 129413 +8.4 % +0.2 %

Disch. head & trunnion 121058 130758 129413 +6.9 % -1.0 %

Cylinder 260936 262294 261369 +0.2 % -0.3 %

Rotor 130568 156011 155715 +19.3 % -0.2 %

Feed cone liners 68585 68585 67852 -1.1 % -1.1 %

Disch. cone liners 68585 68585 67852 -1.1 % -1.1 %

Cylinder liners 445228 445228 445226 -0.0 % -0.0 %

Table 6.10 Comparison of masses of mill drum

Part ABB FEM Fortran FEM Diff. Fortan

Weight [kg] Weight [kg] vs. ABB

Frame 141089 127051 -9.9%

Stator 127500 115225 -9.6%

Table 6.11 Comparison of masses of frame and stator

model. What can be seen is that even higher deviations between the results are achieved.

As also explained in Sec. 6.10 an explanation for these discrepancies are to be found in

the boundary conditions between the stator and frame used for the Fortran and the ABB

model respectively, together with the above mentioned reason for the mass difference. In

the Fortran model the stator is rigidly attached to the frame plates which is an acceptable

assumption as the heat expansion of the stator leads to a high pressure between the frame

and the stator as described in Sec. 5.7. In the model by ABB the stator is not pressed
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against the frame plates as it is modeled in cold condition without heat expansion. The

stator is instead attached to a lot of beams on the outer diameter of the stator which then

again is attached to the 3 internal plates of the frame. As the ABB model of the drive is

modeled in cold condition and the stator is not pressed against the 3 internal frame plates

result in a smaller overall stiffness of the frame/stator model compared to the Fortran

model. This correspond well with the smaller displacement of the frame in the Fortran

model compared with the ABB model, -22.5%. The discrepancies of the rotor displace-

ment can be explained by the fact that ABB has added a no rotation boundary condition

on the lower half part of the bearing surface restricting this surface in rotating due to the

bending of the rotor. By doing this an artificial moment is added to these two surfaces

to comply with this boundary condition which tries to counteract the bending of the rotor

resulting in a decrease in deflection. In the Fortran FEM model the bearing surfaces have

no such boundary conditions as the bearing stiffness have been applied as nodal springs

to each node at the surface allowing the surface to rotate along with the bending of the

drum. An additional reason for the discrepancies of the rotor deflection is that ABB has

added the mass of the rock load as a constant distributed mass on the lower part of the

drum where the rock load in the Fortran model has been applied with a sinusoidal distri-

bution on the lower half of the drum assuming a higher rock mass in the center than at

the sides. This higher mass will of course result in higher forces in the bottom part of the

drum where the magnitude of deformation already is highest increasing it even further.

The stresses in Tab. 6.12 also deviates a lot due to the same reasons as the ones descriped

for the deformations. However, the highest stresses in the frame are located in the same

area in the two different models.

ABB FEM Fortran FEM Diff. Fortan vs. Rotor eccen-

Frame Rotor Frame Rotor ABB tricity [mm]

Max. deformation [mm] 1.215 3.565 0.941 5.084 -22.5% / +42.7% (x,y)=(1.41,1.41)

Max. stress [MN/m2] ≈35 ≈33 17.45 27.77 -50.1% / -15.8% (x,y)=(1.41,1.41)

Table 6.12 Comparison of deformation and stress in frame and rotor

Figure 6.26 shows a comparison of the air gap distortion estimated by the Fortran and

the ABB model where the air gap from the Fortran model is the average air gap per pole

and the air gap from the ABB model is found at the center of each pole. As can be seen

from the figure the shape and the values of the air gap found by the two models are highly

comparable with a deviation of the minimum and maximum air gap of 0.9% and 1.2%

respectively, Tab. 6.13. From this is can be concluded that the air gap distortion is not that

sensitive to the maximum deformation of the complete mill explained above where there

were a diviation of up to 42.7% between the results of the two models. This is true even

though the Fortran model has taken the heat expansion of the poles into account where

the ABB model does not.

Comparing the natural frequencies of the modes shown in Fig. 6.23, which values are

listed in Tab. 6.14, it can be seen that these deviates a lot which is also described in

Sec. 6.10. The reason for these discrepancies is the same as explained above for the



98 Chapter 6 Structural investigations of gearless drives - Structural model

-pi -pi/2 0 pi/2 pi
13

14

15

16

17

18

Angle [rad]

Ai
r g

ap
 [m

m
]

Fortran model
ABB model

Figure 6.26 Comparison of Fortran and ABB estimated air gap distortion, rotor eccentricity:

(x,y)=(1.41,1.41), angle CCW from x-axis

ABB FEM Fortran FEM Diff. Fortan Rotor eccentricity [mm]

(Avg.) vs. ABB

Max. air gap [mm] 17.76 17.54 -1.2% (x,y)=(1.41,1.41)

Min. air gap [mm] 13.54 13.42 -0.9% (x,y)=(1.41,1.41)

Table 6.13 Comparison of air gap between stator and rotor

deformation and stresses and is mainly due to the used boundary conditions in the two

models.

Mode shape ABB FEM Fortran FEM Diff. Fortan

Freq. [Hz] Freq. [Hz] vs. ABB

Fig. 6.23(a) & 6.23(b) 3.79 9.06 58.2 %

Fig. 6.23(c) & 6.23(d) 7.31 10.62 31.2 %

Fig. 6.23(e) & 6.23(f) 7.20 15.06 52.2 %

Fig. 6.23(g) & 6.23(h) 16.36 16.28 0.5 %

Table 6.14 Comparison of natural frequencies

As explained above the two structural models do not produce exactly the same results

due to the way they have been modeled. The most important result from the structural

model, namely the air gap distortion, is, however, highly comparable despite the different

approaches and assumptions made in the two models. The approach in the Fortran model

has been to reduce the model as much as possible to decrease the computation time mak-

ing it suitable for an iterative optimization process, where the ABB model include every

little hole and bolt in the gearless drive. The two models nor use the same assumptions

for the boundary conditions for the mill drum bearings, the applied rock load or the stator

attachment and the Fortran model include the heat expansion where the ABB model do

not. It is therefore not entirely fair to make this comparison as the results are expected

to deviate but in lack of better results for comparison this has been performed anyway.

It is at the current time impossible to determine which of the models produce the most

accurate results as this would require experimental test on the drive. This has, however,

not been possible as the mill drive is not yet in operation and will have to be performed at
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a later time to justify the assumptions used. In the case that the structural model has to be

modified after experimental test results have been received would not have any influence

on the structure of the global multi-physics model as this will remain unaltered justifying

the use of the presented model in this thesis.



Chapter 7
Metaheuristic optimization of multi-physics model of a
gearless drive

7.1 A short introduction to metaheuristics

Metaheuristics is used in combinatorial optimization in discrete and real search space by

iteratively trying to improve the current best solution. There have been several proposed

metaheuristic algorithms throughout time, which can be used in optimization applications

with some of the most commonly known being “hill climber”, “TABU” Glover (1989),

Glover (1990), “simulated annealing” Suman and Kumar (2006), “ant colony optimiza-

tion” Dorigo and Blum (2005), “genetic algorithm” Johnson and Rahmat-Samii (1997),

and “evolution strategies” Schwefel and Beyer (2002), Andersen and Santos (2012), to

name a few. Metaheuristics, however, does not guarantee that the optimal solutions are

ever found but there is a good possibility that a near optimal solution will be determined.

Evolution strategies ES used in this thesis were first proposed by Rechenberg and Schwe-

fel in the mid-1960s for numerical optimization. It has since evolved from a simple (1+1)

evolution strategy to a more complex (μ/ρ +, λ) with more complex internal routines.

One of the benefits of ES is that it is extremely easy to run on parallel computers to de-

crease the time it takes to evaluate the population of individuals. Several papers describe

the use of evolutionary algorithms in the quest for optimization of PM motors where Jolly

et al. (2005) optimize the rotor of a PM motor using genetic algorithms and Bochnia

et al. (1999) optimize an in-wheel motor using ES. ES has also been used by Chung and

Kim (1997) for the optimization of the pole shapes in a BLDC motor for reducing cog-

ging torque. The present work will concentrate on a more global holistic approach. As

one usually is not just interested in the optimization of one single parameter like Jolly

et al. (2005), Bochnia et al. (1999), Chung and Kim (1997) and a separate optimization

of several parameters might not give a clear picture of the optimal combination of the pa-

rameters, a Multi-objective Optimization has to be performed. This can be accomplished

by combining ES and PISA where PISA is a group of programs which can be used for

solving such multi-objective search problems with conflicting goals. The following will

explain the (μ/ρ +, λ)-ES which is used for optimizing the gearless mill drive together

with a short description of the structure of PISA which has been used in combination with

ES.

7.2 General algorithm of evolution strategies

In Fig. 7.1 a general pseudo code for Evolution Strategies (ES) is shown. This section

will briefly explain each line of the code and the following sections will give a more

100
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Procedure (μ/ρ +, λ)-ES

1 Begin
2 g = 0

3 initialize
(
P

(0)
p =

{(
y(0)
m , s(0)m ,F(y(0)

m )
)
,m = 1, ..., μ

})
4 Repeat
5 For i = 1 to λ
6 Ei = marriage(P

(g)
p , ρ)

7 si = srecombination(Ei)
8 yi = yrecombination(Ei)
9 s̃i = smutation(si)
10 ỹi = ymutation(yi, s̃i)
11 ỹi = repairdiscrete(ỹi)
12 F̃i = F (ỹi)
13 End
14 P

(g)
o =

{(
ỹi, s̃i, F̃i

)
, i = 1, ..., λ

}
15 Case Selection type of
16 (μ, λ) : P

(g+1)
p = selection(P

(g)
o , μ)

17 (μ+ λ) : P
(g+1)
p = selection(P

(g)
o ,P

(g)
p , μ)

18 End
19 g = g + 1
20 Until Termination condition

21 End

Figure 7.1 General pseudo code of (μ/ρ +, λ)-ES

thorough explanation of the different parts of the ES algorithm based on Schwefel and

Beyer (2002).

In line #2 the generation counter is initialized for generation zero. In line #3 the

initial population is created which consists of μ individuals am each consisting of an

object vector ym, a strategy vector sm and a fitness vector F(ym). am = [ym, sm,F(ym)].
Lines #4-20 is the main loop of the algorithm which runs continuously until termination

condition is reached, in our case until we run out of the allocated time for solving the

problem. Lines #5-13 is the loop which generates offspring individuals who might enter

the next generation of parents. The loop will run λ times for each generation producing

λ new offspring. In line #6 the marriage procedure is executed which picks ρ individuals

from the parent population for reproduction of offspring. Lines #7 and #8 recombine

the object and strategy parameters of the ρ parents to form one new offspring individual.

In lines #9 and #10 the strategy and object parameters of the newly formed offspring

individual is mutated. In line #11 the object parameters are corrected for the discrete

space variables. Finally, in line #12 the new offspring individual is completed by the

addition of its fitness value. Line #14 collects the offspring created to form the offspring
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population. In lines #15-18 the selection procedure is performed. There are two standard

types of selection, a “,” and a “+” selection. This selection procedure decides which of

the offspring individuals get to enter the new parent population of the next generation if

any at all. Finally, in line #19 the generations counter increase by one and then jump to

line #5, if the termination condition, as said before, has not been reached.

7.2.1 Marriage

In contrast to Evolutionary Algorithm with an elitist approach where the marriage process

is made by choosing the best individuals of the parent population for reproduction, the

marriage process in Evolution Strategies is made by selecting ρ individuals completely

randomly from the parent population. As this does not improve the solution by itself, it is

obvious that this part of the algorithm is not the main driving force in evolution strategies.

The marriage process is the first part of the algorithm which is performed in the main

loop, line 6 in Fig. 7.1.

7.2.2 Recombination

The idea behind recombination is that when parents with good genetic material are com-

bined, they will also generate offspring with good genetic material. According to Schwe-

fel and Beyer (2002), there is still an ongoing debate about the usefulness of recombina-

tion, however, recombination of the strategy parameters has been shown to be mandatory

for this mechanism to work according to Bäck and Schwefel (1993). Due to this fact, the

recombination will be performed on both the object and strategy parameters. A special

case of the recombination is when ρ = 1 as the individual will be recombined with itself.

In other words, an exact copy of the individual. In this case the recombination routine can

be skipped.

There are two standard methods of recombination:

• Discrete recombination

• Intermediate recombination

According to Bäck and Schwefel (1993), Eiben and Schippers (1998), Bäck and Hoffmeis-

ter (1994) it has been shown that good results have been achieved when using intermediate

recombination on strategy parameters and discrete recombination on object variables. We

will follow this advice.

Recombination of Strategy Parameter

As mentioned above, intermediate recombination has proved to give a good result when

applied to the strategy parameters which are parameters used for determine the size of

the mutation of the object parameters. The vector with the strategy parameters is initially

set as the normal standard deviation for each object parameter of the initial population of

solutions. The intermediate recombination of the strategy parameters is performed first
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by randomly selecting ρ parents from the entire population of μ individuals, which is

performed by the “marriage” routine as described previously. It then calculates the centre

of mass of the ρ selected parent vectors am = {am,1, ..., am,N} for each strategy parameter

as written in Eq. 7.1 and depicted at the bottom in Fig. 7.2.

rk =
1

ρ

ρ∑
m=1

am,k (7.1)

The recombination of the strategy parameters can be performed before or after the re-

combination of the object parameters. In the pseudo code in Fig. 7.1 it is placed before

the recombination of the object parameters at line 7.

Figure 7.2 Standard μ/ρ recombination

Recombination of Object Parameter

As mentioned above, discrete recombination, also called dominant recombination, has

proved to give a good result when applied to the object variables. The Discrete recom-

bination is performed first by randomly selecting ρ parents from the entire population of

μ individuals which again is performed by the “marriage” routine. The routine then ran-

domly selects the object parameters from the ρ individuals for each object parameter until

a completely new individual is created. This is written in Eq. 7.2 and depicted at the top

of Fig. 7.2.

rk = (amk
)k, mk = Random{1, ..., ρ} (7.2)

The recombination of the object parameters is performed in line 8 in Fig. 7.1, but as men-

tioned before, it can also be performed before recombination of the strategy parameters.

If for some reason the intermediate recombination was chosen on the object parameters

instead of discrete recombination, one should remember that this routine creates values

in real space. A correction of the parameters has then to be performed, if some or all of

the parameters are in discrete space. This correction could be a simple rounding of the

parameter values.
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7.2.3 Mutation

Mutation of the object and strategy parameters takes place in lines 9 and 10 in Fig. 7.1

and is usually the primary source of generic variation. There is currently (2002) no design

methodology for the mutation operators, but some rules have been proposed by H. G.

Beyer.

• Reachability

• Unbiasedness

• Scalability

Reachability: It should be possible from a random state to reach any other state within a

finite number of mutations or generations.

Unbiasedness: The variation operators should only explore the information of the ob-

ject space and not use any information about the individuals’ fitness values. Thereby no

individual is preferred over another. This leads, in a natural manner, to the principle of

maximum entropy and the standard normal distribution.

Scalability: The mutation strength should be tunable to be able to adapt to the properties

of the fitness landscape.

Mutation of Object Parameter

Schwefel and Beyer (2002) propose a standard mutation operator for mutating the object

parameters in a real valued search space which reads:

Given a vector s = σ = {σ1, ..., σN} as the strategy parameter the principle of maximum

entropy yields:

ỹ = y + z (7.3)

with z = {σ1 · N1(0, 1), ..., σN · NN(0, 1)} (7.4)

where Ni(0, 1) is a random number from the standard normal distribution.

Mutation of Strategy Parameter

For mutating the strategy parameters s = σ = {σ1, ..., σN} in Eq. 7.5 H. P. Schwefel

suggests using an extended log-normal rule which reads:

σ̃ = eτ0·N (0,1) · {σ1 · eτ ·N1(0,1), ..., σN · eτ ·NN (0,1)
}

(7.5)

with

τ0 =
c√
2N

(7.6)

τ =
c√
2
√
N

(7.7)
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where Ni(0, 1) is a random number from the standard normal distribution and c is a pro-

portionality factor for the learning factors τ0 and τ .

7.2.4 Repair

As the above described procedure produces real value object parameters, an extra proce-

dure has to be introduced when working with discrete parameters or a mixture of discrete

and real value parameters. This procedure is inserted just before the evaluation by the

fitness function in line 11 in Fig. 7.1. The procedure consists of a simple rounding of the

real value to an integer at instances where the parameter is in discrete space. Furthermore,

this repair procedure makes sure that the object parameters do not exceed their predefined

upper and lower boundaries by moving values outside back onto the boundaries they ex-

ceeded. This is not a standard routine in ES, but it has to be introduced in the case where

the object parameter values are a mixture of real and integer values.

7.2.5 Selection

The selection routine is the routine which drives the population to better regions by use

of the individuals’ fitness information. There are two standard types of selection methods

in ES which is denoted (μ/ρ, λ) and (μ/ρ + λ). The “,”-sign and the “+”-sign in the

notation tells something about how the selection pool for selecting the next generation

parent population is created. In the “,” notation the selection pool is made up of only the

λ offspring individuals and the current parent population is discarded even in the case of

that population containing better solutions. This selection method of course requires that

λ > μ as we want to keep a constant size of the parent population. In the “+” notation

the selecting pool is made up of both the λ offspring and the μ parents of the current

generation.

The actual selection is done simply by selection the μ individuals with the highest fitness

value (maximizing) from the selection pool to form the next generation parent population

and discarding the remaining solutions. The selection is performed just after the offspring

has been created, line 16 for the “,” selection and line 17 for the “+” selection in Fig. 7.1.

Both types of selection method have their advantages in specific applications. According

to Schwefel and Beyer (2002) the “,” selection performs well on unbounded R
N search

spaces where the “+” selection should be chosen in the case of finite search space. As the

problem at hand is defined in finite search space the “+” selection has been chosen as the

selection method for this problem.

7.3 Parameter tuning

Parameter tuning of the algorithm is normally performed to insure an efficient and fast

convergence toward the optimal solution. The ES algorithm explained above consists of
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Parameter Description

μ Size of the parent population

ρ No. of parent involved in the procreation of one offspring

λ Size of offspring population

s = σ = (σ1, ..., σN ) Mutation strength

c Constant for the learning parameters τ and τ0

Table 7.1 Endogenous and Exogenous Parameters

the endogenous and exogenous parameters listed in table 7.1 below. The exogenous pa-

rameters are parameters which remain constant throughout the entire run of the algorithm

and are μ, ρ, λ and c. The endogenous parameters are parameters which continuously

change and try to adapt to the current situation. These parameters are the standard de-

viations (mutation strength) s. It is the exogenous parameters which are used for tuning

of the algorithm by running several simulations with various parameter values and seeing

which perform the best. This tuning can be a cumbersome task which takes a long time

to perform, however, there are some guide lines for some of the parameters. According to

Bäck and Schwefel (1993) the constant c for the learning factors τ and τ0 has for exam-

ple achieved good results when set to 1. However, as each fitness value in this problem

take on average approximately 15 minutes to calculate, the evolution strategies algorithm

in this thesis is not tuned for the exogenous parameters. The reason for neglecting the

tuning of the algorithm is in view of the extensive amount of time needed for the tuning,

which is assumed to far exceed the time needed for running a untuned algorithm. The

performance of the algorithm can therefore, with a high probability, be increased dramat-

ically and would be recommended if it should be used again and again. The exogenous

parameters used in this thesis are: μ = 6, ρ = 4, λ = 1 and c = 1.

7.4 Multi-objective optimization and PISA

For solving the multi-objective optimization problem, the previously described ES algo-

rithm has been used in conjunction with a free software package called PISA. PISA is a

group of programs for solving multi-objective search problems with conflicting goals and

is developed and maintained at ETH TIK Zürich, Switzerland.

7.4.1 PISA Structure

The PISA structure operates with two main algorithms. One is called the variator and the

other called the selector. These two algorithms run parallel with each other and commu-

nicate through ASCII files as symbolized in Fig. 7.3. The variator is the algorithm that

is creating new offspring and calculates their respective fitness values. The fitness value

together with an individual id number is then passed to the selector through the ASCII

files. The selector then selects which of the individuals has to form the new parent pop-

ulation solely based on the evaluation of their fitness values. The ids of these individuals

are then sent back to the variator. The variator then generates new offspring and their

fitness values are again sent back to the selector. This ping-pong between the variator
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and selector continues until some stopping criteria have been met. This could be time or

number of generation. There are 6 common communication files which are used in the

PISA structure for communication between the variator and selector:

• CFG: config file containing the size of the problem, μ, ρ, λ and dimension

• INI: file with the initial population fitness values and ids written by the variator

• STA: status file which is used to synchronize the variator and selector

• SEL: file with the next parent population ids written by the selector

• VAR: file with new offspring’s fitness values and id’s written by the variator

• ARC: archive file with solutions

For further information on the PISA structure visit their homepage1 or see Bleuler et al.

(2003).

Figure 7.3 PISA structure

Variator

The variator is the algorithm in charge of generating new offspring through variation of

selected individuals. In this thesis it is a modified version of a (6/4+1)-ES explained

above. Two modifications have been made to the algorithm. The first is that it has been

set up to communicated with the selector through the previously described communica-

tions files and the previously used selector has been removed. Secondly, an extra fitness

parameter has been added as to optimize for both mass and losses.

Selector

The general function of the selector is to select promising individuals from the population,

who through variation is expected to create new individuals which are able to find the

Pareto front. A solution is called Pareto optimal when it is not possible to improve one

objective without deteriorating at least one of the others. A set of Pareto optimal solutions

constitute the Pareto front. The goal in multi-objective optimization is therefore to find

this Pareto front, sometimes also called the Pareto frontier. Several different types of

1http://www.tik.ee.ethz.ch/pisa/
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selectors are available in the PISA environment and can be interchanged in the model

with minimal effort. The following selectors are implemented in the model, but only the

IBEA selector is used based on previous experience, Andersen and Santos (2012). The

parameters for the different selectors have not been changed from their initial values and

may be altered to improve their performance. However, this is deemed to be out of scope

of this thesis and may be performed in future work with the model.

• SPAM - Set Preference Algorithm for multi-objective Optimization, Zitzler et al.

(2009)

• SEMO2 - Simple Evolutionary multi-objective Optimizer, Laumanns et al. (2002b)

• IBEA - Indicator Based Evolutionary Algorithm, Zitzler and Künzli (2004)

• HypE - Hypervolume Estimation Algorithm for multi-objective Optimization, Bader

(2011)

• SHV - Sampling-based HyperVolume-oriented algorithm, Bader et al. (2008)

• FEMO - Fair Evolutionary Multiobjective Optimizer, Laumanns et al. (2002c)

• SPEA2 - Strength Pareto Evolutionary Algorithm 2, Grandy (1997) and Zitzler

et al. (2002)

• NSGA2 - Nondominated Sorting Genetic Algorithm 2, Deb et al. (2000)

• EPSMOEA - Epsilon MOEA, Laumanns et al. (2002a), Rudolph and Agapie (2000),

Deb et al. (2003)

• MSOPS - Multiple Single Objective Pareto Sampling, Hughes (2003), Hughes

(2005)
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7.5 Optimization of multi-physic model of a gearless drive

This section will explain how the optimization of the mill drive is performed, which is

done as both single- and multi-objective optimization. The single objective optimization

tries to minimize the mass usage in the mill, as this is somehow an expression for the cost

of the mill. The lower the mass the cheaper the mill is to produce. In the long run, this

is, however, not the only thing which will have economical consequences, as losses in the

drive are wasted energy resulting in wasted money. The multi-objective optimization is

therefore an attempt to minimize the mass of the mill and at the same time minimize the

total loss of the drive.

7.5.1 Object Parameter

In the optimization process of minimizing the mass and losses of the mill, 8 object param-

eters are used. The first 6 object parameters are the thickness of the frame plates in the

xy-plane as indicated in Fig. 7.4(a) where the bottom half of the frame has thicker plates

than the top half. The 7th object parameter is the the thickness of the plates on the side and

the top of the frame, as indicated in Fig. 7.4(b). Object parameter 8 is the length of the

rotor and stator. The length between the end plates in the feed and discharge end and the

plates next to them is kept constant as the stator and rotor length increase/decrease. The

distance between the three inner plates, where the stator is attached, change according

to the stator length, while keeping the original ratio between them constant. The object

parameters are limited to the value ranges shown in Tab. 7.2.

(a) Object parameters 1-6, frame plates in xy-

plane

(b) Object parameter 7, side and top

frame plates

Figure 7.4 Description of object parameters

7.5.2 Determination of fitness value

The fitness values for the single and multi-objective optimization performed in this thesis

are the mass and the mass and losses respectively. Figure 7.5 shows a flow diagram of the
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Object parameter lower limit Upper limit

Obj1, [mm] 1.0 20.0

Obj2, [mm] 1.0 20.0

Obj3, [mm] 1.0 20.0

Obj4, [mm] 1.0 20.0

Obj5, [mm] 1.0 20.0

Obj6, [mm] 1.0 20.0

Obj7, [mm] 1.0 20.0

Obj8, [mm] 1100.0 1400.0

Table 7.2 Object parameter ranges

procedure for how these fitness values have been found for each optimization individual.

To save computation time, the first thing that is done is to check if the mass is larger than

the largest mass in the parent population, as there is no need to continue the rest of the

simulations, as the solution will be discarded anyway. This can, however, only be done

this way for the single objective optimization and only if the “+” selector has been used.

For the multi-objective optimization, this check is neglected. Again to save computation

time, it is checked if the current phase angle which produce zero torque has been found

previously, Sec. 3.4.1, as this is the same in all the cases and is not dependent on the ro-

tor/stator length. It therefore only needs to be run once. Next, the stator and rotor currents

are found to produce the desired torque, as this change as the rotor/stator length changes,

Sec. 7.5.4. These currents are then used in all subsequent magnetostatic and thermal

models where initially the core losses, as described in Sec. 3.5.1, are found and used in

the thermal model as heat sources. An initial guess of the needed cooling flow is send to

the thermal model, Sec. 5, which calculates the temperatures of the core, the coil and the

cooling flow, where the flow temperatures for each iteration are sent to the flow model,

Sec. 4, which updates the fluid properties for the next iteration. Furthermore, the thermal

model sends the coil temperatures for each slice of the thermal model to the resistance

model Sec. 3.5.3, which updates the resistance losses in the coils according to its current

temperature. Once the thermal model has converged a check of the coil temperature is

performed to make sure that it does not exceed the maximum temperature. If the coil

temperatures are too high, the flow is changed accordingly to decrease the temperature

and the thermal model is then run again with the new flow. If the coil temperatures are

within ±5◦C of the maximum temperature of 90◦C, the average core temperature is used

in the heat expansion model, Sec. 5.7, to find the decrease in air gap due to the ther-

mal expansion of the rotor poles. The distributed force coming from the rock load inside

the mill drum is then found, Sec. 6.6, which is later to be used in the structural model.

The forces between the pole and stator are then found, Sec. 6.6, taking into account the

decreased air gap due to the thermal expansion and potential misalignment of the rotor.

The pole/stator force model furthermore estimate the spring stiffness between the pole

and stator, to take into account the change in force due to change in air gap from the

undeformed situation. These forces are then send to the structural model, Sec. 6, which

calculates the displacement, the stresses and natural frequencies of the complete mill. A
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Figure 7.5 Flow diagram of fitness value determination

series of checks are then performed to evaluate if the solution is a valid solution. Initially

the air gap is checked to see if it is larger than the minimum allowed air gap. If the air

gap is smaller than the minimum allowed air gap, the mass is set to 1e20 which means

that the solution is discarded. The stresses are checked in a similar way as the air gap,

setting the mass to 1e20 if stresses are higher than the maximum allowed stress. The final

check is the natural frequencies where the mass is penalized if the natural frequencies of

the mill are within ±1Hz of any possible excitation frequencies. The outputs of the fitness

function are the found mass and total losses.

7.5.3 Natural frequency penalty function

If one of the found eigenfrequency feig, are within the frequency span fspan, around one

of the possible excitation frequencies fexc, the penalty factor fpenalty can be found by Eq.

7.8 where the parameter maxpenalty determines the maximum penalty value.

fpenalty = 1 +
fspan − |feig − fexcite|

fspan
·maxpenalty (7.8)

Everywhere else the penalty factor is set to one. This penalty factor can then be used

to find the solution fitness value by multiplying it with the mass of the specific simula-

tion case. By doing this, the cases with eigenfrequencies within the frequency span are

penalized driving the solutions away from the critical eigenfrequencies, but in a smooth

manner compared to just setting the fitness value to a high value. It is expected that this

will result in a faster convergence toward the optimal solution. It has to be mentioned
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Figure 7.6 Penalty factor function with a penalty of 5 and a frequency span of ±1 Hz around

possible excitation frequencies

Figure 7.7 Current factor

that this penalty is only applied if the found eigenfrequencies are close to any possible

excitation frequencies at rated speed, as the mill is expected to always run at that speed.

7.5.4 Stator & rotor currents

As the change in rotor and stator length will result in a change in produced torque, the

current in the windings is corrected as to produce the desired torque value. This correction

is done by multiplying the rotor and stator currents with a current factor. The relationship

between this current factor and the length is nonlinear due to saturation in the stator and

rotor core material. Several simulations have therefore been performed to find the cor-

relation between the length and the needed current factor to produce the desired torque

which can be seen in Fig. 7.7.

7.6 Minimization of mass usage in gearless drive construction - single
objective optimization

This section and Sec. 7.8 will show the results of the single objective optimization of

the gearless drive which attempts just to minimize the mass usage for constructing the

drive. Figure 7.8 show plots from the single objective optimization using the (6/4+1)-

ES algorithm with a termination criteria of 2500 generations. The plot in the top left
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Figure 7.8 Single objective optimization - Evolution Strategy (μ/ρ+λ) : (6/4+1), Rotor eccen-

tricity: (x, y) = (1.4142, 1.4142)

corner of Fig. 7.8 shows the fitness value which in this case is the mass as a function of

the generation number. It can be seen that initially it converts fast toward a lower mass

and then it slows down, as it gets closer to an optimal solution which is expected. This

tendency can also to some extend be seen in the plot of the normalized standard deviation

of the 8 object parameters together with the mean sum, lower left plot. From this plot,

it is also obvious that not all the object parameters of the population have completely

converged. However, the deviation is relatively small indicating that the solutions are

very similar. Another indicator for the convergent is the one shown in upper right plot in

Fig. 7.8. It shows the comparison of the angel between the current best object vector and

the remaining object vectors calculated by Eq. 7.9.

cos(β) =

(
yi · yj

‖yi‖ ·
∥∥yj

∥∥
)

(7.9)

This value tells something about how similar the solutions in the population are to the

current best solution. The reason for introducing this second convergent indicator is to

make sure that the current best solution is not just a stroke of luck as this indicator will
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have a high value if the current best solution differs much from the rest, even if the rest of

the solutions are similar and the standard deviation is low. As for the normalized standard

deviation, it is also obvious from the population diversity plot that not all the individuals

in the population have the same object parameters as this would then have been zero.

The last plot in lower right corner of Fig. 7.8 shows how the object parameters for the

best solution in the population evolve as generations increase. By looking at the plots, it

is obvious that the drive is optimized considerable with the objective of minimizing the

mass, as the mass of the original drive is approximately 125 tons heavier. The final single

objective optimized solution is shown in Sec. 7.8 where it is compared with the solution

for the original drive with dimensions from ABB and the multi-objective optimized drive

which will be explained in the following section.

7.7 Minimization of mass usage and losses in gearless drive construc-
tion

The previous section showed the optimization of only the mass of the gearless mill drive.

As will be shown in Sec. 7.8, this minimization of just the mass resulted in a shorter

stator and rotor. To be able to maintain the needed torque, the currents were therefore

increased, resulting in an increase in resistance, core and fan losses. As this is not a fea-

sible solution in a real life application, this section and Sec. 7.8 will show the results of

a multi-objective optimization of the gearless drive, which attempt to minimize both the

mass usage for constructing the drive and the total losses in the drive. The next six figures

Fig. 7.9(a) - Fig. 7.9(f) show plots of all the individuals (dots) at different number of

generations for the (6/4+1)-ES algorithm with the use of the IBEA selector, Sec. 7.4.1.

The found Pareto front at the different generations have been added to each plot by a solid

red line connecting the Pareto optimal solutions. Figure 7.9(a) shows a plot of the initial

population consisting of six individuals as μ = 6. It can be seen that some of the indi-

viduals have created invalid solutions or at least their fitness values have been penalized

as the mass fitness value for these individuals are very high. The Pareto optimal solution

for generation zero, indicated by the red line, gives very little knowledge of the optimal

solutions as these individuals have been randomly generated. Looking at the next couple

of plots showing the individuals and Pareto front as the number of generation increase,

it can be seen that one quickly get an idea of how the Pareto front will end up looking.

However, knowing the shape of the final Pareto front will only tell something about what

can be expected and not how the solution would look like, as one needs a Pareto optimal

solution for this. This can only be achieved by letting the optimization algorithm run for

a longer period of time until it is decided that there is a sufficient number of Pareto opti-

mal solutions to be able to make a qualified determination of the best mass/loss ratio for

the current optimization case. Once it is determined to end the optimization algorithm,

in this case after 3000 generations, it is up to the decision makers to determine the best

ratio between the mass and losses which best fit their needs. Looking at Fig. 7.9(f) which

shows all the individuals at the final generation, a good ratio between mass and losses can
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Figure 7.9 Multi-objective optimization - Evolution Strategy (μ/ρ + λ) : (6/4+1), Selector:

IBEA, Rotor eccentricity: (x, y) = (1.4142, 1.4142)
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(a) Original.

Max. B-field: 2.50 T

(b) Single objective optimized.

Max. B-field: 2.59 T

(c) Multi objective optimized.

Max. B-field: 2.44 T

Figure 7.10 Magnetic B-field comparison of the original and optimized gearless drive

be obtained in the corner where the mass drops almost vertical at almost constant losses

and turns in an almost horizontal direction where the mass stays almost constant as the

losses increase. A solution in this area is chosen for comparison and is indicated by the

black arrow (MOO). As an extra information the solutions for the original (Original) and

the single objective (SOO) case have been indicated as well. The chosen multi-objective

optimized solution is shown in the next section, Sec. 7.8, where it is compared against

the solution for the original drive with dimensions from ABB and the single objective

optimized drive.

7.8 Comparison of original and optimized gearless drive

This section will compare and comment on the final multi-physics models of the original

single objective optimized and the multi objective optimized drive. All the following

comparisons have been made with a rotor eccentricity of (x, y) = (1.4142, 1.4142) and a

cooling flow resulting in a maximum coil temperature of 90±5◦C. The currents applied

in all the models correspond to a rated torque production of 13.6 MNm. The following

figures show some of the results from the different physical areas of the multi-physics

model of the drive and Tab 7.3 shows a summary of the main results from the three

cases. Figure 7.10 shows the magnetic flux densities at a rotor angle of 3.75◦ for the

three cases. Even though the three subfigures look identical, the color legend next to

them indicate a slight difference in the magnitude of the B-field. An explanation for this

is found since the three different cases have three different rotor/stator lengths and to

maintain the desired torque, the currents are corrected to achieve this which of course

results in different magnitudes of the B-fields. The maximum value of the B-field in the
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Figure 7.11 Pole magnetic pull comparison of the original and optimized gearless drive

three cases is listed in Tab 7.3 and it can be seen that all of them are operating in a saturated

state as the maximum B-field is well above 2 Tesla and the core materials begin to get

saturated at approximately 1.5 Tesla. Figure 7.11 shows the radial pole magnetic pull for

the three cases, which is a combination of the static forces from an eccentric undeformed

rotor and the forces due to air gap distortion resulting from the deformation of the rotor,

stator and frame and heat expansion. The forces due to the air gap distortion in the figure

have been calculated from the average air gap at the different poles. However, this is not

exactly the force applied to the stator and poles as the air gap at a pole also change in

the axial direction and the forces in the models have been applied according to this actual

air gap. It can be seen that the shape of the curves showing the magnetic pull for the

tree cases looks very similar, however, the forces experienced by the different poles differ

significantly and are not sinusoidal shaped which also was expected when dealing with

an eccentric rotor. The reason for this is the before mentioned air gap distortion which

is dependent on the forces between the rotor and stator and the structural stiffness of the

structure, which will be shown further down in this section. Comparing only the curves

for the two optimized cases, it can be seen that it is almost just a DC offset. This is due

to the fact that the deformation shape for these two cases are almost identical where the

original deformation shape differs from the optimized cases which will be shown later.

The maximum forces for the tree cases are listed in Tab. 7.3.

Figure 7.12 and Fig. 7.13 show a comparison of the final slice of the stator and rotor

from the thermal model and the temperature change of the cooling flow in the different

channels respectively. Looking first at the temperature distribution in the stator and rotor

from the three cases, it can be seen that they are almost identical as a result of that the

cooling flow has been altered as to achieve a maximum temperature of 90±5◦C, as ex-

plained in the start of this section. The small temperature discrepancies between the cases

are mainly due to the ±5◦C tolerance in the maximum temperature. From the figures

it can be seen that the rotor copper windings are significantly hotter than the rest of the

drive for all of the three cases, 15− 20◦C warmer than the rest of the drive. In the future

it would therefore be a good idea to come up with a different cooling concept at the rotor
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(a) Original (b) Single objective optimized (c) Multi objective optimized

Figure 7.12 Temperature comparison of the warmest slice of the original and optimized gearless

drive
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Figure 7.13 Cooling flow temperature comparison of the original and optimized gearless drive

coils, which could decrease the temperature and thereby reduce the needed cooling flow.

The average core and coils temperatures for the three cases are listed in Tab. 7.3. Figure

7.13 shows the cooling air temperature in the different channels as a function of the axial



7.8 Comparison of original and optimized gearless drive 119

position. The temperature increase of the air is highly dependent on the mass flow in the

channels and is almost linear dependent on the axial position in these three cases. How-

ever, looking at T6 for channel 6, Sec. 4.7, which is the narrow channel between the pole

core backs, it can be seen that this curve is far from linear which is due to the low mass

flow in the channel and as the temperature of the flow increases, less heat flux enters the

cooling air flow from the pole core. As the mass flow increase the curve will become more

and more linear which can be seen when comparing T6 curves from the single objective

optimized and the multi objective optimized drive where the curve for the single objective

optimized case is more linear as the flow in this case is higher than for the other cases.

The cooling volume flow and pressure drop are listed in Tab. 7.3.

Figure 7.14 and Fig. 7.15 show the deformation and Von Mises stress results for

the three cases coming from the structural model. Looking initially at Fig. 7.14 for the

deformation, it is obvious that the rotor is placed at an eccentricity as the entire frame is

pulled in the opposite direction of the eccentricity due to the increased magnetic pull in the

eccentricity direction. This is the same for all the cases, however, it is mainly the center

part of the frame that deforms for the original case, where it is more even for the two other

cases. This is due to the fact that the original case has thick end plates which makes the

end plates stiffer than for the two other cases with relatively thin end plates. The original

frame is also generally stiffer than the two other cases, as these have been optimized for

mass minimization which will decrease the overall stiffness if this is achieved only by

decreasing plate thicknesses. This can clearly be seen in the maximum deformation of

the frame indicated in the color legend and in Tab. 7.3. The deformation of the mill drum

remain almost the same for the three cases as nothing has been changed on it, except the

pole magnetic pull which clearly has little effect on the deformation. The main reason

for the deformation of the mill drum comes for the gravity forces from the rock charge

and the liners inside the drum, as these are extremely high and is the reason for the high

deformation in the bottom of the drum. The maximum deformation of the mill drum is

also listed in Tab. 7.3.

The Von Mises stress results are used to make sure that no part of the mill is yielding

and is shown in Fig. 7.15 for the three cases. It is evident from these plots that the

maximum stresses indicated in the color legend are way below the yielding stress for

all the three cases as it is approximately σy = 250 MN/m2. However, the location and

magnitude of the maximum Von Mises stress differs significantly between the original and

the optimized cases. For the original case the maximum stress is located in the bottom

of the mill drum. For the two optimized cases it is located at the side of the frame. The

reason for the shift of maximum stress location is to be found in which the optimized

frame is optimized for minimal mass usage, this has resulted in thinner frame plates than

the original frame. The maximum stresses in the frame have also increased significantly,

up to approximately 300% in the two optimized cases due to the thinner frame plates,

however, as stated before, these values are still well below the yielding stress. As the

mill drum has not changed geometry, except the length of the poles, and the loads applied

to it are almost the same, the Von Mises stresses of the drum will also remain almost the

same for the three cases. The maximum Von Mises stresses of the mill drum with rotor
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(a) Original (b) Single objective optimized (c) Multi objective optimized

(d) Original (e) Single objective optimized (f) Multi objective optimized

Figure 7.14 Deformation comparison of original and optimized gearless drive

(a) Original (b) Single objective optimized (c) Multi objective optimized

Figure 7.15 Stress comparison of original and optimized gearless drive
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Figure 7.16 Natural frequencies comparison of original and optimized gearless drive

poles and the frame with the stator are listed in Tab. 7.3.

The next figures, Fig. 7.16 and Fig. 7.17, show the comparison of the natural frequen-

cies and their corresponding mode shapes for the three cases. Looking initially at Fig.

7.16(a) of the natural frequencies for the original case, it can be seen that this actually

fails the criteria set forth that the natural frequency should be at least 1 Hz from any po-

tential excitation frequencies at rated speeds. As the damping of this natural frequency is

unknown, it might still be safe to run the mill at this speed, if the damping is sufficiently

high, but as the model does not include material damping, all “critical” frequencies are

deemed unsafe. Looking at the two other plots in Fig. 7.16 for the optimized cases, it

can be seen that these fulfill the criteria of the 1 Hz separation margin to the potential

excitation frequencies at rated speeds. Figure 7.17 shows the mode shapes corresponding

to these natural frequencies. It is obvious from these plots that all these modes distort the

air gap between the poles and the stator, making these modes “critical” modes. The first

“critical” mode of the three cases have a oscillation of the top of the frame in the axial

direction where the single objective optimized case has high vibration amplitudes of the

end plates due to the thin nature of these plates compared to the two other cases. The sec-

ond “critical” mode of the the three case have a twisting oscillation of the frame around

a vertical axis through the center of the frame where the single objective optimized case

again has high vibration amplitudes of the end plates due to the thin nature of these plates.

The found “critical” frequencies are listed in Tab 7.3.

The final figure, Fig. 7.18, shows the air gap distortion due to rotor eccentricity, heat

expansion and deformation for the three cases. They are used for checking if the minimum

air gap has been exceeded, as it would have catastrophic consequences if the rotor hit the

stator under operation. Furthermore, the air gap has an impact on the produced pole

magnetic pull as shown above. Each plot consists of 3 curves which indicate the air gap

at each axial extremities of the poles and an average air gap at the poles. It is this average

air gap which is used for the magnetic pull figures above where the effect of the air gap

distortion is obvious. The limit of the minimum air gap of 12 mm is clearly indicated in

the two optimized cases as these have a minimum air gap very close to this value where

the original case which did not have this limit has a larger margin to this limit. The

maximum and minimum air gap for the three cases are listed in Tab. 7.3.
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(a) Original,

1.“critical” freq. 9.06 Hz

(b) Single objective optimized,

1.“critical” freq. 6.58 Hz

(c) Multi objective optimized,

1.“critical” freq. 7.07 Hz

(d) Original,

2.“critical” freq. 10.63 Hz

(e) Single objective optimized,

2.“critical” freq. 7.27 Hz

(f) Multi objective optimized,

2.“critical” freq. 8.15 Hz

Figure 7.17 Mode shapes of original and optimized gearless drive

The main results of these simulations are of course the mass and the losses in the

drive where the above shown results are only a means to estimate this and to make sure

that none of the described limits have been exceeded. The found masses and losses of the

three examined cases are listed in Tab. 7.3 together with a percentage deviation between

the two optimized cases and the original case. Look initially at the mass optimized case,

it has clearly achieved its goal, as the mass has been decreased by 8.8% compared to the

original case. However, as this mass minimization has been performed without any re-

striction of the produced losses, these have increased significantly, 30.3%, which would

be completely unacceptable in a real life situation. Looking at the multi-objective opti-

mization which also minimize the losses, it is clear that this has also met its goal, as the

mass has been decreased by 4.0% and at the same time, the losses have been decreased by

9.9% compared to the original case. However, looking at the object parameters achieved

which are mainly frame plate thicknesses, it is obvious that no one would construct such a

large device with plates with a thickness of 1 mm. However, this was the limit set forth to

make sure that none of the elements in the finite element model would end up with a zero

thickness and thereby it was possible to maintain the same general mesh structure for all

the simulations. The object parameters with a value of 1 mm just indicate that these plates

play no significant role in the solution for the specific case and can be removed if desired.
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Figure 7.18 Air gap distortion comparison of original and optimized gearless drive

However, it has to be mentioned that none of the cases simulated have any axial forces

which could affect the results. However, this requires that the magnetic forces are calcu-

lated with a 3D finite element program which clearly would increase the computational

time significantly, but could be done in future work with the model.

Original Single objective Multi objective

Max. deformation, Rotor [mm] 5.084 5.069 5.091

Max. deformation, Frame [mm] 0.941 2.439 2.202

Max. stress, Rotor [MN/m2] 27.77 27.71 27.80

Max. stress, Frame [MN/m2] 17.45 38.31 51.94

1. “critical” mode [Hz] 9.06 6.58 7.07

2. “critical” mode [Hz] 10.63 7.27 8.15

Max. air gap [mm] 17.71 18.41 18.37

Min. air gap [mm] 13.09 12.00 12.02

Total losses [kW] 638.01 831.55 (+30.3%) 574.57 (-9.9%)

Total mass [T] 1503.67 1376.61 (-8.8%) 1443.97 (-4.0%)

Cooling volume flow [m3/s] 50.00 64.96 50.00

Cooling pressure drop [Pa] 438.64 689.36 459.29

Avg. stator core temperature [◦C] 74.96 70.62 72.28

Avg. rotor core temperature [◦C] 73.69 71.12 69.14

Avg. stator coil temperature [◦C] 78.73 75.09 75.52

Avg. rotor coil temperature [◦C] 93.54 94.33 86.38

Max. magnetic B-field [Tesla] 2.500 2.585 2.443

Max. pole magnetic pull [kN] 282.4 269.3 306.6

Object parameter 1 [mm] 15 3.17 1.00

Object parameter 2 [mm] 25 4.99 2.33

Object parameter 3 [mm] 30 5.63 20.00

Object parameter 4 [mm] 20 4.18 1.00

Object parameter 5 [mm] 5 4.03 10.37

Object parameter 6 [mm] 5 1.00 5.87

Object parameter 7 [mm] 15 11.93 12.31

Object parameter 8 [mm] 1272 1100 1400

Table 7.3 Summary of results



Chapter 8
Conclusion & future aspects

8.1 Conclusions and general comments

ABB Switzerland Ltd. had a request for a multi-physics tool which could be used as

an aid in the design process of their gearless mill drives. What has been proposed is a

multi-physics model for one of ABB’s gearless drives designs combining the three main

physical branches: electromagnetics, heat and mass transfer and structural calculations.

To further enhance the model as a design tool an optimization algorithm has been wrapped

around the global model, in this case for minimizing the mass and losses but can easily

be changed for other optimization parameters if desired.

The electromagnetic part of the model is created in FEMM through Lua scripts and

estimates the pole magnetic pull, torque and core losses as its main output. As the drive

consist of many poles (60) and many stator slots (504) there was a need for reducing the

model to decrease the computation time and storage needs without losing accuracy in the

final results. It has been shown that by applying symmetry and anti-symmetry boundary

conditions at specific location in the model the full model of the drive could be reduced

by over 90% without any loss in accuracy as long as the rotor was placed in the center

of the stator without any eccentricity. However an investigation has shown that there is

a highly linear relationship between the rotor-stator air gap and the magnetic pull for a

pole which make it possible to simulate any eccentricity based solely on the present air

gap at the specific poles. This makes the reduced model applicable to cases with rotor

eccentricities as well. However some errors have been introduced if this was to be used in

a time simulation as the force and torque ripple effect from the pole passing the stator slots

has been neglected. These ripple effects are however relatively small and has no effect on

the static case. If it is desired to take these effects into account in a time simulation with an

eccentric rotor the full drive would have to be modeled. The torque of the drive is on the

other hand almost independent on the eccentricity of the rotor making the reduced model

sufficient for estimating it. Both the pole magnetic pull and torque have been compared

with external results and have shown good agreement between the results with deviations

of 4.4% and 2.3% for the force and torque respectively. The core losses of the drive

have been found through a series of magnetostatic calculations where the magnetic flux

densities were recorded for different rotor positions. By use of FFT the harmonic content

of these flux densities could then be extracted and used for estimation of the losses from

each of these harmonics and finally summed up under the assumption that the principle

of separation of losses could be applied. These losses have been compared with external

results for the first harmonic and shown a deviation of less than 1%. The used model is

however an improvement as it is not just limited to the losses from the first harmonic as

the model from the external source but can include as many harmonics as the machine
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precision allow.

A lumped model with 2 nodes interconnected by 11 channels and a fan has been used

for modeling the cooling flow in the drive where the air properties in the different channels

have been updated iteratively corresponding to the flow temperatures from the thermal

submodel. This is an improvement compared to model used by the external source as

they keep the air properties constant in their flow model and thereby introduces an error

as the air properties dependency on the temperature is neglected. However, comparing

the results achieved in this thesis to the external source with the same air properties and

pressure loss have shown to be in good agreement with a deviation of less than 3% for

both the flow rate and the mean velocity. The final thermal submodel is a 2D model

created in FEMM where the drive has been cut in slices in the axial direction as it has

been shown that it is insufficient to just look at one cross-section in the center of the drive.

The model is highly fused together with the flow model as the temperature distribution,

heat flux and air properties are corrected for each slice which the model from the external

source do not incorporate. Comparing the results presented in this thesis with the ones

from the external source with the same input parameters and air properties exhibit almost

the same values for the maximum temperature with a deviation of only 3%. Another

benefit of the presented thermal model compared to the one from the external source is

that it shows a more detailed view of the temperature distribution as it is created by the

finite element method where the external model is a lumped thermal model and if not

created with enough nodes could give misleading results. The thermal model assumes

that the only axial heat flow is through the heat transferred to the cooling air. The error in

connection with this assumption has been examined and has shown that the axial heat flux

in the axial direction of the hottest coil is only 2.6% of the total loss in the coil segment.

The structural part of the model is created by a 3D finite element method program

made in Fortran and build of pure hexahedron 20 node elements as these has proved to be

superior to both pure tetrahedral and pure hexahedron 8 node finite element mesh. This

submodel is like the other submodels an improvement of the model used by the external

source as the presented model include the effect of the thermal expansion which has an

influence on the air gap and thereby an influence on the pole magnetic pull. This effect

has been neglected in the model used by the external source which has been used for

comparison. Another improvement is that the pole forces used in the presented model

does not rely on only one air gap per pole as the model from the external source do but

uses the air gap at each nodal point in the mesh to find the correct nodal force at the dif-

ferent nodes. The main results from the structural model are deformations, Von Mises

stresses, eigenvalues and air gap distortion. These values have been compared to the re-

sults achieved by the external source and show a somehow larger deviation than for the

other submodel except for the results of the air gap distortion, deformation: 42.7%, stress:

50.1%, eigenvalues: 58.2% and air gap: 1.2%. A highly plausible explanation for these

high discrepancies are to be found in the boundary condition between the stator and the

frame which has been used for the two different models. The presented model assumes

that the drive is at its operating temperature and the stator is therefore pressed against

the frame which results in a rigid stator-frame boundary condition. The model used by
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the external source however simulates the drive in a cold condition where the stator is

connected to a lot of beams which again is connected to the frame. These two different

boundary conditions of course have an impact on the global stiffness of the structure and

therefore on the final result. The boundary conditions at the bearing are also different

between the two models where the bearing stiffness in the presented model has been ap-

plied to every node of the bearing surface where the model used for comparison only has

applied the bearing stiffness to the bottom half of the bearing surface and has added a no

rotation boundary condition to the surface as well. The comparison of the two structural

models is therefore not completly fair and it is therefore critical that experimental test on

the gearless drive are performed to verify the models.

The global integrated multi-physic model has been used in a metaheuristic optimiza-

tion process using the Evolution Strategies optimization algorithm. The goal of the opti-

mization was initially to minimize the mass of the drive compared with the original drive

with dimensions from the external source and secondly the minimization of both the mass

and losses compared to the same original drive. The first optimization for minimization

of the mass resulted in an impressive reduction of the mass of 8.8% however with a side

effect of an increase in losses of 30.3%. The second optimization made for minimization

of both the mass and the losses resulted in an bit smaller mass reduction 4.0% compared

to the previous optimization, however, this has at the same time also decreased the losses

in the drive by 9.9%. The benefit of using Evolution Strategies as an optimization algo-

rithm is that it can optimize several parameters at the same time where none of these have

to be in the same physical branch and furthermore it is very easy to implement. However,

one of the drawbacks of evolution strategies is that it does not guaranties that the optimal

solution will be found but it will at least find a good solution.

8.2 Future aspects

As the presented model is the first generation of a fully integrated multi-physic model of a

gearless mill drive combined with the optimization algorithm Evolution Strategies further

improvement and verification can be performed toward the next generation of the model.

Below is a list of possible directions for future research/work with the presented model.

• Experimental test on the mill drive to verify the presented models, especially the

structural model as large deviations have been detected between the presented model

and the ABB model used for verification.

• Examine the effect of the end windings and frame chambers with a detailed 3D

CFD model.

• Simulating the thermal part in 3D to examine the effect of the axial heat flux.

• Detailed model of the cooling system losses.

• Modeling in time (start up, pole short-circuit, earth quakes).
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• Investigation of the boundary condition between the stator and frame.

• Tune both the Evolution Strategies algorithm and the IBEA selector.

• Compare different selectors for the multi-objective optimization.

• Add more objective parameters like different stiffener tubes, removal or additional

tubes, frame plates, different winding configuration, different materials.

• Creation of a 3D finite element magnetic model to examine the effect of axial forces

due to axial misalignment of the rotor.
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Figure A.1 Drawing of mill drum
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A.2 Verification of Fortran code for FD thermal model

Example 5.9 from Incropera et al. (2006) has been used for a simple verification of the

Fortran code for the finite difference program. The schematic of the problem in example

5.9 is shown in Fig. A.2 where the wall initially has a heat generation of q̇1 until steady-

state condition has been reached. At this point, the heat generation is increased to q̇2 until

steady-state condition is reached again. The temperatures at these two steady-state con-

ditions are listed in Tab. A.1 which comes from Incropera et al. (2006). Figure A.3 show

the temperature distribution for the two steady-state conditions calculated by the Fortran

program. The color bars show the maximum and minimum temperatures. Comparing

these values with the ones from the example shows a high coherency with only minor

discrepancies which can be explained by numerical precision.

Figure A.2 Schematic of the problem in example 5.9

q̇ T0 T1 T2 T3 T4 T5

1 357.58 356.91 354.91 351.58 346.91 340.91

2 465.15 463.82 459.82 453.15 443.82 431.82

Table A.1 Results from example 5.9, q̇1-q̇2: heat generation, T0-T5: temperatures at node 0-5,

Incropera et al. (2006)

(a) Ex. 5.9 Part 1 (b) Ex. 5.9 Part 2

Figure A.3 Ex. 5.9 Part 1 & 2
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a  b s  t  r a  c t

When  designing a  permanent  magnet motor,  several  geometry  and  material parameters  are  to  be defined.

This is  not  an easy  task,  as material properties  and  magnetic  fields are  highly non-linear  and the design

of a  motor is  therefore often  an  iterative  process.  From an  engineering point  of  view, we  usually want

to maximize the  efficiency  of  the  motor and  from  an economic  point of  view we  want to minimize the

cost of  the  motor. As  these  two  things  seldom go  hand  in hand,  the  goal  is  to find  the  best  efficiency

per cost. The scope of  this paper  is therefore to  investigate  the  applicability of  evolution  strategies,  ES

to effectively  design  and  optimize  parameters  of  permanent  magnet  motors. Single  as well  as  multi-

objective  optimization  procedures  are  carried out.  A  modified  way  of  creating  the  strategy  parameters

for the  ES algorithm is also proposed and has together  with  the  standard  ES algorithm  undergone  a

comprehensive parameter  study for the  parameters  � and �. The  results  of this  parameter  study  show a

significant improvement  in  stability and speed  with  the  use  of  the modified ES version.  To  find  the  most

effective selector for a  multi-objective  optimization,  MOO,  of  the  motor a  performance examination  of

4 different  selectors  from  the  group  of  programs  called  PISA  has been  made and compared  for  MOO of

the efficiency  and  cost  of  the  motor.  This  performance  examination  showed that the  indicator  based

evolutionary algorithm, IBEA,  and hypervolume  estimation  algorithm,  HypE, selectors  performed  almost

equally good  on  this MOO problem where  the  HypE selector  only  had  a  slightly  better performance

indicator.

© 2011  Elsevier  B.V. All rights reserved.

1. Introduction

Metaheuristics is used in combinatorial optimization in discrete

and real search space by iteratively trying to improve the cur-

rent  best solution. There have been several proposed metaheuristic

algorithms through time which can be used in optimization appli-

cations with some of the most commonly known being “hill

climber”, “TABU” [1,2], “simulated annealing” [3], “ant colony opti-

mization” [4], “genetic algorithm” [5],  and “evolution strategies”

[6],  to name a few. Metaheuristics, however, does not guarantee

that the optimal solutions are ever found but there is a good pos-

sibility that a near optimal solution will be  determined. This paper

gives a theoretical contribution to the application of  metaheuristics

in  the optimization of  a permanent magnet motor, more specifi-

cally  with the use of evolution strategies, ES.  Several other authors

have used evolutionary algorithms in  the quest for optimization

of  PM motors where [7] optimize the  rotor of a PM motor using

genetic algorithms and [8] optimize an in-wheel motor using ES.

Both articles use FEM in greater or lesser  extent where this article

∗ Corresponding author. Tel.: +45 45256269.

E-mail address: ifs@mek.dtu.dk (I.F. Santos).

will show the application of ES  on analytical equations as FEA is

very time consuming and therefore less  suited for multi-objective

optimization. ES has also been used by Chung and Kim [9] for the

optimization of the pole shapes in a BLDC motor for reducing cog-

ging  torque where the present work will concentrate on a more

global  holistic approach. As one usually is  not just interested in

the  optimization of one single parameter like [7–9] and a separate

optimization of  several parameters might not give a clear picture

of  the optimal combination of the parameters a multi-objective

optimization has to  be performed. No such multi-objective opti-

mization  based on the cost and efficiency of a PM motor has been

found  in the literature and is therefore investigated in this paper.

The  performance of 4 selectors is tested aiming at  finding the one

which  is  the  most adequate for the problem of  PM motor param-

eter  optimization. Several authors also forget to mention in their

works  how the parameters for their algorithms have been chosen.

In the present article, through an extensive parameter tuning, it

will  be shown that the parameter choice has a major impact on

the  final outcome like premature or slow convergence of  the algo-

rithms.  The paper is  divided into three main parts. The first part will

describe the  problem which has to  be solved listing its  object and

fitness parameters. The  second part will describe the algorithm of

ES  in detail and how its  parameters have been tuned. This second

1568-4946/$ –  see front matter ©  2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.asoc.2011.10.013
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Nomenclature

p number of pole pairs

� temperature rise in the  machine windings [K]

Matr core material

�Ftan tangential stress [Pa]

ı  physical air-gap [m]

Q  number of stator slots

a number of parallel branches in coil

Js stator current density [A/m]

�  efficiency of the PM motor

Cost cost of materials

�  number of parent individuals

�  number of individuals for reproduction

�  number of offspring individuals

g generation number

Pp parent population

y object parameter vector

s  strategy parameter vector

F fitness value vector

Ei marriage population

si individual i’s  strategy parameters

yi individual i’s  object parameters

Fi individual i’s  fitness value

Po offspring population

˜  mutated parameter

a individual parameter vector

r  recombinant

� standard deviation

N  random number from the standard normal distribu-

tion

�0 learning factor

� learning factor

c proportionality factor

�2 variance

˛  angle between object vectors

�max maximum efficiency of PM motor

part will only concentrate on the maximization of a  single  fitness

parameter namely the efficiency of the motor. The third part will

describe how to solve a  multi-objective optimization problem with

conflicting goals by combining ES  and PISA where PISA is  a  group of

programs which can be used for solving such multi-objective search

problems where the conflicting goals in this problem as explained

are  the efficiency and the cost of the motor. At the end of the sec-

ond  and third part the  findings from the ES algorithm and the motor

parameters  will be presented and commented on.

2. Parameter optimization of permanent magnet motor

Without getting into the  details of how the efficiency of motor

is  calculated a short description of the motor design will take place.

The  procedure and equations for the  underlying calculations of the

motor  efficiency can be  found in the appendix and follows the

approach described in [10]. In Fig. 1 a cross-section of a 3-phase

10-poles PM motor with 12  stator  slots is  shown where each stator

slot  contains coils from one or two of the phases as the number of

slots divided by the  number of poles is a fraction (fractional wind-

ing). These coils in  the slots can consist of several parallel strains of

copper conductors and the size of the stator slots is  among other

parameters dependent on the allowable current density in  the cop-

per  conductors. Permanent magnets are mounted around the shaft

in  such a  way that the magnets are magnetized alternately in oppo-

site  directions as to create north and south poles. The air gap in  the

Fig. 1. Scematics of a  PM motor [10].

Table 1

Object parameters.

Parameter Valid range Unit Description

p [1–6] ∈  N  – Number of pole pairs

� [60–100] ∈ R
◦K Temperature rise in  the

machine windings

Matr  [1, 2,  3] ∈  N  – Core material

�Ftan [20e3–50e3] ∈  R  Pa Tangential stress

ı  [0.001–0.020] ∈  R  m Physical air-gap

Q [20–50] ∈  N  – Number of stator slots

a  [1–60] ∈  N  – Number of parallel

branches in coil

Js [4e6–6.5e6] ∈ R  A/m Stator current density

motor is the gap between the surface of the magnet and the sta-

tor inner diameter where this inner diameter is  determined by the

maximum allowable tangential stresses in  the motor. As  it would

be  a  huge task to take all design parameters into account in  this

optimization analysis, some of the  parameters have been fixed at

reasonable values. Some of these fixed values are the shaft power,

the speed of  the motor, line to line voltage, number of  phases and

are  normally determined by the costumer of the motor and spec-

ified to  match their needs. For getting a complete list of  the fixed

values we refer to the first table in  Appendix. Table 1 shows the

object parameters which will be used in  this analysis and are the

motor variables that can be changed in the search for an  opti-

mal  design. Most of these parameters have already been explained

except the temperature rise which has an  influence on the  resis-

tance of the conductors and the choice of material which have

different magnetic properties. The different parameters valid range

come from the literature and “rules of thumb” [10–13]. The fitness

values for this optimization problem are the efficiency and the cost

of the  motor and are kinds of grade explaining the goodness of  a

specific combination of object parameters. The fitness values are

listed in Table 2. The fitness function F is  a  function which in the

following will be considered a black  box and calculate the  efficiency

and cost of the motor as a function of the object parameters. The

fitness  function is basically all the equations listed in the appendix

Table 2

Fitness parameters.

Parameter Description

� Efficiency of the PM motor

Cost Cost of materials



780 S.B. Andersen, I.F. Santos /  Applied Soft Computing 12 (2012) 778–792

Fig. 2.  General pseudo code of  (�/�+,�)-ES.

which are being used for the  calculation of  the efficiency and cost

of  the motor.

3.  Evolution strategies

Evolution strategies, ES, were first proposed by Rechenberg and

Schwefel in the mid-1960s for numerical optimization. It has since

evolved from a  simple (1+1) evolution strategy to  a  more complex

(�/�+,�) with more complex internal routines. One of the benefits

of  ES is that it is extremely easy to run on parallel computers to

decrease the time it takes to evaluate the population of individu-

als. The following sections explain the (�/�+,�)-ES which will be

used in this paper for optimizing the efficiency of  the described PM

motor. In a  later section the multi-objective optimizing, where we

also  will look at the  cost will be explained but initially we will only

look at the efficiency.

3.1. General algorithm of evolution strategies

In  Fig. 2  a general pseudo code for evolution strategies (ES) is

shown. This section will  briefly explain each line of the code and

the  following sections will give a more thorough explanation of the

different part of the ES algorithm. At line #2 the generation counter

is  initialized for generation zero. At line #3 the initial population

is created which consists of � individuals am each consisting of an

object vector ym, a strategy vector sm and a  fitness vector F(ym).

am = (ym,  sm, F(ym)). Lines #4–20 is  the main loop of the algorithm

which runs continuously until termination condition is  reached in

our case until we run out of the  allocated time for solving the prob-

lem.  Lines #5–13 is the loop which generates offspring individuals

who might enter the next generation of parents. The  loop will run �
times  for each generation producing �  new offspring. At  line #6 the

marriage procedure is executed which pick � individuals from the

parent population for reproduction of offspring. Lines #7 and #8

recombine the object and strategy parameters of the �  parents to

form  one new offspring individual. At lines #9 and #10 the  strategy

and object parameters of the newly formed offspring individual is

mutated.  At line #11 the object parameters are  corrected for the

discrete space variables. Finally at line #12 the new offspring indi-

vidual is completed by the addition of its fitness value. Line #14

collects the offspring created to form the offspring population. At

lines  #15–18 the selection procedure is  performed. There are two

standard types of selection, a  “,”  and a  “+” selection. This selec-

tion procedure decides which of the offspring individuals gets to

enter  the new parent population of the next generation if any  at  all.

Finally  at  line #19 the generations counter increases by one and

then  jumps to  line #5 if the termination condition, as said before,

has not been reached.

3.2. Marriage

In contrast to evolutionary algorithm with an elitist approach

where  the marriage process is made by choosing the best indi-

viduals of the parent population for reproduction, the marriage

process  in  Evolution Strategies is made by  selecting � individu-

als completely random from the  parent population. As  this does

not improve the solution by itself it  is obvious that this part of  the

algorithm is  not the main driving force in evolution strategies.

The  marriage process is  the  first part of the algorithm which  is

performed in the main loop, line 6 in Fig. 2.



S.B. Andersen, I.F. Santos / Applied Soft Computing 12  (2012) 778–792 781

Fig. 3. Standard �/�  recombination.

3.3. Recombination

The idea behind recombination is when parents with good

genetic material are combined they will also generate offspring

with good genetic material. According to  [6] there is still  an ongoing

debate about the  usefulness of  recombination, however recombi-

nation of the strategy parameters has been shown to be mandatory

for  this mechanism to work according to [14].  Due to this fact, the

recombination will be performed on both the object and strategy

parameters. A special case of the recombination is when � = 1  as the

individual will  be  recombined with itself. In other words an exact

copy of  the individual and so in this case the  recombination routine

can  be skipped.

There are two  standard methods of recombination:

• Discrete recombination.
• Intermediate recombination.

According to [14–16] it has been shown that  good results have

been  achieved when using intermediate recombination on strategy

parameters and discrete recombination on object variables. We  will

follow that  advice.

3.3.1. Recombination of  strategy parameter

As  mentioned above intermediate recombination has proved

to  give a good result when applied to  the strategy parameters

which is a parameter used for determine the size of  the mutation

of  the object parameters. The vector with  the strategy parameters

are initially set  as the normal standard deviation for each object

parameter of the initial population of solutions. The intermedi-

ate  recombination of the strategy parameters is performed first by

randomly selecting � parents from the entire population of � indi-

viduals which is  performed by the  “marriage” routine as described

previously. It then calculates the centre of mass of the  � selected

parent vectors am = (am,1, . . ., am,N)  for each strategy parameter as

written in Eq. (1)  and depicted at  the bottom in  Fig. 3.

rk := 1

�

�∑
m=1

am,k (1)

The recombination of the strategy parameters can be performed

before or after the  recombination of the object parameters. In the

pseudo code in Fig. 2 it  is  placed before the recombination of the

object parameters at line 7.

3.3.2. Recombination of object parameter

As  mentioned above discrete recombination, also called domi-

nant recombination, has proved to give a  good result when applied

to  the object variables. The discrete recombination is  performed

first by randomly selecting � parents from the entire population of

�  individuals which again is performed by the “marriage” routine.

The routine then  randomly selects the  object parameters from the

� individuals for each object parameter until a complete new indi-

vidual is  created. This is written in  Eq. (2)  and depicted at the top

of  Fig. 3.

rk := (amk
)k, mk := Random{1, . . . ,  �} (2)

The recombination of the object parameters is performed at  line 8

in  Fig. 2 but as mentioned before it can also be performed before

recombination of the  strategy parameters.

If  for some reason the  intermediate recombination was chosen

on  the object parameters instead of discrete recombination one

should  remember that this routine creates values in real space. A

correction of the parameters has then to  be performed if some or

all of the parameters are in discrete space. This correction could be

a  simple rounding of the  parameter values.

3.4. Mutation

Mutation of the object and strategy parameters takes place at

lines 9 and 10 in Fig. 2 and is  usually the primary source of generic

variation. There is  currently (2002) no design methodology for the

mutation operators but some rules have been proposed by Beyer.

• Reachability.
• Unbiasedness.
• Scalability.

Reachability: It should be possible from a random state to reach

any other state within a  finite number of mutations or generations.

Unbiasedness: The variation operators should only explore the

information of the object space and not use any  information about

the  individuals’ fitness values. Thereby no individual is preferred

over another. This leads, in a natural  manner, to the principle of

maximum entropy and the standard normal distribution.

Scalability: The mutation strength should be tunable to  be  able

to  adapt to the properties of  the fitness landscape.

3.4.1. Mutation of object parameter

Schwefel and Beyer [6] propose a standard mutation operator

for  mutating the object parameters in a real valued search space

which reads:

Given a vector s  = � =  (�1,  . . . ,  �N) as the  strategy parameter the

principle of maximum entropy yields:

ỹ  := y + z (3)

with

z :=  (�1 · N1(0,  1), . . . ,  �N ·  NN(0,  1)) (4)

where Ni(0,  1) is  a  random number from the standard normal dis-

tribution.

3.4.2.  Mutation of strategy parameter

For mutating the strategy parameters s = � = (�1, . . ., �N)  in Eq.

(5)  Schwefel suggest using an extended log-normal rule which

reads:

�̃  := exp(�0 · N(0, 1))  ·  (�1 ·  exp(� · N1(0, 1),

.  . . ,  �N · exp(� · NN(0, 1))) (5)
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with

�0 = c√
2N

(6)

� = c√
2
√

N
(7)

where Ni(0,  1) is a random number from the standard normal dis-

tribution and c  is  a  proportionality factor for the  learning factors �0

and �.

3.5. Repair

As the above described procedure produces real value object

parameters there has to be introduced an extra procedure when

working with discrete parameters or  a mixture of discrete and real

value  parameters. This procedure is  inserted just before the eval-

uation by the fitness function at line 11 in Fig. 2. The  procedure

consists of  a simple rounding of the real value to  an integer at

instances where the  parameter is in discrete space.

Furthermore this repair procedure makes sure that the object

parameters do not exceed their predefined upper and lower bound-

aries by moving values outside back onto the boundaries they

exceeded. This is not a  standard routine in ES but it has to be intro-

duced in this case as  the  object parameter values is a mixture of

real  and integer values.

3.6. Selection

The selection routine is the routine which drives the popula-

tion  to better regions by use of the individuals’ fitness information.

There are two standard types of selection methods in ES which is

denoted (�/�, �)  and (�/� + �). The “,”-sign and the “+”-sign in the

notation tells something about how the selection pool for selecting

the next generation parent population is created. In the “,” notation

the  selection pool is  made up of  only the � offspring individuals and

the current parent population is discarded even in the case of  that

population containing better solutions. This selection method of

course requires that � > � as we  want to keep a constant size of the

parent population. In the “+” notation the selecting pool is made up

of  both the �  offspring and the  � parents of the current generation.

The actual selection is done simply by selection the �  individu-

als  with the highest fitness value (maximizing) from the selection

pool  to form the next generation parent population and discarding

the  remaining solutions. The selection is performed just after the

offspring has been created, line 16 for the “,” selection and line 17

for  the “+” selection in Fig. 2.

Both types of selection method have their advantages in specific

applications. According to [6] the “,” selection performs well on

unbounded R
N search spaces where the “+” selection should be

chosen  in  the case of  finite search space. As the problem at hand is

defined in finite search space the “+” selection has been chosen as

the selection method for this problem.

3.7.  Parameter tuning

The ES algorithm explained above consists of the endogenous

and  exogenous parameters listed in Table 3  below. The exogenous

parameters are parameters which remain constant throughout the

entire run of the algorithm and are �, �,  � and c.  The  endogenous

parameters are parameters which continuously change and try to

adapt  to the current situation. These parameters are the standard

deviations (mutation strength) s.

Two different versions of  the above mentioned ES  algorithm

have been tested and will in the  following be referred to as ES1

and ES2. Both of these versions have been initiated by randomly

Table 3

Endogenous and exogenous parameters.

Parameter Description

� Size of the parent population

� No.  of parents involved in  the procreation of

one  offspring

� Size of offspring population

s = �  = (�1, . .  .,  �N)  Mutation strength

c  Constant for the learning parameters � and  �0

creating � individuals each consisting of a  vector of object param-

eters with values within the boundaries defined in Table 1. In the

ES1  version, which is the  standard ES algorithm, the initial vector

with strategy parameters is set by calculating the normal stan-

dard deviation for each object parameter of the initial population.

These strategy parameters follow each individual throughout the

entire  algorithm and are only  changed in the offspring individual

through recombination and mutation. In the ES2 version the strat-

egy parameters are continuously being overwritten as the strategy

parameters are set by calculating the  normal standard deviation

for each object parameter of the current generation of  the marriage

population. The ES2 algorithm is part of the original contribution

and  is not a standard ES  algorithm, however, it will be shown that

it  performs very well on the problem at hand.

As  parameter tuning of  all the parameters in Table 3  is a very

time consuming task some of these have been fixed. These fixed

parameters are � and c. � has been set  to  20 to have some diversity

in  the initial population without having a  huge population size.

The  constant c  for the learning factors � and �0 have been set to

1  as suggested in [14]. That leaves us with �  and � as the tun-

ing  parameters. Table 4 shows the tested values of � and �. Each

of  the tests have been  run 10 times for both ES1 and ES2 and a

summary of the results from these tests can be  seen in Table 5 for

the  ES1 version and Table 6 for the ES2 version. The  1st column

shows the test parameters. The 2nd, 3rd and 4th column show the

mean,  max  and min  of the sum of the variances of the normal-

ized  object parameters. The 5th column shows the variance of  the

fitness values. The 6th, 7th and 8th columns show the max, min

and  mean of the fitness values. The  9th column shows the number

of  runs that have reached an  efficiency of 97.21% which through

test  with several other algorithms (Hill climber, TABU) has shown

with a  high probability to be very close to the highest obtainable

efficiency. The  10th column shows the percentage of generated

invalid  solutions which mainly are due  to generation of  solutions

with  the requirement that the magnet thickness is larger than the

rotor radius. The 11th column show the mean number of generation

reached within the arbitrary decided 1.5 min which was  allocated

for  each run of the algorithm. The next section will comment

on these results and show more specific results from the tuned

algorithms.

3.8.  Results and discussion

This section will comment on the  test results presented in

the  previous section and show some results from the  two tuned

Table 4

Test parameters.

� = 1 �  = 2 � =  5  � = 10 � =  20

� =  1  20/1+1 20/1+2  20/1+5 20/1+10 20/1+20

�  =  2 20/2+1 20/2+2  20/2+5 20/2+10 20/2+20

�  =  5 20/5+1 20/5+2  20/5+5 20/5+10 20/5+20

�  =  10 20/10+1 20/10+2 20/10+5 20/10+10 20/10+20

�  =  20 20/20+1 20/20+2 20/20+5 20/20+10 20/20+20
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Table  5

Parameter tuning of ES1.

(�/� + �) Mean

(∑
(s)

N

)
Max

(∑
(s)

N

)
Min

(∑
(s)

N

)
�(2)  of sol. Max (sol.) Min  (sol.)  Mean (sol.) No. of

opt. sol.

Still

born %

Mean

no. of

gen.

(20/1+1) 0.062 0.145 0.004 3.24e−004 97.2162 97.1516  97.2041 3  of 10 37.6 1411

(20/1+2) 0.042 0.121 0.001 1.87e−005 97.2180 97.2072 97.2128 6  of 10 29.6 760

(20/1+5) 0.036 0.146 0.000 1.81e−004 97.2180 97.1700 97.2074 4  of 10 29.7 306

(20/1+10)  0.019 0.052 0.001 5.47e−004 97.2179 97.1448  97.1990 3  of 10 36.8 147

(20/1+20)  0.044 0.132 0.002 4.50e−004 97.2181 97.1414  97.2040 3  of 10 33.7 75

(20/2+1)  0.044 0.106 0.003 4.11e−004 97.2178 97.1459  97.2050 4  of 10 40.0 1464

(20/2+2) 0.051 0.110 0.001 1.61e−005 97.2180 97.2086 97.2139 7  of 10 35.8 781

(20/2+5) 0.062 0.167 0.006 4.27e−005 97.2180 97.1969  97.2108 5  of 10 36.5 300

(20/2+10) 0.057 0.104 0.031 2.44e−005 97.2180 97.2058 97.2123 5  of 10 44.5 156

(20/2+20)  0.055 0.124 0.007 2.00e−005 97.2181 97.2072 97.2122 5  of 10 37.9 76

(20/5+1)  0.067 0.118 0.028 1.46e−005 97.2176 97.2071 97.2126 6  of 10 40.3 1438

(20/5+2) 0.067 0.107 0.045 1.61e−005 97.2180 97.2067 97.2145 8  of 10 37.6 751

(20/5+5)  0.050 0.091 0.003 1.55e−005 97.2172 97.2069 97.2106 3  of 10 34.7 304

(20/5+10)  0.082 0.100  0.005 1.87e−005 97.2179 97.2066 97.2121 5  of 10 42.0 159

(20/5+20)  0.074 0.127 0.044 2.11e−005 97.2180 97.2070 97.2133 6  of 10 44.2 75

(20/10+1)  0.093 0.119 0.054 1.68e−005 97.2178 97.2071 97.2108 4  of 10 46.2 1405

(20/10+2) 0.094 0.118 0.070 1.97e−005 97.2179 97.2064 97.2110 4  of 10 44.9 673

(20/10+5)  0.105 0.115 0.068 5.18e−006 97.2174 97.2087 97.2145 9  of 10 45.3 281

(20/10+10) 0.101 0.135 0.075 1.71e−005 97.2173 97.2068 97.2117 5  of 10 45.4 143

(20/10+20)  0.114 0.141 0.081 1.02e−005 97.2164 97.2070 97.2098 2  of 10 47.6 72

(20/20+1)  0.115 0.148 0.098 1.80e−005 97.2177 97.2070 97.2102 3  of 10 44.4 1290

(20/20+2)  0.123 0.188 0.099 1.85e−005 97.2179 97.2053 97.2098 3  of 10 44.9 621

(20/20+5)  0.125 0.165 0.101 2.42e−005 97.2165 97.2011 97.2093 3  of 10 49.1 243

(20/20+10) 0.128 0.175 0.101 1.42e−005 97.2176 97.2056 97.2098 3  of 10 46.3 133

(20/20+20)  0.130 0.156 0.080 3.10e−005 97.2157 97.1973  97.2084 4  of 10 46.0 63

algorithms. The two Tables 5  and 6 show a lot of statistical infor-

mation. The most important for the  evaluation of the algorithm are

the  mean of  the standard deviation (column 2) which is  a measure-

ment  of the convergence of the entire population together with the

gap  between max  (column 6) and min (column 7)  fitness values and

the  number of fitness values which have reached the limit for a near

optimal fitness value (column 9).

Looking at Table 5 for the ES1 algorithm it can be seen that there

is  one algorithm which separate itself from the other algorithms

by achieving the  limit for the near optimal fitness values 9  out of

10  times. This algorithm is the  (20/10+5). It also has the  highest

minimum fitness value. The mean of the standard deviation is not

the lowest in the test which means that the algorithm has not fully

converged, but as the high success rate and high fitness value are

very important in this optimization problem it  is  still determined

to be the most efficient one.

Figs. 4–6 show plots from one of  the test runs of  the (20/10+5)-

ES1.  Fig. 4 shows the highest efficiency as a function of the

Table 6

Parameter tuning of ES2.

(�/� + �) Mean

(∑
(s)

N

)
Max

(∑
(s)

N

)
Min

(∑
(s)

N

)
�(2)  of sol. Max  (sol.) Min (sol.) Mean (sol.)  No. of

opt. sol.

Still

born %

Mean

no. of

gen.

(20/1+1) 0.000 0.000 0.000 1.59e−002 97.0396 96.6144 96.8099 0 of  10 0.0  1712

(20/1+2)  0.000 0.000 0.000 1.85e−002 96.9310 96.4084 96.7152 0 of  10 0.0  932

(20/1+5)  0.000 0.000 0.000 8.76e−003 97.0765 96.7403 96.8684 0 of  10 0.0  389

(20/1+10)  0.000 0.000 0.000 1.99e−002 96.9992 96.6046 96.7676 0 of  10 0.0  191

(20/1+20)  0.000 0.000 0.000 3.33e−002 97.0294 96.5062 96.7679 0 of  10 0.0  99

(20/2+1)  0.000 0.000 0.000 9.95e−003 97.1022 96.7199 96.9244 0 of  10 0.1 1827

(20/2+2)  0.000 0.000 0.000 1.64e−002 97.1364 96.6333 96.9039 0 of  10 0.1 954

(20/2+5)  0.000 0.000 0.000 1.36e−002 97.1802 96.8045 96.9750 0 of  10 0.4 383

(20/2+10)  0.000 0.000 0.000 1.30e−002 97.1376 96.7453 97.0142 0 of  10 0.6 194

(20/2+20)  0.000 0.000 0.000 1.21e−002 97.2029 96.8259 97.0217 0 of  10 1.1 95

(20/5+1)  0.000 0.001  0.000 1.00e−002 97.2180 96.9193 97.1255 3  of 10 0.8 1742

(20/5+2) 0.000 0.002  0.000 3.28e−003 97.2181 97.0367 97.1768 3  of 10 1.9 863

(20/5+5)  0.000 0.001  0.000 3.32e−003 97.2173 97.0586 97.1852 6  of 10 1.4 369

(20/5+10)  0.001 0.004  0.000 5.34e−003 97.2181 97.0071 97.1771 4  of 10 1.8 179

(20/5+20)  0.001 0.005  0.000 2.28e−003 97.2181 97.0570 97.1957 7  of 10 2.6 90

(20/10+1)  0.001 0.003  0.000 2.18e−003 97.2181 97.0570 97.1964 5  of 10 2.7 1630

(20/10+2) 0.002 0.003  0.000 1.05e−005 97.2181 97.2070 97.2164 9  of 10 3.4 829

(20/10+5)  0.002 0.003  0.000 2.22e−003 97.2181 97.0589 97.1998 7  of 10 2.9 327

(20/10+10)  0.002 0.006  0.000 2.26e−003 97.2181 97.0589 97.2011 8  of 10 3.8 167

(20/10+20)  0.002 0.003  0.000 8.09e−006 97.2181 97.2086 97.2171 9  of 10 5.0 83

(20/20+1)  0.003 0.003  0.001  1.08e−016 97.2181 97.2181 97.2181 10 of 10 6.6 1420

(20/20+2) 0.004 0.012 0.002  2.28e−003 97.2181 97.0589 97.2022 9  of 10 7.4 715

(20/20+5) 0.002 0.003  0.002  1.09e−016 97.2181 97.2181 97.2181 10 of 10 7.8 297

(20/20+10)  0.002 0.003  0.001  2.25e−014 97.2181 97.2181 97.2181 10 of 10 8.8 150

(20/20+20) 0.002 0.004  0.001  1.53e−013 97.2181 97.2181 97.2181 10 of 10 9.1 75
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Fig. 4. Efficiency plot of (20/10+5)-ES1.
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Fig. 5. Normalized standard deviation of a (20/10+5)-ES1.

generation number and it  can be seen that it initially converges

fast  toward higher efficiencies and slows down as it approach the

assumed optimal solution of 97.21% as was  expected. This con-

vergence tendency can also be seen in the plot of  the normalized

standard deviation of the 8 object parameters together with the

mean  sum, Fig. 5. However it is not possible to  infer from this plot

if  the optimal solution is being achieved or just a local maximum. It

has  therefore to be viewed together with Fig. 4 and the knowledge

of  the assumed optimal efficiency. Furthermore it is  also obvious

from the plot in Fig. 5 that not all the object parameters of the  pop-

ulation have converged where the  most severe ones  in this case is

the  material and the number of parallel branches in the coil which

remain almost randomly distributed throughout the entire num-

ber  of generations. The  other object parameters in the population

are  getting more and more similar as the number of generation
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Fig. 6. Diversity of a  (20/10+5)-ES1.

Table 7

Best motor design object and fitness parameters.

Parameter Value ES-1 Value ES-2 Unit  Description

p 2 2 –  Number of pole pairs

	 60 60  K Temperature rise in  the

windings

Material 3 2 –  Core materials, 1, 2, 3 (see

Appendix)

�Ftan 50,000 48,563 Pa  Tangential stress

ı  7.4199 7.6529 mm  Physical air-gap

Q 20 20 – Number of stator slots

a 1 1 –  Number of parallel

branches in  coil

Js 4,000,000 4,000,000 A/m2 Stator current density

�  97.2157 97.2181 % Efficiency

increase even  though it is very slowly moving forward. Another

indicator for the convergence is the one shown in  Fig. 6.  It shows

the  comparison of the angle between the current best object vector

and  the remaining object vectors calculated by Eq. (8).

cos(˛)  =
(

yi · yj

‖yi‖ · ‖yj‖

)
(8)

This value tells something about how similar the solutions in the

population are to the current best solution. The reason for intro-

ducing  this second convergence indicator is to make sure that the

current best solution is  not  just a  stroke of luck as this indicator

will  have a high value if the current best solution differs markedly

from  the rest even if the rest of the solutions are similar and the

standard deviation is low.

As  the algorithm has not fully converged there could be several

combinations of object parameters which will have the same fit-

ness value. It can therefore be  difficult to  choose one solution over

another while at the same time knowing with a  high probability

that  it is not  the optimal solution. Even though this is the  case the

parameters of  the solution with the highest fitness value from the

same  test as  the one in the plot are shown in Tables 7  and 8 and

the  geometry is depicted in Figs. 10 and 11. Before commenting on

these results we  will take a closer look at the results from the ES2

algorithm.

Looking  at Table 6  for the ES2 algorithm the most striking dif-

ference from the ES1 tests is  the extremely low standard deviation

in  column 2 which means that all the  solutions in  the population

have converged to the same solution. As can be seen this is  not the

only  indicator of an  optimal algorithm as one can see that many

of  the solutions have converged prematurely and found efficien-

cies  below the assumed optimal efficiency. However several of  the

algorithms performed very well as they reached the success limit of

97.21% for the fitness values 10 out of 10 times and the  maximum

and minimum fitness values are the same. As  it is only marginal’s

that separate the best ES2 algorithms from each other it has been

decided to take a  closer look at the (20/20+5)-ES2.

Figs. 7–9 show plots from one of the test runs of the  (20/20+5)-

ES2. Fig. 7 shows the efficiency as a function of the generation

Table 8

Best motor design dimensions. hPM:  magnet height, l:  motor length.

Parameter Value ES-1 Value ES-2 Parameter Value ES-1  Value ES-2

h1 0.001 0.001 b4 0.0172 0.0172

h2 0.002 0.002 b4c 0.0178 0.0178

h3 0.005 0.005 b5c 0.0294 0.0294

h4 0.0517 0.0517 Dr 0.24 0.24

h5 0.037 0.037 Dri 0.0666 0.0636

h6 0.0005 0.0005 Dryi 0.1836 0.1811

hPM 0.0281 0.0294 Ds 0.2548 0.2553

h′ 0.0005 0.0005 Dse 0.4923 0.4932

b1 0.003 0.003 l 0.1184 0.1180
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Fig. 7. Efficiency plot of  (20/20+5)-ES2.
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Fig. 8.  Normalized standard deviation of  a (20/20+5)-ES2.

number and it  can be seen that the improvement in efficiency

decreases as the optimum is approached as expected. If we  look

at  Fig. 8 we can see in contrast to the ES1 algorithm that almost all

of  the object parameters have converged to the same value after

only half of  the time allocated for the test run and there are only a

small  fluctuation in the parameter for the tangential stress. A fur-

ther indication of  the convergences can be seen in Fig. 9  which again

is  a comparison of  the angles between the object vectors and are

almost zero after 150 generations which means that all solutions

are  basically the  same.

As the  algorithm has fully converged there is basically only one

combination of object parameters as all the solutions in the  popula-

tion  are the same and it  is  therefore very easy to  get the  parameters

for the optimal design. Table 7 shows the found optimal object
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Fig. 9.  Diversity of a (20/20+5)-ES2.

Fig. 10. Best motor design (20/10+5-ES1).

parameters and Table 8 shows the  motor dimensions for the shown

test run.

Comparing the parameters for the two motor designs Tables 7

and 8 it can be seen that even though the ES1 algorithm did not

completely converge the parameters for the two designs are almost

identical. The  most significant difference is the choice of material

where  the ES1 and ES2 algorithm respectively has found materials 3

and 2 as the optimal material. This however corresponds well with

the findings in  Fig. 5 where it can be seen that the material param-

eter was  one of the parameters which did not converge within the

time frame set forth. An indication that this could be the motor

Fig. 11. Slot geometry [10].
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Fig. 12. PISA structure.

design with the highest efficiency is  that the current density in both

cases  is found to the lowest allowed value and thereby the resistive

losses in the coils are minimized.

If  we compare the two algorithm versions ES1 and ES2 there is

no  doubt that the ES2 version perform much better on the  problem

at  hand than the ES1 version as it achieves a  near optimal solution

every time with a very low standard deviation. In other words, the

ES2 algorithm is  very stable and produces good results every time.

For  this reason the (20/20+5) ES2 algorithm is the one which has

been used in the multi-objective optimization problem which will

be  described in the next section.

4. Multi-objective optimization using ES  and PISA

This section will explain how the  multi-objective problem

defined in the beginning of  this paper (Section 2) has been

solved. Furthermore several different algorithms will be com-

pared to examine which one performs best on the problem at

hand. For solving this multi-objective optimization problem the

previously described ES2 algorithm has  been used in conjunc-

tion with a free software package called PISA. PISA is  a  group of

programs for solving multi-objective search problems with con-

flicting goals and is  developed and maintained at ETH TIK  Zürich,

Switzerland.

4.1.  PISA structure

The PISA structure operates with  two main algorithms. One is

called  the variator and the other called the selector. These two  algo-

rithms  run parallel with each other and communicate through ASCII

files as symbolized in Fig. 12.  The  variator is the algorithm that is

creating new offspring and calculates their respective fitness val-

ues.  The fitness value together with an  individual id number is then

passed to the  selector through the ASCII files. The selector then

selects which of the individuals has to form the  new parent popu-

lation solely based on the evaluation of their fitness values. The id’s

of  these individuals are then sent back to the variator. The variator

then generates new offspring and their fitness values are again sent

back to the selector. This ping pong between the  variator and selec-

tor  continues until some stopping criteria have been met. This could

be  time or number of  generation. There are 6 common communica-

tions files which are used in the PISA structure for communication

between the variator and selector:

• CFG: config file containing the size of the problem, �, �, � and

dimension.
• INI: file with the initial population fitness values and id’s written

by  the variator.
• STA: status file which  is  used to  synchronize the variator and

selector.
• SEL:  file with the next parent population id’s written by the selec-

tor.
• VAR:  file with new offsprings fitness values and id’s written by

the variator.
• ARC: archive file with solutions.

For further information on the PISA structure visit their

homepage1 or  see [17].

4.1.1. Variator

As  explained above the variator is the algorithm in  charge of

generating new offspring through variation of  selected individuals.

In  this case it  is a modified version of the (20/20+5)-ES2 algo-

rithm tuned in Section 3.7.  Two modifications have been made to

the  algorithm. The  first is  that it has  been set up  to communicate

with  the selector through the  previously described communica-

tions  files and the previously used selector has been removed.

Secondly there has been added an  extra fitness parameter namely

the  cost.  The  cost  of the motor is simply calculated by  determin-

ing  the mass of the different materials used for a  specific solution

which  is multiplied by a  fictive price/mass for the different materi-

als  used (magnets, copper and iron). For the sake of  reproducibility

the  used fictive prices/mass is: magnets: 20  $/kg, iron: 5 $/kg

and  copper: 20 $/kg where the mass of the iron is  calculated

for  a square plate which edges is  equal to  the diameter of the

stator  thereby including the  scrap material in the price calcula-

tion.

4.1.2.  Selector

Without getting into the theory behind the selectors the fol-

lowing four different selectors have been chosen for comparison.

The  parameters for the different selectors have not been changed

from  their initial values and can maybe be  altered to improve their

performance, but this is  out of the  scope of this paper.

• SPAM: set  preference algorithm for multi-objective optimization

[18].
• SEMO2: simple evolutionary multi-objective optimizer [19].
• IBEA:  indicator based evolutionary algorithm [20].
• HypE: hypervolume estimation algorithm for multi-objective

optimization [21].

The general function of the selector is that it  selects promis-

ing  individuals from the population which through variation is

expected to create new individuals which are able  to find the Pareto

front.  What is  a  Pareto front? A solution is called Pareto optimal

when it is not possible to improve one objective without deterio-

rating  at  least one  of  the others. A set of Pareto optimal solutions

constitute the Pareto front. The goal in multi-objective optimiza-

tion is therefore to find this Pareto front, sometimes also called the

Pareto frontier.

4.2. Result and discussion

Before  commenting on any of the results a performance indica-

tor  has to be defined to be able to compare the different algorithms.

This indicator is  based on the idea  of  the  Hypervolume indicator

[22,23] and is  defined as the area between an efficiency of 96%

and the Pareto front (see the hatched area of Fig. 13). The  rea-

son  for not calculating the area from the entire Pareto front is

that even though some of the algorithms are better at  finding the

Pareto front  for low values of  the efficiency these are not very inter-

esting  as  no one is interested in this trade-off between cost and

efficiency.

The  next four  Figs. 14–17 show plots of all the individuals of

a  5000 generation (20/20+5)-ES2 algorithm for the four different

selectors. The  found Pareto front has been added to each plot by a

solid line connecting the  Pareto optimal solutions.

1 http://www.tik.ee.ethz.ch/pisa/.
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Fig. 13. Area as a  performance indicator.
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Fig. 14. Pareto front plot with all individuals –  variator: 20/20+5-ES2, Selector:

HYPE, 5000 generations, elapsed time: 4667 s, area: 1598.

First, looking at Fig. 14 it can be seen that the Pareto front has

been found nicely with a  high population density at  high efficien-

cies.  The algorithm with the HypE selector has been less aggressive

at  the lowest efficiencies where one loses a lot of efficiency if the

cost  is reduced just a bit. As mentioned before this area is of less

importance as  no  one is willing to make this sacrifice of the effi-

ciency just to reduce the price a  little bit.

Looking at Fig. 15 we again see that there is a  nice density of the

population close to  the Pareto front at high efficiencies. Like as for

the  algorithm with the HypE selector the algorithm with the IBEA

selector is less aggressive at  the low efficiencies but we come to the

same conclusions as before that this area is of less  importance. It

has  been examined that both the  algorithm with  the HypE and IBEA

selector have found the solution with the highest possible efficiency

which is  a good indicator that we  really have found the Pareto front

at least for high efficiencies.
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Fig. 15. Pareto front plot with all individuals – variator: 20/20+5-ES2, selector: IBEA,

5000  generations, elapsed time: 4483 s,  area: 1587.
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Fig. 16.  Pareto front plot with all individuals – variator: 20/20+5-ES2, selector:

SPAM, 5000 generations, elapsed time: 5308 s,  area: 1422.
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Fig. 17.  Pareto front plot with all individuals –  variator: 20/20+5-ES2, selector:

SEMO2, 5000  generations, elapsed time: 5891 s, area: 1431.

Fig. 16 shows the plot for the algorithm with the SPAM selec-

tor. Compared with the two  previous plots one can see that this

algorithm with the SPAM selector is less aggressive at  the border

of the Pareto front and looks more random with a high population

density inside the plot. As  we are only interested in Pareto optimal

solution this seems like a  waste of  effort and time to evaluate so

many  solutions inside the plot.

Fig. 17  shows the plot for the algorithm with the SEMO2 selec-

tor.  Comparing this algorithm with the  one  with the HypE and IBEA

selector it  looks more randomly distributed and is  not as aggressive

in  finding the Pareto front. It has like the SPAM selector a  high con-

centration of individuals inside the plot which is not that useful.

If  we  compare the Pareto front for the four different selectors we

can  see that they agree well with each other (see Fig. 18). However

the  algorithms with  the SPAM and SEMO2 selectors have not found

the maximum efficiency as the algorithms with the HypE and IBEA

selectors have. The Pareto front is also better defined with the use

of  the HypE and IBEA selector as they have been more aggressive

toward the Pareto front for high efficiencies. Table 9 summarizes

the  results from these multi-objective optimization algorithms.

The algorithm with the IBEA and HypE selector is almost equally

good but if one should chose one over the other the HypE is deemed

to be the winner as it has a slightly higher calculated area. However,

the  execution time for the 5000 generations is  approximately 3 min

Table 9

Evaluation of multi-objective algorithm.

Selector type Area  Elapsed time Visual evaluation �max reached?

SPAM 1422 5308 Random No

SEMO2 1431 5891 Random No

IBEA  1587 4483 Aggressive Yes

HYPE 1598 4667 Aggressive Yes
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Fig. 18. Comparison of found Pareto fronts.

Table 10

Object and fitness parameters for the best compromise between cost and efficiency.

Parameter HypE Unit Description

p 3 – Number of  pole pairs

	  60 K Temperature rise in  the windings

Material 3 – Core material, 1,  2,  3 (see Appendix)

�Ftan 43470 Pa Tangential stress

ı  9.9000 mm Physical air-gap

Q 20 – Number of  stator slots

a  1 – Number of  parallel branches in coil

Js 6,500,000 A/m2 Stator current density

�  96.7456 % Efficiency

Cost 2598 – Material cost

slower for the HypE selector than it is for the IBEA selector but time

is  of less importance in this optimization problem. Another reason

for  choosing the HypE selector is that it  is better at  finding the Pareto

front  for low efficiencies than the IBEA selector, but as this is less

important this is  not the main reason for choosing the HypE over

IBEA.

In  a commercial application one would properly chose a solution

on  the Pareto front where the cost start to increase dramatically if

higher efficiencies are needed. Such a solution could be the one

marked in Fig. 18 where one would get the highest efficiency for

their  money. The marked solution’s object parameters and motor

dimensions are listed in  Tables 10 and 11  and come from the use of

the  HypE selector and a figure of the  geometry is depicted in  Fig. 19.

Comparing these values with the one achieved previously for the

motor design with the highest efficiency, Tables 7 and 8, the most

striking difference is  the high current density in the stator coils and

the thicker magnets. This higher current density will cause higher

resistive losses but on  the other hand require less space for the

coils and thereby reducing the occupied space in  the stator core.

Table 11

Best compromise motor design dimensions.

Parameter Value Parameter Value

h1 0.0010 b4 0.0177

h2 0.0020 b4c 0.0183

h3 0.0050 b5c 0.0246

h4 0.0323 Dr 0.2700

h5 0.0200 Dri 0.1004

h6 0.0005 Dryi 0.1948

hPM 0.0376 Ds 0.2898

h′ 0.0005 Dse 0.4657

b1 0.0030 l  0.1026

Fig. 19. Best  compromise motor design.

The  outer diameter can therefore be reduced which in the end will

reduce the price of both the  iron  and copper at  the expense of the

efficiency. This fits nicely with the shape of the Pareto front where

some  of the efficiency has been sacrificed to decrease the cost of

the  motor.

5. Conclusion

A  design optimization of a permanent magnet motor with the

use  of metaheuristics has been presented. The  metaheuristics used

for this optimization was evolution strategies which have been

described in detail in Section 3. Two versions of  the ES have been

tested  and have in the  paper been referred to as ES1 and ES2 where

the  ES1 is a  standard ES  algorithm and the ES2 is  a  slightly mod-

ified  algorithm proposed by the authors. The ES1 version strategy

parameters were initially set by calculating the normal standard

deviation  for each object parameter of the initial population and

were only changed in the offspring individual through recombi-

nation  and mutation. The ES2 version strategy parameters were

continuously being overwritten as the strategy parameters were

set  by  calculating the normal standard deviation for each object

parameter of the current generation of the marriage population.

The  two algorithms have been tuned for the parameters � and

�  which is  the number of parents involved in the procreation of

one  offspring and the size of the offspring population. The best

results from the ES1 version, which is  the standard ES algorithm,

was  achieved by the (�/� + �) = (20/10 + 5)-ES. Results from this

tuned algorithm have been presented, showing that the  algorithm

did  not fully converge within the 1.5 min  which was allocated for

the  run of the algorithm. Even though it did not fully converge

it  still  achieved relatively good results as it reached an efficiency

above 97.21% 9 out of the 10  test runs which was  the success crite-

ria.  The best results from the ES2 version, which was proposed by

the  authors, was  achieved by the (�/� + �) = (20/20 + 5)-ES. Results

from  this tuned algorithm have been presented, showing that the

algorithm converges fully in less than the 1.5 min which was  allo-

cated  for the run of the algorithm. This algorithm did not only

reach  the success criteria of an efficiency of 97.21% but actually

found  the assumed optimum solution in  10 out of the  10 test runs.

For  this reason this algorithm was  used for the multi-objective

optimizing.

The achieved motor parameters and dimensions for the best

results  from the ES1 and ES2 has been presented and have resulted
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in almost identical solutions with the exceptions of choice of core

material  which did not fully converge in the ES1 algorithm. How-

ever  the motor  parameters achieved seems to be reasonable if one

want to create a motor with the maximization of the efficiency as

the  only goal.

The structure of PISA has briefly been explained which was used

in  conjunction with the  ES2 algorithm for multi-objective optimiz-

ing  of the efficiency and cost of the motor. Four different selectors

together with the ES algorithm have been tested to  examine their

performance. Results showed that the HypE and IBEA selectors

performed best on the problem at  hand. They were much more

aggressive in the  examination of  the Pareto front for high efficien-

cies  than the SPAM and SEMO2 selectors which produced more

random individuals. It was evaluated that the HypE was the best of

the  selectors only slightly better than the IBEA selector.

The motor parameters and dimensions for a  solution from this

MOO  which will result in the  highest efficiency per cost have been

presented.  Again the achieved motor parameters seem to  be rea-

sonable when they are compared with the values from the single

parameter optimization where the volume of  the  material in the

MOO  has been minimized to reduce the  cost of the  motor.

Appendix A.  Three-phase permanent magnet motor with

rotor surface magnets, a  two-layer integral slot winding

and open-circuit cooling

A.1. Initial data of the motor

Parameter Value Description

P 160,  000  Shaft power [W]

n 41.667 Speed [1/s]

T P
2
n = 611.1501 Torque [Nm]

U 690 Line-to-line voltage, [V]  star

connected

m  3  Number of phases

f  n ·  p = 166.6680 Frequency [Hz]

ω  2
f Angular frequency [1/s]

Hc 800, 000 Coercivity of  the permanent

magnets [A/m]

Br 1.05 Remanence flux of  the permanent

magnets [T]

�0 4  ·  
 ×  10−7 Permeability of vacuum [Vs/(Am)]

�rec
Br

�0Hc
= 1.0445 Permeability of the permanent

magnet material

�Cu20C 57 × 106 Conductivity of copper at  20 ◦C

[S/m]

˛Cu 3.81 × 10−3 Temperature coefficient of

resistivity for copper [1/K]

kFe 0.97 Space factor of  the stator core

�Fe 7600 Density of iron [kg/m3]

�PM 7500 Density of the permanent magnet

material [kg/m3]

�Cu 8960 Density of copper [kg/m3]

BH curve of the lamination material. The specific loss of these

materials at 1.5 T  and 50 Hz has been set  to P15 = 6.6 W/kg.

Graph for the  yoke magnetic voltage calculation.

A.2. Rotor size

Rotor volume Vr

Vr = T

2�Ftan
(A.1)

Ratio of equivalent core length/air-gap diameter and rotor diameter

l′

Dr
= � ≈ 


4p

√
p Dr = 3

√
4Vr


�
(A.2)

A.3. Core length

Core length in  a machine with no cooling channels

l  = l′ − nbe − 2ı  (A.3)

A.4. Stator winding

Number of stator slots, stator slot pitch and stator pole pitch

Q  = 2pmq �u = 

Ds

Q
�p = 


Ds

2p
(A.4)

Winding pitch, coil span

W = y

yQ
�p yQ = mq y = 	yQ 
 (A.5)

A.5. Air-gap flux density

Fundamental air-gap flux peak density B1peak = 0.95 [T].

Effective relative magnet width: ˛PM = 0.80.

Maximum value of the rectangular flux density

Bmax = 
B1peak

4sin((˛PM)
/2)
(A.6)

A.6. Number of  coil  turns in  a phase winding

Permanent-magnet-induced voltage.

EPM = U√
3

(A.7)

Winding factor

kw() =
2sin(( 


2
)W�p)sin

(


2m

)
(Q/mp)sin(
( p

Q ))
(A.8)

Number of coil turns in a phase winding

N  =
√

2EPM

ωkw(1)˛PMBmax�pl′
(A.9)
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A.7. Number of conductors in a slot

Number of conductors in a slot and number of coil turns in the

phase winding

zQ = 2am
N

Q
N = Q ·  zQ

2 · a · m
(A.10)

A.8. New Bmax

Bmax,new =
(

zQ,non−rounded

zQ,selected

)
Bmax,old (A.11)

A.9.  Width of the stator slot

The tooth width

Bd = l′�u

kFe (l  − nvbv)
· Bmax

Bdapp
(A.12)

A.10.  Stator slot  dimensions

Initial stator current and stator phase voltage

Is = P

m�Usphcos(�)
Usph = U√

3
(A.13)

Area of one conductor in a stator slot and wound area of a stator

slot

Scs = Is
aJs

SCus = zQ Scs

kCus
(A.14)

The  slot dimensions are presented in the table below:

Parameter Value Unit

b1 0.003 m

h1 0.001 m

h2 0.002 m

h3 0.0050 m

h6 0.0005 m

h′ 0.0005 m

Other dimensions are determined as follows:

b4 = 
 (Ds + 2 (h1 + h2))

Q
−  bd (A.15)

b4c = b4 + 2
h3

Q
− 2h6 b5c =  b4c + 2
h5

Q
(A.16)

SCus = b4c + b5c

2
h5 + 


8
b2

5c (A.17)

Total  area of a  slot

Sslot = b1h1 + h2

(
b4

2
+ b1

2

)
+ h3

(
b4 + 
h3

Q

)
+
(

b4 +  b5

2

)
h5 + 


8
b2

5 (A.18)

A.11.  Magnetic voltage over the tooth

Apparent flux density in  stator tooth

Bdapp = l′�uBmax

kFe (l  −  nvbv) bd
(A.19)

Using the BH curve, we  get for the field strengths in the teeth:

Magnetic voltage of the tooth

Umds = Hd (h3 + h5) (A.20)

The  magnetic voltages of the  tooth tip and of  the rounded part of

the  tooth are small and may therefore be omitted.

A.12. Height of stator and rotor yokes and permanent magnets.

Magnetic voltage of air gap, stator and rotor yokes, and

permanent magnet

Factor for reduction of slot opening

� = 2




(
atan

(
b1

2ı

)
− 2ı

b1
ln

(√
1 +
(

b1

2ı

)2
))

(A.21)

Carter  factor

kC1 = �u

�u −  �b1
(A.22)

Equivalent air gap

ıe = kC1ı (A.23)

Magnetic voltage of the air gap

Umıe = Bmax

�0
ıe (A.24)

Air-gap  flux

˚m = ˛PMBmax�pl′ (A.25)

Height  of  the stator and rotor yoke hy

hy = ˚m

2kFe (l − nvbv) By
(A.26)

Average stator and rotor yoke slot pitch

�y = 
Dy

2p
(A.27)

Magnetic voltage of the stator and rotor yoke

Umys = cHymax�y (A.28)

The  permanent magnet flux density BPM is equal to the air-gap

flux  density BPM = Bmax,

Height of  the permanent magnets

hPM = Umıe + Umds + (Umys/2)

Hc − (Hc/Br)BPM + (
crHymaxr)/2p

+ (
crHymaxr(Dr − hyr))/4p

Hc −  (Hc/Br)BPM + (
crHymaxr)/2p
(A.29)

Magnetic voltage of the permanent magnet

UmPM = Hc

Br
BPMhPM (A.30)
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A.13. Stator resistance

Average length of a coil  turn

lav = 2l +  2.4W�p�p + 0.1 (A.31)

Conductivity of copper wire and DC resistance of a phase winding

�Cu = �Cu20C

1  + 	˛Cu
R  = Nlav

�CuaScs
(A.32)

A.14. Magnetizing inductance

Effective air gap

ıef = Umıe +  Umds +  UmPM + Umys/2 + Umyr/2

Umıe
ıe (A.33)

Magnetizing inductance in d-direction of the two-axis model

Lmd = m

2
· 2



· �0 · l′ · 1

2p
· 4



· �p

ıef
· (kw (1) · N)

2 (A.34)

As  the machine is symmetrical in this case, Lmq = Lmd otherwise the

q-axis  effective air gap should first be evaluated.

A.15. Air-gap leakage inductance

Air-gap leakage factor

�ıs =
=+∞∑

 = −∞
  /= 1

⎛
⎝ sin((1 + 2km)W�p(




2
))(sin((1 + 2km)q

˛u

2
))/(qsin((1 + 2km)

˛u

2
))

(1 +  2km)kw(1)

⎞
⎠2

(A.35)

Air-gap  leakage inductance

Lı = �ısLmd (A.36)

A.16. Slot leakage inductance

Slot leakage inductance

Lu = 4m

Q
�0l′N2�u

where

� = 1 − W�p k1 = 1 − 9

16
� k2 = 1  − 3

4
�  (A.37)

�u = k1
h4 − h′

3b4
+ k2

(
h3

b4
+ h1

b1
+ h2

b4 − b1
ln

(
b4

b1

))
+ h′

4b4
(A.38)

A.17. Tooth tip leakage inductance

L�d = 4m

Q
�0l′�dN2 �d = k2

5(ı/b1)

5 +  4(ı/b1)
(A.39)

A.18. End  winding leakage inductance and reactance

Permeance factor

�w = 2lew�lew + Wew�W

lw
(A.40)

where

Wew = lw − 2lew (A.41)

End  winding leakage inductance

Lw = 4m

Q
qN2�0lw�w (A.42)

A.19. Synchronous inductance and reactance

Stator leakage inductance

Ls� = Lı + Lu + L�d +  Lw (A.43)

Direct-axis synchronous inductance and reactance

Ld =  Lmd + Ls� Xd = 2
fLd (A.44)

Because there is  no saliency in the  rotor, the quadrature-axis

synchronous inductance is  equal to the direct-axis synchronous

inductance Lq = Ld and Xq = Xd.

A.20.  Losses (except stator losses)

The mass of the stator teeth  (only the height h5 is  taken

into account) for loss calculation. The other parts of the teeth

have a low flux density and are ignored in this simplified

calculation.

md = kFe�FeQbdh5l (A.45)

Correction coefficients for the core  loss calculations, Table 3.2, [10].

kFed = 2  and kFey = 1.5.

Core loss in stator and rotor yoke

PFey = kFeyP15

(
By

1.5

)2

my

(
f

50

)3/2

(A.46)

The core loss of the tooth area is calculated using the mass md

defined above

Mechanical losses consisting of windage and ventilator losses

P� =  k�Dr

(
l  + 0.6�p

)
v2

r (A.47)

where

vr =  
nDr k� = 10 [Ws2/m4
]  (A.48)

The stator slot openings cause permeance harmonic losses in the

rotor surface permanent magnets.

Slot openings b1 cause a frequency fPM on the rotor surface

fPM =  nQ (A.49)

Fictitious air  gap for the loss calculation

ıPMEC = ı + hPM

2�rec
(A.50)

u =
(

b1

2ıPMEC

)
+
√

1  +
(

b1

2ıPMEC

)2

(A.51)

ˇ  = 1  + u2 − 2u

2(1 + u2)
(A.52)

B0 = ˇBmax (A.53)
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kv =
√

fPM2
�rec�0
�PM

2
(A.54)

ˇv = fPM2



Drn
(A.55)

aRv = 1√
2

√√√√√
4 +
(

ˇv

kv

)4

+
(

ˇv

kv

)2

(A.56)

PPMEK = aRv

2

(
1 + �u

2l

)  (
B0

�0�rec

)2 ( kv

�PM

)
· 
Dr˛PMl

(√
2kv
)2

ˇ2
v

(A.57)

A.21.  Stator resistive losses and  total losses

Stator resistive losses

PCu = 3I2
s R (A.58)

Sum  of losses

Ploss = PFe + PCu + P� + PPMEC + Pex (A.59)

Input  power

Pin = P +  Ploss (A.60)

Pin = 3

(
UsphEPM

ωsLd
sin
(

ı
)

+  U2
sph

Ld − Lq

2ωsLdLq
sin
(

2ı
))

(A.61)

Direct-axis component of  the stator current

Id = (U/
√

3)(Xqcos(ıloadinN)  − Rsin(ıloadinN))

XdXq + R2
− EPMXq

XdXq + R2
(A.62)

Quadrature-axis component of  the stator current

Iq = (U/
√

3)(Rcos(ıloadinN) +  Xdsin(ıloadinN))

XdXq + R2
− EPMR

XdXq + R2
(A.63)

New  stator current

Is =
√

I2
d

+ I2
q (A.64)

If  Is differs more than 1 % from the  estimated value,  the  stator cur-

rent  has to be given a new value and the calculations of Item 25  has

to be repeated.

A.22. Efficiency

Efficiency

�  = P

Pin
100 (A.65)

A.23.  Masses of the active materials

Rotor core outer diameter

Dryi = Dr − 2hPM (A.66)

Mass of permanent magnets

mPM = Dryi +  Dri

2

˛PMlhPM�PM (A.67)

Mass of copper

mCu = �Cu (l + 2lw) QzQ Scs (A.68)

The  mass of the iron (square plates)

mFe = D2
sel�Fe (A.69)
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Finite-element models of electrical motors often become very complex and time consuming to evaluate when taking into account every
little detail. There is therefore a need for simpli cations to make the models computational within a reasonable time frame. This is espe-
cially important in an optimization process, as many iterations usually have to be performed. The focus of this work is an investigation
of the electromagnetic part of a gearless mill drive based on real system data which is part of a larger project building a multiphysics
model including electromagnet, thermal, and structural interactions. This multiphysics model will later on be used for simulating and
parameter optimization of a gearless mill drive with the use of Evolution Strategies which necessitates the reduction in computation
time. What has been investigated is how model simpli cations in uence the accuracy on the calculated forces and torque coming from
the drive where each simpli cation made is described and justi ed. To further reduce the evaluation time, it is examined how coarse
the mesh can be, while still predicting the results with a high accuracy. From this investigation, it is shown that there are certain ratios
between the mesh size in the air gap and the iron core, which will result in an optimal determination of the forces and torque. It will
be shown that it is possible, just through simpli cations and choosing the correct mesh size, to reduce the computational time by 98%,
keeping an accuracy for the torque and forces of less than 0.3% and 1.2%, respectively.

Index Terms—Finite-element method magnetic, gearless drives, model accuracy, model simpli cation, multiphysics.

NOMENCLATURE

Index axis of rotation, [-].

Kronecker’s delta, [-].

Permittivity of free space, [F/m].

Rotor eccentricity component in the x-direction,
[m].

Rotor eccentricity component in the y-direction,
[m].

Magnetic vector potential, [Wb/m].

Magnetic ux density, [T].

Electromagnetic force, [N].

Lorentz force, [N].

Magnetic eld strength, [A/m].

Maxwell stress tensor, [N/m ].

Maxwell stress tensor component, [N/m ].

Torque tensor, [Nm].

Torque, [Nm].

Permeability, [H/m].

Permeability of free space, [H/m].

Del operator, [-].

Unit vector normal to the surface, [-].
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Vector from origin of torque to current position,
[m].

, Unit vectors, [-].

Area of the integration region, [m ].

Magnetic ux density component, [T].

Electric eld strength, [V/m].

Electromagnetic force component, [N].

Electric current density, [A/m ].

component of vector from origin of torque to
current position, [-].

Volume of the integration region, [m ].

I. INTRODUCTION

W HEN optimizing on large multiphysics systems is per-
formed, one usually has to run the simulation models

many times to achieve the optimal or near optimal solution.
As multiphysics models, which include thermal, structural, and
electromagnetics, have a tendency to become highly complex
and very time consuming to evaluate, it is necessary to simplify
these models in order to speed up the evaluation time without
losing too much accuracy. This is in particular very important,
if the optimization process is made by use of meta-heuristic [1],
such as Evolution Strategies [2]–[4], as these methods require a
lot of model iterations to achieve a near optimal solution.
One industrial example of electromagnetic, thermal, and

structural dynamic interaction (multiphysics system) can be
seen in gearless mill drives (GMDs). As mentioned, a com-
plete multiphysics modeling of large GMDs has to cope with
four main areas: structural dynamics, electromagnetism, uid
dynamics, and heat transfer. Based on structural dynamics

0018-9464/$31.00 © 2012 IEEE
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Fig. 1. (a) 3-D schematic of a gearless mill drive [15]. (b) Gearless SAG mill.

movements and deformations of stator housing and rotating
structure can be predicted. Based on electromagnetism the dy-
namic interaction between rotating structure and stator housing
can be evaluated. Based on uid dynamics the interaction forces
between rotating structure and journal bearing housing can
be described. Finally, based on heat transfer the temperature
changes in the stator and journal bearing housings can be esti-
mated. Such temperature changes cause variations of structure
dimensions in millimeter and micrometer ranges, respectively,
leading to signi cant changes of magnetic and hydrodynamic
interaction forces. Gearless drives/generators are mainly being
used in wind turbines, hydro power plants [5], [6], and in mills
in the mining industry [7], [8]. The rst gearless mill drive
was introduced by ABB in 1969 (then Brown Boveri & Cie)
and installed at a French company Ciments Lambert-Lafarge
in Le Havre [9]. A picture of a gearless mill drive can be seen
in Fig. 1, which in most aspects is similar to the one being
analyzed.
A gearless mill drive is in principle an ordinary synchronous

motor. However, these GMDs have a very large bore diameter
compared to their iron length and a high number of poles which
is far from a typical synchronous motor design. These drives are
wrapped directly onto the mill drum eliminating the gearbox.
These kinds of drives can deliver much higher torques than or-
dinary drives connected to gearboxes, as the structural integrity
of the gearboxes are the limiting factor.
Finite-element (FE) modeling and optimization of gearless

mill drives is a very complex task. Even with today’s powerful
computers these FE models demand an enormous long eval-
uation time, as experienced by the authors of [10], where the
starting process of a large 2-pole solid pole synchronous motor
was modeled and [11] where a hybrid stepper motor was inves-
tigated. To reduce the evaluation time of nite-element models,
it is of common practice to model motors in 2-D and afterwards
add the three-dimensional effects, such as screwing of the rotor
and end windings effect [12].
As also mentioned in [13], many articles present FE sim-

ulations without explaining which simpli cations/assumptions
were made, giving the readers no chance to evaluate the correct-
ness and limitations of such FE models. This paper deals with
gearless drives design and modeling toward the optimization of
such devices and their dynamic simulation in time domain. The
focus of the work is to investigate the electromagnetic part of a
gearless drive and to examine how FE model simpli cations in-
uence the accuracy on the calculated forces and torque coming
from the drive. In this case the goal is to predict the torque and

forces within a % deviation from the actural values which are
the usual applied tolerances by the manufactures. These sim-
pli cations are done in an attempt to reduce the computation
time. It is important to point out that for small electric machines
FE models, their simpli cations and solutions are combined nu-
merically as well as analytical and nicely reported in the liter-
ature, for example [14]. Nevertheless, a lack in the literature is
found, when considering FE magnetic modeling of very large
electrical machines such as gearless mill drives which has been
based on real industrial system data. In this framework the ar-
ticle gives an original contribution to the eld of large machines
FE magnetic modeling by: a) clearly documenting and vali-
dating all simpli cations, b) explaining based on the physics of
the problem, why the simpli cations are made and under which
circumstances, and c) exploring an industrial example with real
system data of a gearless mill drive with 56 poles and diameter
of 10 m. The simpli cations are compared against a complete
converged model to make the results as trustworthy as possible,
as no experimental data is available at this time. The electro-
magnetic model will later be introduced into the multiphysics
global model. Nevertheless this paper is focused only on the
electromagnetic modeling.

II. PROBLEM DESCRIPTION
Multiphysics modeling of complex systems can be very time

consuming as these models include many geometrical details
and have many material properties resulting in a high number
of degrees of freedom. There are a lot of strategies to reduce the
degree of freedom of a model and consequently the number of
equations to be solved. Some of these are:
• use of high order elements;
• manually optimized mesh geometry;
• polygon, square, and triangle elements;
• use of adaptive mesh [16]–[18].

This article will though only concentrate on the use of three node
triangular elements and the simpli cation of the geometry in
an attempt to reduce the degree of freedom of the model. Such
triangular elements are standard elements in many commercial
software packages, for example Maxwell2D.
The aim here is to reduce the complexity of a magnetic model

of a gearless drive, which later on has to be implemented in a
larger multiphysics model for simulating the dynamic behavior
of a complete gearless mill drive.
The method used for simulating the drive is a FEMMagnetic

model, which will be shown to converge to a single solution, as
the mesh size is reduced. FEMM is a freeware program, and as
it will be shown later it has been tested against the commercially
available program Maxwell2D and proven to give the same re-
sults. The converged model will be used as the base for com-
parison against any other model examined, as no experimental
values are available at the time. First several geometric simpli-
cations will be examined, and the deviation between them and
the converged model will be calculated. Simpli cations, which
have a minor effect on the calculated forces, will then be used
for a combined simpli ed model, which again will be compared
with the converged model. This combined simpli ed model will
be used as a base for examination of the mesh size in uence on
the accuracy.
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The goal is therefore to nd the most coarse mesh (using three
node triangular nite elements), which still leads to reliable re-
sults, as this will reduce the number of elements, and thereby
the time needed for evaluation. Reliable results in this case is
de ned as force and torque deviations of less than 5% from the
converged model which is the usual applied tolerances by the
GMD manufacture.
To verify that the achieved results are not just valid for the

rotor eccentricity examined, a second model has been created,
where the rotor eccentricity has been altered. A new converged
model is here again used as a base for comparison against the
simpli ed models.
Further more the B- eld in the air gap and iron core of the

drive will be shown to give a visual idea of the amplitudes and
eld densities, which can be used for simpli cation purposes.

A. Basic Equations

Magnetostatic problems are problems in which the elds are
time-invariant. In this case, the eld strength and ux density
must obey (1) and (2):

(1)
(2)

The relationship between and is given in (3) where the
proportionality constant is the permeability of the material:

(3)

In cases where the material is nonlinear, the permeability, is a
function of and we have:

(4)

The software program FEMM goes about nding a eld that
satis es (1)–(3) via a magnetic vector potential approach. Flux
density is written in terms of the vector potential, , as:

(5)

Now, this de nition of always satis es (2). Then, (1) can be
rewritten as:

(6)

For a linear isotropic material (and assuming the Coulomb
gauge, ), (6) reduces to:

(7)

FEMM retains the form of (6), so that magnetostatic problems
with a nonlinear - relationship can be solved. In the gen-
eral 3-D case, A is a vector with three components. However, in
the 2-D planar and axisymmetric cases, two of these three com-
ponents are zero, leaving just the component in the “out of the
paper” direction. The advantage of using the vector potential
formulation is that all the conditions to be satis ed have been
combined into a single equation. If is found, and can
then be deduced by differentiating .
For calculating the forces, it is of common practice to use

Maxwell’s stress tensor [19]–[22], which is particularly suited
for this purpose, as the integral depends only on the eld dis-
tribution outside the object in question. It is for this reason not
necessary to know the exact current density distributions within
complex anisotropic or nonlinear materials. From the theory of
electromagnetismwe have, that Lorentz force andAmpere’s law
is expressed respectively by (8) and (9)

(8)
(9)

Inserting (9) into (8) and integrating over the volume of the
object, one can achieve an expression for the force on the object
expressed solely by the B- eld present.

(10)

Expanding the curl and the cross product, the x, y, and z com-
ponent of (10) is

(11)

(12)

(13)

Introducing Maxwell’s stress tensor, (14), where is the elec-
tric eld, is the magnetic eld, is the vacuum permittivity,
and is the vacuum permeability

(14)
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Fig. 2. (a) General case unit vector. (b) FEMM unit vector.

If the eld is only magnetic, which is largely true in motors,
some of the terms cancel out and we get:

(15)

Expanding this for the x, y, and z directions we get:

(16)

(17)

(18)

Now taking the divergence of vector (16) to (18) results in
(19)–(21)

(19)

(20)

(21)

According to (2) the term
is equal to zero and the rst part of the right-hand

side can be cancelled. The remaining right-hand-side expres-
sions are similar to the ones in (11), (12), and (13). The force in

the x, y, and z direction on the object can therefore be expressed
as:

(22)

(23)

(24)

Using the divergence theorem to convert the volume integral to
a surface integral one achieves:

(25)

(26)

(27)

where is the unit vector normal to the surface. In a general
3-D FE case this normal vector can be expressed as:

(28)

when looking at a triangular segment as shown in Fig. 2(a).
to in (28) are vectors, and marked by arrows in the gure,
pointing from the reference system to the corner points of the
triangle marked by dots. FEMM however is a 2-D solver, as-
suming no variation of the B- eld in the “out the paper” direc-
tion, and the depth into the paper is constant. In this case,
the normal vector is as shown in Fig. 2(b), where the contour be-
tween the two dots de nes the edge of the surface. In this case,
the normal vector can, according to Fig. 2(b), be found as:

(29)

where is a unit vector pointing in the z-direction. It is now
possible to write a general force law expressed as:

(30)

The quantity is the Maxwell stress tensor for magnetostatic
elds

(31)

where .
The torque on a differential element can be expressed as:

(32)



2170 IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 7, JULY 2012

where is a vector pointing from the origin of torque to the
current position

(33)

Inserting (30) into this, results in:

(34)

Expanding the cross product, we can nd a torque tensor ,
which satis es (35), and is a function of the stress tensor (31)
and the components of the vector from the torque origin (33):

(35)

(36)

Further information on Maxwell’s stress tensor can be found in
[23]–[25].

B. The Gearless Drive

Fig. 3 shows a detailed drawing of the gearless drive in ques-
tion. The drive has an outer diameter of nearly 12 m and a length
of just over 1 m. It is a 56-pole 3-phase synchronous motor with
DC excited coils on the rotor feed through slip rings. The stator
windings are double layer fractional windings connected in a
wye (star) con guration, which is the reason for modeling the
complete drive, and not just a part of it. Another reason for mod-
eling the complete drive is that the center of the stator and rotor
is not coincident in these simulations, and seldom is in a real-life
situation due to, e.g., assembly and operational conditions. Usu-
ally there is less than 1 mm eccentricity due to assembly and
typically another 1 or 2 mm due to operational conditions which
mainly is due to thermal effects. Both the rotor and stator core
havemachined holes, which act as cooling ducts when the sheets
are stacked on top of each other. The main parameters of the
drive are listed in Table I.

III. IMPLEMENTATION

A. 2-D FEM Magnetic Model

The rst assumption that has been made is that the drive can
be represented in 2-D to drastically reduce the complexity and
computation time needed for simulating the drive. This assump-
tion has, however, not yet been veri ed, but seems like a reason-
able assumption, as the drive is symmetric into the plan, and is
over 1 m long. Due to this fact, the end effects are assumed to
have a minimal effect on the accuracy of the simulations. The
creation and analysis of the FEM model of the gearless drive
is carried out with the program FEMM through lua script from

Fig. 3. Detailed rotor and stator geometry.

TABLE I
TYPICAL GMD PARAMETERS

TABLE II
FEMM PROBLEM DEFINITION

MATLAB™. Lua is a programming language, used in this case
to send information between the two programs. FEMM has two
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ways of calculating the torque and forces, once the model is
solved for the B- elds.
One is called line integral, and the other is called block inte-

gral [26].
The line integral totals the force produced on a prede ned

contour in the air gap, derived from Maxwell’s stress tensor.
Deriving meaningful force results from the line integral requires
however some care in the choice of the integration path, which
is explained fully in [19], [26].
The block integral/Weighted Stress Tensor block is a volume

integral version of Maxwell’s stress tensor, that automatically
picks a collection of paths for the integration that yield “good”
force results. The results are typically more accurate than the
Maxwell Stress Tensor line integral, since in some sense, all
possible contours have been averaged to yield the Weighted
Stress Tensor force result.
Both types of integrations are used in this investigation,

where the contour for the line integral is de ned as a circle
con ning the rotor with a radius 2 mm larger than the nominal
radius of the rotor.
The boundary condition of the interior of the rotor and the

exterior of the stator is set so that the B- eld on the boundary is
always tangential to the boundary.
The isolation material of the copper conductors is modeled

as air, as these isolation materials are nonmagnetic. The coils
on the rotor are modeled as one current carrying conductor per
segment, where the current in these conductors is the excitation
current times the number of coil turns.
As this model is intended as a part of a larger multiphysics

model, it is important that it not only predicts the torque with
good accuracy, but also the total horizontal and vertical forces. If
the rotor and stator center coincide, the resulting forces from the
individual poles will cancel each other out, which is not that in-
teresting, and usually not the case in real life. For this reason the
rotor eccentricity is set to 7 mm in both the x-direction, , and
y-direction, , resulting in an eccentricity of 9.9 mm (68% of
the nominal air gap). This is accomplished by shifting the stator,
as FEMM calculate the torque around the point .
It has to be mentioned here that this eccentricity will never be
reached in operation as alarms would usually go off at an ec-
centricity of 3 mm and shut down will happen at an eccentricity
of 4 mm. The fascination about these machines is that they can
have a bore diameter in excess of 10 m, but are still being man-
ufactured with a precision of some 0.1 mm and operated with an
eccentricity of only 1–3 mm. The extremely large eccentricity
value used in this analysis is therefore only a theoretical ex-
ample. To create the maximum torque the drive can deliver, the
current in the armature windings is turned in a clockwise direc-
tion, as to create a load angle of 90 degrees.
The maximum element size of the mesh can be set individ-

ually for the different segments of the model, and is varied to
examine its in uence on the accuracy.
Thematerial of the rotor core is built up of St.44-2 sheets with

a thickness of 3 mm, and the lamination factor is set to 1. This
however, is of less importance in this simulation, as the eld is
constant.
The stator core is built up of M-43 sheets with a thickness of

0.5 mm, and the lamination factor is again set to 1. As for the

Fig. 4. - curves for core materials.

rotor core material, this is of less importance in this simulation,
as the eld is constant. Both materials are simulated using non-
linear material parameters, and the - curves for the materials
can be seen in Fig. 4.

B. Model Simpli cations

To reduce the complexity of the model, the following model
simpli cations are investigated and compared to the results of a
complete converged model.
The rst simpli cation examined is, where the air gap (isola-

tion) between the coils at the rotor and stator core is removed, as
indicated in red in Fig. 5(a). This simpli cation is assumed only
to contribute with small errors to the resulting B- eld between
the rotor and stator, as these air gaps are relatively small com-
pared to the remaining geometry. However, these small air gaps
are generating a large amount of small elements in the mesh,
which contributes to a longer evaluation time, and is the reason
for the simpli cation.
The second simpli cation is where the air gap between the

rotor poles is removed, as shown in Fig. 5(b), due to the same
reason as above, the small mesh elements. This simpli cation
seems reasonable, as the air gaps between the poles are rela-
tively small, and the forces acting between the individual poles
are of no interest in this analysis. Furthermore, these air gaps
are a long way from the B- eld in the air gap between the rotor
and stator, the B- eld being the main area of interest in these
analyses.
The third simpli cation examined is where the round cooling

duct holes in the back iron of the stator are removed, as shown in
red in Fig. 5(c). Circular curvatures in FE models usually gen-
erate large amounts of mesh elements due to the fact that the
curvature is built up of straight lines, and a precise representa-
tion of the curvature require a lot of these straight lines. Again,
to reduce the number of elements, it is desirable to remove these
holes, if possible, without generating large errors to the main re-
sults. The validity of this simpli cation seems reasonable, due
to the fact that the ux density at these holes is not so dense, as
can be seen in Fig. 11(b). Furthermore, these holes are a long
way from the B- eld in the air gap between the rotor and stator,
which makes it more plausible to only have minor effects on the
B- eld.
The fourth simpli cation is where the red holes in Fig. 5(d)

are removed. The reason and validity of this simpli cation is the
same as the previously mentioned simpli cation, that the ux
density at the holes is not that dense, which again can be seen in
Fig. 11(b), and they are a long way from the B- eld of interest.
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Fig. 5. (a) Air gap between coil and iron parts removed. (b) Air gap between
rotor poles removed. (c) Holes in back iron of the stator removed. (d) Small
holes in rotor poles removed. (e) Oblong holes in stator core removed. (f) Only
a small band in the air gap between rotor and stator has a ne mesh.

The fth simpli cation is where the oblong cooling duct holes
in the stator ngers are removed, as indicated in red in Fig. 5(e).
It is highly desirable to remove these holes, as they are made up
of arcs at the ends, and are relatively narrow, which generate a
huge amount of small mesh elements, resulting in an increased
evaluation time. However it is doubtful that this simpli cation
can be accepted as valid, as some of the stator ngers have a
high ux density, as seen in Fig. 11(b), and the oblong holes
extend approximately 1/5 of the nger width.
The sixth simpli cation is where only a small band in the air

gap between the rotor and stator has a ne mesh, as indicated
in Fig. 5(f). The reason for this simpli cation is that we are
only interested in the B- eld in the air gap between the rotor
and stator, where the integration of Maxwell’s stress tensor is
performed. It is therefore assumed to be suf cient to model the
air in this area with a dense mesh, and thereby reducing the
number of elements, as the remaining air between the rotor poles
can be modeled with a coarse mesh.
Finally, a model including all the simpli cations, which are

shown to have minimal effect on the accuracy are investigated.
All the investigated simpli cations are listed in Table III, and
the results from these simpli cations will be shown in the next
section.

TABLE III
SIMPLIFICATIONS

Fig. 6. B- eld and ux lines (FEMM).

IV. SIMULATION RESULTS

A. Reliability of FEMM Achieved Results

Due to the fact that the program “Finite Element Method
Magnetic” (FEMM) is a freeware program many people might
question the reliability of the results achieved with this soft-
ware program. A test case has therefor been carried out with
FEMM and the well known and respected software program
called Maxwell2D. The case compares the magnetic uxes in
air and a ring of nonlinear materials created by currents in arc
shaped copper bars, Fig. 6. Without getting into the speci c de-
tails of the model the results will just be presented. The red lines
in Fig. 6 indicated the path where the B- eld is being evalu-
ated. Fig. 7 shows the absolute values of the B- eld on these red
lines where is the eld normal to the horizontal line and

is the eld tangential to the vertical line. Both FEMM and
Maxwell2D results has been plotted. The results from FEMM
has been calculated by one of the authors, Søren B. Andersen,
where the results from Maxwell2D has been calculated by Dr.
Ing. Grinbaum at ABBMinerals & Printing, Switzerland. It can
be seen that there is a very good coherence between these results
with only some small deviations at the edge of the ring. These
deviations however are assumed to be due to a larger mesh size
in the Maxwell2D case as the tendency of the FEMM results ts
better as smooth curves are expected instead of wobbling ones.
In any case the two programs can be assumed to produce the
same results.

B. Investigation of Boundary Condition

In the modeling of the motor an assumption is made, that all
the B- elds at the outer diameter of the stator and the inner di-
ameter of the rotor, is tangential to the boundary. This assump-
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Fig. 7. Maxwell2D vs. FEMM—B- elds.

Fig. 8. Investigation of boundary condition.

tion is investigated, and shows that, as long as the permeability
of the core material is much larger than the permeability of the
surrounding air and the material is not close to saturation, the
error in connection with this assumption is neglectable. This can
also be seen in Fig. 8, which shows that the B- eld in the air out-
side the stator and inside the rotor are less than 0.05 T compared
to the iron core, which for the most part, is larger than 1 T and
this makes the assumption acceptable.

C. Convergence
Proving that the described FEMM model converges to a

single solution, the convergence is examined by varying the
mesh size of the air and iron parts of the complete model,
and looking at the convergence of the calculated forces and
torque. Figs. 9(a), (b), and (c) show some results from this
convergence analysis. The dashed and dot-dashed curves in the
gures show the force and torque calculated with a constant
iron mesh size of maximum 30 for the block and line integrals
respectively, where the air gap mesh size is varied between 1
and 8. The dashed and solid curves show the force and torque
calculated with a constant air gap mesh size of maximum 2 for
respectively the block and line integrals, where the iron mesh
size is varied between 2.7 and 60. As it must be assumed that
ner mesh creates more accurate solutions, the dashed and the
solid curves are the most interesting ones, where it can be seen
that the solid curve (block integral) converges, when the model
consists of approximately 5.5 million elements. As explained
earlier, the block integrals produce the most accurate results,
and the model can therefore be assumed to have converged,

Fig. 9. (a) Convergence of torque, (b) Convergence of force (x-direction), (c)
Convergence of force (y-direction).

even though the line integral has not yet completely converged.
The solutions, which have been achieved with the model with
the nest mesh, are the ones which will be used for comparisons
against the simpli ed models.

D. B-Field
The B- eld on the line integration contour in the air gap is

plotted for pole 1 and 2 counted CCW from the x-axis, and can
be seen in Fig. 10. Fig. 10(a) shows the absolute amplitude of
the B- eld, and it can be seen that the maximum amplitude for
pole 2 is slightly larger than for pole 1, as the air gap at this
pole is smaller due to the rotor eccentricity. This is one of the
reasons why the complete drive has to bemodeled. Furthermore,
it can be seen that the B- eld drops at each coil slot in the stator,
which will create a pulsating B- eld as the rotor turns. This has
however not been simulated. In Fig. 10(b) the radial B- eld is
shown. It can be seen that this cannot be assumed to be a sinus
shaped B- eld, which most simple analytical models assume,
which is one of the reasons for creating a complete FE model.
The reason why the B- eld is not sinusoidal, even though the



2174 IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 7, JULY 2012

Fig. 10. (a) Abs. B- eld in air gap at pole 1 & 2. (b) Radial B- eld in air gap
at pole 1 & 2. (c) Tangential B- eld in air gap at pole 1 & 2.

input current is sinusoidal, is due to the salient poles and the
slots in the stator. Finally, the tangential B- eld is shown in
Fig. 10(c), which is the only eld we actually want, as this is
the eld that creates the torque on the rotor. It can be seen that
this eld also changes amplitude at each slot in the stator, which
is responsible for the torque ripple.
Fig. 11 shows the B- eld in the iron and air at pole 1, where it

is clear to see that the armature eld is turned in a CW direction
so as to create the torque. Furthermore the critical areas in the
model with high eld density can be identi ed and used for op-
timization/simpli cation purposes. In this case the area at both
sides of the large hole in the rotor pole have high ux density,
which might be optimized by creating a oblong hole, with the
same area, aligned in the radial direction. This will create more
space beside the hole for the magnetic ux, thereby reducing the
density. This has though not been examined, as this article only
concentrates on the simpli cation of FE models for reduction
of evaluation time. The thick orange line, actually 49 lines (left
arrow), in the air gap in Fig. 11(b) shows the integration paths
for the block integrals, and the thin blue line (right arrow) shows
the integration path for the line integral, used for calculating the
torques and forces. A close up of these lines in the air gap close
to the corner of a stator nger (marked by a circle) can be seen

Fig. 11. (a) Section of model mesh with 4.4e6 elements (pole 1). (b) B- eld
from model with 4.4e6 elements (pole 1).

Fig. 12. Close up of air gap at pole 1. (a) 49 block integral paths. (b) Line
integral path.

in Fig. 12, where the 49 lines for the block integral are visible,
arrow (a). Arrow (b) in Fig. 12 is pointing at the line integral
path.
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E. Evaluation of Simpli cations

To examine how well the previously mentioned simpli-
cations predict the forces and torque, the deviation be-
tween the simpli ed and the complete model are calculated.
Figs. 13(a), (b), and (c) show the results from these analyses,
where the simpli cations (a) to (g) refer to the simpli cations
listed in Table III. The left bars in the gures are results
achieved with the block integral and compared with the block
integral results from the complete converged model. The right
bars are results achieved with the line integral and compared
with the line integral results from the complete converged
model. As can be seen, most of the simpli cations have only
a minor effect on the achieved torque results (less than 2%).
However, looking at the forces in Fig. 13(b) and (c), it can be
seen that simpli cation (e) deviates a lot from the converged
model results (over 20%). This simpli cation is the one where
the oblong holes in the stator ngers are removed, and it was
expected to give large errors, as the iron area of the stator
ngers has increased a lot by taking out the oblong holes in
an area with high ux density (see Fig. 11(b)). Simpli cation
(g) is a model which combines all the simpli cations, which
only have introduced minor errors to the results. It can be
seen that this model also predicts the forces and torque with
only minor deviations. This model, however, still consists of
approximately 5.8 million elements, and takes just over 18 h
to evaluate on the computer system listed in Table IV. This
is, in most cases, an unacceptably long evaluation time. It is
therefore investigated how coarse the mesh of the simpli ed
model can be, while still predicting forces and torque with
only small errors. The results from this analysis are shown in
Fig. 14(a)–(f). Looking at the three left plots, which show the
deviations for the block integral, one can see that there is a
ratio between the core and air gap mesh size, which will predict
the forces very well. This tendency, however, seems only to
apply to results from the block integrals, where the results from
the line integrals, the last three gures, seem more bumpy and
random. Looking just at the block integral results, one can
achieve force results with close to 0% deviation with a model
with an air gap mesh size of 6 and an iron mesh size of 60. This
will produce a model with 247 797 elements, which can be
evaluated in less than 25 min on the computer system listed in
Table IV. This is a reduction in computation time of more than
98% compared to the complete converged model. Calculating
the deviance of this model shows that the torque only deviates

% and the forces % from the complete converged
model. As this ratio in mesh size might only be a characteristic
of the speci c rotor eccentricity, another rotor eccentricity
value is investigated. The rotor eccentricity in the horizontal
and vertical direction is therefore changed to 2 mm instead of 7
mm, giving a total eccentricity of 20% of the nominal air gap.
The convergence of this new case of investigation is illustrated
in Fig. 15. Running this new rotor eccentricity with the mesh
size as described above, air gap mesh size of 6 and iron mesh
size of 60, one achieves a deviation on the torque of %
and a force deviation of %. It has been illustrated that this
ratio seems to be valid for different states of the model, when
using the block integral for calculation of torques and forces.

Fig. 13. (a) Deviation in torque due to simpli cations. (b) Deviation in hori-
zontal force due to simpli cations. (c) Deviation in vertical force due to simpli-
cations.

F. Computation Time

The evaluation time for some of the models is measured. It
shows that it is possible to estimate the approximate computa-
tion time needed for a simulation, once the number of elements
is determined. Fig. 16 shows points from some of the simula-
tions made with the system listed in Table IV and a power curve
t through the points with the related equation, (37). This equa-
tion is used for the calculation of time for some of the simula-
tions. All evaluation times mentioned refer to evaluation on this
system

(37)

G. Main Results

To get an overview of the main results of the described sim-
ulations, Tables V and VI list the most important parameters.
From Table V it can be seen that the simpli cations by them-
selves do not reduce the evaluation time signi cant, however
they make it possible to create larger mesh elements, which
otherwise would not be possible due to the geometry. Table VI
shows that the found ratio between the mesh size of the air gap
and iron parts is valid for different rotor eccentricities, and that
the evaluation time is reduced to just 24 min, which is a reduc-
tion of the evaluation time of approximately 98%, keeping the
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Fig. 14. (a) Torque deviation due to mesh size (block). (b) Torque deviation
due to mesh size (line). (c) x-direction force deviation due to mesh size (block).
(d) x-direction force deviation due to mesh size (line). (e) y-direction force de-
viation due to mesh size (block). (f) y-direction force deviation due to mesh size
(line).

Fig. 15. (a) Convergence of torque. (b) Convergence of force (x-direction). (c)
Convergence of force (y-direction).

TABLE IV
COMPUTER SYSTEM

Fig. 16. Computation time.

accuracy for the torque and forces calculation to less than 0.3%
and 1.2% respectively.

V. CONCLUSION AND FUTURE ASPECTS
The drive is represented by a 2-D FEM magnetic model, re-

ducing drastically the complexity and computation time needed
for simulating forces and torque.
A) The boundary condition of the interior of the rotor and the

exterior of the stator has been set so that the B- eld on the
boundary always is tangential to the boundary. The inves-
tigation of this assumption shows that as long as the per-
meability of the core material is much larger than the per-
meability of the surrounding air, the error in connection
with this assumption is neglectable as long as not close
to saturation. This will reduce the number of elements, as
the surrounding air does not need to be modeled.

B) Details at areas with low eld densities can be removed in-
icting only minor errors to the achieved force and torque
results.

C) Geometric simpli cations do not alone reduce the number
of elements and thereby the simulation time signi cantly.
An investigation of the mesh size needed for achieving
accurate results has therefore been performed. This inves-
tigation shows that there is a certain ratio between mesh
size in the air gap and in the iron core of the drive that
predicts the forces and torque with only small deviations.
Such deviations have been calculated using the complete
model and the block integral. A tested ratio of an air gap
mesh size of 6 and a iron mesh size of 60 has been shown
to give deviation on the torque of % and forces of

%, when the composed rotor eccentricity has been
set to mm (68% of nominal air gap). It
has also been veri ed that this ratio is not only a charac-
teristic of this rotor eccentricity, as a model with a rotor
eccentricity of only 2 mm in the horizontal and vertical
direction (20% of nominal air gap) show similar results,
namely a deviation on the torque of % and forces of

%. These deviations are way below the acceptable
tolerances of % set forth by the GMD manufacture.

D) The described simpli cations and mesh sizes have proved
to reduce the computation time from over 20 h to less than
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TABLE V
MAIN SIMPLIFICATION RESULTS

TABLE VI
MAIN MESH SIZE RESULTS (SIMPLIFICATION G)

25 min, which is a reduction in evaluation time of over
98%.

E) The conclusions from A) to D) are of fundamental impor-
tance toward simulating the coupled dynamic behavior of
rotor and stator, a future aspect of this research. It is im-
portant to highlight that such devices are huge and con-
sist of a large number of poles increasing the complexity
of these drives. The dynamic coupling between stator and
rotor movements via magnetic forces and torque allows
for an accurate simulation of the nonlinear dynamic be-
havior of gearless drives in time and the performance op-
timization of such devices.

F) The calculations were made in 2-D with the assumption
that 3-D effects such as end windings and so on could be
added afterwards. Neglecting these 3-D effects can only
be valid if the results are still suf ciently precise which of
course has to be examined. Otherwise these effects have
to be found and added to achieve the complete solution.
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Abstract

A stable rotor - supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch -

losses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilib-

rium position as result of small increases in angular velocity. Such an unstable behavior and its reasons are thoroughly

theoretically as well as experimentally investigated in this work. In this context, this paper gives a theoretical and

experimental contribution to the problem of two dimensional passive magnetic levitation and one dimensional con-

tact stability dictated by mechanical-magnetic interaction. The behavior of passive multi-cylinder magnetic bearings

(MCMB) is thoroughly theoretically as well as experimentally investigated. The contact dynamics between a clutch

and a rotor supported by MCMB using several configurations of magnet distribution is also theoretically and exper-

imentally studied. Such investigations lead to: a) clear physical explanation about the reasons of the rotor unstable

behavior, loosing its contact to the clutch; b) an accurate prediction of the threshold of stability based on the nonlinear

rotor-bearing model, i.e. maximum angular velocity before the rotor misses its contact to the clutch as a function of

rotor, bearing and clutch design parameters.

Keywords: Passive Magnetic Bearing, Magnetic forces, Magnetic Field, Stability, Natural frequencies, Mode Shapes

Nomenclature

Roman Symbols
a acceleration [m/s2]
an outpointing unit normal vector [-]
aφ unit vector, spherical/cylindrical [-]
aθ unit vector, cylindrical [-]
aR unit vector, spherical [-]
ar unit vector, cylindrical [-]
az unit vector, cylindrical [-]
Jms current density of the surface of the magnet [A/m2]
Jm current density of the interior of the magnet [A/m2]
m magnetic dipole [A m2]
F force [N]
I mass moment of inertia [kg m2]
M moment [Nm]
MC magnetization vector [A/m]
n unit normal vector [-]
R reaction force vector from clutch [N]
r position vector [m]
r

0
position of rotor tip [m]

T transformation matrix [-]
v velocity vector [m/s]
A vector magnetic potential [T m2]
B magnetic flux density [T]
Br magnetic remanence [T]
A surface area of cylinder-magnet [m2]
a radius of cylinder-magnet [m]
ah radius of bearing to center of magnets [m]
g gravity constant [m/s2]
h height of cylinder-magnet [m]
i bearing magnet
i+ bearing magnet that rotor is angled towards
IC current [A]
K positive constant [-]
l length [m]
lx distance from rotor tip to center of rotor magnet [m]

lcur length of electrical current [m]
m mass [kg]
MC magnetization constant [A/m]
R reaction force [N]
r magnet in rotor
RP distance [m]
s clutch inclination [-]
V volume of cylinder-magnet [m3]
v velocity [m/s]
z0 chosen constant displacement [m]
Greek Symbols
α Cardan angle [rad]
β Cardan angle [rad]
γ imbalance phase [rad]
Ω angular velocity of reference system [rad/s]
ω angular velocity of rotor [rad/s]
μ friction coefficient
μ0 vacuum permeability, 4π · 10−7 H/m
φ variable angle above x-axis in xy-plane [rad]
τ clutch moment [Nm]
ζ variable in z-direction [rad]
Subscripts∗ representing quantities in xz-plane independent of y
0 origo
a point a, rotor magnet 1
b point b, imbalance mass
B1 coordinate system B1
B2 coordinate system B2
c point c, center of gravity
d point d, rotor magnet 2
g gravity
I coordinate system I
K clutch
n normal
rel relative
t tangential
U imbalance mass
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1. Introduction

Due to the advent of rare-earth magnets the development of magnetic materials has been accelerated in the last few

decades [1, 2]. Passive magnetic bearings, exploring the advantages of magnetic material properties, allow friction free

suspensions without the need of expensive electronics and control systems. The simplicity makes such type of bearings

extremely attractive to different engineering applications. Passive magnetic bearings are normally manufactured using

permanent magnets magnetized either axially or radially. The properties of such bearings strongly depend on the

magnet material, its magnetic polarization and the dimensions of the magnets used [3]. One of the first investigations

concerning passive magnetic bearings with permanent magnets (magnetized radially or axially) have been done by

Yonnet [4, 5].

The use of either 2-D and 3-D analytical calculations for the determination of the magnetic field or of the magnetic

forces created between ring permanent magnets or numerical procedures are common approaches while designing

such electro-mechanical machine element [6, 7, 8, 9]. Some authors have also proposed semi-analytical expressions

of the magnetic field created by ring permanent magnets [10, 11] in other to reduce the high computational costs.

Methods for calculating such forces and additionally stiffness coefficients among ring passive magnetic bearings are

thoroughly treated in [12, 13]. Experimental validation of magnetic force models are presented and discussed in [14]

using arrays of cylindrical permanent magnets.

An interpretation of Earnshaw’s Theorem (1842) is that permanent magnetic levitation of a rigid body is im-

possible [15]. Instability and low damping are the two most important drawbacks of passive magnetic levitation.

Nevertheless, since the beginning of the nineties a spinning top is offered in toy shops, able to rotate contactless for

minutes over a permanent magnetic plate built by ring magnets. The interaction of the six degree of freedom of this

fast top with the magnetic field is discussed in details in [16, 17] with the classical methods of rotor dynamics and

gyroscopic stabilization. Additionally, other types of stabilization can be found in the literature, namely by means of

passive electro-dynamical actuation - thoroughly theoretically investigated in [18, 19] and experimentally shown in

[19] - or by classical active actuation, industrially adopted in small and large machines [20]. The linear and nonlinear

vibration behaviour of simple rigid rotors [21] and simple spring-mass systems [22] interacting with passive magnetic

rings is also theoretically as well as experimentally treated in the literature.

In this framework this paper gives two main theoretical and experimental contributions to the problem of rotors

under passive magnetic levitation. Firstly, the modeling of passive multi-cylinder magnetic bearings (MCMB) is the-

oretically as well as experimentally investigated using two different approaches. It is worth highlight that there are

several ways of calculating magnetic forces between rings and most engineering applications reported in the litera-

ture deal with several ring permanent magnets. MCMB can be designed by circumferentially distributing multiple

axially-magnetized cylinders around the rotor, generating isotropic as well as anisotropic bearing stiffness. Several

configurations of magnet distribution are theoretically as well as experimentally studied in this work. Secondly, the

axial stabilization of the rotor is obtained by means of punctual contact to a mechanical clutch. The contact dynamics

between rotor and clutch is thoroughly investigated. The reasons of the rotor unstable behavior, which looses its con-

tact to the clutch, are explained. In the context, the importance of design parameters as residual unbalance, contact

friction coefficient and clutch geometry are elucidated. Finally, an accurate prediction of the threshold of stability,

i.e. maximum angular velocity before the rotor misses its contact to the clutch, is achieved by means of the nonlinear

rotor-bearing model presented.

2. Physical System and Mechanical Model

The test-rig used for proving and verification of the concept and mathematical models of the proposed passive

cylinder-magnet bearings is shown in Fig. 1. The device consists of six main parts which are:

(1) Passive cylinder-magnet bearings

(2) Imbalance ring with a screw

(3) Passive rotating cylinder-magnets

(4) Rotor

(5) Punctual contact clutch

(6) DC-motor
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Figure 1: Experimental setup: (1) Passive cylinder-magnet bearings, (2) Imbalance ring with a screw, (3) Passive cylinder-magnets, (4) Rotor, (5)

Punctual contact clutch, (6) DC-motor

The rotor (4) is levitated in the two horseshoe shaped bearing houses (1) which contain several cylinder-magnets

arranged in a circular pattern. These permanent magnets form a magnetic field around the rotor which repels similar

cylinder- magnets (3) embedded in the rotor and thereby counteracting the gravity forces. As the shape of the magnetic

field generated by the bearings attempts to push the rotor in one of the axial direction the bearings has been shifted

slightly to assure an axial force on the rotor toward the clutch (5). The clutch consists of a round metal disc with

an inverted cone shape which works exclusively by friction forces between the clutch and the rotor tip. This clutch

is firmly attached to a DC-motor (6) which can be used for controlling the rotational speed of the rotor. Four of the

mentioned six main parts will in the following be described in more details.

2.1. Rotor
The rotor illustrated in Fig. 2(a) has a diameter of 15 mm and a length of 287 mm weighing 135 g. It is composed

of 5 different materials, Plexiglas, brass, carbon steel, stainless steel and NdFeB magnets. The main part of the rotor

consists of Plexiglas due to its non-magnetic properties and does therefore not interfere with the magnetic field from

the two embedded cylinder-magnets, see Fig. 2(b). The tip at the end of the rotor, away from the embedded magnets,

are made of carbon steel to be able to record the deflection of the rotor with the use of proximitors. The rotor end with

the steel tip is chamfered with an inclination greater than that of the internal cone in the clutch to insure that there will

only be a point contact between the rotor and the clutch. A brass ring with a screw is attached at the center of the rotor

to simulate the effects of imbalance.

2.2. Passive Cylinder-Magnets
The magnets used in the bearings are sintered rare-earth neodymium magnets also known as NdFeB and are the

strongest type of permanent magnets to date. The dimensions of the chosen cylinder-magnets for this test-rig are

Ø10 × 20 mm for both the bearing and rotor magnets and they are magnetized in their axial direction (z-direction

in Fig.3(b)). A picture of one of the magnets is seen in Fig. 3(a) and Tab. 1 lists their magnetic properties. The

information of interest in Tab. 1 is in this case the magnetic remanence, Br. The correlation between the magnetic

remanence and the magnetization constant MC , which will be used later, is given as:

MC = Br · μ0 [A/m] (1)
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(a) (b)

Figure 2: Rotor with embedded permanent cylinder-magnet and imbalance ring. (a) Physical system, (b) Mechanical model illustrating the

parameters used in the mathematical modelling. F1 & F2: magnetic reaction forces, Fu: imbalance forces, Fg: gravity force, R: clutch reaction

forces, la: length to magnet 1, lb: length to imbalance forces, lc: length to gravity force, ld: length to magnet 2.

(a) (b)

Figure 3: Cylinder-magnet used to build passive magnetic bearings with different configurations, illustrating the parameters used in the mathemat-

ical modelling.

Remanence Coercivity Intrinsic Max. energy Working temp.

Sintex Br HCB Coercivity product (B · H)max Tw

Grade T [kG] kA/m [kOe] HCJ kJ/m3 [MGOe] L/D=0.7

Typical min. Typical min. kA/m [kOe] Typical min. ◦C

SIX-N35
1.21 1.17 915 860 >955 279 263 <80

[12.1] [11.7] [11.5] [10.8] [>12] [35] [33]

Table 1: Magnetic properties provided by the company Sintex a/s

From the table it is seen that the magnetic remanence is in the range of 1.17 to 1.21 T, hence, the magnetization

constant is determined to be in the range of 931 to 963 kA/m. These values will later be compared against experimental

achieved results.
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2.3. Passive Cylinder-Magnet Bearings
The passive cylinder-magnet bearing houses, Fig. 4, are made of aluminum due to its non-magnetic properties

as not to interfere with the generated magnetic field. Holes have been machined into the horseshoe shaped bearing

houses in an evenly spaced circular pattern where the cylinder-magnets can be placed in different configurations to

generate different shapes of the bearing’s magnetic field. Two different sizes of bearings have been made, Fig. 4(b)

and Fig. 4(c), with two different magnet center diameters and thereby also a different maximum number of magnets.

The large bearings have a magnet center diameter of 66 mm and the small bearings have a magnet center diameter of

46 mm.

(a) (b) (c)

Figure 4: (a) Small and large permanent magnet bearing houses without and with permanent magnets. (b) Mechanical model and parameters for

the small bearing. (c) Mechanical model and parameters for the large bearing.

2.4. Motor and Punctual Contact Clutch
The clutch, Fig. 5, is made of a round stainless steel bar where an inverted cone shape has been machines with a

surface inclination s � 0.57, Fig. 5(b) . The clutch has two main purposes:

1 ) to keep the rotor from moving in the axial direction
2 ) to rotate the rotor exclusively by friction forces between clutch and rotor

The clutch is firmly attached to the shaft of a DC-motor which can rotate the clutch and thereby the rotor making it

possible to control the rotation speeds of the rotor.

(a) (b)

Figure 5: Motor and clutch.
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3. Mathematical Modeling

The mathematical model of the test rig have been split up into three main parts: rotor model, clutch model and

bearing model which in the following will be explained in more details but first the kinematics of the rotor and the

clutch will be described.

3.1. Kinematics of Rigid Rotor and Punctual Contact Clutch

3.1.1. Rotor
The equations of motion of the rotor will be expressed in a moving coordinate system, here called B2, which

moves with the rotor but does not rotate around the longitudinal axis of the rotors. The used coordinate systems are

defined as shown in Fig. 2(b) where system I (red) is a fixed reference system. System B1 (blue) is defined as system

I rotated by the angle α around its IX axis. System B2 (green) is defined as system B1 rotated by the angle β around

its B1Y axis. In other words the equations of motion is expressed in Cardan angles, Ref.[23].

The transformation matrix from system I to system B1 and from system B1 to system B2 are:

B1
TI =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ B2
TB1
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

The transformation matrix from system I to system B2 is therefore:

B2
TI = B1

TI · B2
TB1

(3)

Usually the rotor tip is positioned in the clutch center (0, 0, 0), but the rotor tip is able to slide at the clutch and actually

also fly in free space. Therefore generally the rotor tip has the coordinates I r0
= (x, y, z). The position vectors from

the tip of the rotor to the point of attack for the different forces illustrated in Fig. 2(b) are:

B2
rF1
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

0

la

⎫⎪⎪⎪⎬⎪⎪⎪⎭ B2
rFU
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

0

lb

⎫⎪⎪⎪⎬⎪⎪⎪⎭ B2
rg =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

0

lc

⎫⎪⎪⎪⎬⎪⎪⎪⎭ B2
rF2
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

0

ld

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4)

The angular velocity of the system B2 is a sum of the time derivative of the angles α and β viewed as vectors.

B2
Ω = B2

α̇ + B2
β̇ = B2

TB1
·
⎧⎪⎪⎪⎨⎪⎪⎪⎩
α̇
0

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ +
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0

β̇
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
α̇ cos β
β̇

α̇ sin β

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5)

The rotor angular velocity is equal to the angular velocity of the reference system plus the rotation of the rotor around

its longitudinal axis (B2
z-axis).

B2
ω = B2

Ω + B2
γ̇ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α̇ cos β
β̇

α̇ sin β + γ̇

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6)

The linear acceleration of the rotor center of gravity can expressed as:

B2
a = B2

TI · I a0
+ B2
Ω × (B2

Ω × B2
rg ) + B2

Ω̇ × B2
rg

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẍ cos β + ÿ sinα sin β − z̈ cosα sin β + lcα̇2 sin β cos β + lcβ̈

ÿ cosα + z̈ sinα + 2lcα̇β̇ sin β − lcα̈ cos β
ẍ sin β − ÿ sinα cos β + z̈ cosα cos β − lcα̇2 cos2 β − lcβ̇2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(7)
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3.1.2. Punctual Contact Clutch
The shape of the inverted cone in the clutch shown in Fig. 5(b) can be expressed as:

P(u, θ) = (u · cos θ , u · sin θ , s · u) , u ∈ [0; 5 mm], θ ∈ [−π; π], (8)

in Cartesian coordinates in reference system I. When the rotor tip is in contact with the clutch it is necessary to know

the unit normal vector, n, of the clutch in relation to friction as will be explained later on. In Cartesian coordinates in

reference system I it can be written as:

n =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− s·x√
s2+1
√

x2+y2

− s·y√
s2+1
√

x2+y2

1√
s2+1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(9)

Furthermore it is given that z = s
√

x2 + y2 when the rotor is in contact with the clutch. By differentiating the rotor

tip position at the clutch surface twice with respect to time the velocity, ż, and acceleration, z̈, in the z-direction are

obtained as:

ż =
s√

x2 + y2
(xẋ + yẏ)

z̈ = − ż2

s
√

x2 + y2
+

s√
x2 + y2

(ẋ2 + ẏ2 + xẍ + yÿ)

(10)

The transformation matrix from the initial coordinates to the clutch coordinates are as follows:

K TI =

[
∂P
∂u

/ ∥∥∥∥∥∂P∂u
∥∥∥∥∥ ∂P
∂θ

/ ∥∥∥∥∥∂P∂θ
∥∥∥∥∥ n

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(θ)√
s2+1

− u sin(θ)√
u2

− sx√
s2+1
√

x2+y2

sin(θ)√
s2+1

u cos(θ)√
u2

− sy√
s2+1
√

x2+y2

s√
s2+1

0 1√
s2+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

It is important to highlight that the normal vector, ż and z̈ has singularities at (x, y) = (0, 0). To get around this it is

assumed that the coupling is a flat plate as long as
√

x2 + y2 ≤ 0.25 mm. This means that there will be an “artificial”

and rough transition at 0.25 mm from the center of the coupling. The justification for this assumption is that in praxis

neither the coupling nor the rotor will be completely pointy and have a more or less flat surface in the center as a result

of manufacturing methods.

3.2. Rotor Model
The equations of motion of the rotor can be expressed by Newton’s second law and Euler’s moment equation, Ref.

[24], where the summation of forces in Newton’s second law (the left hand side) can according to Fig. 2(b) be written

as: ∑
B2

F = B2
TI ·

(
I F1
+ I F2

+ I Fg + I R
)
+ B2

FU

= B2
TI ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

F1x

F1y

F1z

⎫⎪⎪⎪⎬⎪⎪⎪⎭ +
⎧⎪⎪⎪⎨⎪⎪⎪⎩

F2x

F2y

F2z

⎫⎪⎪⎪⎬⎪⎪⎪⎭ +
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0

−mg
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ +
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Rx

Ry

Rz

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mb rb γ̇

2 cos γ
mb rb γ̇

2 sin γ
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(12)

The right hand side of Newton’s second law can be written as:

m · B2
a = m ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝B2
TI · I a0

+ B2
Ω × (B2

Ω × B2
rg ) + B2

Ω̇ × B2
rg + 2Ω × vrel︸����︷︷����︸

=0

+ arel︸︷︷︸
=0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= m ·
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẍ cos β + ÿ sinα sin β − z̈ cosα sin β + lc α̇
2 sin β cos β + lc β̈

ÿ cosα + z̈ sinα + 2lc α̇β̇ sin β − lc α̈ cos β
ẍ sin β − ÿ sinα cos β + z̈ cosα cos β − lc α̇

2 cos2 β − lc β̇
2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(13)

where the two last terms is zero as the rotor is modeled as a rigid body and thereby the relative velocity and acceleration

of the center of mass is zero. By setting Eq. (12) equal to Eq. (13) the first 3 of the needed 6 equations have been
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derived. The last 3 equations are to be found using Euler’s moment equation.

The summation of the moments around origo (the left hand side) can be expressed as:

∑
B2

M
0
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

0

la

⎫⎪⎪⎪⎬⎪⎪⎪⎭ × (B2
TI · I F1

) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

0

lb

⎫⎪⎪⎪⎬⎪⎪⎪⎭ × B2
FU +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

0

lc

⎫⎪⎪⎪⎬⎪⎪⎪⎭ × (B2
TI · I Fg ) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

0

ld

⎫⎪⎪⎪⎬⎪⎪⎪⎭ × (B2
TI · I F2

) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

0

τ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Mz sinα − lb mb rb γ̇

2 sin γ − My cosα
My sinα sin β − Mz cosα sin β + Mx cos β + lb mb rb γ̇

2 cos γ
τ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(14)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Mx

My

Mz

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

la F
1x + ld F

2x

la F
1y + ld F

2y − lc mg
la F

1z + ld F
2z

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (15)

is the x, y and z moment components defined in reference system I and τ is the moment transfered to the rotor through

the clutch.

The right hand side of the Euler moment equation can be derived to:

B2
I

0
· d

dt B2
ω + B2

Ω × (B2
I

0
· B2
ω) + B2

rg × (m · B2
a

0
) =⎧⎪⎪⎪⎨⎪⎪⎪⎩

−lc m(z̈ sinα + ÿ cosα) + (Iz − Iy − Ix )β̇α̇ sin β + Ix α̈ cos β + Iz β̇γ̇
lc m(ÿ sinα sin β − z̈ cosα sin β + ẍ cos β) + (Ix − Iz )α̇

2 cos β sin β − α̇γ̇Iz cos β + Iy β̈
Iz α̈ sin β + (Iz + Iy − Ix )α̇β̇ cos β + Iz γ̈

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(16)

where the inertia matrix B2
I

0
is diagonal because of symmetry. Setting Eq. (14) equal to Eq. (16) the last three needed

equation of motion for the rotor are obtained.

3.3. Punctual Contact Clutch Model and Representation of Contact Forces, R =
{
Rx ,Ry ,Rz

}
The interaction between the rotor and the clutch can be explained by 3 different states. The first state is when there

is sufficient friction between the rotor and the clutch thereby restricting the rotor from sliding on the clutch surface.

The second state is when the friction between the rotor and the clutch is not sufficient resulting in movement of the

rotor tip on the clutch surface. The third state is when there is not any contact between the clutch and the rotor as the

rotor have been pushed away from the clutch. Before commenting further on the three states the normal reaction force

and tangential force are defined as, see Fig. 2(b) and Fig. 5(b):

Normal reaction force:

Rn =
∥∥∥Rn

∥∥∥ = R · n where R =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Rx

Ry

Rz

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (17)

The tangential reaction force:

Rt =
∥∥∥Rt

∥∥∥ = ∥∥∥R − Rn

∥∥∥ where Rn = (R · n)n (18)

3.3.1. State I
In state I the friction between the rotor and the clutch is sufficient to restricting the rotor from sliding on the clutch

surface. This can be described as:

μRn ≥ Rt (19)
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As the end of the rotor is not sliding on the clutch means that it is either in the center (0,0,0) or rotating in circles in

a plane normal to the z-axis. As the clutch has a constant rotational speed γ̇ the velocity and acceleration of the rotor

tip can be written as:

ẍ = −γ̇2x , ẋ = −γ̇y , ÿ = −γ̇2y , ẏ = γ̇x (20)

As the rotor is not moving in the z-direction z̈ must be zero and the remaining six unknowns, α̈, β̈, Rx , Ry , Rz and τ,
can be determined by the six equation of motion described in Sec. 3.2. After solving, it has to be checked if Eq. (19)

is valid. Otherwise the rotor must be in one of the other mentioned states.

3.3.2. State II
In state II the friction between the rotor and the clutch is not sufficient to prohibit the rotor from sliding on the

clutch surface. The friction force is now directly dependent on the tangential force and can be written as:

μRn = Rt (21)

It is in the calculation assumed that the kinematic and static coefficient of friction has the same value. In this state

the friction force is opposite the relative motion, vrel , between the rotor end and the clutch. To describe this both the

relative speed and reaction forces are to be transformed to a coordinate system that follows the surface of the clutch.

In this coordinate system it can be written as:

K R
1
+ K · K v

1,rel = 0 and K R
2
+ K · K v

2,rel = 0 (22)

where (K R
1
, K R

2
, K R

3
) = K R = K TI · R and similar (K v

1,rel , K v
2,rel , K v

3,rel ) = K vrel = K TI · vrel . Assuming initially that the

positive constant K is known the eight unknowns, ẍ, ÿ, α̈, β̈, Rx , Ry , Rz and τ can be found with the six equation of

motion from Sec. 3.2 together with the two equations, Eq. (22). The value of K is determined iteratively so that Eq.

(21) also is satisfied.

However a problem arise in the transition between state I and II as the relative velocity vrel between the rotor end and

the clutch is zero. This will result in an infinite number of solutions to Eq. (22). To overcome this transition problem

Eq. (22) is solved for the reaction forces, K R
1

and K R
2

under the assumption that the rotor is still in state I. This can

be written as:

K R
1
− K · K R

1

(1) = 0 and K R
2
− K · K R

2

(1) = 0 (23)

where K R
1

(1) and K R
2

(1) is the reaction forces found under the assumption that the system is still in state I. This

assumption allows the tangential force to change size but not direction in the transition between the two states and

seams like a reasonable assumption.

3.3.3. State III
In state III the rotor and the clutch is no longer in contact with each other. The system is in this state if the normal

force Rn in state I is zero or no solution for K in state II can be found. As there is not any contact between the rotor

and clutch all the contact forces and moments, Rx , Ry , Rz and τ, between the rotor and the clutch are zero. This result

in only six unknowns which can be solved by the six equation of motion defined in Sec. 3.2.

3.4. Cylinder-Magnet Bearing Model and Representation of Forces F
1

and F
2

Two different bearing models are proposed and will later be compared against each other and results experimen-

tally achieved. The first model is an exact model without any assumptions and the other one is created with some

minor assumptions to ease the computations.

3.4.1. Exact Solution of Magnetic Field - Method A
In this section an exact solution for the magnetic flux density B around a cylinder-magnet is presented. This is

found using an expression for the magnetic vector potential A, because the curl of A is B (Ref. [25] p. 214):

A(x, y, z) =
μ0

4π

∫
V

∇ ×MC

RP

dV +
μ0

4π

∫
A

MC × an

RP

dA (24)
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For this kind of magnets, it is not possible to find an analytical solution, but it is possible to reduce the amounts of

computations, in order to find a numerical solution, radically.

The cylinder-magnets in the bearings lies along the z-axis and they have a constant magnetization vector: MC =

(0, 0,MC ), see Fig. 3(b). The value of the magnetization constant MC is found experimentally as will be shown in

Sec. 4.2.2. Since ∇ ×MC = 0 the first integral in Eq. ((24)) is eliminated. MC × an is only nonzero at the sides of the

magnets and not on the end surfaces, see Fig. 3(b). Here an = (cos φ, sin φ, 0). Every points Q on the surface of the

cylinder-magnet can be described as Q = (a cos φ, a sin φ, ζ). The distance R to an arbitrary point outside the magnet

P = P(x, y, z) from Q is

RP =
∣∣∣∣−−→QP

∣∣∣∣ =
√

x2 − 2ax cos φ + y2 − 2ay cos φ + a2 + (z − ζ)2 (25)

With this in hand, it is possible to rewrite the vector potential:

A =
μ0

4π

∫
A

MC × an

RP

dA =
aMCμ0

4π

∫ h/2

−h/2

∫ π

−π
(− sin φ, cos φ, 0)

RP

dφ dζ (26)

Now the curl is done in order to find B, because it is not possible to do the double integration analytically.

B = (Bx, By, Bz) = ∇ × A =
aMCμ0

4π

∫ h/2

−h/2

∫ π

−π

(
(z − ζ) cos φ

R3
P

,
(z − ζ) sin φ

R3
P

,
a − x cos φ − y sin φ

R3
P

)
dφ dζ (27)

Because of rotation symmetry around the z-axis, y is set to zero, so the B-field is only found in the xz-plane (repre-

sented by a star) for values of x higher than a. It is possible to show that B∗y is zero (because of rotation symmetry).

As mentioned it is not possible to do the double integrations analytically. Though, it is possible to integrate over the

variable φ.

B∗x(x, z) =
MCμ0

2π

∫ h/2

−h/2

z − ζ
R2x

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝2ax

R2
1

+ 1

⎞⎟⎟⎟⎟⎠ EE − EK

⎤⎥⎥⎥⎥⎦ dζ (28)

and

B∗z (x, z) =
MCμ0

2π

∫ h/2

−h/2

1

R2

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝2a(x + a)

R2
1

− 1

⎞⎟⎟⎟⎟⎠ EE + EK

⎤⎥⎥⎥⎥⎦ dζ (29)

where

R1 =

√
(x − a)2 + (z − ζ)2 , R2 =

√
(x + a)2 + (z − ζ)2 =

√
R1 + 4ax ,

EK = EllipticK

(
2

√
ax

R2

)
and EE = EllipticE

(
2

√
ax

R2

) (30)

EllipticK and EllipticE are two functions called the ’Complete Elliptic Integral of the First Kind’ and the ’Complete

Elliptic Integral of the Second Kind’ respectively. They are not algebraic functions, but are known to programs as

Maple and MATLAB.

The integrals have to be calculated for multiple points in the xz-plane, then an interpolation can be used. In this

work they are solved in the intervals of x ∈ [a; 2ah − a] and z ∈ [−h; h]. The adequate number of points in the grid is

evaluated in a convergence analysis in section 4.1. Only half of the integrals are independent because of symmetry:

B∗x(x, z) = −B∗x(x,−z) and B∗z (x, z) = B∗z (x,−z).

When interpolation functions of B∗x and B∗z are found, B in space can be found this way

B = (Bx, By, Bz) =

(
x

R3

B∗x(R3, z) ,
y

R3

B∗x(R3, z) , B∗z (R3, z)

)
, (31)

where R3 =
√

x2 + y2.
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3.4.2. Simplified Solution of Magnetic Field - Method B
This section will describe an analytical method for estimating the B-field from a cylinder-magnet by introducing

some minor assumptions. As a consequence of the postulate ∇ · B = 0, the B-field can be expressed as the curl of an

other field, the vector magnetic potential A, as shown in Eq. (32).

B = ∇ × A (32)

where the vector magnetic potential is defined for a current carrying loop as, Ref. [25]:

A =
μ0IC

4π

∮
C′

dl′

RP

(33)

Figure 3(b), show a current carrying loop with a current IC where the B-field in point P located at P(R
0
, θ, π/2) is

to be found. It can be written that:

dl′ =
(
−ax sin φ′ + ay cos φ′

)
a dφ′ (34)

Due to symmetry, there will be another current element IC dl′ on the other side of the y-axis, that will contribute an

equal amount to A in the −ax direction, but will cancel the contribution of IC dl′ in the ay, direction.

The vector magnetic potential A in Eq. (33) can now be written in spherical coordinates as:

A = aφ
μ0IC a

2π

∫ π/2

−π/2
sin φ′

RP

dφ′ (35)

Solving this with the condition that a2 � R2
0

gives:

A = aφ
μ0IC a2

4πR2
0

sin θ (36)

The B-field from a current carrying loop at point P can now be found by inserting Eq. (36) in Eq. (32). Solving this

gives us:

B =
μ0IC b2

4πR3
0

(aR2 cos θ + aθ sin θ) (37)

Now only the equivalent current of a permanent magnet need to be determine to establish an expression for the B-

field.

A permanent magnet can be thought of as consisting of small current carrying loops (magnetic dipoles), which all

have been orientated in the same direction. By summing up all these magnetic dipoles m over the volume V of the

magnet gives us the magnetization vector MC :

MC = lim
Δv→0

∑nΔv
k=1 mk

Δv
(A/m) (38)

where n is the number of atoms per volume. The current density for a magnet can be expressed by this magnetization

vector as

Jm = ∇ ×MC (39)

Jms = MC × an (40)

While assume that MC is uniform inside the magnet, the current of a neighbor dipole flows in the opposite direction,

and thereby canceling each other out leaving no net current in the interior. Leaving only a net surface current density.

Figure 3(b) show a cylinder-magnet with a differential increment in the z-direction. Rewriting Eq. (40) in cylindrical

coordinates gives

Jms = (azMC ) × ar

Jms = MC aϕ (41)
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Figure 6: Sketch of bearing magnets and rotor magnets, when calculating magnetic forces, seen from the top.

By integrating over the entire length of the magnet, the total current density can be expressed as:

Jms =

∫ h/2

−h/2
MC aϕdz = MC aϕh (42)

The equivalent current on the surface can therefore be expressed as IC = MC h. Substituted this into Eq. (37) gives the

B-field in a given point from a current carrying loop, when the magnitude of the magnetization vector is known.

B =
μ0MC ha2

4πR3
0

(aR2 cos θ + aθ sin θ) (43)

The total magnetic field from all the magnets in the bearing can then be found by assuming that each magnet can be

modeled as consisting of several evenly distributed current carrying loops along the magnets longitudinal direction.

The total magnetic field in a point can then be found by superposition of the B-field contribution from every current

loop in the bearing where the current in each loop is IC divided by the number of loops in one magnet. A more detailed

explanation can be found in Ref. [25].

3.4.3. Magnetic Forces Coupled to Rotor Movements - Method A
The found magnetic flux density has to be used in order to find the forces between the magnets in the bearing

and the magnet in the rotor. The rotor can move freely in two dimensions, when only considering state I, which

therefore acquire that the sum of forces acting on the rotor magnet is found on this surface (bend plane). Again a lot

of computational power can be saved simply by a super-positioning of a few simpler cases.

Magnetic Forces. The calculation of the sum of forces acting on the rotor magnet is split into two parts. First the

force Fi from an arbitrary magnet in the bearing, called i, acting on the magnet in the rotor, called r, in some relevant

positions, is found. The calculations shown here are for the large bearings.

A magnetic flux density creates a force acting on electrical currents. In the same way, passive magnets are affected,

and mathematically they are transformed into electrical current as it is shown here, Ref. [25] pp. 215 and 247, Ref.

[26]:

Fi = lcur IC × B =
∫

Ar

(MC,r × an,r ) × Bi dAr (44)

First MC,r and an,r is found in the fixed coordinate system I shown in Fig. 4(c) and Fig. 6, where r is only moving in

half of the xz-plane. The rotor is fixed in the bottom and has a positive angle β to the z-axis as shown in Fig. 6. The

transformation of the rotor coordinates, which is B2 with y = 0, into the fixed coordinates I is done by using ITB2,

where α = 0.
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All magnets are identical, which means that B2MC,r = (0, 0,MC ) in r-coordinates. MC,r × an,r is again only non-

zero at the sides of the magnet. The integration, Eq. (44), is done in the fixed coordinate system, and therefore a

transformation is made:

I(MC,r × an,r) = ITB2 ·
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0

0

MC

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

cos φ
sin φ

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−MC sin φ cos β

MC cos φ
MC sin φ sin β

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (45)

Bi is found in the previous section and are functions of the point in space P(x, y, z) at the surface of r. P(x, y, z) is

found:

P(x, y, z) = −
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xi

yi

lx + z0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ + ITB2 ·
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a cos φ
a sin φ
lx + ζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
−xi + (lx + ζ) sin β + a cos φ cos β

−yi + a sin φ
−lx − z0 + (lx + ζ) cos β − a cos φ sin β

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (46)

(xi, yi) = (ah cos iπ
8
, ah sin iπ

8
) are the coordinates from the center of the bearing to a magnet i in the bearing. The force

Fi acting on r from i is determined by integrating over φ and ζ, and by that cover all of the side of the magnet i:

Fi =

∫
Ar

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−MC sin φ cos β

MC cos φ
MC sin φ sin β

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Bxi

Byi

Bzi

⎫⎪⎪⎪⎬⎪⎪⎪⎭ dAr = aMC

∫ h/2

−h/2

∫ π

−π

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Byi sin φ sin β + Bzi cos φ

Bxi sin φ sin β + Bzi sin φ cos β
−Bxi cos φ − Byi sin φ cos β

⎫⎪⎪⎪⎬⎪⎪⎪⎭ dφ dζ (47)

This double integration has to be done numerically, since B = B(x, y, z) is an interpolation function. The integration

has to be done for varying value of β in the interval [0; arctan ah−a
lx+z0

]. For every value of β, Fi is found for i = 0, 1, . . . , 8
for the large bearing.

Bearing force field. With these calculations in hand it is possible to find the total magnetic force acting on the magnet

r from a choice of combinations of magnets i in the bearing. Because of symmetry it is possible to find the force from

magnet i = −7,−6, . . . ,−1:

Fx(i) = Fx(−i) , Fy(i) = −Fy(−i) og Fz(i) = Fz(−i), (48)

cf. the numbering of the magnets i in the bearing.

The total force FT acting on r is a sum of the forces from the chosen configuration of bearing magnets. When

the rotor is angled towards another magnet i+ in the bearing, the total force can be found by using another specific

configuration of bearing magnets and then make a transformation.

FT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos πi

+

8
− sin πi

+

8
0

sin πi
+

8
cos πi

+

8
0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · F+T , (49)

Here F+T is the total force acting on r, when moving towards bearing magnet i+, where the configuration of bearing

magnets is rotated so it fits with a corresponding movement in the xz-plane towards bearing magnet i+ = 0. This can

be done for all i+ = −7,−6, . . . , 8 bearing magnets, by which all valid positions of the rotor is represented well if an

interpolation is done between the grid points.

The same method is used for the small bearing. Here the angles in Eq. (49) are πi
+

6
, the same is the case for xi and

yi in Eq. (46).

3.4.4. Magnetic Moments Coupled to Rotor Movements - Method A
The forces acting on the rotor magnet are not equally distributed, which results in a moment around the center

of the magnet. These moments will of course also affect the movement of the rotor and will be visible in the Euler

equation. As known, M = r × F, and therefore the moments can be found altering Eq. (44).

Mi =

∫
Ar

rOQ × (MC,r × an,r ) × Bi dAr (50)
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Here the arm rOQ is the vector from the geometrical center of the magnet to dAr:

rOQ = ITB2 ·
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a cos φ
a sin φ
ζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
ζ sin β + a cos φ cos β

a sin φ
ζ cos β − a cos φ sin β

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (51)

The rest of the procedure of determining the moments is the same as for the forces with exception of Eq. (48), which

is opposite for moments:

Mx(i) = −Mx(−i) , My(i) = My(−i) and Mz(i) = −Mz(−i), (52)

Examples of the magnetic moments can be seen in Fig. 21 and Fig. 22.

3.4.5. Magnetic Forces Coupled to Rotor Movements - Method B
An electric charge q moving in a electric field E and a magnetic field B at a velocity u can be described by

Lorentz’s force equation:

F = q (E + u × B) (53)

As no electric fields are present in the system, the equation can be reduced to:

F = qu × B (54)

It is again assumed that each magnet can be thought of as several current carrying loops stacked on top of each other

in the z-direction however for simplicity we will initially just look at one. Looking at a differential element dl of a

loop with a cross section area S , and assume that there are N charge carriers per volume moving at a velocity of u in

the direction of dl it can written:

dF = NqS |u| dl × B (55)

As NqS |u| equals the current in the loop, Eq. (55) can be rewritten as:

dF = Idl × B (56)

The total magnetic force can now be found by integrating over the entire loop C:

F = I
∮

C
dl × B (57)

where I was found in a previous section to:

IC = MC h (58)

Inserting Eq. (58) into Eq. (57) gives:

F = MC h
∮

C
dl × B (59)

which is the force on one current carrying loop in a B-field. The total force on one magnet is now found by summation

of the force contribution for all the loops on the rotor magnet. Again the current in each loop on the magnet is IC

divided by the number of loops in the magnet.

3.4.6. Magnetic Moments Coupled to Rotor Movements - Method B
As mentioned in Sec. 3.4.4 the forces acting on the rotor magnet are not equally distributed, which results in a

moment around the center of the magnet. This has of course to be taken into account even thou its effect on the system

might be fairly small. It is again known that the moment can be calculated as:

M = r × F (60)

By use of this the moment contribution from a single current loop can be found as:

F = MC h
∮

C
rOQ × (dl × B) (61)

where rOQ is a vector pointing from the center of the magnet to dl. By sum up all the moment contribution for all the

current carrying loops in the magnet one can determine the total moment around the magnet center.
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4. Theoretical and Experimental Results

In this section the described mathematical models will be validated through convergence analyses and comparisons

with experimental data. Furthermore the models will be used to carry out simulations in order to find resonance

frequencies and explain the instability phenomenon that the rotor exhibits at high angular velocities.

4.1. Convergence analyses
For Method A a convergence analysis has been carried out in order to determine appropriate grid lengths so that

the magnetic forces have converged. Here there are three types of grids: (a) At the rotor in the bearing creating the

B-field, (b) The B-field interpolation grid around the magnet in the rotor, and (c) the surface grid of the magnet in the

rotor in order to determine the forces and moments. The analyses are done on the forces between two magnets with a

radial distance (x) of 20 mm and a displacement in their length directions (z) of 4 mm. These values are comparable

with the ones in the following experiments.

In (a) the grid is determined by the distances between the points where ζ ∈ [−h/2; h/2] is evaluated. The convergence

results are shown in Fig. 7(a). The errors in repulsing forces are compared to a grid length of 0.2 mm. Here it is

seen that the errors both in Fx and Fz should be below 1 % as long as the grid length is smaller than 2 mm, which is

equivalent to 10 integration points.

In (b) the grid is two dimensional, one in x ∈ [a; 2ah − a] and one in z ∈ [−h; h]. Fig. 7(b) shows that errors do not

behave as regularly as in (a), but that the errors should be below 1 %, when the grid length is chosen to be 1.5 mm.

This is equivalent to around 40 times 25 points for the large bearing.

In (c) the grid is again two dimensional, one in φ · a ∈ [−aπ; aπ] and one in ζ ∈ [−h/2; h/2]. Figure 7(c) shows that a

grid length of 1.5 mm should give errors less than 1 % equivalent to 21 times 14 grid points.

The following calculations with the use of method A are made with these found grid sizes.

Likewise, a convergence analysis has been performed for Method B. Now it is investigated how many points

are needed around each current carrying loop as well as how many current carrying loops are needed per magnets to

predict the forces with a high accuracy. The convergence analysis has been performed by evaluating the force between

two magnets. Figure 8 show the results from the analysis of the needed number of points around each current loop

when number of loops has been kept constant at 100 loops per magnet. What can be concluded from this is that

increasing the number of points above 6 points per loop does not increase the accuracy significantly. However it has

been chosen to continue with 10 points per loop to be sure that it has converged. Figure 9 show the results from the

convergence analysis of the number of needed loops per magnet. It can be seen that it is possible to achieve results

that only deviates 1% from the fully converged model when modeling with 100 loops per magnet which is the number

of loops chosen to continue with. The reason for not choosing a higher number of loops is that the computation time

needed will increase by the square of number of loops per magnet.

4.2. Parameters of Cylinder-Magnet Bearing
To verify the complete model the magnetic flux density and the force field had initially to be determined. This has

been done through some simple experiments which will be explained below but before the magnetic flux density and

the force field can be determined theoretically the magnetization MC of the magnets had to be found experimentally.

These simple experiments were also used for comparing the two methods (A: exact and B: simplified) for predicting

the magnetic flux density.

4.2.1. Magnetic B-Field
The test setup for measuring the B field around a magnet and determination of the magnetization constant MC is

shown in Fig. 10 where a Hall sensor has been fixed to a table (1). The test magnet has then been fixed on a horizontal

brass rod (2) which is firmly attached to a vertical-electric ruler (3). The Hall sensor has then been connected to a

power supplier (4) as input and a voltmeter (5) as output. The distance between the center of the magnet and the

Hall-sensor has been varied in steps between 10 mm and 50 mm and the measured magnetic field density from the

Hall-sensor has been recorded. The measured values of the magnetic field density from four different test magnets

have been plotted in Fig. 11 together with their mean value. The magnetization constant MC has been determined

using the mean value of the measurements.
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(a) B-field grid on first magnet

(b) B-field grid around second magnet (c) force grid on second magnet

Figure 7: Convergence analysis on the grid lengths used in the evaluation of Method A.

Figure 8: Convergence analysis of needed no. of points around current loops

16



Figure 9: Convergence analysis of needed no. of current loops per magnet

Figure 10: Test setup for measuring magnetic fields. (1) Hall sensor,

(2) Brass rod, (3) Vertical-electric ruler, (4) Power supplier, (5) Volt-

meter

Figure 11: Comparison of experimental and theoretical achieved mag-

netic fields
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Figure 12: Test setup for measuring magnetic force. (1) Bearing house,

(2) Scale, (3) Brass rod, (4) Vertical-electric ruler
Figure 13: Comparison of experimental and theoretical achieved mag-

netic forces

4.2.2. Magnetic Forces
The test setup used for measuring the repulsive force between two magnets is shown in Fig. 12. A permanent

magnet has been fixed in the bottom hole of one of the bearing houses (1) which is made of aluminum. Under the

bearing house there was a scale (2), which made it possible to record the force exposure in terms of weight change.

The second magnet had then been fixed on a horizontal brass rod (3) which was firmly attached to a vertical-electric

ruler (4), making it possible to modify and record the distances.

The distance between the centers of the two magnets has then been varied in steps between 15 mm and 65 mm and

the measured weight change from the scale has been recorded. The measured values of the weight change from four

different test magnets converted into force exposure have been plotted in Fig. 13 together with their mean value.

As seen in Fig. 13 it has been possible to determine MC for both methods A and B, so the graphs are very accurately on

top of the measurements. It can actually be difficult to distinguish between the black, blue and red line, representing

method A, method B and the measurements mean. The determined magnetization however is different for each of the

methods:

MC,A = 9.35 · 105 A
m and MC,B = 9.65 · 105 A

m (62)

MC,B varies 3 % from method A, which can be explained by the approximations that are made, as described in Sec.

3.4.2. Apart from the different magnetizations the two different methods do not differ from each other. Comparing the

experimental found values for the magnitude of magnetization vector with the one provided by the manufacture, Sec.

2.2, it can be seen that the values correspond very well with each other.

4.3. Verification of the Principle of Superposition for Magnetic Forces

Several experiments have been performed to verify the possibility of using the principle of superposition for

magnetic forces as proposed in the theory section. These experiments are similar to the one explained in previous

section where the force was measured on a scale however several magnets have now been placed in the bearing house

at the same time. Figure 14 shows the results from these experiments where the forces in the y-direction has been

measured as a function of the displacement of the rotor magnet in the y and z direction. A simulated surface plot

has been plotted on top of the experimentally achieved curves where it can be seen that there are an almost excellent

coherence between the achieved results. Looking a bit closer at the two curves, Fig. 15 (z = 0 mm) and Fig. 16 (z = 10

mm) reveals however that there are a tiny deviation between the simulation and the experiment for the one with the

10 mm shift. Assuming that the magnet during the experiment was turned β = 0.75◦ which has been simulated in

simulation 2 one would get a perfect fit between the curves. This is a highly plausible error as it has no been possible

to detect such small angular misalignments in the test setup. To verify that the principle of superposition also apply
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Figure 14: Force in y-dir. when rotor magnet is displaced in the y-dir. and z-dir., x = 0, Bearing magnet configuration: [1 5 -1 -3 -5], small bearing.

See Fig.4(b). Gray surface is simulated and red lines with blue markers are experimentally measured values.

to the forces in the axial direction a similar experiment has been performed where the forces in the z-direction has

been measured as a function of the displacement i the z-direction. The results from this experiment together with a

simulated surface plot are shown in Fig. 17 and it can again be seen that there is a very good coherence between the

results. It is therefore concluded that the principle of superposition is valid for summing up magnetic forces on current

loops and thereby permanent magnets.

4.4. Coupled Rotor-Bearing Statics and Linear and Nonlinear Dynamics

To verify the proposed mathematical models several experiments were made with different configuration of the

magnetic bearings including two different sizes of bearing houses. Table 2 shows the configurations of the three

experiments that were made to verify the models. The magnets are numbered according to Fig. 4(b) and Fig. 4(c).

4.4.1. Natural Frequencies and Mode Shapes
The natural frequencies of the rotor have been measured and simulated using small perturbation to the rotor and

evaluating its movements around its equilibrium position. The results from these experiments and simulations are

shown in Tab. 2. From the table it can be seen that the frequencies only deviates approximately 10% from the

measured values which must be concluded to be an acceptable deviation considering the rapid change in radial forces

if there are just a small error in the shift z0 of the bearings. For example if z0,1 is shifted 0.6 mm in the simulation in

respect to experiment 1, the simulation predicts natural frequencies that deviates only up to 5 % from the experiments

and not up to 13 % as listed in the table.

Figure 18 shows the two first mode shapes from experiment 1 where it is possible to detect the gyroscopic effect as

the path of the rotors nodal points create an ellipse rather than just moving in a straight line. Further more it can be

seen that the two modes act in the horizontal and the vertical plane. This is due to the configuration of the bearing

which is symmetric around the yz-plane. Had it not been configured in at symmetric way this would not be the case

and the modes would not follow the horizontal and the vertical plane.
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Figure 15: Force in y-dir. when rotor magnet is displaced in the y-dir., x = 0, z = 0, Bearing magnet configuration: [1 5 -1 -3 -5], small bearing.

See Fig.4(b).

Figure 16: Force in y-dir. when rotor magnet is displaced in the y-dir., x = 0, z = 10, Bearing magnet configuration: [1 5 -1 -3 -5], small bearing.

See Fig.4(b). Simulation 1: α = 0.0◦ β = 0.0◦, Simulation 2: α = 0.0◦ β = 0.75◦

Experiment 1 2 3

Setup
z0,1 (mm) 8 8 2

z0,2 (mm) - 5 5

Bearing 1 small small large

Bearing 2 - large large

Magnets 1 -5, -3, -1, 1, 5 -5, -3, -1, 1, 5 -6, -4, -2, 1, 7

Magnets 2 - -6, -2, 1, 7, -6, -4, -2, 1, 7

Natural frequency
Measured (Hz) mode 1 4.0 4.0 4.3

Simulated (Hz) mode 1 4.5 3.7 4.7

Deviation (%) mode 1 13 -8 9

Measured (Hz) mode 2 7.3 7.6 5.8

Simulated (Hz) mode 2 8.0 8.4 5.9

Deviation (%) mode 2 10 11 2

Table 2: The experiment set-ups and natural frequencies. The first two rows (z0) denotes the offset between the rotor and the bearing magnets.

Index 1 is the bearing furthest away from the clutch. The next two rows indicates whether it is a large or small bearing that was used. The next

two rows indicates where the magnets were added in the bearing, see numbering in figure 4(b) and 4(c). The last lines denote the simulated and

measured natural frequencies.
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Figure 17: Force in z-dir. when rotor magnet is displaced in the y-dir. and z-dir., x = 0, Bearing magnet configuration: [1 5 -1 -3 -5], small bearing.

See Fig.4(b). Gray surface is simulated and red lines with blue markers are experimentally measured values.

To give an idea of the nonlinearities of these kinds of bearings the force and moment intensity for experiment 2 has

been plotted in Fig. 19, Fig. 20, Fig. 21 and Fig. 22. In these figures the force and moment intensity in the z-direction

is indicated by colors and the force and moment intensity and vector direction in the xy-plane is indicated by arrows.

4.4.2. Stability and Instability - “Punctual Contact Clutch - Rotor”
At a given rotational speed an instability phenomena occurs where the rotor is being pushed away from the clutch

and a good distance along its axial direction. One interesting element of this instability phenomenon is that the rotor

exhibits an incredibly stable behavior prior to being shot out of the test rig. An explanation for this phenomena can

be found by taking a closer look at the forces between the rotor and clutch together with the geometry of the clutch.

Through simulation, see Fig. 23(a) and 23(b), it is possible to show that the mean value of tangential reaction force Rt,

in which the projection of the thrust force on the clutch surface, greatly depends on the rotational speed. The higher

the rotational speed of the rotor becomes, the higher the mean value of the tangential force between the clutch and

the rotor becomes. The mean value of the normal force Rn on the other hand hardly change size due to the rotational

speed. This means that when the tangential force becomes large enough, so that it is equal to the friction force μRn,

the rotor will begin to slip and enters state II. Due to the inverted cone shape of the clutch such a slip will lead to a shift

of the rotor in the axial direction resulting in smaller offset values, z0,1 and z0,2, between the bearings and the rotor

magnets. When that happens the force, Fz, from both bearings become larger (numerically smaller) and eventually

end up being positive. When the sum of Fz from the two bearings is positive, the rotor will be pushed away from the

clutch and the unstable state has been reached, state III. The maximum angular velocity (threshold of stability) before

rotor-clutch misses contact depends on the set-up: the number of magnets in the bearing and the shifts z0,1 and z0,2 of

the bearings in relation to the rotor magnets and magnitude of imbalance.

Some assumptions have been made to the model for predicting the instability limit where one of them is, as mentioned

in Sec. 3.3.2, that the clutch is modeled as being a flat plate, when
√

x2 + y2 < 0.25 mm. Another assumption is that

the instability limit in the model has been defined as the highest rotational speed at which the rotor is still in state I,
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Figure 18: Two first theoretically calculated mode shapes from

experiment 1 @ 72 Hz

Figure 19: Theoretically calculated force field of small bearing from

experiment 2

Figure 20: Theoretically calculated force field of large bearing from

experiment 2

Figure 21: Theoretically calculated moment field of small bearing from

experiment 2

Figure 22: Theoretically calculated moment field of large bearing from

experiment 2
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(a) (b)

Figure 23: Simulated results of the two components of the reaction forces as functions of time for the second experiment. (a) rotation speed of 40

Hz and (b) rotation speed of 82 Hz. When the tangential reaction force Rt reach the normal force multiplied by the coefficient of friction μRn (the

friction force), the system will switch to state II, and the instability limit is reached.

and the tip of the rotor is placed at (0,0,0) over longer period of time. This definition, however, not entirely correct as

instability first occurs when entering state III, has been used for several reasons: Simulations in other situations than

state I take an incredibly long time. Furthermore, differential equations are not continuous in time in the transitions

between the different states, which disturbs the Matlab ode45 function and require very small time steps.

Force fields are determined when the tip of the rotor is at (0,0,0), giving two coupled faults when not in state I:

1. shifting the rotor from the center, the tip coordinates (x, y) will change as to create an angle between the magnet

in the rotor and the magnets in the bearings which differs from those assumed in the simulation. This has an

influence on Fz, although it might be insignificant.

2. shifting the rotor from the center, the relative shifts z0,1 and z0,2 between the bearings and the rotor magnets will

also change due to the design of the clutch. This is not taking into account in the calculation of the force fields,

and has a major impact on Fz.

Based on the graphs in Fig. 23, it might be interesting to see exactly what the relationship is between the forces and

speed. In Fig. 24 such results are shown for experiment no. 2, where the points are simulated values and the lines are

regressions. Since forces vary over time (relatively periodic) the mean values are considered. The minimum of μRn

and maximum of Rt is also considered, as the instability threshold is reached (or close to being reached) when they

have the same value.

As mentioned, the mean value of friction force is constant as a function of revolutions likewise is the amplitude, re-

sulting in a steady minimum value. The maximum value of Rt depends on the square of the rotational speed from 25

Hz and up. The mean value also depend on the square of the revolution, again from 25 Hz and at lower frequencies,

it has a more constant character.

The reason that the tangential force depends on the square of the revolution, lies in the force imbalance that has the

size Fu = mbrbγ̇
2 where γ̇ is the rotation speed. Rt depends almost linearly on Fu (when angles α and β are small),

making Rt dependent on γ̇2.

The amplitude of the normal force is almost independent on the increasing rotational speed, if the initial conditions

are well set. This means that the oscillations are almost steady as well for frequencies much higher than the eigenfre-

quencies.

To verify that the proposed model can predict the angular velocity threshold some experiments was made with the
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Figure 24: The size of the reaction forces as a function of the rotational speed from the simulated experiment 2. Since reaction forces vary over

time the mean, minimum and maximum values were used appropriately. Points are simulated values and lines are regressions.

Parameter Value Unit Comments

Rotor inertia, Ix = Iy 3.45 · 10−3 [kg m2] around origo

Rotor mass, m 0.135 [kg] incl. imbalance ring

Rotor total length 0.278 [m]

Distance to center of gravity, lc 0.134 [m] measured from origo

Clutch inclination, s 0.57 [-] s = z/x
Rotor tip inclination, s 1.00 [-] s = z/x
Rotor imbalance 5.04 · 10−5 [kg m]

Table 3: Simulation parameters.

same configurations as those described in Sec. 4.4.1. For each of these experimental set-ups some measurements

was made to determine the frequency at which the rotor was thrown away from the clutch. The results from these

experiments are found in Tab. 4. At each setup there was made several measurements and the average of these is the

one written in the table. The angular velocity threshold depended highly on the current oscillations as even minor

remaining transient oscillation will result in higher radial forces at the clutch which will ruin the results. Despite

the fact that the rotor is highly stable prior to it being pushed away from the clutch, small changes in oscillation

amplitude result in relatively large changes in the size of friction and tangential forces. The experimental results are

compared with simulations in such a way that the friction coefficient is determined in order to meet the results of

the experiments. When comparing the results from the three simulations a very good coherence between the found

friction coefficients from the three simulations are found. From the literature Ref. [27] and Ref. [28] the table value

of the friction coefficient for steel on steel is listed to be between 0.57 and 0.74 and as the clutch and rotor tip are

made of stainless steel and carbon steel respectively these values must be assumed to be fairly accurate for this case.

Comparing these values with the simulated values it can be seen that the simulated values are right in the center of the

table value range.

Experiment 1 2 3

Measured frequency [Hz] 72 82 35

Simulated friction coefficient μ 0.64 0.67 0.68

Table 4: Experimental results of rotor instability limit in the three experiments in Tab. 2. From the simulation the friction coefficient is calculated

in order to meet the results from the experiments. This is when the simulations goes from state I to II.

24



5. Conclusion

A mathematical model of a system with a rotor supported laterally by passive multi-cylinder magnetic bearings

and longitudinally by magnetic forces and a clutch is presented and experimentally verified. The presented bearings

are constructed in a way making them highly configurable as to create symmetric as well as asymmetric bearing

stiffnesses. This is an improvement compared to passive magnetic bearings consisting of only one ring magnet as

asymmetric stiffness is in many rotordynamic application an advantage. Two different models for predicting the B-

field and F-field in the bearings are proposed both assuming that the principle of superposition can be applied for the

summation of the B-field created by the different bearing magnets. These models are validated through experiments

an deliver good agreement between theory and experiments when using slightly different magnetization constant for

the two models. However the value of these magnetization constants are still within the manufacture provided values

for both of the models. The natural frequencies of the rotor-bearing system are found through both experiments

and simulation which again show a good agreement between the theoretically and experimentally achieved results.

However it has to be pointed out that the natural frequencies are extremely sensitive to the initial displacement z0

between the rotor and bearing magnets making the precision in the experimental setup highly important. The reason

for the angular threshold of the rotor-bearing system is explained by the use of the presented model and reveal friction

coefficients of the rotor-clutch very close to table values. The most important design parameters affecting the threshold

of stability are the rotor residual unbalance, friction coefficient between rotor and clutch and finally the geometry of

the clutch surface.
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Nomenclature

α Kinetic energy coefficient, [-]
α Thermal diffusivity, [m2/s]
αref Temperature coefficient of resistivity,

[1/◦C]
V̄ Mean velocity, [m/s]
μ Dynamic viscosity, [(N·s)/m2]
μs Dynamic viscosity at the heat trans-

fer boundary surface temperature,
[(N·s)/m2]

ν Kinematic viscosity, [m2/s]
Ω Rotational speed, [Hz]
ω Frequency, [Hz]
ρ Density, [kg/m3]
ρele Element density, [kg/m3]
ρref Electrical resistivity, [Ω·m]
A Area, [m2]
Ar Copper cross section area of parallel

strands (rotor), [m2]
As Copper cross section area of parallel

strands (stator), [m2]
ACoil,r Cross-section area of the coil packs in

one rotor pole [m2]
ACoil,s Cross-section area of one coil pack in

the stator [m2]
ACu,r Cross-section area of the copper part of

one rotor pole [m2]
ACu,s Cross-section area of the copper part of

one stator coil pack [m2]
AFe,r Cross-section area of the iron part of one

rotor pole [m2]
AFe,s Cross-section area of the iron part of the

stator [m2]
Awire Cross section area of wire, [m2]
B B-field, [T]
Ce Eddy current loss coefficient,

[W/(kg·T2·Hz)]
Ch Hysteresis loss coefficient, [W/(kg·T2·Hz)]
Cp Specific heat capacity of air at constant

pressure, [J/(kg·K)]
Cs,ele Element stacking factor, [-]
D Diameter/major diameter, [m]
d Minor diameter, [m]
e Roughness, [m]
ele Element number, [-]
f Friction coefficient, [-]
g Gravitational acceleration, [m/s2]
h Heat transfer coefficient, [W/(m2·K)]
hlm Minor loss, [Nm/kg]
hlT Total energy loss, [Nm/kg]
hl Major loss, [Nm/kg]
Iexc Excitation current (DC), [A]
Iph Phase current (peak), [A]

K Loss coefficient, [-]
kf Fluid thermal conductivity, [W/(m·K)]
kCu Thermal conductivity of copper

[W/(m·K)]
keq,rx Equivalent thermal conductivity in x-

dir. of rotor coil pack [W/(m·K)]
keq,ry Equivalent thermal conductivity in y-

dir. of rotor coil pack [W/(m·K)]
keq,sx Equivalent thermal conductivity in x-

dir. of stator coil pack [W/(m·K)]
keq,sy Equivalent thermal conductivity in y-

dir. of stator coil pack [W/(m·K)]
kins Thermal conductivity of insulation

[W/(m·K)]
KSC Loss coefficient, sudden contraction, [-]
KSE Loss coefficient, sudden expansion, [-]
L Length, [m]
Le Equivalent length, [m]
Lactive,r Active coil length (rotor), [m]
Lactive,s Active coil length (stator), [m]
Lcon Connection of coil bars at the ends, [m]
LCu Length of copper [m]
Lend,r End windings (rotor), [m]
Lend,s End windings (stator), [m]
Lins Length of insulation [m]
Ljump Jump of coil bars between slots, [m]
Lmotor Axial length of the motor [m]
Ltwist Twist of copper strand in active length,

[m]
Lwire Wire length, [m]
LossCu,s Copper loss in stator, [W]
m Harmonic number, [-]
n Number of elements, [-]
npoles Number of poles [-]
nslots Number of slots [-]
Nu Nusselt number, [-]
P Wetted perimeter, [m]
p Pressure, [Pa]
PFe,total Total iron losses, [W]
Pr Prandtl number, [-]
Rref Reference resistance, [Ω]
Rwire,r Wire resistance (rotor), [Ω]
Rwire,s Wire resistance (stator), [Ω]
Rwire Wire resistance, [Ω]
Re Reynolds number, [-]
Ts Heat transfer boundary surface temper-

ature, [◦C]
Tini Initial temperature after the cooler [◦C]
Twire Wire temperature, [◦C]
V Volume, [m3]
Vele Element volume, [m3]
z Vertical distance, [m]
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1. Introduction

All electric motors generate heat due to losses in windings and iron core
which, if not predicted correct, could have fatal consequences for the op-
eration of the device. This is increasingly important for large and very
expensive motors like gearless mill drives in mineral mining mills [1, 2, 3]
which also is very costly in downtimes and therefore require high reliability.
It is of common practice in thermal modeling of motors to use the lumped
thermal method, [4, 5, 6, 7, 8], however if higher level of details is desired one
needs to move to more refined methods like finite difference [9, 10] and/or
finite element method [11, 5, 12, 13]. These types of methods can give a
highly accurate and clear view of the temperature distribution within the
motor if the convection coefficient has been determined with a high accu-
racy which is one of the major hurtles in heat transfer simulations. This
convection coefficient is highly dependent on the fluid properties, channel
geometry and the channel flow rate and can only be determined through
experiments. Several empirical equations [14, 15, 16] have however been
formulated which is specially optimized for different channel geometries and
parameter ranges. But before the convection coefficient can be determined
knowledge of the flow is needed. If high level of detail is desired numeri-
cal CFD can be used for predicting the flow as in [17], however, these 3D
simulations is very computationally expensive and less suited for iterative
optimization. Another and fast way of determine the flow is as described in
[18] by the use of Bernoulli’s energy equation where the pressure losses from
the different channel segments can be summed up. These losses are split
into what is called major and minor losses where the major losses are head
losses in straight channel with constant cross section and minor losses are
head losses due to inlet/outlet condition, fittings, valves, bends and other
devices which create a resistance in the fluid flow. These head losses can
again only be determined through experiments but as before some empirical
equations and constants for common components can be found in the litera-
ture [16, 19]. The electromagnetic losses in the motor are what’s generating
the heat and consist of two main types of losses. The core losses which are
generated by eddy current and hysteresis in the iron parts as the magnetic
field oscillates and the resistance losses as current flow through the coils.
The core losses can be determined through a series of static finite element
simulation as described in [20, 21, 22, 23, 24] and the resistance losses can
be found when the resistance and the current are known [25].

The presented model is a completely interconnected multi-physic model
incorporating electromagnetic losses, cooling flow and mass transfer, fluid
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characteristics and temperature and heat transfer where Grinbaum [26] and
Bermudez [27], used for comparison, only use partly interconnected models.
Grinbaum’s [26] model only include one cooling channel for the rotor and
one for the stator with constant fluid properties and is based on a lumped
model looking only at one cross section of the drive. Bermudez’s [27] model
is based on several lumped models at different cross section positions and
also uses constant fluid properties and losses found by Grinbaum [26]. The
presented electromagnetic submodel is a numerical model which predict the
core losses with higher accuracy than Grinbaum [26] as it takes all the losses
for the desired number of harmonics into account and not just the losses due
to the fundamental frequency as in [26].

An computational multi-physic tool is created to aid gearless drive de-
sign, taking into consideration electromagnetism, fluid mechanics, mass and
heat transfer, and in the near future will be linked to the flexible structural
behavior of stator and rotor (solid mechanics model). The different mod-
els are validated against data and results presented in selected literatures.
The global multi-physic model is afterwards used to predict the steady-state
thermal characteristics of stator and rotor accurately in all desired positions.

2. Gearless mill drives

Gearless drives/generators are mainly being used in wind turbines, hydro
power plants and in mills in the mining industry, where the latter is the one
being analyzed here. The first gearless mill drive was introduced by ABB in
1969 (then Brown Boveri & Cie) and installed at France’s Ciments Lambert-
Lafarge in Le Havre, [28]. A picture of a gearless mill drive can be seen in Fig.
1a and Fig. 1b and an exploded view can be seen in Fig. 1c, which in most
aspect is similar to the one being analyzed. A gearless mill drive (GMD) is
in principle an “ordinary” synchronous motor. However, these GMD’s has
a very large bore diameter compared to their iron length and a high number
of poles which is fare from a typical synchronous motor design. These drives
are wrapped directly on to the mill drum 15© eliminating the gearbox and
giving it its name, namely gearless drive. These kinds of drives can deliver
much higher torques than ordinary drives connected to gearboxes, as the
structurally integrity of the gearboxes are the limiting factor. The stator
6© of the drive is fixed in the stator frame 8© which forms large chambers
17© 18© on each side of the stator for the entering and exiting of the cooling
flow. The rotor poles 7© are mounted pole per pole on the mill drum flange
and its coils are fed through as slip ring system 9©. A stator cover 1© and
sealing system 2© are added on both sides of the stator frame to build a
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(a) SAG mill with a gearless drive (b) Drawing of a SAG mill

(c) Exploded view of a gearless drive

Figure 1: 1© Stator cover, 2© Sealing system, 3© Sealing protection cover,
4© Rotor cover, 5© Stator winding, 6© Stator core, 7© Rotor poles, 8© Stator
frame (with holding plates and key bars), 9© Rotor cover with slip rings, 10©
Sealing protection cover, 11© Sealing system, 12© Stator cover with brushes
holder, 13© Sole plate, 14© Anchor bolts, 15© Mill drum, 16© Fan and coolers,
17© Inlet side chamber, 18© Outlet side chamber.
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closed cooling system and to protect the drive for external dust from the
rough environment. The cooling fans and coolers 16© are placed at each
bottom corner of the stator frame and force cooling air into the inlet side
chamber 17©, through the cooling channels and air gap between the rotor
and the stator and finally into the other side chamber 18© which is the inlet
for the coolers.

3. Electromagnetic loss model

The global loss model consists of two types of losses, the core losses
and the resistance losses. The core losses are losses in the iron part due
to oscillation of the magnetic B-field within the material and the resistance
losses are losses in the coils as current passes through them.

3.1. Eddy current & hysteresis losses

There are two major types of core losses in electrical machines. One is
due to eddy currents and the other is due to hysteresis. One way of determine
these losses is described in the following based on the procedure described
in [20], [21] ,[22] and [23]. Through a series of static FEM calculations
applied to the principle of separation of losses it is possible to estimate the
core losses. This principle assume that it is possible to treat the different
losses separately by assuming that the average losses in a material can be
split up into hysteresis losses and eddy current losses. The hysteresis losses
are defined as the oscillation frequency of the B-field in the material times
the square of the peak value of the B-field times a loss coefficient times
the mass, Eq.1. The equation for the eddy current losses looks almost the
same, however, it is not just a function of the frequency but of the square
of the oscillation frequency, Eq.2. The two loss coefficients Ch and Ce,
for hysteresis and eddy current losses respectively, are based on material
loss curves provided by the material manufacture and will be determined in
Sec.3.2.

Ph = Ch · ω ·B2 · ρ · V (1)

Pe = Ce · ω2 ·B2 · ρ · V (2)

With the equation for hysteresis and eddy current losses it is possible to
estimate the total losses in a material experiencing a sinusoidal induced B-
field with the oscillation frequency ω and peak value B by the use of Eq.3:

Ploss = Ph + Pc =
(
Ch · ω + Ce · ω2

)
B2 · ρ · V (3)

6



(a) Field density @ time: 3 ms (b) Harmonics and time signal of one stator
tooth FEM cell

Figure 2: B-field in the center of a finite element cell in the stator tooth at
rated currents, speed and torque.

This equation is only valid for sinusoidal B-field with a constant oscillation
frequency and amplitude. However, in most cases the material is not just
exposed to one frequency but several frequencies at the same time. By
creating a series of magneto static simulations [29] where the rotor is rotated
at least one pole pitch and the B-field in the centroid of every finite element
cell is recorded for each step it is possible to extract the amplitude of the
B-field of each harmonic frequency in each cell by applying Fast Fourier
Transformation, Fig. 2b. If the rotor is rotated only one pole pitch the
vector containing the B-field for the FFT has to be extended to cover 2
pole pitches by adding a copy of the calculated value with a sign change for
the stator as the B-field in the stator for the next pole pitch would be the
same as the first but with opposite sign. The rotor will however experience
the same B-field for the second pole pitch which therefore has to be added
without a sign change. The square of the amplitude of each harmonic at the
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centroid of each element cell can now be found by the use of Eq. 4, 5 and 6:

Bx,fft = |fft ([Bx;±Bx])| · 2

2 · nstep
(4)

By,fft = |fft ([By;±By])| · 2

2 · nstep
(5)

B2 = Bx,fft ◦Bx,fft +By,fft ◦By,fft (6)

where Bx and By are matrices containing the B-field for every element cell
and steps for the x and y direction respectively. The corresponding frequency
associated with each of the harmonic can be found by Eq. 7 where the last
half of the entries are zeroed out as not to count each harmonic twice as the
upper half of the FFT is just a mirror of the lower half.

ω =
npoles

2
· Ωbase · ωm ◦ ωm (7)

where
ωm = [0, 1, 2, . . . , nstep, 0, . . . , 0]

1×2·nstep
(8)

With the use of Eq. 3 for each of the above found frequencies and corre-
sponding amplitude of each finite element cell it is possible by summation
to find the total iron loss, Eq. 9.

PFe,total =
(Ch ◦ ω +Ce ◦ ω ◦ ω) ·B2 · (ρele ◦Vele)

T

Cs,ele
· npoles

npolepair
(9)

where ρele and Vele are vectors containing the density and volume of every
element cell. The Cs,ele in Eq. 9 is the element stacking factor and is
introduced in the equation to take the reduced iron volume into account.
The last fraction in Eq. 9 is to be added if the FEM model is a reduced
model as shown in Fig. 2a where npoles in this case i equal to 5. A flow
diagram of the loss calculation procedure is shown in Fig. 3.

3.2. Determination of hysteresis & eddy current loss coefficients

Before the losses can be determined by Eq. 9 the two loss coefficients
Ch and Ce has to be estimated. This can be done with the help of the loss
curves provided by the manufacturer/distributor of the core material. As
an example the loss curves for electric steel SURA M400-50A which is used
for the stator core can be seen as the full bold curves in Fig. 4. These
curves show the losses in W/kg in this case for four different sinusoidal
oscillations frequencies of the B-field. By using Eq. 3 as an approximation
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Figure 3: Electromagnetic losses - Flow diagram of core loss calculation
procedure

polynomial one can achieve the loss coefficients as the values which best fit
the manufacture provided curves. In this case the loss coefficients has been
found to Ch = 0.019831 W/(kg·T2·Hz) and Ce = 0.00018393 W/(kg·T2·Hz2)
and the approximation polynomial with these values are indicated by the
dotted curves in Fig. 4).
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Figure 4: SURA - M400-50A Loss Curve [30]

3.3. Copper resistive losses

The majority of losses in an electrical motor originate from the resistive
losses in the copper coils of the stator and the rotor. For this the resistance
of the coils has initially to be determined. The resistance of a material
with a constant cross section area is proportional to the length and can be
found by Eq. 10 where ρref is the proportionality constant called electrical
resistivity.

Rref = ρref · Lwire

Awire
(10)

The subscript “ref” refers to the reference temperature Tref at which the
resistance Rref is found. This reference temperature is in the literature
usually 20◦C. As the coil temperature in the motor most likely is much
higher than this the resistance of the copper has to be corrected for this
increase in temperature. If the temperature change is not to large this can
be accomplished by the use of Eq. 11 where αref is an empirical found
constant called the temperature coefficient of resistance. As Eq. 11 is a
linear approximation it is important that αref has been found for the same
reference temperature as Rref has been calculated, respecting the Taylor
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approximation of Rwire(T ) around T = Tref .

Rwire = Rref · (1 + αref · (Twire − Tref )) (11)

Once the temperature of the copper coils are found the resistive losses can
be found by Eq. 12 and Eq. 13 for stator and rotor coils respectively.

LossCu,s = Rwire,s ·
(
Iph√
2

)2

(12)

LossCu,r = Rwire,r · I2exc (13)

The reason for the
√
2 in Eq. 12 is that Iph is the peak phase current which

need to be the RMS current before it is squared, Ref. [31].

4. Fluid flow model

4.1. Energy equation - Bernoulli’s equation

For the flow calculation we have that the energy equation, Ref.[18], also
called Bernoulli’s equation named after Daniel Bernoulli who first proposed
it can be written as:(

p1
ρ

+ α1
V̄ 2
1

2
+ gz1

)
−
(
p2
ρ

+ α2
V̄ 2
2

2
+ gz2

)
= hlT =

∑
hl +

∑
hlm (14)

The two first terms in brackets on the left hand side represent each the
mechanical energy at a specific cross section of a pipe and the terms on the
right hand side represent the irreversible losses between two cross sections
due to heat generation and heat transfer losses. This equation can be used
for calculating the pressure losses between two cross section of a pipe with

constant cross section area. Assuming that α1 · V̄
2
1
2 = α2 · V̄

2
2
2 and neglecting

the effect of the gravitation, z1 = z2 the equation can be simplified to:

p1
ρ

− p2
ρ

= hlT =
∑

hl +
∑

hlm (15)

These assumptions will be used throughout the entire paper. As indicated
in the equation the total energy loss, hlT , can be split up as the sum of
minor losses, hlm , plus the sum of major losses, hl. The next sections will
explain how these losses can be determined.
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Figure 5: Fluid loss coefficient for expansion and contraction, [19]

4.2. Head losses

Head losses can, as explained, be divided into minor losses and major
losses. Minor losses consist of losses due to inlet and outlet conditions, sud-
den expansion and contraction of pipes, bends in pipes, valves and fittings.
These losses are usually small compared to the total loss in systems consist-
ing of long pipes with constant cross section areas, hence the name minor
losses. Major losses which usually are the dominant losses are due to viscous
friction between the pipe and the fluid which generate heat which are stored
in the fluid and/or dissipated through the pipe walls.

4.2.1. Minor losses

The minor losses can be defined in two ways, either by the loss coefficient
or an equivalent length as shown in Eq.16

hlm = K
V̄ 2

2
= f

Le

D

V̄ 2

2
(16)

where K is the loss coefficient and Le is the equivalent pipe length which
result in equivalent losses. These constants can only be determined ex-
perimentally and are shown in Fig. 5 and Eq. 17 and Eq. 18 for pipe
enlargement and contraction. Loss coefficient for other fittings, valves and
bends can be found in [18] and [19].

KSE =

(
1− d2

D2

)2

(17)

KSC ≈ 0.42

(
1− d2

D2

)2

(18)
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Figure 6: Moody diagram, [32]

4.2.2. Major losses

Major losses are losses due to viscous friction between a fluid and its
boundaries which generate heat that are stores in the fluid itself and/or
dissipated through its boundaries. The major losses are dependent on the
length/diameter ratio of the pipe, the mean velocity of the flow and the
friction factor which tell something about the friction between the fluid and
the inner surface of the pipe. For a fully developed flow in a round pipe the
major loss can be determined by:

hl = f
L

D

V̄ 2

2
(19)

There are two ways of determine the Darcy-Weisbach friction factor f , either
by the use of the Moody’s diagram Fig. 6 or by the use of Darcy-Weisbach
equation, Eq. 20, for the laminar regime and Colebrooks equation, Eq. 21
for the turbulent regime where the last one cannot be solved analytically
but has to be solved iteratively.

f =
64

Re
(20)

1

f0.5
= −2.0 · Log

(
e/D

3.7
+

2.51

Re · f0.5

)
(21)
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Before the friction factor can be determined the Reynolds number has to be
known to determine if the flow is in the laminar of turbulent regime. This
can be found by Reynolds equation, Eq. 22.

Re =
ρ · V̄ ·D

μ
(22)

4.3. Non-circular channels & hydraulic diameter

All the above theory and equations explain how it is possible to calculate
flow and pressure losses in circular pipes. As this is fare from the only type of
channels used for fluids there is a need for estimating an equivalent diameter
for other geometries. This diameter is called the hydraulic diameter and is
defined as, Ref.[19]:

Dh =
4A

P
(23)

where A is the cross section area and P is the wetted perimeter of the
channel. For a rectangular channel the hydraulic diameter would therefore
be:

Dh =
4 · h · w

2 · (h+ w)
(24)

where h is the height and w is the width of the channel. The above equa-
tion will, according to [18], give results with acceptable accuracy for a
height/width ratio of approximately 1/4 ≤ h/w ≤ 4. Beyond this ratio
and for irregular shaped channels experimental values must be used.

4.4. Fluid flow model description

Figure 7a show a section of the rotor and the stator of the gearless
drive which is analyzed and Fig. 7b show a close-up of approximately one
stator tooth including coils. The green rectangles and circles indicate the
cooling flow channels which are used in the calculations. Even though not
all of the channels are rectangles it is assumed to only have minor effect
on the accuracy as long as the cross section area of the channels and the
perimeter are comparable. Each of the channels is numbered according to
the number in the blue circle beside the channels. It is this number that
has been referred to in Tab. A.3 in appendix which show the dimensions
used for the channels. Every subsequent content will use this numbering of
the channels for both the flow and heat calculation. Table A.3 also show
how many parallel channels there are of the different channels in the motor.
This number of channels is based on the number of poles and number of
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slots of the motor which can be found in appendix Tab. A.4. The system is
assumed to have two nodes, one at each end of the motor. All the channels
are connected to these two nodes resulting in a pressure drop between the
nodes. To counteract this pressure drop a fan has been connected between
the nodes as well. A diagram of the system can be seen in Fig. 8 and
the pressure characteristics of the fan including cooler which is used in the
calculation is shown in appendix Fig. A.1.

(a) Rotor flow (b) Stator flow

Figure 7: Fluid flow model - Cooling channels through motor

Figure 8: Fluid flow model - Flow diagram of motor cooling
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5. Heat transfer model

Two different models are made for modeling the heat distribution in the
gearless drive. The first assume that it is sufficient to look only at a cross
section in the center of the gearless drive, assuming that the cooling flow
temperature can be kept constant at an elevated temperature compared to
the outlet temperature of the cooler, equivalent to that half of the losses are
transferred into the fluid. Furthermore, the coil losses used are assumed to
be constant in the axial direction and are calculated at an assumed 90◦C
copper temperature. The second model is more refined as it is sliced in
several pieces in the axial direction where the cooling flow temperature in
the different channels are constantly updated by the heat flux transfered to
the fluid from the previous cross section slice. Furthermore, the coil losses
are updated iteratively according to the coil temperature of the current
slice. The cooling flow temperature of the first slice is determined as the
temperature of the flow from the cooler, where the losses from the end
windings are added. The temperatures of the end winding are assumed to
be the same as the winding temperature of the first slice, which again is
found iteratively. The mass flow for both models are determined with air
properties equivalent to the air properties in the different channels in the
center of the drive which is the same for all the channels in the center slice
model and different for the different channels in the multi sliced model. If
the initial guesses of these air properties are not within an acceptable error
the whole model is run again with updated air properties from the previous
calculation. A flow diagram of the calculation procedure for the multi sliced
model can be seen in Fig. 9.

The center slice model is simulated with both the explicit finite difference
method and the finite element method where the multi sliced model is only
modeled with the finite element method due to the time consuming explicit
finite difference method. The explicit finite difference model is programed
in FORTRAN and the finite element models are created in the program
FEMM. The following will shortly describe the models with major focus on
the finite difference model.

5.1. Finite difference thermal model - Equations and implementation

The energy balance equation state that the energy that enters a control
volume plus the energy that is generated in the control volume must equal
the energy stored in the control volume. This can be written as:

Ėin + Ėgen = Ėst (25)
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Figure 9: Flow diagram for iterative flow and temperature calculations

where energy that leaves the control volume is added as negative energy
flow. The energy that enters/leaves the control volume could be due to
conduction between the control volume and the neighbor material through
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the control volumes sides. Another source of energy leaving/entering the
control volume is through convection between the control volumes sides and
a heating/cooling fluid.

When solving for the nodal temperature, Tm,n, there are 4 general situations
which are illustrated in Fig. 10. In case a) the node is an internal node where
only heat generation in the control volume, indicated by the colored box,
and conduction between neighbor control volumes can occur.

The energy flow done by conduction can be found by:

qcond = L ·Δy
km+1,n

Δx
(T t

m+1,n − T t
m,n)︸ ︷︷ ︸

Conduction with nodem+1,n

+L ·Δx
km,n−1

Δy
(T t

m,n−1 − T t
m,n)︸ ︷︷ ︸

Conduction with nodem,n−1

+ L ·Δy
km−1,n

Δx
(T t

m−1,n − T t
m,n)︸ ︷︷ ︸

Conduction with nodem−1,n

+L ·Δx
km,n+1

Δy
(T t

m,n+1 − T t
m,n)︸ ︷︷ ︸

Conduction with nodem,n+1

(26)

where the 4 terms on the RHS are conduction through the control volumes
4 edges.

The term for the energy generation, if there is any, is just the volumetric
energy rate multiplied by the volume of the control volume as shown in Eq.
27.

qgen = q̇ · L ·Δx ·Δy (27)

The stored energy in the control volume can be expressed as the density
multiplied by the heat capacity multiplied by the volume multiplied by the
time derivative of the temperature as shown in Eq. 28

qst = ρsolid · Csolid · L ·Δx ·Δy
T t+dt
m,n − T t

m,n

dt
(28)

In case b), c) and d) in Fig. 10 some of the control volume has been removed
compared with case a) where convection has been added. Due to the smaller
control volume Eq. 26, 27 and 28 has to be corrected for this reduction. As
an example the conduction in the (m+1, n) and (m,n−1) directions of case
b), under the assumption that Δx = Δy, would only be half of that of case
a) as the area has been reduced to half in these two directions. For the heat
generation in case b), again under the assumption that Δx = Δy, would be
reduced to 3/4 of that of case a) as the volume has been reduced to 3/4.
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(a) Interior node (b) Internal corner node

(c) Side node (d) Exterior corner node

Figure 10: Finite difference cases, [14]

The convective energy from a fluid at constant temperature where Δx = Δy
can be determined by:

qconv = h · L ·Δx(Tconv − T t
m,n) (29)

This expression for the convective energy is independent of being in case b),
c) or d) as long as Δx = Δy. This is due to the fact that the convective
area is the same for the three different cases.

Combining Eq. 25 to Eq. 29 and rearranging it is possible to determine the
temperature at time t + dt when the temperature distribution at time t is
known.

T t+dt
m,n =

(qcond + qconv + qgen) · dt
ρsolid · Csolid · L ·Δx ·Δy

+ T t
m,n (30)

For modeling an adiabatic or symmetry line boundary condition the ex-
pression for the conduction Eq. 26 has to be corrected. This is most eas-
ily done by adding this boundary effect to the thermal conductivity con-
stant of the solid. If looking at case d) as an example and assume that
the convection surface has been perfectly insulated. This will result in
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that km+1,n = km,n+1 = 0 as no convection occur in these direction and
km−1,n = km,n−1 = ksolid/2 as only half of the conductive area is available
under the assumption that Δx = Δy. The generated and stored energy, Eq.
27 and Eq. 28, has of course to be corrected as well according to the volume
of the control volume.

In cases where to different materials meet in a control volume the thermal
conductivity in the direction of the boundary between the two materials has
to be changed to kequivalent = (ksolid,1 + ksolid,2)/2.

5.2. Forced convection & thermal conduction

To be able to calculate the convection between a fluid and a solid the
heat transfer coefficient h has to be determined. This is normally done by
the use of empirical equations and is defined by:

h =
kf
Dh

·Nu (31)

There are many different empirical equations for determining the Nusselt
number, Nu, which is specially optimized for different geometries and pa-
rameter ranges. This paper will only focus on the determination of the
Nusselt numbers for forced convection in internal channel flows.

For internal turbulent flow Kreith [15] suggests that the Nusselt number is
to be found by the empirical equation:

Nu =
(f/2) · (Re− 1000) · Pr

1 + 12.7 · (f/2)0.5 · (Pr2/3 − 1)
·
(
1 +

(
D

L

)2/3
)

·
(
Tf

Ts

)0.45

(32)

which is valid for the following ranges:

0.6 ≤ Pr ≤ 2000, 2300 ≤ Re ≤ 106, 0 ≤ D
L ≤ 1

and f is defined as:

f = (1.58 · Ln(Re)− 3.28)−2 (33)

The Prandtl number, Pr, can be found by Eq. 36.

For internal laminar flow Incropera et al. [14] suggest that the Nusselt
number is to be found by the empirical equation:

Nu = 1.86 ·
(
Re · Pr

(L/D)

)1/3

·
(

μ

μs

)0.14

(34)

which is valid for the following ranges:
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0.6 ≤ Pr ≤ 5, Re ≤ 2300, 0.0044 ≤ μ
μs

≤ 9.75, Nu ≥ 3.66

In the case that the Nusselt number found by Eq. 34 falls below Nu = 3.66,
Incropera et al. [14] suggest that Eq. 35 is to be used instead.

Nu = 3.66 +
0.0668 · (L/D) ·Re · Pr

1 + 0.04 ((L/D) ·Re · Pr)2/3
(35)

which is valid for the following ranges:

Re ≤ 2300, Nu < 3.66

The Prandtl number used above to find the Nusselt number is another di-
mensionless number frequently used in heat calculation and is defined as the
ratio of momentum and thermal diffusivity:

Pr =
ν

α
=

Cp · μ
kf

(36)

5.3. Dependency of fluid characteristics on temperatures and altitude changes

As the properties of air changes at different temperatures and pressures
which has a significant influence on the flow and heat transfer results it is
of utmost importance that these are estimated as precise as possible. As
all calculations are made in 2D the most correct air temperature to use for
the calculations must be the average air temperature in the center of the
motor. In Tab. A.4 all the losses from the iron, copper and fan are listed.
Using these losses together with the initial temperature after the cooler it is
possible to estimate the temperature in the center of the motor by assuming
that half of the copper and iron losses are at that point transferred to the
fluid. The losses of the fan has to be added to these losses as it is placed
after the cooler and therefore contribute to the increase in temperature. The
center temperature can be found as:

Tmid =
Lossfan + (LossFe,s + LossFe,r + LossCu,s + LossCu,r) /2

ṁ · Cp
+ Tini

(37)
This equation has to be solved iteratively as the center air temperature
is dependent on the mass flow and specific heat capacity which again is
dependent on the center air temperature. As air pressure decrease with the
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altitude the pressure has to be determined with the help of Eq. 38 and the
altitude from Tab. A.4.

palt = p0 ·
(
1− Tlap · halt

T0

) g·M
R·Tlap

(38)

It is now possible to calculate the remaining needed properties by the use
of Eq. 39 to 42:

ρair = palt · M

R · (273.15 + Tmid)
(39)

μ = μ0
T0 + C

(273.15 + Tmid) + C

(
273.15 + Tmid

T0

)3/2

(40)

Cp = 4.44 · 10−7 · (273.15 + Tmid)
3 − 3.33 · 10−5 · (273.15 + Tmid)

2

− 6.99 · 10−2 · (273.15 + Tmid) + 1.02 · 103 (41)

kf = 7.6686 · 10−5 · (273.15 + Tmid) + 3.0438 · 10−3 (42)

5.4. Heat transfer model in the solid parts

The schematics of the motor for the heat transfer analysis is shown in
Fig. 11 with the dimensions listed in appendix Tab. A.1. The different
colors indicate the different material where gray is iron, M400-50A for the
stator and St.42 for the rotor. The yellow color is the insulation material and
the brownish color is the copper/coil packs. The red lines on the edges of the
solids indicate surfaces which have convection with the cooling flow found
in previous section. The blue lines indicate adiabatic boundary conditions
which are either a symmetry line or a surface which are considered to have
no heat flux passing through it. The stator section is modeled with parallel
symmetry lines at the sides which are acceptable assumptions as the radius
of the rotor is large and the error in connection with this assumption will
therefore be minimal. The coils in the rotor and stator do not just consist
of copper but of copper bars wrapped in one or several layers of insulations.
Figure 12 show the schematics of the coil packs for the stator and rotor. The
different layers of insulation are assumed to be made of the same material
(glass fiber composite, 66% glass fiber, 33% epoxy). Looking at Fig. 12b it
can be seen that each copper bar in the rotor coil pack is wrapped in 0.105
mm of insulation. By taking the sum of the insulation length and divide
it by the sum of length per conductivity of the different materials one can
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(a) Rotor pole geometry (b) Stator tooth and coil geometry

Figure 11: Stator and rotor geometry

(a) Stator coil pack (b) Rotor coil pack

Figure 12: Rotor & stator coil packs

achieve an equivalent conductivity. For the x and y direction of the rotor
copper pack this can be found as:

keq =
Lins + LCu

Lins/kins + LCu/kCu
(43)
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Stator Rotor
Yoke [kW] 19.1 Pitch [kW] 4.9
Teeth [kW] 20.6 Pitch SC [kW] 3.8
Teeth SC [kW] 1.8
Coil DC [kW] 328.7 Field windings [kW] 229.2
Coil AC [kW] 4.4

Total Fe losses [kW] 41.5 Total Fe losses [kW] 8.7
Total Cu losses [kW] 333.1 Total Cu losses [kW] 229.2

Table 1: Electromagnetic losses - Losses at 75◦C calculated by Grinbaum
[26] using only the 1st harmonic.

In a similar way this can be done for the stator pack Fig. 12a. In the x
direction this will however just be done starting from the copper bar of one
of the columns and to the outer surface of the insulation as no conduction
will occur through the center due to symmetry.

6. Comparison of models

6.1. Electromagnetic loss model

The estimation of the coil length for calculating the resistance losses
consists of several different length contributions to the most obvious active
coil length. These contributions comes from the twisting of the copper
strands in the active part of the stator, connection between upper and lower
coil segments, jump between slots in the stator and finally the end windings.
The found lengths and cross section areas of the coils are listed in appendix
Tab. A.2 and are the values used in the following calculations. To evaluate
the presented loss model a simulation is made with rated currents, speed and
torques of the gearless drive while assuming that the copper coils are kept
at a constant temperature of 75◦C. Similar calculations has been carried
out by Grinbaum [26] using the same assumptions but based on analytical
equations. Results from [26] can be seen in Tab. 1 and results from the
finite element model can be seen in Tab. 2. Before a comparison can be
made it is important to note that the loss model used in [26] only takes
the first harmonic into account when estimating the losses where the finite
element model can estimate as many harmonics as the machine precision
allows. For this reason two simulations are made to estimate the losses
coming only from the fundamental frequency and losses coming from the
first 80 harmonics. Both results are listed in Tab. 2. As can be seen there
is a significant increase in the estimated core losses when using the first
80 harmonics as basis for the calculation compared to only the fundamental
frequency. However, in order to allow a comparison between the different loss
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Parameter Value
Rotor core loss [W] 536.42
Rotor core loss (only 1st harmonic taken into account) [W] 0.00
Stator core loss [kW] 48.80
Stator core loss (only 1st harmonic taken into account) [kW] 41.86
Total core loss [kW] 49.27
Loss/core volume (rotor) [W/m3] 41.15
Loss/core volume (stator) [W/m3] 4251.14
Stator resistance loss @ 75 ◦C (incl. end windings) [kW] 347.72
Stator resistance loss in active part @ 75 ◦C [kW] 167.92
Stator resistance loss/coil pack volume @ 75 ◦C [kW/m3] 77.1
Rotor resistance loss @ 75 ◦C (incl. end windings) [kW] 230.54
Rotor resistance loss in active part @ 75 ◦C [kW] 162.72
Rotor resistance loss/coil pack volume @ 75 ◦C [kW/m3] 76.8
Average torque [MNm] 13.61
Mechanical power [MW] 15.96

Table 2: Electromagnetic losses - Results from the FEMM loss calculation
using the first 80 harmonics at rated current, speed and torque based on
[29].

calculation approaches, namely presented in [26] and in this work, only the
fundamental frequency will be initially considered. Table 3 list the results
from the finite element model and the results from [26] both considering only
the fundamental frequency. Good agreement for stator core losses, rotor and
stator resistance losses can be seen in Tab. 3 with only minor deviations,
except for rotor core losses. However, as the rotor core is not experiencing a
B-field with the fundamental frequency it is obvious that the losses for this
will be zero. The reason for this is that the only oscillation of the B-field
in the rotor core comes from the rotor passing the slots and the fractional
stator windings where the stator is experience the fundamental frequency
due to the pulsating phase currents in the stator. However, taking the first
80 harmonics into account it is seen that the total losses is not zero even
though the losses are small as the B-field is almost constant within the
rotor core material and only small oscillations occur at the top of the pole
shoes. All in all the finite element model has been verified against analytical
results and proved to give similar results under similar assumptions. The
core losses used in the following sections are the losses found from the first
80 harmonics.

6.2. Fluid flow model

For validation of fluid flow model data, preliminary results from Bermudez
[27] using the same input as the present model are used and listed in Tab. 4.
The channel numbers refers to the numbering in Fig. 7. The results show a
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Parameter Value FEM Value [26] Deviation
Rotor core loss (only 1st harmonic) [kW] 0.0 8.7 ∞
Stator core loss (only 1st harmonic) [kW] 41.9 41.5 0.95%
Rotor resistance loss @ 75 ◦C [kW] 230.5 229.2 0.6%
Stator resistance loss @ 75 ◦C [kW] 347.7 333.1 4.2%

Table 3: Electromagnetic losses - Comparison of loss results, [26].

Channel Hydraulic flow rate Mean Pressure
number diameter [m] [m3/s] vel. [m/s] drop [Pa]

1 0.0491 4.89 15.04 170.0
1 [27] 0.0634 5.77 15.98 170.0

Deviation 22.6% 15.3% 5.9% 0.0%

2 0.0945 9.19 16.84 170.0
3 0.0346 7.70 14.18 170.0

2+3 [27] 0.0585 16.03 15.72 170.0
Deviation 5.4% 1.3% 0.0%

4+5 0.0197 2.72 10.96 170.0
4+5 [27] 0.0208 2.68 11.08 170.0
Deviation 5.3% 1.5% 1.1% 0.0%

6 0.0049 0.06 2.94 170.0
6 [27] - - - 170.0

7 0.0235 2.56 11.70 170.0
7 [27] 0.0235 2.56 11.73 170.0

Deviation 0.00% 0.0% 0.3% 0.0%

8 0.0195 0.81 10.77 170.0
8 [27] 0.0195 0.81 10.76 170.0

Deviation 0.00% 0.0% 0.1% 0.0%

9+10+11 0.0108 3.68 7.80 170.0
9+10+11 [27] 0.0110 3.58 7.78 170.0
Deviation 1.8% 2.8% 2.6% 0.0%

Table 4: Fluid flow model - Results and comparison to Bermudez [27], (same
input).

deviation of the fluid flow rate of less than 3%, except for channel 1 and 2+3
which had a deviation of 15.3% and 5.4%. However adding up the flow rate
in these channels and compare the total flow rate for these channels result
in a deviation of 0.1% which could indicate a different split up of the air
gap at the rotor. Accepting this as the cause of deviation, there is a relative
good agreement in all the cases.

6.3. Heat transfer model

For the center slice thermal model four different grid sizes are used for
the finite difference model, two for the stator and two for the rotor. The
grid sizes are chosen as to best represent the geometry of the different parts
with the coarsest grid possible. To examine the accuracy of the results with
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the coarse grid an extra simulation is carried out with a twice as fine grid.
The entire grid used are of equal side length, Δx = Δy. The following grid
sizes are used for the stator and the rotor:

Stator : Δx = Δy = 2.00 mm
Δx = Δy = 1.00 mm

Rotor : Δx = Δy = 2.50 mm
Δx = Δy = 1.25 mm

Figure 13 show the results of the converged steady-state temperatures of
the rotor and stator achieved with the finite difference method together
with results from the finite element model. Figure 13a is for the coarse
grid, Fig. 13b is for the fine grid and Fig. 13c is for the finite element
model. As a proof of convergence of the finite difference model the coldest
and warmest part of the copper and iron are plotted in Fig. 14 where it
can be seen that the steady-state has been reached after approximately 30
simulated hours and it converges toward the finite element results. As it is
difficult to read the exact temperatures from Fig. 13 the coldest and warmest
temperatures are listed in Tab. 5. Furthermore the deviation between the
achieved temperatures values for the fine and coarse grid and between the
FD and FEM model is added to the table. It can be seen that the increase
in refinement does not make a large change in the found temperatures,
only a deviation of approximately 1.5%. However looking at the increase in
computational time spend per iteration and the maximum possible time step
Δt shown in Tab. 6 it is not worth the effort as other part of the calculations
are connected with higher errors. One obvious reason for the deviation in
the stator temperature for the two different grid sizes is that the cooling
channels in the tooth for the coarse grid is actually modeled with a width of
8 mm due to the size and placement of the grid where it are modeled as 6 mm
in the fine grid case which are the actual width of the cooling channels. This
increase in modeled cooling channel width will of course increase the surface
area for the convection slightly and thereby decreasing the temperature in
the solid parts. From Tab. 5 it must be concluded that the three models
produce results with almost same accuracy.

To validate the results obtained by using the three models, comparisons
are done with results and data presented by Grinbaum [26] under almost
the same conditions as the one used in the simulations. Table 7 show these
results together with the ones found by the FEMM model. As can be seen
there is only minor deviation between the temperature results. It must there-
fore with a high probability be concluded that the models produce similar
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(a) Finite difference, Ro-
tor: Δx = Δy = 2.5 mm,
Stator: Δx = Δy = 2 mm

(b) Finite difference, Ro-
tor: Δx = Δy = 1.25 mm,
Stator: Δx = Δy = 1 mm

Density Plot: Temperature (K)
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(c) Finite element method

Figure 13: Finite difference Steady-State and finite element temperatures of
rotor and stator, Center slice model

results under the same assumptions.

The multi sliced model which updates cooling flows and copper losses due to
the increasing temperatures in the axial direction is only modeled by FEMM
due to the time consuming explicit finite difference model as many iterations
have to be performed. As a comparison between the computational time for
one slice the two finite difference models takes 20 hours and 1 hours re-
spectively where the FEM model takes approximately 1 second to compute
1 slice. The multi sliced model consists of 40 slices evenly distributed over
the total length of the gearless drive. Figure 15 show the temperature dis-
tribution of the center and the two end slices found by the FEMM model
and Fig. 16 show the cooling flow temperatures in the different channels.
It is obvious from this that the center slice model is too simple as the tem-
perature difference between the two end slices is 31.1◦C for the warmest
part. Furthermore the warmest temperature is 30.0◦C warmer than what
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Warmest Cu part - stator, dx=2.0 mm
Warmest Cu part - stator, dx=1.0 mm
Warmest Cu part - stator, FEMM
Warmest Cu part - rotor, dx=2.5 mm
Warmest Cu part - rotor, dx=1.25 mm
Warmest Cu part - rotor, FEMM
Coldest Fe part - stator, dx=2.0 mm
Coldest Fe part - stator, dx=1.0 mm
Coldest Fe part - stator, FEMM
Coldest Fe part - rotor, dx=2.5 mm
Coldest Fe part - rotor, dx=1.25 mm
Coldest Fe part - rotor, FEMM

Figure 14: Maximum and minimum temperatures in stator and rotor poles,
Center slice model

Δx = 2.5 [mm] Δx = 1.25 [mm] Dev. [%] FEMM Dev. [%]
Cu rotor max. [◦C] 113.8 113.4 0.4 114.3 0.4
Cu rotor min. [◦C] 103.9 102.7 1.2 102.4 1.5
Fe rotor max. [◦C] 87.7 87.2 0.6 87.7 0.0
Fe rotor min. [◦C] 83.8 85.0 1.4 84.3 0.6

Δx = 2.0 [mm] Δx = 1.0 [mm] Dev. [%] FEMM Dev. [%]
Cu stator max. [◦C] 94.6 95.5 2.0 96.4 1.9
Cu stator min. [◦C] 89.2 90.0 0.9 91.3 2.3
Fe stator max. [◦C] 91.5 92.3 0.9 93.2 1.8
Fe stator min. [◦C] 86.9 87.7 0.9 87.9 1.1

Table 5: Rotor and stator max. and min. temperatures, Center slice model

was found by the first model. For validating the multi sliced model, com-
parisons with data and results obtained in Bermudez [27] using the same
input as the present model are carried out and presented in Tab. 8. The
difference between the results could, among other things, be explained by
the fact that Bermudez [27] uses Dittus-Boelters equation for calculating
the Nusselt number which is for smooth channels with a Reynolds number
above 10,000 and is therefore less suited for these cases. Furthermore, there
is a difference in the mass flow at the same differential pressure which could
be explained by the fact that the author of [27] assumes that the air prop-
erties in the channels are the same for all the channels. Moreover, small
discrepancies in the geometry used for the flow calculation are also verified.

It is assumed in all the models that no axial heat flux is present in the
solid parts of the drive. The only axial heat transfer occurring is in cooling
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Δx [mm] Max. Δt [ms] CPU time/step [ms] Steady-state CPU time [h]
Rotor 1.25 20 10.25 15.375
Stator 1.00 20 3.16 4.740
Rotor 2.50 100 2.49 0.747
Stator 2.00 100 0.78 0.234

Table 6: Finite difference model computation time, Intel core I5 CPU
M450@2.4GHz, OS Windows 7 64-bit, Steady-state @ 30 simulated hours

FEMM [26] Deviation Deviation
Rotor max. 109.1 ◦C 109.5 ◦C 0.4 ◦C 0.4%
Stator max. 104.7 ◦C 104.9 ◦C 0.2 ◦C 0.2%
Volume flow 31.4 m3/s 32.9 m3/s 1.5 m3/s 4.6%
Loss/coil vol. stator 96891 W/m3 96891 W/m3 0.0 W/m3 0.0%
Loss/vol. stator iron 5729 W/m3 5729 W/m3 0.0 W/m3 0.0%
Loss/coil vol. rotor 70657 W/m3 70657 W/m3 0.0 W/m3 0.0%
Loss/vol. rotor iron 621 W/m3 621 W/m3 0.0 W/m3 0.0%

Table 7: Temperature comparison with data and results provided by Grin-
baum [26], Center slice model

fluid as heat is transferred from the solids to the fluid through the walls
of the cooling channels. To investigate the error in connection with this
assumption a simulation has been carried out where the axial heat flux of
the warmest coil has been found (bottom rotor coil). The axial heat flux
for this coil is found to be 41.6 W which is approximately 8.6% of the total
loss in that coil segment. The axial heat flux in the core material is much
smaller than in the copper coils as this is laminated steel sheets and has a
conductivity coefficient of k ≈ 0.5658 W/(m·K) in the axial direction per-
pendigular to the sheet plan, [33]. The conductivity coefficient parallel to
the sheets plan is 26 W/(m·K) which is 46 times larger than the conduc-
tivity perpendigular to the sheet plan. This assumption will however only
overestimate the temperature rise in the gearless drive and will therefore
not predict lower temperatures which could be fatal for the operation and
lifespan of the drive.

FEMM [27] Deviation Deviation
Rotor max. 144.3 ◦C 147.7 ◦C 3.4 ◦C 2.3%
Stator max. 127.5 ◦C 123.8 ◦C 3.7 ◦C 3.0%
Mass flow 20.45 kg/s 19.55 kg/s 0.90 kg/s 4.6%
Vol. flow 31.60 m3/s 31.43 m3/s 0.17 m3/s 0.5%
Pressure loss 170.0 Pa 170.0 Pa 0.0 Pa 0.0%

Table 8: Temperature comparison of multi sliced model against Bermudez
[27] results, (same inputs)
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Figure 15: Temperature distribution with updated copper resistance losses,
Multi sliced model
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Figure 16: Cooling air temperatures, Temperature updated copper resis-
tance losses, Multi sliced model

7. Results and discussions

The previous section has presented a comparison of the different sub-
models which showed a good correlation between estimated values with
only minor deviation. This is however only true as long as the input for
the different submodels has been modified to match each other. What will
be shown below is a comparison between the original values obtained from
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Parameter Value [27] Value FEMM Deviation
Stator core loss [kW] 65.5 48.8 34.2%
Stator winding loss [kW] 370@90◦C 379.2@89.5◦C-127.5◦C 2.4%
Rotor core loss [kW] 31.6 0.5 6220%
Rotor winding loss [kW] 266.9@90◦C 263.4@104.4◦C-144.3◦C 1.3%
Fan losses [kW] 120.0 106.3 12.9%

Table 9: Losses - Results and comparison of losses found by Iossif [26] and
used in Bermudez [27], (original).

[26] and [27] where the pressure loss in the cooling channels and the outlet
temperature from the cooler are the only values which has been kept the
same in all the models.

Table 9 show a comparison between the losses found by the FEMM model
and the original losses used by Bermudez [27] which are calculated by Iossif
[26]. The most eye catching in the table are the found core losses which
deviate a lot. One reason for this high deviation can be explained by the
fact that Iossif [26] only uses the fundamental frequency for the core losses.
To compensate for the lack of losses coming from the remaining harmonics
some additional losses of 72.6kW has been distributed evenly between the
stator core loss, rotor core loss and fan losses where the losses in the FEMM
model comes from the eddy current and hysteresis losses for the 1st 80 har-
monics. The deviation in the winding losses can be explained by the fact
that the losses in Bermudez [27] have been estimated at a constant copper
temperature for both rotor and stator where the FEMM model updates the
copper temperatures and thereby the losses in the windings.

Table 10 show a comparison between the cooling flow results of the pre-
sented model and the original result found by Bermudez [27]. It can be
seen that even though the input losses for the two models deviates highly it
only has a minor influence on the fluid flow calculations as these are almost
identical to the previous flow comparison Tab. 4.

Table 11 show a comparison between the temperature distribution of the
presented multi sliced thermal FEMM model and the original result found
by Bermudez [27]. As can be seen there are large deviations between the
results achieved by the two models especially when comparing against the
lower temperature results. This could among other things be explained by
the fact that the cooling flow properties are kept constant in [27] for all the
channels whereas the properties of the fluid in the completely interconnected
model are updated for the different channels and in the axial direction of the
drive. An other reason could be, as explained earlier, that Bermudez [27]
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Channel Hydraulic flow rate Mean Pressure
number diameter [m] [m3/s] vel. [m/s] drop [Pa]

1 0.0491 4.89 15.04 170.0
1 [27] 0.0634 5.68 15.73 170.0

Deviation 22.6% 13.9% 4.4% 0.0%

2 0.0945 9.19 16.84 170.0
3 0.0346 7.70 14.18 170.0

2+3 [27] 0.0585 15.80 15.49 170.0
Deviation 6.9% 0.1% 0.0%

4+5 0.0197 2.72 10.96 170.0
4+5 [27] 0.0208 2.70 11.17 170.0
Deviation 5.3% 0.7% 1.9% 0.0%

6 0.0049 0.06 2.94 170.0
6 [27] - - - 170.0

7 0.0235 2.56 11.70 170.0
7 [27] 0.0235 2.58 11.79 170.0

Deviation 0.00% 0.8% 0.8% 0.0%

8 0.0195 0.81 10.77 170.0
8 [27] 0.0195 0.82 10.86 170.0

Deviation 0.00% 1.2% 0.8% 0.0%

9+10+11 0.0108 3.68 7.80 170.0
9+10+11 [27] 0.0110 3.67 7.97 170.0
Deviation 1.8% 0.3% 2.1% 0.0%

Table 10: Fluid flow model - Results and comparison to Bermudez [27],
(original).

FEMM [27] Deviation Deviation
Rotor coil 104.4 ◦C - 144.3 ◦C 141.0 ◦C - 158.0 ◦C 36.6 ◦C - 13.7 ◦C 26.0% - 8.7%
Stator coil 89.5 ◦C - 127.5 ◦C 128.8 ◦C 39.3 ◦C - 1.3 ◦C 30.5% - 1.0%
Tooth 88.6 ◦C - 124.0 ◦C 118.4 ◦C 29.8 ◦C - 5.6 ◦C 25.2% - 4.7%
Core 85.6 ◦C - 120.7 ◦C 115.7 ◦C 30.1 ◦C - 5.0 ◦C 26.0% - 4.3%
Mass flow 20.45 kg/s 20.61 kg/s 0.16 kg/s 0.8%
Vol. flow 31.60 m3/s 31.23 m3/s 0.37 m3/s 1.2%
Pressure loss 170.0 Pa 170.0 Pa 0.0 Pa 0.0%

Table 11: Temperature comparison of multi sliced model against Bermudez
[27] results, (original)

uses Dittus-Boelters equation for calculating the Nusselt number which is
for smooth channels with a Reynolds number above 10,000 and is therefore
less suited for this case. As the Nusselt number have a direct influence on
the convective heat transfer this would of course have a major impact on
the thermal results. Finally the resistance losses from the windings are kept
constant in the axial direction in Bermudez [27] where these are updated in
the presented global interconnected model according to the temperature of
the specific axial position.

It is evident from the above comparison that it is of the utmost im-
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portance that as many parameters as possible are updated between the
submodels as well as inside the submodels. This update can most easily be
done by creating a completely interconnected model, as the one presented in
this paper, which iteratively updates the parameters based on intermediate
results form other submodels or the submodel itself. By creating such a
model as the one presented here it is also possible to completely eliminate
the risk of forgetting to update all the parameters and thereby insure more
reliable results. This section has demonstrated the strength of a completely
interconnected model compared to several separate models where not all
parameters are updated automatically but kept constant throughout the
simulations.

8. Conclusion

The work presented in this paper has shown that modeling only a single
cross section in the center of the drive with constant coil and cooling fluid
temperatures is insufficient. The fluid and coil temperatures have to be up-
dated in the axial direction as this contributes to a significant increase in
losses and thereby an increase in core and coil temperatures. Furthermore
the temperature in the core material in the axial direction has shown to be
fare from constant which is a further indication that the single cross sec-
tion model is insufficient. As the air temperature in the different cooling
channels change the presented thermal submodel update the air properties
corresponding to the air temperature of the specific channels at the specific
axial positions giving a more accurate estimate of the heat convection co-
efficient. This is an improvement of [26] and [27] used for comparisons as
none of these models update the air properties in this way but use constant
air properties in all the cooling channels. Another improvement of the heat
convection coefficient estimate compared to [27] is that the presented model
use three different empirical equations for estimating the Nusselt number
for internal channel flows. These three equations covers the complete range
from laminar to turbulent flow in smooth and rough channels whereas [27]
only use Dittus-Boelters equation for calculating the Nusselt number. As the
Dittus-Boelters equation is only for smooth channels with a Reynolds num-
ber above 10,000 (turbulent flow) this might result in less accurate estimates.
The presented thermal FEM and FD submodel is also an improvement over
[26] and [27] if a higher level of detail is needed/wanted as [26] and [27]
are based on lump models and only predict the average temperature within
each lump. The finite difference method with explicit equations is, however,
not well suited for modeling the multi sliced model case with updated fluid
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flow and copper losses as it is computationally expensive compared with
the finite element method. The two presented finite difference models takes
∼20 hours and ∼1 hours respectively to compute 1 slice where the FEMM
model takes approximately 1 second to do it. If it is chosen to use the finite
difference method anyway it has been shown that there is no significant loss
in accuracy by choosing a coarse grid for the finite difference model as long
as the grid does not violate the boundaries of the different solid parts too
much. However, a significant reduction in computation time is gained by
choosing a coarse grid. In this case the CPU time was 20 times larger as
the grid size was reduced to half the size. Like the cooling air properties
was updated in the thermal submodel the presented fluid flow submodel also
update the air properties in the different channels. These air properties are
updated corresponding to the center air temperature of the specific channels
which result in a more accurate flow as the fluid temperature is not the same
in all the channels resulting in different viscosities and densities. This is also
an improvement of models [26] [27] used for comparisons as these models
use constant air properties in all the cooling channels resulting in less ac-
curate flow estimates. In all the presented models including [26] and [27] it
is assumed that the only axial heat flux occurring is in the cooling fluid as
heat is transferred from the solids to the fluid. An investigation of the heat
flux in the warmest coil is shown to be 41.6 W for the presented case which
is approximately 8.6% of the total loss in the coil segment. This assumption
however only overestimate the temperature rise in the gearless drive and will
therefore not predict lower temperatures which could be fatal for the opera-
tion and lifespan of the drive. This axial conduction in the solid parts could
in the future be implemented by iteratively adding the conductive heat flux
from the previous and the subsequent slice to the current slice.

A completely interconnected multi-physic model has been presented show-
ing the importance of updating the parameters between the models which is
one of the major strength of a completely interconnected model compared to
several separate models where not all parameters are updated automatically
but kept constant throughout the simulations.
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Appendix A. Data

Parameter Stator [m] Rotor [m] Parameter Stator [m] Rotor [m]
R1 5.400 4.955 R12 5.750 5.372
R2 5.415 5.135 R13 0.012 -
R3 5.410 5.328 R14 0.010 -
R4 5.462 5.384 W1 4.830·10−2 0.2584
R5 5.470 1.870 W2 1.970·10−2 0.2679
R6 5.522 5.145 W3 6.000·10−3 0.2140
R7 5.530 5.196 W4 - 0.2605
R8 5.582 5.207 W5 - 0.1620
R9 5.585 5.258 W6 - 0.1665
R10 5.659 5.269 W7 - 0.2553
R11 5.700 5.320

Table A.1: Rotor and stator dimensions cf. Fig. 11

Parameter Value Description
Ltwist [mm] 25.0 Twist of copper strand in active length (stator per bar)
Lcon [mm] 120.0 Connection of coil bars at the ends (stator per bar)
Ljump [mm] 72.12 Jump of coil bars between slots (stator per bar)
Lend,s [mm] 1173.0 End windings (stator per bar)
Lactive,s [mm] 1250 Active coil length (stator per bar)
As [m2] 9.8658·10−4 Copper cross section area of parallel strands (stator)
Lend,r [mm] 3313 End windings (rotor all poles)
Lactive,r [m] 7950 Active coil length (rotor all poles)
Ar [m2] 245.85·10−6 Copper cross section area of parallel strands (rotor)

Table A.2: Electromagnetic losses - Data of length and cross section areas
of copper coils

Channel no. 1 2 3 4 5 6
a, width [mm] 28.1 137.5 428.0 94.0 94.0 2.5
b, height [mm] 193.0 72.0 18.0 11.0 11.0 180.0
D, diameter [mm] - - - - - -
L, length [mm] 1250.0 1250.0 1250.0 1250.0 1250.0 1250.0
e, roughness [mm] 0.3 0.3 0.3 0.3 0.3 0.3
No. of channels 60 60 60 120 120 60

Channel no. 7 8 9 10 11
a, width [mm] - - 6.0 6.0 6.0
b, height [mm] - - 52.0 52.0 52.0
D, diameter [mm] 23.5 19.5 - - -
L, length [mm] 1250.0 1250.0 1250.0 1250.0 1250.0
e, roughness [mm] 0.3 0.3 0.3 0.3 0.3
No. of channels 504 252 504 504 504

Table A.3: Fluid flow model - Channel dimensions
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Figure A.1: Fluid flow model - Pressure characteristic of fan incl. cooler

Parameter Value Description
Halt 4100 Altitude [m]
Cs,ele 0.97 Lamination stacking factor
AFe,r 179.90 ·10−3 Cross-section area of the iron part of one rotor pole [m2]
AFe,s 9.6548 Cross-section area of the iron part of the stator [m2]
ACu,r 26.060 ·10−3 Cross-section area of the copper part of one rotor pole [m2]
ACu,s 0.9866·10−3 Cross-section area of the copper part of one stator coil pack [m2]
ACoil,r 28.254 ·10−3 Cross-section area of the coil packs in one rotor pole [m2]
ACoil,s 1.728 ·10−3 Cross-section area of one coil pack in the stator
Lmotor 1.250 Axial length of the motor [m]
Tini 36.4 Initial temperature after the cooler [◦C]
npoles 60 Number of poles [-]
nslots 504 Number of slots [-]

Table A.4: Fluid flow model - General parameters

References

[1] L. Nieto, M. Ahrens, Gearless mill drive protection improvements and
its behaviour at minera escondida ltda., in: IEEE Industry Applications
Annual Meeting, 2007, pp. 1766–1772.

[2] A. Boughey, V. Svalbonas, S. M. Jones, Supply, installation & commis-
sioning of the worlds largest grinding mill, Society for Mining, Metal-
lurgy and Exploration - SME annual meeting - CD rom edition (2000)
00–7.

[3] R. Hamdani, Ball mill driven with gearless mill drive, IEEE Cement
Industry Technical Conference (May) (2000) 55–68.

[4] J. Nerg, M. Rilla, J. Pyrhönen, Thermal analysis of radial-flux electrical
machines with a high power density, IEEE Transactions on Industrial
Electronics 55 (10) (2008) 3543–3554.

[5] M. Galea, C. Gerada, T. Raminosoa, A thermal improvement technique

37



for the phase windings of electrical machines, IEEE Transaction on
Industry Applications 48 (1) (2012) 79–87.

[6] P. H. Mellor, D. Roberts, D. R. Turner, Lumped parameter thermal
model for electrical machines of TEFC design, IEE proceedings-B 138
(1991) 205–218.

[7] D. Staton, A. Boglietti, A. Cavagnino, Solving the more difficult as-
pects of electric motor thermal analysis, Electric Machines and Drives
Conference, IEMDC’03. IEEE International 2 (2003) 747–755.

[8] N. Bracikowski, M. Hecquet, P. Brochet, S. V. Shirinskii, Multiphysics
modeling of a permanent magnet synchronous machine by using lumped
models, IEEE Transaction on Industrial Electronics 59 (6) (2012) 2426–
2437.

[9] O. Drubel, B. Runge, Temperature rise within the rotor of squirrel cage
induction machines with solid iron and laminated rotors during run up
and standstill, Electrical Engineering 86 (2004) 97–103.

[10] H. D. Baehr, K. Stephan, Heat and mass transfer, 3rd Edition, Springer,
2011.

[11] G. Li, J. Ojeda, E. Hoang, M. Gabsi, M. Lécrivain, Ther-
mal–electromagnetic analysis for driving cycles of embedded flux-
switching permanent-magnet motors, IEEE Transactions on Vehicular
Technology 61 (2012) 140–151.

[12] K. Srinivas, R. Arumugam, Thermal characterization through finite el-
ement analysis of the switched reluctance motor, Proceedings of IEEE
Region 10 International Conference on Electrical and Electronic Tech-
nology (2001) 819–823.

[13] S. Mezani, R. Ibtiouen, R. Kechroud, O. Touhami, Finite element ther-
mal modeling of an induction motor, Electric Power Components and
Systems 29 (2001) 821–834.

[14] F. P. Incropera, D. P. DeWitt, T. L. Bergman, A. S. Lavine, Funda-
mentals of Heat and Mass Transfer, 6th Edition, John Wiley & Sons
Inc., 2006.

[15] F. Kreith (Ed.), The CRC handbook of thermal engineering, CRC
Press, 2000.

38



[16] P. Stephan, S. Kabelac, M. Kind, H. Martin, D. Mewes, K. Schaber
(Eds.), VDI Heat atlas, 2nd Edition, Springer, 2010.
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