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Abstract

The auditory evoked potential (AEP) is an electrical signal that candmded from electrodes
attached to the scalp of a human subject when a sound is presented. Adleisiconsidered
to reflect neural activity in response to the acoustic stimulation and is a welilishied clinical
and research tool to objectively assess the function and integrity of thiaunervous system.
However, the physiological generation of AEPs represents a compligater@ction between
linear and nonlinear cochlear and neural processes and is not wiglfstood in humans. This
thesis presents and evaluates a phenomenological model of AEP gen#ratican predict key
experimental observations of recorded AEPs. The purpose of thgwasgito investigate the role
of the different stages of auditory signal processing and their eféecfsEP generation.

In recent years, there has been a push both clinically and in reseamittousing realistic and
complex stimuli, such as speech, to electrophysiologically assess the huararghddowever,
to interpret the AEP generation to complex sounds, the potential patternsponse to simple
stimuli needs to be understood. Therefore, the model was used to simutiitienabrainstem
responses (ABRs) evoked by classic stimuli like clicks, tone bursts ainpschThe ABRs to
these simple stimuli were compared to literature data and the model was showadict pine
frequency dependence of tone-burst ABR wave-V latency and thkdependence of ABR wave-
V amplitude for clicks and chirps varying sweeping rates. The model wasaiuated based on
ABR recordings evoked by speech syllables, and was shown to adoouhe differences in the
responses observed between the stimuli. It was demonstrated that thatigenef the syllable-
evoked ABRs was highly influenced by cochlear and afferent n@uoakessing, which supported
the importance of cochlear processing for the generation of AEPSs.

A second major contribution of this study was the investigation of whether aydit@ady-state
responses (ASSRs) can be used to assess human cochlear compr&ssisorineural hearing
impairments is commonly associated with a loss of outer hair-cell functionalitya ameasurable
consequence is the decreased amount of cochlear compressioguanftees corresponding to
the damaged locations in the cochlea. In clinical diagnostics, a fast anciebjeneasure of
local cochlear compression would be of great benefit, as a more pBagggose of the deficits
underlying a potential hearing impairment in both infants and adults could taéned. It was
demonstrated in this thesis, via experimental recordings and supporteddey simaulations, that
the growth of the ASSR amplitude with stimulus level can indeed be used assestimate of
local cochlear compression.






Resumeé

Akustisk udlgste potentialer (Auditory evoked potentials, AE®) elektriske signaler, der kan
males via elektroder fastgjort til hovedskallen af en person, nar lydrigheesenteret for personen.
Signalet, der forventes at reflektere den neurale aktivitet, der skspons til et akustisk stimulus,
er et anerkendt veerktgj til at evaluere funktionaliteten og integriteteretabidditive neurale
system. De fysiologiske mekanismer, der genererer AEPer, repraesetdg en kompliceret
interaktion mellem bade linesere og ulineaere processer, som ikke er sadtlipippdet. Denne
afhandling preesenterer og evaluerer en feenomenologisk model af A&#teging, som kan
simulere vigtige eksperimentelle AEP observationer.

| de senere ar har der veeret en gget interesse i bade den klinidie® wgy i forskningsverdenen
for at bruge realistiske og komplekse stimuli, som fx tale, til elektrofysiologiskvaluere den
menneskelige hgrelse. For at kunne fortolke AEPer malt med komplekse séimdéit dog
nagdvendigt at have forstaet de potentielle manstre, som mere simple stimedlegEn | denne
afhandling blev AEP modellen derfor brugt til at simulere akustiske hjen@seresponser
(Auditory brainstem response, ABR) til klassiske stimuli som klik, tonepubgechirps. De
simulerede ABRer blev sammenlignet med data fra litteraturen. Det blev vist,d#li@o kunne
simulere frekvensafhaengigheden af ABR bglge-V-latenstiden, nar stiautionepulser, samt
simulere niveauafheengigheden af ABR bglge-V-amplituden nar stimulintanélik eller chirps
med varierende stigningstid. Modellen blev ogsa evalueret pa ABR malt meslsatsstimuli,
og det blev vist at den kunne redegare for malte responsforskelle mdlskellige stavelser.
Det blev demonstreret, at genereringen af AEPer malt med stavelsesstimuieget pavirket af
cochleger processeringen og den afferente neurale proces$sitgyunderstreger vigtigheden af
cochleaer processeringen i AEP-genereringen.

Et andet vigtigt bidrag i denne afhandling er studiet af, hvorvidt deisaske steady-state
respons (Auditory steady-state response, ASSR) kan bruges tilates cochleser kompression
i mennesker. Sensorineurale hgretab bliver ofte associeret medftaikabnaliteten af de ydre
harceller. En malbar konsekvens af dette er en nedsat cochleaer lssinpreed de frekvenser, der
svarer til de beskadigede steder i gresneglen. | klinisk diagnostik vilheigiy og objektiv test af
lokal cochleger kompression veere meget veerdsat, da mere preecisesdiagjrten underliggende
fysiologiske arsag til et potentielt haretab ville kunne blive stillet for bgmedbarn og voksne.
| denne afhandling blev det demonstreret, via eksperimentelt arbejdbssia simulationer, at
veeksten i ASSR-amplitude med stigende stimulusniveau kan bruges sodaet s&rktgj til at
estimere den lokale cochleger kompression.

1| dette resume er begreber s& vidt muligt oversat til dansk, hvorioriditelser, for at undga forvirring, er bibeholdt
i deres originale engelske version.
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Chapter 1

Introduction

The auditory evoked potential (AEP) is a sub branch of electroentmplaahy (EEG) that has
been in use since the 1930s. Itis an electrical signal that can be eeldoodn electrodes attached
to the scalp of a human subject, when a sound is presented. The sigriaedbéo reflect neural
activity in response to the acoustic stimulation, and can as such be usedchscadbjectively
assess the function and integrity of the auditory nervous system. Unlikb@sgoustic measures,
it does not necessarily (depending on the particular AEP understedyjre the attention of
the test subject, making it specifically interesting to use with small children. H i& well
established as a clinical tool to screen the hearing of infants. Besidesklisage, it represents a
powerful tool for research purposes. The AEP is objective, faarbf fo record and reproducible.
It can be recorded from all stages in the auditory pathway, from thi#caycherve (AN) over the
brainstem to the cortex. The earliest responses, stemming from the ANiostem, provides
an assessment of the integrity of the mechanoelectrical transduction md $ouhe auditory
periphery and initial neural encoding prior to higher order cognitiveessing, and thus offers a
more direct method to investigate the auditory system than traditional psymigirmcmethods
allow. However, much interest is typically focused on the behavioral ougcmeasures and
the link between the two is currently not well understood. Given the typetiwfiukis and
the recording settings, the neural generation site of the AEP can be .vaiechmon for all
types of AEPs, independent of generation site and stimulus type, is thaptbdyce a one-
dimensional AEP pattern, where the electrical potential varies as a furafttone. This pattern
reflects a complex signal in the brain, where individual nerves contribw@ious degrees to the
recorded AEP. Further, the acoustic stimulation evoking the respondebagprocessed through
the entire auditory periphery including the nonlinear cochlea. The AEP ssthieiresult of an
acoustic stimulation and the processing through the middle ear, the nonlinbégam and various
subsequent neural sites, all of which produce complex neural adtityis then recorded on the
scalp of the human subiject. Itis difficult to deduce the contributions frordiffe¥ent underlying
physiological mechanisms, based on recorded AEPs. There is thud foneeodels such as the
AEP model presented in this thesis.

The generation of AEPs depend on various linear and nonlinear pexatong the auditory
pathway. One way to test hypotheses about the generator mechanisent/ingdAEPS is to
develop a model. Such a model should be able to predict key experimestalations of AEPs
to various stimuli, as a benchmark. The present study develops andtegsduah an AEP model.



2 1. Introduction

The model is phenomenological implying that it has been built to mimic experimentadigumned
phenomena instead of strictly modeling the physiology of the auditory pathWag. model is
divided into stages similar to the auditory system, and a link between simulatedméea and
the model stage producing the key feature of the phenomena can be &sthbliBhis means
that, if a simulated AEP predicts key features of experimentally measured, AE$Ekely that
the underlying physiology behind the actual recording resembles th&doality that has been
modeled. The AEP model built in this study is capable of testing current hgpesiregarding the
functionality of the different stages of the auditory pathway, and opeim¥estigations of where
the current knowledge is limited. Furthermore, the model can be a valuabte towerstand the
consequences of hearing loss on the formation of AEPs and can help wverthe use of AEPs
as a diagnostic tool.

The present thesis is structured as a collection of papers, wherelegutiecis based on a peer-
reviewed paper published in a journal or a conference proceediregoily exceptions are chapter
7 which is based on a submitted journal paper and cha&otdrich presents recent work, not yet
submitted for a journal publication.

1. Chapter2 provides a background overview of auditory evoked potentials anigwsv
existing models of AEP generation and selected models of the auditory pgriphieis
provides the reader with a historic overview of the field and presents theaghes
attempted to auditory and AEP modeling found in the literature.

2. ChapteBis based ofiRgnne et al(2012 and develops an auditory brainstem (ABR) model
capable of simulating transiently evoked potentials. The modeling framewatkhan
underlying assumptions, used throughout this thesis, are presented chépter. The
developed model contributes with insights into the complex nature of ABR geoerand
the importance of the auditory periphery. Further, the model has beenavaitible onliné
and can be used to investigate the representation of other types of stimelilas w

3. Chapterd is based orRgnne et al(201]). It investigates a limitation of the ABR model
found in chapter3, that the level-dependent latency of click-evoked ABRs is under-
estimated. A second model, based on a different simulation of the auditaphesy, is
developed in this chapter. This is done to investigate whether the implementatibe of
peripheral model has a significant influence on this limitation. The chaptdrilootes
with a discussion of the potential stages in the auditory periphery that ahg tikaffect
the level-dependency of ABR latency. The chapter highlights that the AB&ehiails to
simulate a realistic ABR latency behavior even though two established modelsaiigral
processing, the auditory-nerve (AN) model and the dual-resonamcémear (DRNL) filter
model, are used.

1The ABR model is included in the Auditory Modeling (AM) toolboSgndergaard et al2011) and can be
downloaded fromht t p: / / ant ool box. sour cef orge. net/.


http://amtoolbox.sourceforge.net/

4. Chapters is based orRgnne and Ggtsche-Rasmus§2d11) and presents a study of the

alignment of high- and low-frequency content when recording risimgpeevoked ABRS.
This study is motivated based on the simulations using the ABR model, and egatuate
hypothesis found in literature that chirps evoke larger ABR amplitudes tliks cue to
the time-alignment of low-frequencies.

. When investigating AEPs evoked by longer-duration stimulus, a keyréeatuhe auditory
system becomes the adaptation of the inner-hair-cell (IHC) - auditamer{&N) synapse
in the cochlea. Chapt&:; which is based ohlarte et al(2010, investigates this adaptation
using experimental recordings and simulations of click trains. The chapitgriutes by
discussing the extent to which the modeling approach can be used to simsfaiases of
longer-duration stimuli.

. Chapter7 is based ofRgnne et al(20123 and presents an investigation of whether auditory
steady-state responses (ASSR) can be used to assess cochleass@mpn humans. This
study examines two potential experimental paradigms, level-growth and niodedgowth
functions, using an analytical approach, ASSR recordings in humadsamarextended
version of the ABR model (referred to as the ASSR model). The clearmemmdation
given in this chapter is to use the level-growth function. This is a potential alinic
application that could be of interest in both infant hearing screening ameanng aid
fitting procedures for both children and adults.

. Chapter8 evaluates the ABR model capabilities to simulate speech evoked AEPs. It is
demonstrated that, even with highly complex stimuli such as speech syllablenptied
captures key features of the AEP responses, demonstrating the imgodiaperipheral
processing for the generation of ABRs evoked by complex stimuli. Furtherchapter
contributes with a discussion of the effects of cochlear tuning on the Inencading of
speech syllables.

. Chapter9 provides a general discussion of the modeling approach and its limitations.
Further, the implications and perspectives of this study are presented.
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Chapter 2
Background

2.1 Auditory evoked potentials

In 1875, Richard Caton recorded electrical activity from the brain @ftdit. What he recorded
became known as electroencephalography (EEG) and has sincepselglto a major diagnostics
and research tool. Fifty years latderger(1929 became the first to record EEGs in human
subjects. Wever and Bray1930 recorded cochlear microphonics in animals and were the first
to use EEG for audiological purposes. The first reported measuresh@cbustically evoked
responses in humans was undertakenFbgmm et al.(1935. Since 1935 the recordings of
auditory evoked potentials (AEP) have developed fast and now egeea well known and
used technique both for clinical and research purposesGe#era (1993 andHall (1992 for

a historical review).

A common setup for recording AEPs includes a computer generating digitalspa D/A
converter and an acoustic transducer presenting the sounds to thet.subje the recording
side, the setup includes electrodes attached to the scalp, a recording anmglifiding an A/D
converter and a computer to store and post-process the recordingsreddrdings are time-
aligned with the stimulus and, by using multiple repetitions and averaging, the caisbe
suppressed sufficiently to record a signal where the response to théustisidetectable. Noise
remains though a major obstacle to AEP recordings, and post-processifiifdikng and artifact
rejection schemes are often applied. The AEP formation is highly dependetfite location
of the electrodes on the scalp. An often used configuration is to recdetettifially between
the vertex and the ipsi-lateral mastoid, with a ground electrode placed omriteefd. This
configuration is sensitive to sources of electrical activity originating fioenbrainstem, whereas
other configurations are used depending on the AEP of interest. Thoatthis thesis, the vertex
/ ipsi-lateral mastoid configuration, is used both for modeling work andraxpatal work.

AEPs represent the summed electric potential from many remotely locatednsefining in
response to an acoustic stimulus. They are often classified in terms of timewfeuce after
stimulus onset, specifically when transient stimuli are used. The AEPs aredhad auditory
brainstem responses (ABRs) with latencies between 1 and 15 ms (ficsibaesbyJewett 1970,
middle-latency responses (MLRs) with latencies in the range of 15-50 ns$ dfiscribed by
Geisler et al.1958 and auditory late responses (ALRs) with latencies in the range of abe2@7
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ms (first described bpavis et al, 1939. The latencies can be associated with generation place,
such that longer latencies corresponds to higher generation sites inditenaypathway. The
generation site of the AEP has also alternatively been used to classifgiregs) such that; AEPs
from the hair cells in the cochlea are called cochlear microphonics (CMWeéltnell, 2007);
AEPs from the distal end of the auditory nerve (AN) are called compoctiaiepotentials (CAPS)
(e.g Chertoff et al, 2010; AEPs from the brainstem are called auditory brainstem responses
(ABR); and AEPs from the cortex has been named cortical auditoryeelvphtentials (CAEPS)
(e.gSharma and Dormai999. The term ABR is in the present study used to denote both an AEP
evoked by a transient signal producing a response with a latency befiaed 15 ms, and also

as an AEP recorded at brainstem level to any arbitrary stimulus. A thirchigaltelassification

is to classify recordings according to the stimulus that evokes them. An AEBeavoked by
any acoustic stimulation, however, in literature some stimuli have been studiedively and
have been established as de facto standards for investigating AERi@mand the underlying
physiology. These stimuli include transients like clicks, chirps and tonstde.g.Jewett
1970 Jewett and Williston1972;, Dau et al, 200Q and chapte of this thesis), steady-state
signals such as amplitude modulated (AM) tones (&ann and Picton200Q Galambos et a|.
1981 Kuwada et al.1986 Picton et al. 1987 Rees et a.1986 and chapter of this thesis), but
also more complex signals like speech syllables (&\@trier et al, 2004 Agung et al, 2006
Aiken and Picton2008 Akhoun et al, 2008 Lalor and Foxe201Q Chandrasekaran and Kraus
201Q and chapter of this thesis). Auditory steady-state responses (ASSRs) are ofteciass|

with the special case where a pure tone carrier is modulated by a lovgeiefrey tonal modulator.
The response to complex stimuli like syllables have often been referreddongadex auditory
brainstem responses (CABR) (eSkoe et al.2011) or frequency following responses (FFR) (e.g.
Dau 2003 Swaminathan et gl2008. In this study, the syllable evoked cABR (studied in chapter
8) will be denoted ABR, as the division between a “complex” and “non-corigémulus is
difficult to define.

To summarize, important parameters for the AEP generation are generigiprelectrode
montage, onset latency, amplitude range, subject attention and pldstastyvell as stimulus
characteristics like duration, intensity, frequency content and variatien time. Table2.1
summarizes the differences in the characteristics between the differest aypesponses. The
responses have been grouped to aid clarity. The ASSR has not baetechin the table as the
modulation frequency alters both the generation site and the dependesuabject arousal. At
high modulation rates, the ASSR would belong in the column alongside the ABReasat
lower modulation rates, the ASSR would behave as the CAEP. The firstechd$) 4, 5 and6)
of this study focus on the transiently-evoked ABR, because these predteible and largely
unaffected by subject arousal. Chapienvestigates the low modulation rate 40-Hz ASSR (i.e.
an ASSR belonging in the CAEP column). Besides being an interesting clinaakhe 40-Hz
ASSR challenges the developed AEP model of the present study, as @tesdligher-stage neural
processing and adds potential complications of subject arousal to thé. rGbdte!8 investigates

1 physiological changes of the nervous system due to e.g. learning
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CM CAP/ABR/MLR  CAEP/ALR
FFR /cABR
Generation site | Cochlea Auditory nerve (AN) Cortex

and brainstem

Typical electrode | Within ear canal Vertex and mastoid Multiple electrodes

montage

Onset latency <1lms 1to 50 ms >50ms

Amplitude range | uv nv uv

Subject arousal | Unaffected Largely unaffected. Eliminated in
Subjects can sleep sleeping subjects

Plasticity Unaffected Experience slightly Experience alters
alters the AEP the AEP

Stimulus intensity| no latency shifts latency shifts latency shifts

Table 2.1: Differences between groups of AEPs.

the syllable-evoked ABR (CABR). This challenges the model further, lagstbeen suggested in
the literature that the syllable-evoked ABR is subject to plasticity.

2.2 Auditory models

Several models of the (human and animal) auditory pathway have beerspbisome of which
aim at modeling cochlear mechanics and the underlying physiology as stsgtlgssible while
others model the observed responses without having the intention of strimdlgling each stage of
the physiological pathway. The latter is called a phenomenological modelsétii®n describes
two well-established phenomenological auditory models, the auditory n&Nentodel and the
dual-resonance non-linear (DRNL) model. The AN model is used as thie bar the AEP
model developed in this study. The DRNL model, is considered as an alterseEP model
(Ronne et a).2011, chapted).

2.2.1 The AN model

The AN model is a phenomenological model developed over many yea®8 (L& present),
designed to simulate AN responses of cats. The original AN mddatney 1993 simulates
single-fiber responses which are linked to a specific place on the BM withafte characteristic
frequency (CF). Even though the model only simulates responses frenfiloer at a time,
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the simulation of the response to broad-band stimuli is possible, as the BM fatge of the
model simulates the contributions from both on- and off-frequency stimulgditime single-fiber
response. This ensures that the simulated single-fiber responses camjbared to experimental
single-fiber AN recordings (in this model from cats). The first stage efdhginal AN model

is a time-varying BM filter, implemented as a symmetric gamma-tone filter, with a fegd-ba
control path simulating broadening tuning with increasing stimulus level. Thaibigtplelayed

in time to simulate the travelling-wave delay on the BM. The signal path of the mauksd d
further contain an inner hair-cell (IHC) non-linearity that gives a jdiggically-inspired half-
wave rectification. Combined with a low-pass filter, this simulates the transitiorebatresponses
following the fine-structure of the stimulus at low stimulus-frequencies asypbreses following
the stimulus-envelope at higher stimulus-frequencies. The IHC-AN staghRipes adaptation
(similar toWesterman and Smith988 resulting in an onset emphasis and a slight suppression of
the late part of a long duration response. The last stage in the model sintbkatesractoriness
of the neural AN responses. The refractory stage is not included iAEfRemodel developed on
basis of the AN model.

The AN model has been modified several timghang et al(2001) exchanged the feed-back
control path of the BM filtering with a feed-forward control path. Furfliee control path filter
was made broader than the signal path filter, and the tip was shifted slightlydoadigher CF.
These updates made the model capable of simulating two-tone suppresgiometrical growth
of suppression and the offset of suppression tuning curves (cechpaexcitatory tuning curves).
The Zhang et al (2007 cat-version of the AN model was transformed into a human version by
Heinz et al.(2001) which was later used bpau (2003 to develop a human ABR model.

Tan and Carney2003 implemented a middle-ear filter and exchanged the gamma-tone BM
filters by chirping BM filters. The latter was done to simulate best frequesbyfts with
stimulus level and frequency glides in the impulse repsonses independstitalus levels.
Experimentally, the best frequency has been observed to shift upwattal increasing stimulus
levels. The frequency glides, also accounted for by Tae and Carney2003 AN model, is
based on the experimental observation that the early part of the impupsmnsesof a BM filter
is not dominated by the same frequency components as the later part of thHeamgsponse
(Carney et al.1999. The frequency glide was found to be independent of stimulus leveh suc
that the zero-crossings of the fine structure was independent ofezkas the envelope of the
response changes with level.

Zilany and Bruc€2006 andzilany and Brucg€2007) modified the model to be able to account for
the effect of high stimulus levels. Tones presented at high stimulus levedsile@n shown to be
subject to a sharp transition of up to 281 the phase-level functiolKf{ang, 1990. This transition

is called the component 1 (Cl)/component 2 (C2) transition, where C1 isfpemse to low
stimulus-levels and C2 the response to high stimulus levels. At the levels of B2 @ansition,
approximately 90 to 105 dB SPL, “peak splitting” occukdang, 1990. Peak splitting describes

2 The best frequency was defined as the frequency at which the éifpomse is strongest at a certain stimulus level,
whereas the CF can be defined as the frequency where the threskiwédiber is lowestTan and Carney2003
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the phenomena that the phase-locked response to a high-level toresalrirr a doubling of the
number of peaks in the recorded time histograms. In this case, peaks ieenetive phase-locked
peaks appear when the stimulus-level approaches 95 dB SPL andwitbvatimulus-level until
they completely dominates above 105 dB SPL, resulting in & pB&se shift (C1/C2 transition).
These two related effects, the C1/C2 transition and peak splitting, were impgiaiarthe model
as a parallel C2 filter path, complementing the regular (C1) signal path.

The latest version of the modei(any et al, 2009 exchanged the double logarithmic adapta-
tion with a combined logarithmic and power-law adaptation which have beennstwoprovide
a more realistic IHC-AN adaptation behavior. Among the achieved improvemeamtsa more
accurate prediction of forward-masking, an improved recovery of theesponse after stimulus-
onset and improved predictions of the response-synchrony to ampititodetated tones. In table
2.2 the differences between the AN model versions are shown with retspibet phenomena they
can simulate.

TheZilany and Brucg2007 AN model was used here as basis for the ABR model discussed in
chapters3, 4, 5and6. TheZilany et al.(2009 AN model was used as basis for the ASSR model
and the ABR model presented in chaptéend8.

2.2.2 The DRNL model

Another well established audiotry model is the DRNL model which build uporDiRBIL filter.

The DRNL filter (Meddis et al.200]) resembles the BM stage of the AN model such that it also is
a phenomenological model that simulates the response of a single placeBM.tkarthermore,

the original DRNL modeleddis et al.2001) was also evaluated on animal data (chinchilla and
guinea pig). The input to the model is stapes velocity and the output BM motionowgththe
model is implemented in a different way as the AN model (the DRNL filter is implemesded
the sum of two parallel processes, one linear and one nonlinear, aghétre AN model uses a
feed-forward control path to control the BM filter), it is capable of simutatimany of the same
BM related phenomena, such as compressive input/output functions, hecstppression and
frequency glided Lopez-Poveda and Medd{2001) exchanged the animal-fitted parameters of
the Meddis et al.(200]) DRNL model with human-data-fitted parameters, and added an outer-
and middle-ear filter stage before the DRNL filter. In the model presentédeolgis(2006* an
advanced model of the IHC functionality was added to the DRNL modairthermore, a spike
generating AN stage which includes refractoriness was iplemented. Tpetad the peripheral
part of the DRNL model, including stages from the outer ear to the AN, wsee as input to

3 Tan and Carney(2003 argued that the frequency glides of the DRNL model are level-degendontrary to
experimental data

4 parts of the work was presentedSnmner et al(2002 andSumner et al(2003

5 this far more complicated model is sometimes referred to as the “modbkaduditory periphery”, however, to
avoid confusion the term DRNL model are used here. The term DRNLeht@s$ to be distinguish from the DRNL
filter described previously
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Auditory function / Carney Zhang Tan Zilany Zilany
processing stage 1993 2001 2003 2007 2009
Middle ear

Middle ear filtering + + +
Basilar membrane filtering

Broadening tuning with stim. level + + + + +
Compressive input/output functions + + + + +
Travelling wave delay + + + + +
Two-tone suppression + + + +
Assym. growth of suppression + + + +
Frequency glides + + +
Best frequency shifts + + +
C1/C2 transition + +
Peak splitting + +
IHC transduction

Physiological rectification + + + + +
Upper limit of phase locking + + + + +
IHC-AN synapse

Double logarithmic adaptation + + + + +
Power law adaptation +
Spike generator

Refractoriness + + + + +

Table 2.2: Overview of the AN model development, with respect to tha@inena simulated by the respective version
of the model. The corresponding papers correctly reference€Caregy(1993, Zhang et al(2001), Tan and Carney
(2003, zilany and Brucg2007) andZilany et al.(2009. TheHeinz et al.(2001) model is similar to th&hang et al.
(2001 only human- instead of cat-fitted parameters are used.

a neural model of a single cochlear nucleus chopper neuron, eéfgckieing a decision making
stage that compares inputs from several modeled AN responses (tutiéfdreent CFs).

2.3 Modeling AEPs

In this section, a convolutive approach to simulating AEPs is describedcdm®lutive approach
has been used in the present study to develop an ABR model, as convbleitiegen single fiber
responses produced by the AN model and a so-called unitary resfidREe
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2.3.1 Convolutive approach

Elberling (1976 defined a “unit function” as the recorded electrical waveform thatriglsronous
to a single event (one spike) in one neuron. Given the assumption thaartee waveform is
generated by all types of neuronleBoen(1975 developed a model of CAP generation. The CAP
model was based on linear BM filtering, half-wave rectification and eneetofiraction. The
output of this peripheral part of the model was the firing rate functionmddel CAPs, recorded
in the ear canaldeBoer(1975 proposed a unit function describing the waveform recorded in
the ear canal when a distal AN neuron discharges. Theoretically the dionro&contributions
from all AN neurons would lead to the CAP, assuming that there are noiotieefiering electrical
potentials. However, as summation of all neurons were not computationaile x@Boer(1975
suggested to use 64 representative neurons, each related to antiBfierélter tuned to a specific
CF. The summed activity pattern, from the 64 channels, convolved withilar@tad) unit function
provided the simulated CAP. Following this concejdelcher and Kiang1996 suggested, in a
more general description, that the potential produced at surface ndoeletetrodes by any cell
in the auditory pathway, including higher neural stages, can be deddribthe convolution of
the instantaneous discharge rate with a unitary response (UR). Thisptomas adopted bipau
(2003 who developed an ABR modeDau (2003 used the AN model bydeinz et al.(2007) to
produce instantaneous discharge rates and a summed activity patteteBder(1975, this was
done using independent channels tuned to different CH3aur{2003, 500 channels between 100
Hz and 10 kHz were considerec. The summed activity pattern represbetadtivity at the distal
end of the AN and was iDau (2003 convolved with a UR representing not only contributions
from wave-I (the CAP) of the ABR (as the unit function deBoer 1975, but also contributions
from wave-II to wave-VIl, i.e. components spanning the first 7 ms of #n@a processing. The
UR idea was thus that a single spike in IHC-AN traveling up the auditory pathwid elicit
potentials at several places, each delayed and scaled compared tevioeigpone.Dau (2003
assumed the UR to be a linear function independent of stimulus, thus argatrgptivolving the
instantaneous discharge rate functions with the UR and adding the contniafterwards, yields
the same result as convolving the summed activity pattern with the UR. The URalw@sated
as the deconvolution between the summed activity pattern evoked by a click stjnanid an
experimentally recorded ABR evoked by an identical click stimulus. Figutshows the derived
UR and the recorded click evoked ABR (reprinted with permission fixen, 2003. The UR
bears a large resemblance to the recorded click evoked ABR, and e@vesponding to wave-I,
-lll and -V can be detected.

In contrast to theleBoer(1975 model, not only the CAP component but also later waves of the
ABR response was considereddau(2003. Furthermore, the effect of nonlinear BM processing
on the potential pattern was considered, wdédBoer(1975 used a linear model. However, both
models were based on the same assumptions that, 1) the complete set of AkHiibleesreplaced
by a limited set of simulated fibers (channels), each corresponding toesesgpative place on the
BM tuned to a specific CF. 2) The individual channels creating the instaotesndischarge rates
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Amplitude in model units

Time in ms

Figure 2.1: The UR derived bpau (2003 and corresponding click evoked ABR.

act independently of one another. 3) The UR is linear. Meaning that it &iam to the type of
stimulation, subject and the type of neurons involved.

The third assumption was evaluated @lertoff (2004, who found that his unit function was
slightly dependent on both stimulus-frequency and stimulus-level; how#werthe stimulus-
dependencies were small and no general description was attempted.

Regarding the simualtion of steady-state respordaisorquez and Oezdam@008 presented
a convolution approach to predict the 40-Hz ASSR. This convolution cambr has little
resemblance to the UR method described aboBmhorquez and Oezdam&2008 modeled
the 40-Hz ASSR as a convolution between a click-train and the single-clukedvMLR, thus
modeling the ASSR as a linear convolution between two linear functions. Theeaslaked MLR
consist of three main peaks, the ABR wave-V eand theR,, each of which are typically
separated by approximately 25 ms. When a click-train at a rate of 40 Hz semesl to the
auditory system, the components of the MLR were argued to add up in phagethat theN,
peak of one click will add up in phase with ti peak of the previous click. A convolutive
approach thus seems to be modeling the 40 Hz ASSR well.

2.3.2 Dipole modeling and ABR physiology sources

Scherg and von Cramof19854 developed a spatio-temporal dipole model of AEP generation.
The model was focusing on the electrical dipole components in the brairhahtherefore no
model of the auditory periphery. The basic assumption was that scalptiptgersult from the
superposition of all charges within the brain. Further, it was argued disathe net charge in
the brain is zero, only pairs of positive and negative charges existh gaic is thus producing
a dipole field. The primary idea was that the scalp potentials result from {hermosition
of the far fields of many microscopic dipoles, i.e. the same assumptiateBeer (1975,
Elberling (1976, Melcher and Kiang(1996 and Dau (2003 used to argue for the UR idea.
The main difference between the approaches was the use of multi-chaaoedings in both
Scherg and von Cramgi 9853 andScherg and von Cramgi 985, and the fact that the UR of
Dau (2003 includes neural processing whereasherg and von Cramail 9854 only considers
the propagation from the dipole to the electrodes. The airBabferg and von Cramofi985
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and Scherg and von Cramaof19853 were to provide a full description of the waveforms at all
electrodes simultaneously. By searching for the minimal number of equivdilgsles sufficient
to explain the scalp potential, each dipole source (defined by stationatioloead orientation)
could be associated with a hypothesized anatomical source. This appedao the conclusion
that the spread of local potential to the electrodes was only dependetiteclocation and
orientation of the recording electrodes and dipole sources. The UR@mf,0au (2003 can
thus be seen as the special case, where the electrode locations wheréexatand mastoid
(giving the orientation as direction between them), and where only the dipolees in the
brain aligned with this orientation (or weighted according to their misalignmen® weiéective.
Scherg and von Cramdt985 found that the generation of wave-I of the classic ABR was located
to the distal end of the auditory nerve. Wave-lll of the ABR, was locatdgktm, or near to, the
cochlear nucleus. Wave-IV and wave-V could not be located preciselyever, an origin in the
early parts of the brainstem was suggested.

2.4 Background summary

This chapter reviewed the literature on some of the key aspects of this #tuds outlined how
this study models the transiently evoked ABR, the 40 Hz ASSR and the syllabked ABR.
Furthermore, the present study develops an AEP model based on tlodutive approach, where
the AN model produces a summed activity pattern, that is convolved with a lifiRatoproduce
the simulated AEP. The following chapter is basedRanne et al(2012, which develops and
evaluate the ABR model, designed to simulate transiently evoked ABRs.
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Chapter 3

Modeling auditory evoked brainstem
responses to transient stimuli

This chapter develops an ABR model. The theoretical modeling framewonesepted, as is
the main implementation details on how the AN model has been humanized. Both thetittzo
framework and the humanization is used throughout this thesis. This cleaptdtus be read both
as an independent study of modeling transiently evoked ABRs, and as thedhsection for the
rest of this thesis. The chapter is basedRmnne et al(2012).

3.1 Abstract

A quantitative model is presented that describes the formation of auditainysbem responses
(ABR) to tone pulses, clicks and rising chirps as a function of stimulation leWéle model
computes the convolution of the instantaneous discharge rates using tharitzed” nonlinear
auditory-nerve (AN) model of Zilany and Bruce (2007) and an empiricdltyived unitary
response function which is assumed to reflect contributions from ditfersd! populations within
the auditory brainstem, recorded at a given pair of electrodes on thg sttais shown that
the model accounts for the decrease of tone-pulse evoked wave-\¢yatgétn frequency but
underestimates the level dependency of the tone-pulse as well as abicieelatency values.
Furthermore, the model correctly predicts the nonlinear wave-V amplituiievize in response
to the chirp stimulation both as a function of chirp sweeping rate and level.aD\vére results
support the hypothesis that the pattern of ABR generation is strongbtedféy the nonlinear and
dispersive processes in the cochlea.

3.2 Introduction

When sound is presented to the ear, it is possible to record auditorycepokentials (AEPS) on
the surface of the human scalp. AEPs represent the summed electric patemtiaany remotely
located neurons firing in response to the stimulus applied. They are typicaliped in terms of
time of occurrence after stimulus onset and are thus denoted as audiaimgtém responses
(ABRs) with latencies between 1 and 7 ms, middle-latency responses (MliRsatencies in
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the range of 15-50 ms, and auditory late responses (ALRs) with latencibe iange of about
75-200 ms.

AEPs have been used to asses the neural encoding of sound botiniftal @and research
purposes. Various types of stimuli have been considered, such easetranlike clicks,
chirps and tone-bursts (e.glewett and Williston1971; Dau et al, 2000, steady-state signals
such as amplitude modulated (AM) tones (elghn and Picton200Q Galambos et al.1981,
Kuwada et al. 1986 Picton et al. 1987 Rees et a).1986), but also more complex signals like
speech (e.gWarrier et al, 2004 Agung et al, 2006 Swaminathan et 3l2008 Aiken and Picton
2008 Akhoun et al, 2008 Lalor and Foxe2010Q Chandrasekaran and Kra@910. Tone-burst
evoked ABRs have been studied to objectively estimate frequency-sgeeaiiing sensitivity, for
example in newborn and young children (eRibeiro and Carvallp2008 or to estimate effects
of cochlear group delay as a function of frequency and level of stimulggay. Gorga et al.
1988 Harte et al. 2009 Neely et al, 1988 Murray et al, 1998. Broadband rising chirps have
recently been developed for ABR recordings to maximize synchronauag faf nerve fibers
across frequency, leading to an increase of ABR wave-V amplitude amglheer signal-to-
noise ratio compared to traditional click stimulation (elau et al, 2000 Elberling and Don
2008 Fobel and Dau 2004 Junius and Dau2005 Shore and Nuttall 1985. It is argued
(Dau et al, 2000, that these broadband chirp stimuli compensate for the frequen@ndept
group delay seen in the basilar membrane (BM) velocity/displacement travelings. In a
recent studyklberling et al. (2010 presented five chirps with different frequency-delay functions
and investigated the resulting wave-V amplitude of their responses at stimu&atés of 20, 40
and 60 dB normal hearing level (nHL). Their results demonstrated thaigpersion function, or
sweeping rate, of the chirp that evoked the largest wave-V amplitude fuast#on of stimulation
level. With increasing level, the “optimal” chirp that created the largest wavesponse was
found to become progressively short&ilferling et al, 2010, i.e. to have the fastest sweeping
rate.

It is well known that thedrequencydependency of wave-V latency is related to the tonotopical
coding of frequency on the BM in the cochlea. High-frequency stimulati@ites basal parts of
the BM and thus produces a shorter delay than low-frequency stimulatiommtialy excites
apical parts of the BM Gorga et al. 1988 Greenwood 199Q Harte et al. 2009 Neely et al,
1988 Murray et al, 1998. Theleveldependency of wave-V latency is not so well understood.
Cochlear tuning is known to be level dependent, where an increase sfitngus level results
in broader auditory filters and thus a broader excitation pattern on the@aslyerg and Moote
1990 Recio and Rhode€2000. This means that regions of the BM with characteristic frequencies
further away from the stimulus frequency are also excitelherling (1976 andFolsom(1984)
reasoned that the broadening of excitation with level might result in shiatesicies, as more
basal regions of the BM are activated that are associated with shorteritndeliays. Another
inherent feature of the filter tuning is the change in the envelope of the BMIsmpasponse
at a given location, as level is increased. The timing of the individualgpeathe physiological
impulse response are level independent but the amplitude of the earksrgreanore emphasized
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as the stimulus level increases (el§iang (1969, Recio and Rhodé2000). This change in the
envelope, as stimulus level is increased, results in an onset emphas@uldatesult in a decrease
of the wave-V latency. Adaptation in the inner-hair cell (IHC)-AN syre@psnilarly enhances
the onset of a signal while attenuating later paviegterman and Smitl1988 in the stimulus.
Thus, adaptation in the IHC-AN synapse might also contribute to the levelrdepce of wave-V
latency.

The wave V amplitude is both stimulus frequency and stimulus level dependbeatgéneral
shape of the frequency dependence is considered to be mainly conbplliee transfer functions
of the outer and middle ear effectively acting as a band-pass flésc@al et al1998 Purig 2003,
with maximal transduction at 1-2 kHz. The level dependence of the waaeplitude results
from the summation of the individual neural responses after the non-lpreaessing through
the BM at the individual characteristic frequencies (CFs), where cesspre behavior has been
found for medium-level stimulation at the CF while linear behavior has beerdféar low-level
stimulation (e.gRuggero et a).1997. The chirp-evoked ABRs obtainediiberling et al(2010
demonstrated non-monotonic level-dependent behavior, assumed ltofr@suthe broadening
of neural excitation with increasing leveHérte et al. 2010. At low levels, each frequency
component of the chirp might excite a narrow region on the BM and, givetirting associated
with each component, might add up in phase (Bau et al, 2000. At high stimulus levels, each
frequency component excites a broader region on the BM, due to dpwaread of excitation
(Rhode and Recid2000. Thus, a specific location on the BM is excited by a broader range of
frequency components. These different components contribute widnetifftiming which results
in desynchronization and a reduction of ABR wave-V amplitugibé€rling et al, 2010.

However, while it appears obvious that cochlear processing affeB® Amplitudes and
latencies, only very few studies have actually attempted to provide quantjtatigietions of ABR
data. In the present study, a computational model is presented that sinevlakesl responses
to tone pulses of various frequencies and levels, upward chirps witkretiff sweep rates and
levels as well as click stimuli. The key stages in the model are (i) the nonlineaegsing
in the cochlea, including key properties such as compressive basilartaneenfiltering, inner
hair-cell (IHC) transduction, and IHC-AN synapse adaptation, anth@)linear) transformation
between the neural representation at the output of the AN and the eecpotiential at the scalp.
This approach was inspired Ioldstein and Kiang1958, who described evoked responses as a
linear convolution of an elementary unit waveform of a given neurdfed#e unitary response,
with the instantaneous auditory nerve (AN) discharge rate in responsgiverastimulus. This
approach was applied to simulate cat compound action potentials (CAdBner(1975.

Based on the work ofsoldstein and Kiang1958, deBoer (1975 and Melcher and Kiang
(1996, Dau (2003 proposed a model for the generation of ABRs and frequency following
responses (FFR) to tones. Dau (2003, the unitary response was estimated empirically based
on measured ABR data, via deconvolution of average click-evoke@mssp and the simulated
neural activity pattern at the output of an AN modBlau (2003 demonstrated that the auditory
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periphery strongly affects the simulated ABR patterns and could accousioime of the key
features observed in the recordings of chirp- versus click-evaésubnses. However, while that
study provided a proof of concept, it did not consider a more detailelysisaf the responses
as a function of stimulation frequency and level. Furthermore, signifidaotapancies between
the predicted and measured wave-V latencies were observed butrtiwrfavaluated. Here,
the original modeling framework dbau (2003 was extended to include current advances in
AN modeling, such as linear BM filters at high stimulus levels, peak splittiigng, 1990
and a shift of best frequency with level. The AN model developeditgny and Bruceg(2007)
was used here which is based on current knowledge derived frémbletiavioral and objective
measures of cochlear processing. The model was originally developeatfbut also adopted
by the same authors for humans including corresponding middle-ear filemthgM filter tuning
(Ibrahim and Brucg2010.

3.3 Model for ABR generation

3.3.1 Convolution model of ABR generation

Melcher and Kiand1996 described the generation of ABR in cats as a summation of individual
brainstem cell potentials;, in response to a given stimuls,

ABR(t,Xy,%2,8) = ZVi (t,X1,%2,9) (3.1)
|
wherex; andx; are the locations of the electrodes on the scalp. The potewtial,response to a
given acoustic stimulus, can be determined by a convolution between thaamsaus firing rate
of thei'" cell, ri(t,s), and a unitary response functiarit, Xt Xz). This latter function is defined as
the potential produced between the electrode positions on the gcalpdx,, each time the cell
discharges;

Vi(t, X1, X2, 8) = ri(t,s) * i (t, X1, X2) (3.2)

where x denotes the convolution operation. To obtain an ABR with this method, all cells
need to be considered individually, which would be computationally prohéitito avoid this,
Melcher and Kiang(1996 suggested the use of the cell population potential,Cells can be
grouped by the physio-anatomical type of the cell,whereP is the number of different cell

types:

P
ABR(t,Xy,%2,S) = Z Vp(t,X1,%2,S) (3.3)
p=1

It is reasonable to assume that all cells of the population described hawsathe unitary
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response (UR)u(t,x1,x2), as they have the same morphological and electrical properties
(Melcher and Kiang1996. The combination of eqn.3(2) and @.3) yields a general expression
for ABR generation:

P Np
ABR(t,X1,%, ) = U(t,X1,%0) * 3 le’pi(t,s) (3.4)
p=1li=

whereN; is the total number of cells of typ@, The three main peaks in the click-evoked ABR are
waves |, Il and V.Dau (2003 made the assumption that the instantaneous firing functions in the
medial superior olive (MSO), anterior ventral cochlear nucleus (Ayexd the same as in the AN,
following the suggestion bielcher and Kiand1996. Thus, the instantaneous firing functions
for the different cell populations are given byuso = ri aven = i an = I, simplifying Eqn. 3.4

to:

N
ABR = u(t,xg,X2) * eri(t,s) (3.5)
i=
The generation of an ABR is thus represented as the sum of the instamgdineang from all cells,
convolved with a UR that is dependent on the electrode location on the atafsdumed to be
independent of cell type, efferent influence and stimulus.

3.3.2 Model structure

The structure of the ABR model is shown in Fig. 1. The AN model calculatemgtantaneous
discharge rate for individual AN fibers, in response to a given aaostimulus defined in pascals.
Each AN fiber is tuned to a specific characteristic frequency (CF). TRredhosen were spaced
according to the human cochlear mapGreenwood1990. The number of fibers included was
a trade-off between computational time and model accuracy. Throughiswtudy, 500 fibers
ranging from 100 Hz to 16 kHz were used in all simulations. The fibers aleseen so they were
spaced equally on the BM according to the human cochlear Begeawood1990. The output
of the AN model, the instantaneous firing rate of all the AN fibers, were sunaméaonvolved
with the UR function.

The AN model ofZilany and Brucg2006 is shown schematically in Fig. 2. The input to the
AN model is the instantaneous pressure waveform of the stimulus in unitscdigaThe output of
the AN model is the spike rate in response to the stimulus pressure. The mdddema number
of key functional stages: a middle-ear filter; a feed-forward contadhjpa primary signal-path
filter (C1) representing the basilar membrane (BM) filtering adapted by thteadd@ath; a parallel-
path filter (C2) for high-level stimuli; an inner-hair cell (IHC) section follesvby a synapse model
and a stochastic AN spike discharge generator. In Fig. 2, the followibgeatations are used:
outer hair cell (OHC), low-pass (LP) filter, static nonlinearity (NL), @dweristic frequency (CF)
and inverting nonlinearity (INV)Conc andCiyc are scaling constants that indicate the OHC and
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Figure 3.2: Diagram of the auditory-nerve model developed Zilany and Bruce (200§. Reprinted from
Zilany and Bruce(2006 with permission from the Acoustical Society of America (©2006). Theutni the AN
model is the instantaneous pressure waveform of the stimulus in unitscdlpa This waveform is band pass filtered
by a middle-ear filter. A feed-forward control path filter determines traacteristics of the main C1 filter path which
is mainly active at levels below approximately 96 dB SPL. A parallel C2 filtgh jis mainly active at higher stimulus
levels. The two filter paths are followed by a nonlinear inner hair-cell {Isf&ge and a nonlinear synapse model. The
output of the AN model, used in this study, is the instantaneous dischaegebtined at the output of the synapse
model.

IHC status, respectively. The black and gray curves in the filter stegessent the tuning at low
and high sound pressure levels, respectively. The wideband C2 liipess fixed and is the same

as the broadest possible C1 filter. The black and gray functions in theefslisayving the C1 filter
indicate the nonlinearity in the IHC input/output functions in normal and impairealéd down
according taCiyc) hearing, respectively. Details about the model implementation can be found
in Zilany and Brucg2006. In the present study, the spikes/s output from the synapse model was
used, rather than the stochastic output from the spike generator. Tdhastic spike generator
requires averaging over many repetitions before it becomes repeatabtbus usable to ABR
modeling.
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3.3.3 Features of the humanized AN model

The parameters of the AN model @flany and Brucg2006 andZilany and Brucg2007) were
originally fitted to cat AN data. Later, the model was modified to estimate humanrssg by

the same authors. First, the original cat middle-ear transfer functionepdaced by a human
middle-ear transfer function, based on the linear circuit moddé?axfcal et al(1998. Second,

the cat BM tuning was replaced by human BM tuning (keahim and Brucg201Q for details).

Two prominent and different estimates of BM tuning exist in the literaturecéehe relative
broad tuning byGlasberg and Moorél990 and the sharper tuning t8hera et al(2002. In this
study, the tuning fronBhera et al(2002 was used. It has been argued that humans have this
significantly sharper BM mechanical tuning than experimental animals sucatasand guinea
pigs Shera et a).2002 201Q Bentsen et al2011). The sharper human tuning is also probable in
light of the recent findings byoris et al(2011) who showed that macaque monkeys have sharper
tuning than rodents and cats. Further, the simulations using the ABR modkloaa the best
results with theShera et al(2002 tuning compared to the alternative broader tuning presented by
Glasberg and Moorél990. To incorporate the sharper tuning, the model equivalent rectangular
bandwidth (ERB) quality factoQgrg, for cochlear tuning was modified to be:

CF

0.3
Qere = 127 <1OOO> (3.6)

where CF is the center frequency of the BM filter. Accordingtera et al(2002), this function
is applicable to humans at frequencies at and above 1 kHz. To m&ktgo theQ;o estimates
used by the AN model the following mapping function was udbtahim and Bruceg2010:

Q10 = 0.2085+ 0.505QkRs (3.7)

Fig. 3.3shows the quality factor, Q, for the model’s filters for different levels @rd derived from
simulated responses. The Q-values were derived from tuning cupv@shuating the magnitude
response at CF to a number of pure tones with equal amplitude coveringetiieehcy range
around CF. The output from the C1 filter path was used for this calculation.

Third, cochlear suppression tuning curves have been found to hgeakaat a higher frequency
than the tip of an excitatory tuning curvBdlgutte 1990, i.e., maximum suppression has been
observed when stimulating at a higher frequency than CF. This was implamarttee original
Zilany and Bruce(2006 model by basally shifting the CF of the so-called control path filter
by 12 mm on the BM. The 2 mm basal shift was retained in the humanized model, but
Greenwood1990’s human frequency-place mapping was implemented to link therin shift
to the corresponding characteristic frequency.
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Figure 3.3: Filter bandwidth®Qgrg, derived from the output of the C1 filter path (from Fig. 2). The dastiede
showsQgrg estimates based @hera et al(2002’s data obtained at a stimulation level of 40 dB pe SPL.

3.4 Method

3.4.1 Estimation of the unitary response

The unitary response (UR) was obtained by deconvolving a “template™elioked ABR with the
summed neural activity pattern generated by the AN model in response t& atatiwlus. Given

the assumed superposition, any stimulus should in theory be usable. In tyissstlick stimulus
was chosen as it is most commonly used in clinics. The deconvolution is andtdmoathematical
problem and has an infinite number of solutions. A stable and probable solais, like inDau
(2003, found using Tikhonov regularizatioTikhonoy, 1963 as implemented in the MATLAB
Regularization Tools offansen(1998. The UR is subject dependent. In an attempt to employ a
general URElberling et al.(2010’s grand average ABR data (left panel of Fig. 4) was used for
the deconvolution. The resulting general UR was advantageous as thetginaifaesented in
this study were compared to reference data, typically averaged acrogssuaigects.

The grand average ABRE(berling et al, 2010 was made by aligning wave-V peaks across
recordings from 20 ears. The stimulus was a L@0standard click presented at 60 dBnHt (
95.2 dB pe SPL, see section 1lI.B.3 for conversion factor). The alighmeatedure created a
standardized click-evoked ABR that had the disadvantage that the Wawgslitude was smaller
than in an individually measured ABR, due to inter-subject variability of théviddal wave-
forms. The UR was therefore scaled such that the simulated click-evaBBda#40 dBnHL had
the same amplitude as the mean ABR amplitudes (rather than the amplitude of thexgeagkd
waveforms) fromElberling et al.(2010. The right panel of Figur&.4 shows the UR, obtained
with the grand averaged ABR (from the left panel) as the target. The W&i@n is similar to
the one obtained iDau (2003. The ABR model using this UR is also capable of simulating
the latency of wave-I. Given the linearity of the UR function the wave-I toesd interval will
remain constant. Simulated wave-l amplitudes will however be smaller due to ynib&vdlR was
derived from the grand average ABR. If the model were to simulate waweplitudes, the UR
should either be scaled according to a representative wave-l amplitude,recalculated based
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Figure 3.4: Left panel: Grand average ABR evoked by 60 dBnHL dligkerling et al, 2010. Right panel: The
derived unitary response function used throughout this study. Théscalaulated as the deconvolution of the grand
average ABR and the summed neural activity pattern generated by thedeél in response to an identical click
stimulus.

Frequency| Total Length
kHz ms | cycles
0.5 10 5
0.75 7 5.25

1 5 5
15 5 7.5
2 5 10
3 34 | 10.2
4 2.5 10
6 1.7 | 10.2
8 1.25| 10

Table 3.1: Tone burst stimuli used, with durations represented in masandmber of cycles.

on a click-response where the wave-I is more faithfully representethelpresent model, linear
superposition was assumed above the level of the AN synapse; thugriveddJR function was
applied to any input stimulus at any level.

3.4.2 Stimuli
Tone bursts

Hanning-windowed tone bursts asHiarte et al(2009 were used as stimuli. The tone bursts with
center frequencies of 2 kHz and above included approximately 10 csnkksherefore ranged
from 5 to 1.25 ms (see Tab&1). The number of cycles during the rise time period was reduced
to7.5at1.5kHz and 5 at 1.0 kHz. These durations represent a treldetoten having an equal
number of cycles across frequencies and a relatively narrow sprehdir spectrum. Levels of
40 to 100 dB peSPL were used, in steps of 10 dB.
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k d Chirp
0.4501| 0.6373| 5
0.2207| 0.5468
0.1083| 0.4563
0.0531| 0.3658
0.0260| 0.2753

RPN WA~

Table 3.2: Values of the paired parameter, k and d, which define the-fitetuency function (ec3.8)

Broadband chirps and clicks

Five chirps with different delay functions were used as defineBlberling et al.(2010. The
frequency-dependent delays of the chirps were defined as:

T=k-CFd (3.8)

whereTt represents the latency associated with frequency CFkatid are paired constants.
Table 3.2 lists the parameters representing the individual chirps, following the chaite
Elberling et al.(2010. The delay difference between 710 and 5700 Hz for the chirps 1 ta® we
thus 1.86, 2.56, 3.32, 4.12 and 5.04 ms, respectively. For comparisstaralard” click stimulus
of 100 us duration was presented at 20, 40 and 60 dB nHL. The five chirpscaébgated such
that they had the same spectrum level as the click.

Calibration of the stimuli

As the experimental data were described in dB pe SPL or dB nHL, it waseary to acoustically
calibrate the transient stimuli used in this study with an IEC 60711 couplertoFteebursts and
the click were measured acoustically with an Etymotic ER2 earphone conrie@adEC 60711
coupler (Bruel and Kjeer 4157) through a Briiel and Kjeer externaigarlator DB 2012. For each
stimulus in the tone burst simulation (6 tone bursts and 1 click), the amplitude yestesduntil
the acoustically measured peak-to-trough amplitude was similar to the peakghtamplitude
of areference 1-kHz pure tone signal. A scaling factor was founditarate the numerical model.

As in Elberling et al. (2010, the chirps were adjusted to have the same spectrum level
(rather than dB pe SPL) as the calibrated clidkiberling et al.(2010 provided the click and
chirp levels in dB nHL, and the stimuli needed to be converted to dB peSPleataldrum
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before being presented to the model. The correct conversion factofonad to be 35.2 dB
(Richter and Fedtke2005, and hence the levels corresponding to 20, 40 and 60 dB nHL were
found to be 55.2, 75.2 and 95.2 dB peSPL, respectively.

3.5 Results

3.5.1 Simulation of tone-burst evoked wave-V latencies

Figure3.5shows the simulated tone-burst evoked ABR wave-V latencies obtained withBR
model (symbols connected with solid lines). For direct comparison, furecfitiad to measured
data fromNeely et al.(1988 are indicated as dashed lindéeely et al.(1988's fitted lines were
described by:

T, = a+bc (/199 (CF/1000 9 (3.9)

where i is the tone-burst intensity in SPL (divided by 100), CF is the tongt loenter frequency

in Hertz, anda =5 ms,b = 12.9 ms,c = 5.0 andg = 0.413 were fitted constants. Additionally,
measured data obtainedHtarte et al(2009 at a level of 66 dB peSPL are shown as a dotted line.
The differences betwedyeely et al (1988 andHarte et al(2009’s stimuli resulted in negligible
differences in simulation results, therefore oRgrte et al.(2009’s stimuli are simulated here.
The inter-subject variability (the standard deviation) onkaete et al (2009 data is 1.36 ms for

1 kHz, 0.93 ms for 2 kHz, and 0.71 ms for 8 kHxeely et al(1988 does not explicitly state any
inter-subject variability. The click dat&(berling et al, 2010 showed an inter-subject variability
of 0.61 ms, 0.92 ms and 0.91 ms for hence 20 dB HL, 40 dB HL and 60 dB HL stinhe\el.

The simulated and measured ABR wave-V latencies decrease exponergiallfuaction of
frequency. At the highest stimulation levels, the simulated latencies are cltisestobserved in
Neely et al.(1988. With decreasing level, the rate of change of latency with frequencgases
both in the simulations and the measured data. However, the dynamic rangenafda across
levels is smaller in the predictions than in the data. This effect is dominant tevaggder tone-
burst frequencies where latencies of about 6-7 ms were predictechtrasbto 6-8 ms in the
measured data. The squared correlation coefficient (the zero lag abth®alized covariance

1 The 1SO 389-6:2007 standard specifies that the peak-to-peakmefeeguivalent threshold sound pressure level
(peRETSPL) is 43.5 dB peRETSPL, for an ER2 earphone connectedleC 60711 coupler through the external
ear simulator DB 0370. Unfortunately, the tube diameter for the standartipefor the ER2 earphone (ER1-
14) is 1.37mm whereas it is 3mm for the DB 0370. This mismatch createsaustic horn effect which affects
the spectrumRichter and Fedtke2005 Elberling et al, 2012 and thus the levelRichter and Fedtké2005 also
measured the peak-to-peak reference equivalent threshold poesslre level (peRETSPL) for an ER2 earphone
connected to a head and torso simulator (HATS) and found it to be 35 Ph#Bchange of the external ear simulator
from the DB 0370 (ISO 389-6:2007) to the HATS (TableRithter and Fedtke2009, results thus in a 8.3 dB
change in the peRETSPL. As the acoustic horn effect is not preseatiarfittings, the ISO 389-6:2007 does not
represent the pe SPL at the eardrum. For the modeling presented nesleafstudy, the HATS measurements from
Richter and Fedtk€005 were therefore used as the reference.
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Figure 3.5: Simulated (solid curves) and modeled (dashed curved baq.3.9, dotted curve, based diarte et al.
2009 ABR wave-V latencies as a function of tone-burst center frequendylevel. Each line fitted tdNeely et al.
(1988’s empirical data corresponds to one simulated level. Open symbols tigtiteshow simulated click-evoked
ABR wave-V latencies, filled symbols shd&lberling et al.(2010 measured click latencies. All levels are given in dB
pe SPL.

function) between tone-burst data and simulations is found t&%e 0.90, showing a nice
covariance between simulations and data. The simulated click-evoked |atemeiendicated
by the symbols next to the 8-kHz tone-pulse results. The filled circles onighe show the
corresponding measured click data taken frigtberling et al.(2010. The stimulus levels used
for the simulations were the same as those for the tone-burst simulationgastibe levels of
the click in the experimental study &lberling et al.(2010 are stated next to the respective data
points. As for the high-frequency tone pulses, the model predicts a&eddilynamic range of
wave-V latencies across levels compared to the measured values.

3.5.2 Simulation of broadband chirp-evoked wave-V amplitules and latencies

The black lines in Fig.3.6 shows the simulated wave-V amplitudes obtained for the five chirps
described irElberling et al.(2010, at the three levels tested. In addition, click-evoked wave-V
amplitudes for the same stimulation levels are shown on the left. The “changdagf @bscissa
refers to the delay differences between the 5700-Hz component to helZztomponent of the
stimulus. This reflects that a chirp with a faster sweeping rate has a shorédiod. The click

is represented by a 0-ms change of delay as all the frequency contpdrase the same delay.
The gray lines of Fig.3.6 shows the corresponding measured data fElberling et al.(2010.
The squared correlation coefficient between data and simulatioR$ 450.90, demonstrating
good covariance between simulations and data. The measured data sabvisrtthe highest
stimulation level of 60 dB nHL, the chirp with a relatively short duration (cf#jg.e. a small
delay difference between the low- and high-frequency stimulus compmried the largest wave-
V amplitude. Chirp 2 thus represents the stimulus that is most effective direynzing the neural
output across frequency. In contrast, for the stimulation levels of 40HIB and 20 dB nHL,
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the corresponding maxima were found with chirp 3 and chirp 5, respbgtiseggesting that
other sweeping rates provided maximal synchronization across frequdrhese key features
observed in the measured data are also reflected in the simulations. Thewdiad responses
show a smaller amplitude than those obtained with all chirps both in the data anethetipns.
However, the maxima in the simulated functions are slightly shifted towards chitpshorter
durations. Overall, the correspondence between simulations and nadataes remarkable and
the results support the hypothesis that the dynamic nonlinear procesbesdachlea strongly
affect ABR formation.

Figure 3.7 shows wave V latencies simulated (black lines) by the ABR model and measured
(gray lines) byElberling et al.(2010 in response to the click and the five chirps. The squared
correlation coefficient between data and simulations is found tdRbe- 0.96, indicating
covariance of simulations and datd&R? does not tell anything about the agreement between
absolute latency values, it only shows that the data and simulation co-varyatgeadegree.
The measured latencies can probably be explained in terms of upwakstsd spir excitation
(Elberling et al, 2010 and the fact that the frequency region dominating the ABR response is
2 to 4 kHz Eggermont and Darl980 for the lower levels of 20 and 40 dB HL (for higher levels
the region broadens towards higher frequencies). As stimulus levelrsased, the BM filters
broaden and lower frequency parts of the stimulus will excite the main freguegion. The
longer the chirp is, the earlier is the low frequency part of the stimulus predend an early
excitation of the main frequency region is possible. Thus, at high levels G2giB HL) and
long chirp delays (e.g. chirp 5), the latency will be very short due to thg peesentation of low
frequencies and the upward spread of excitation. The simulated resuliglsh same trends, i.e.
that the shortest duration is observed for high stimulus levels and longd#iags. However, the
level-dependence seems, as in the previous simulation of tone bursts &sdrolich compressed.

3.6 Discussion

This study evaluated the developed ABR model by comparing simulations withtditerdata,
using clicks, tone-bursts and chirps as stimuli. The wave-V amplitudes simutatedponse
to a click presented at three stimulus-levels showed good correspendeniterature data,
demonstrating that the overall calibration of the model was correct. Futtieicorrect level-
dependence indicates that cochlear compression was well implementedlat@inges of the
simulated tone-burst evoked ABRs showed good frequency-depeedevhereas the level-
dependence was somewhat compressed. First, this shows that the wawelia delay (the
frequency-dependence) was modeled well. Second, the compresseddpendence suggests
that either the level-dependence of the BM tuning or the adaptation of thiH&Nsynapse was
modeled imprecisely, or alternatively, that the assumptions underlying thedu&tao extensive.
This will be further discussed below. The chirp simulations showed a goalation with
literature data. The simulations of the five chirps with different sweeping &itéree different
levels demonstrated that the current model was capable of simulating sesgorcomplex stimuli
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Figure 3.7: Black lines: Simulated ABR wave-V latencies evoked by click&aohirps with different frequency-delay
functions at three different stimulus levels. gray lines: ABR wave-V ligmevoked by the click and five chirps
(Recorded b¥Elberling et al, 2010. Note that the error bars represents one standard deviation.
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and that the interaction between the travelling wave delay and the leveldabgeBM tuning
seems to be working well.

3.6.1 Limitations of the conceptual approach

The assumption that all nonlinearity is restricted to the BM and AN and that thainéng
processing is linear is an obvious over-simplification given the high complefitpeural
processing within the brainstem. Specifically, the assumption that the rat@ofsmm the MSO
and AVCN within the brainstem are the same as in the AN is most likely erron®&aus 2003.
For example, it has been shown that neural synchronization in the Av&Nbe enhanced
compared with AN fibers, due to the convergence of inputs from two or motdiders on an
AVCN cell and postsynaptic cells that require coincident input spikesrbdiring Joris et al,
1994). Furthermore, even though the human ABR may be largely generatechimstem cells
in the spherical cell pathwaelcher and Kiangl1996, there is probably also some contribution
from other cell types such as globular and multipolar cells. There is still somigoversy about
the exact generating sites of the ABR peaks beyond wave |. The wholelimgpdpproach should
therefore be considered as a rough approximation of the real neucabamiems involved in the
generation of brainstem potentials. Nevertheless, it appears that thenchpproach represents
an effective approximation since major characteristics of the measuredatabee accounted for.
These major characteristics include the wave-V amplitude, the frequepepndence of the wave-
V latency and, to a lesser degree, the level-dependence of the watengyla

3.6.2 Effects of the unitary response function

In the present study, the UR was empirically obtained by deconvolvingal grnzerage click ABR
with the discharge rate function at the output of the AN model. The UR wasalnbined once,
for this 95.2 dB SPL click evoked grand averaged ABR, and all other stsrzduditions made
use of this UR. Only using one UR derived from a single waveform eustirat the generality
of the modeling framework could be tested. Simple linear convolution of a UR rhigghah over-
simplification for several reasons. First, the UR can be assumed to betsdbpendent. In the
present study, all simulations were rerun using individually estimated URitus from three
different subjects (not shown explicitly). However, this only resulted ghange to the overall
simulated response amplitudes, and introduced an individual latency. dffsedifferences were
minimal and reflected inter-subject differences, keeping the same byoadhits as observed for
the grand averaged UR. Seco@hertoff (2004 investigated the level and frequency dependency
of a UR used to model compound action potentials (CAP) in Mongolian gerbdsshidwed that
the UR has both a slight level and frequency dependence in this spduwéefirét peak of the
CAP-UR shifts up to 0.1 ms). However, no general formulation of the digrery was stated
and no formulation of a level-dependent UR for humans has yet been attemyples literature.
Further, the interval between wave-l and wave-V peaks has beamgbde remarkably robust
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across stimulus level in ABR recording3g¢n and Eggermonfi978 Eggermont and Dqrl1980),
indicating that a level-dependent UR is not required. Contradictory totbvgeverChertoff et al.
(2010 measured compound action potential (CAP) latency in humans, and deatedstnat
CAPs could have a smaller latency change with level than what has bewtedfor ABR wave-
V latency Serpanos et gl1997 Dau 2003 Elberling et al, 2010. This would tend to suggest
that the wave-I (which is believed to have the same origin as the CAP) to Wavierval, and
thus the UR, should be level-dependent. Itis unclear from the literatustgheha level-dependent
UR is in fact needed.

3.6.3 Wave-V latency dependency on frequency and level

Taking the variability on the measured data into account, the simulated tortee\mked response
latencies showed reasonable agreement with the measuredHaate €t al. 2009 Neely et al,
1988 for the frequency range 1 - 8 kHz and for a level range of 40 - IBGEL. In particular,
for a given stimulation level, the change of latency with frequency can ¢muated for quite well
by the model. However, the latency change with level was smaller in the simul#tiamsn the
data, particularly at high frequencies. Click-evoked ABRs were alsolatedito test the model’s
performance when considering broadband excitation. The simulatedesiaied latencies of the
present study decreased by only 0.6 ms for a 40 dB increase of stimudligflevn 55 to 95dB
pe SPL), corresponding to -0.015 ms / dB, which is in contrast to the aleeref a little less
than 2 ms observed in thelberling et al.(2010 data, corresponding to -0.043 ms / dB. Other
literature studies report latency decreases in the order of -0.043 msSeaitBanos et 11997
and -0.046 ms / dBOau, 2003 for similar stimulus ranges. Even though the variability on the
individual data set was high (a standard deviation of 0.81 ms on aveyegtbérling et al, 2010,

the discrepancy between model and data is noticeable.

BM filter tuning and IHC-AN synapse adaptation determine the level depeydef ABR
wave-V latency in the model. The ABR model latency change of -0.015 ms / dBsimall
improvement over the earlier modeling study Bsu (2003 who obtained latency changes of -
0.005 ms / dB for a similar stimulus level range. Additional simulations, where Meuging
was altered (and reported Rgnne et al.2011), demonstrated that the improvement was the
result of the use of the humanized versiorZdény and Brucg2007’s AN model instead of the
model byHeinz et al.(2001). The humanized AN model uses the sharper tuning estimates from
Shera et al(2002 (seelbrahim and Brucg2010 while Heinz et al.(2001) used the estimates of
Glasberg and Moore990. The filters ofShera et ali2002 (derived at only 40 dB SPL) are more
sharply tuned than those describedGilasberg and Moorgl 990 since they were estimated based
on behavioral forward-masking data and otoacoustic emission data. ntrast the estimates
of Glasberg and Moorél990 are based on behavioral simultaneous masking, which is affected
by peripheral suppressiorSiiera et a).2002 Bentsen et al.2011). However, there is still a
substantial discrepancy between the simulated and the measured latexiapibee. As shown
in Fig. 3.3, the model incorporates a level dependence in the C1 filter tuning factbile tie



3.6. Discussion 31

empirical evidence for the frequency dependence of the tuning faBtmré et a).2002 201Q
Bentsen et al.201]) is well documented, there is little data existing for the level dependence in
humans. This quality factor level dependence will strongly affect wavatency and could be
one reason for the underestimation observed in the simulations. Additioralisglradaptation in
the IHC-AN synapse enhances the onset and leads to shorter detenyandfysis purposes (data
not shown in this paper, sd®gnne et aJ.2011), click-evoked wave-V latencies were simulated
using an altered version of the ABR model where the IHC output of the ANetnwds used,
thus not including any adaptation process. However, while adaptatiectedf the absolute value
of the wave-V latency in the framework of the present model, it did not lavejor impact on
the latency variation with level. A possible level-dependence of the UR, thoogimplemented

in the model, could also affect the ABR wave-V latency. As discussedealibe literature is
inconclusive on this matter. Furth&hertoff et al.(2010’s CAP latencies decrease by -0.030 ms
/ dB over the level range of 75 to 105 dB SPL. So, even if a level-deggendR was implemented
to account for the difference in latency change betw€bartoff et al.(2010 andElberling et al.
(2010, the AN model would still under predict the wave-V latency. It thus remamdear why
the model fails to account more accurately for the level-dependent ioelodwave-V latency.

3.6.4 Across-frequency synchronization for broadband sthulation

When considering effects of level-dependent neural synchronizaticoss frequency, the simu-
lations illustrate the crucial role of nonlinear cochlear processing fordtradtion of brainstem
responses to transient stimuli. The chirps presentéthiarling et al (2010 were considered here
as “critical” stimuli to challenge and evaluate the model. The results suppdygathesis that the
dynamic behavior of ABR generation is mainly due to peripheral mechanismal m®cessing
at higher neural stages beyond the level of the AN was essentially evedids a linear filter.
Further, the results reinforce the need to have level dependent Ghirgi$o get maximum wave-
V amplitude clinically Elberling and Don2010.

3.6.5 Perspectives

The model might be useful as a tool for studying consequences ofdtifféypes of cochlear
hearing impairment on the evoked potential waveform, provided that pathobn be adequately
simulated in the model. Furthermore, brainstem responses to complex stimulRjcABch as
consonant-vowel utterances, have been considered as an objjedéx@f the neural transcription

of features (e.g. temporal, spectral) that are important for speectrstadéing in quiet and
noise (e.gAnderson et a.2011). The model could be used to analyze which spectro-temporal
characteristics of the speech-evoked patterns can be accountgdciactiear processes. Finally,
an important step would be to consider "steady-state” responses ($&R)exl with temporally
fluctuating stimuli such as complex tones or amplitude modulated tones or ndissse rEsponses
are assumed to be generated by units in the auditory brainstem and in theypaudktory
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cortex (e.gKuwada et al. 1986. Therefore, the corresponding unitary response would have to
be extended by a middle-latency component. It is not clear, to what extehtasconvolution
approach can be successfully applied to middle-latency responses) (Ml Ransients as well

as amplitude modulation following responses. Regarding MLRs, at leasts ib&@n shown
that the “classical” SSR to click trains presented at a 40 clicks/sec repetdatencan be
modeled reasonably well using a linear convolution appro8dih@rquez and Oezdama&008
Junius and Da2005.

3.7 Summary and conclusion

A computational model for the generation of ABRs to transient stimuli wasepted. The
model was based on the assumption that an ABR can be simulated as the tonvoéiween
an instantaneous discharge rate function and a unitary response.stdrgameous discharge rate
function was obtained from a state-of-the-art nonlinear AN madiéy and Bruce2006. The
UR was derived “empirically” as the deconvolution between the simulated tastaous discharge
rate AN function in response to a click stimulus and measured average cbkkeABR.

The model was evaluated by comparing the predicted responses to ndteA8Redata from
the literature. It was shown that a realistic simulation of the level-depenigral processing in
the cochlea is essential for the interpretation of ABR to tone pulses, clickstarps presented at
various stimulation levels. In particular, the model could account reaowal for the nonlinear
wave-V amplitude behavior as a function of chirp stimulus level and sweegiagvhich supports
the strong role of cochlear nonlinearities, such as compression anddigyehdent tuning, for
the formation of ABR. However, the model clearly underestimated the leyaraence of the
response (wave-V) latency and it remained unresolved in the framestdHe modeling work
presented here what mechanisms are responsible for the relativelali@ngey changes with level
observed in the data.

Overall, the developed model can provide insight into the complex natur&Bf gdeneration.
It can be used to investigate the representation of other types of stimuii §sugpeech in noise)
or to study effects of (different types of cochlear) hearing impairmarthe predicted potential
patterns. Furthermore, the modeling approach might provide a basis fovéstigation of longer-
latency responses, such as steady-state responses to amplitude madokgeuhd noises.

The ABR model including, grand average ABR, UR, and key simulations, dided in
the Auditory Modeling (AM) toolbox $gndergaard et al2011) and can be downloaded from:
http://ant ool box. sour cef or ge. net/ (date last viewed 02/14/12).


http://amtoolbox.sourceforge.net/

Chapter 4

Modeling the level-dependent latency of
the auditory brainstem response

This chapter is based drgnne et al(201]). In the framework of the thesis, this is an expanded
discussion on why the level-dependent latency of the click-evoked ABIRRdsrpredicted by the
ABR model.

4.1 Abstract

Auditory brainstem responses (ABR) are used for both clinical andarel purposes to
objectively assess human hearing. A prominent feature of the transmke®ABR is the level-
dependent latency of the distinct peaks in its waveform. The latency of tls¢ jpnominent
peak, wave-V, is about 8 ms at a peak equivalent sound presseofes5 dB, and reduces
for increasing level by approximately 1 ms /20 dB. A classical explanatiothfs finding asserts
that an increasing stimulus levels lead to a broadened excitation pattern castlae membrane.
This results in further activation of the basal regions of the cochleaerGive physical properties
of the basilar membrane, increased basal activation is believed to casseasing ABR latency.
An Auditory Nerve (AN) model and the Dual Resonance Non-LinearitRKR) filter model
are considered as separate front-end cochlear models to simulate ABRs tliough both
models incorporate level-dependent tuning and synapse adaptatiahuarttieoretically should
be capable of simulating level-dependent latencies, both models undictghe latencies. The
failure to produce accurate simulations suggests, that the level-depénding in the models is
not accurately modelled. The level dependency of the basilar membran&ufiiteg in humans is
not well described in the literature and could therefore cause the modéiffiicglties.

4.2 Introduction

ABRs in response to transient sound stimuli represent the summed eled@itiglofrom many
remotely located neurons, recorded via scalp electrodes. The ABR tliatirict waves, where
wave-V is the most prominent. One key feature of the ABR wave-V is the [aakcy which
is dependent on both frequenciieely et al, 1988 and level Dau, 2003. This frequency
dependence is due to the tonotopic mapping on the basilar membrane (BM) witirdggency
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at base and low frequency at apex. The result is that high frequendiyory nerve responses
occur earlier than low frequency responses. The level-dependenckas well understood, but is
thought to be determined by the frequency specificity of the basilar mem{Btjei.e. its tuning,
and the inner hair cell (IHC) - auditory nerve (AN) synapse adaptalibis study has investigated
the ability of two established auditory models, when used as a front-end irB&model, to
simulate level-dependent wave-V latency in response to click stimuli. Both tlké&dky Nerve
(AN) model Zilany and Bruce2006 2007 and the Dual Resonance Non-Linearity (DRNL) filter
model Meddis 2006 were assumed to contain the nonlinear processes required to acoount f
level-dependent wave-V latency. Two front-end models are used to minineig®tential effect of
implementation errors, and to evaluate whether the individual differeretesbn the two models
are important.

4.2.1 Level-dependent latency theory

Cochlear tuning is level-dependent, where an increase in stimulus levtisriesoroader auditory
filters. On the BM, the broader filters result in broader excitation patteémns,regions of the
BM with characteristic frequencies further from the center-frequerfieystimulus are recruited.
Elberling (1976 andFolsom(1984) discussed how this broadening in excitation with level results
in shorter latencies as more basal regions of the BM are activated, i.éonsegith shorter
implicit delays. Another inherent feature of the filter tuning is the change iretivelope of
the local BM impulse response. An increase in level will result in an inlilgrehorter impulse
response. The delay of the individual peaks will be constant but thétad®of the earlier peaks
will be emphasised, and given the associated delay will decrease witlasinogestimulus level.
Recio and Rhod€2000 demonstrated that this phenomena can be physiologically measured on
the chinchilla BM, andKiang (1965 showed that the effect is also measurable in the cat AN.
Across many filters, the envelope change with increasing stimulus levelsaats@set emphasis
that results in a decrease of wave-V latency. The IHC-AN synapsptattn has similar
properties, amplifying the onset of a signal and attenuating later paistérman and Smith
1988. This effect enhances the level-dependent effects on wave-\clatrrated by the filter
tuning.

4.3 ABR Model structure and unitary response

The structure of the ABR model is shown in Fig.L The ABR model uses either the DRNL
filter model (DRNL-ABR) Meddis 2006 or the AN model (AN-ABR) Zilany and Bruce2006
2007 as the front-end cochlear model. The AN model calculates the instantdéuharge
rate for individual AN fibres, in response to a given stimulus defined st&la. Equivalently,
the DRNL filter model calculates the vesicle release probability also for sinyldil¥kes. Each
fibre (in both models) is tuned to a specific characteristic frequency (I@i€) CFs chosen were
spaced according to the human cochlear mapreenwood1990. The number of fibres included
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Figure 4.1: Schematic structure of the ABR model. 500 AN fibers tunedffereht CFs are individually simulated
by the AN model. The summed activity, integrated across frequencyeisdbnvolved with a unitary response and
represents the simulated ABR to a given stimulus.

was a trade-off between computational time and model accuracy. Thooughs study, 500
fibres ranging from 100 Hz to 16 kHz were used in all simulations. The owpthe front-
end cochlear models was summed across all fibres and convolved with B/ uegponse (UR)
function, derived separately for the two models. The UR is defined asdtemtmal produced
between the electrode positions on the scalp each time a cell dischargesURBhene for
each of the models, were obtained by deconvolving a template 95.2 dB péSkevoked ABR
Elberling et al (2010, shown in the left panel of Fig.4, with the summed neural activity pattern
generated by either front-end model in response to a similar click stimulusdddwavolution is
an ill-posed mathematical problem and has an infinite number of solutions. & stabprobable
solution was, like inDau (2003, found by using the Tikhonov regularizatidikhonov (1963,
and the MATLAB toolbox fromHansen(1998. Figure4.2 (right) shows the unitary responses,
obtained with a grand averaged ABR at 95.2dB peSPL as the target. lsaparposition was
assumed above the level of the AN synapse, and thus the calculated uegponse functions
given in Fig. 4.2 was used for any input stimulus level. As expected, the two derived URs ar
almost identical (seklarte et al(2010 for further information on the modeling framework).

4.3.1 Cochlear models

The input to the auditory nerve (ANgilany and Bruceg2006 2007 model is the instantaneous
pressure waveform of the stimulus in unitsRd The output of the AN model is the spike rate
in response to the stimulus pressure. The model includes a number of rketjohal stages:
a middle-ear filter; a feed-forward control path representing the antieehanism; a primary
signal-path filter (C1) representing the basilar membrane (BM) filteringtaddyy the control
path; a parallel-path filter (C2) for high-level stimuli; an inner-hair cell@)Hsection followed
by a synapse model and a stochastic AN spike discharge generatore pretbent study, the
spikes/s output from the synapse model was used, rather than thestiochdput from the
spike generator. The input to the dual-resonance nonlinear (DRNL) ffilbelel Meddis (2006
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Figure 4.2: Left panel: Grand average template ABR evoked by adi 2eSPL clickElberling et al.(2010. Right
panel: Derived unitary response functions for hence the AN-ABRteedRNL-ABR model. Both are calculated as
the deconvolution of the grand average ABR and the summed neurafyagtittern generated by the front-end cochlear
model in response to an identical click stimulus. The two URs has for digglay shifted in amplitude.

is also the instantaneous pressure waveforr®an The output from the model is the vesicle
release probability. The modMeddis (2006 used in this work consists of an outer and middle
ear-filter, the DRNL filter (BM filter stage), an inner hair cell (IHC) transtion stage and a
IHC-AN synapse. The DRNL (Lopez-Poveda and Meddis, 2001; d¥edt al., 2001) filter is a
computational algorithm which aims at simulating a number of features chastictef the basilar
membrane. One of many features is a compressive input-output funatibepasequently level-
dependent tuning. The output from both models were deterministic anddletsadf refractoriness
were thus not considered in this work.

4.3.2 Stimuli and calibration

As the literature data are described in dB peSPL it was necessary tdiealysalibrate the
transient stimuli used. The click were measured acoustically in an IEC 663dgdler. The
numerical stimulus peak-to-trough amplitude of a reference 1-kHz puessignal was adjusted
until the acoustically measured peak-to-trough amplitude was similar to thatafdkeA scaling
factor, defined as the ratio between the stimulus peak-to-trough amplitude mité tone and the
stimulus peak-to-trough amplitude of the transient signals, was derived as;

S— I—Signal (4_1)
LReference
whereS s the scaling facton,_sjgna is the stimulus peak-to-trough amplitude of the transient
signal, and_referencdS the stimulus peak-to-trough amplitude of the reference pure tone. The AN
model was calibrated such that the root-mean-square value of a i@#gyare tone signal was 1,
whereas the DRNL model is calibrated such that the peak value of aneéspere tone signal was
1. The amplitude of the numerical click in Elberling et Blberling et al.(2010, used as stimuli
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Figure 4.3: Left panel: AN-ABR model simulations to click stimulus at 50,and 90 DB peSPL. Note the latency
change of the wave-V peak. Right panel: Simulations of click-evoke® ABive-V latencies across stimuli levels,
using both the AN-ABR and the DRNL-ABR model. Both models show cosgeé level-dependent latencies
compared to Daau (2003 experimental data.

to the models, was thus scaled by the derived faStmr the DRNL model, and b% for the
AN model.

4.4 Results

The left panel of Fig4.3shows ABRs simulated by the AN-ABR model in response to clicks at
50, 70 and 90 dB peSPL. A shift in the wave-V peak to shorter latenciegneitbasing stimulus
level is clearly observed. The right panel of Fi.3 shows simulated click-evoked ABR wave-
V latencies as a function of stimulus level. Also shown are recorded click FB#hciesDau
(2003. Simulations were done with both the DRNL-ABR and the AN-ABR model. The two
models produce similar results for stimuli levels between 70 and 100 dB pé&®Plawer levels,
the DRNL-ABR model no longer produces a distinct wave-V, thus degiaratency associated
to those levels was not possible. As expected, it is seen that both models silmethieed wave
latency for increasing stimulus level. However, a clear disparity betwetmdets of simulations
and the recorded reference data is observed. The recorded daia ahdecrease in wave-V
latency of approximately 2 ms for a 40 dB stimulus level increase, whereasdtels simulates
approximately 0.6ms decrease for 40dB increase in stimulus level.

4.5 Discussion

Fig. 4.3 (right) showed that both models under-predicted the ABR latency. Thaicds
theoretical explanations of the ABR latency change with stimulus level sayshidHC-AN
synapse adaptation and the cochlear tuning should be the key featoiigsaritify whether these
features were captured, the impact of the tuning and the adaptation in th&BMRNmodel was
investigated. The focus was on the AN-ABR model as it produces the rladble results over
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Figure 4.4: Simulations of click-evoked ABR wave-V latencies acrossuditievels. In both figures are the data
recorded byDau (2003 and the simulations from Figt.3shown as reference. The figure to the left additionally shows
wave-V latencies simulated by the AN-ABR model where the filter tuning veaet orGlasberg and Moorgl990).

The figure to the right shows wave-V latencies simulated by an AN-ABRahibdt excluded the IHC-AN synapse

adaptation.

the widest range of input stimulus levels. To be able to interpret the modeltigr URs for each
new version of the model were derived. The URs were derived frarséime 95.2 dB peSPL
click-evoked template ABR, thus results shown in this section have by defaukct latency
estimation at 95.2 dB peSPL.

The key feature producing the level dependency of wave-V latensyivedilter tuning. Fig4.4
(left) shows the effect of exchanging tBdera et al(2002 filter tuning, originally implemented
in the AN model, with the less sharply tun&€asberg and Moor¢1990 filters, on wave-V
latency. It is observed that the latency change with stimulus level is apprtetintealved. Both
Shera et al(2002 andGlasberg and Moor€l 990 describe the frequency dependence of the filter
tuning. Thus, exchanginghera et al(2002 tuning with theGlasberg and Mooré€l990 tuning
makes all the filters broader, independent of level. The reason for ther llatency change
with stimulus level found when using§hera et al(2002 tuning is that sharper filters increase
the frequency specificity and thus limit the upward spread of excitation atelesis. At higher
levels, there is thus room for a significant increase in upward spreaxicghtion, thus creating
larger latency changes with levebhera et al(2002 measured the filter tuning using a forward
masking paradigm. The tonal target stimuli was presented at 40dB SPlatLiteidata obtained
at higher levels and high frequencies, measured with this paradigm, &es/é&ionot available.
For the high levels, the lack of data is likely due to the practical limitations of ptiegean off-
target masker that does not get uncomfortably loud when measuringttseaskhe filters. As the
sharpness of the tuning was shown to be important for the level depgndéwave-V latency,
the lack of trustworthy data is however a large uncertainty. Getting the lepsralency of the
tuning correctly could prove to be key when modelling wave-V latencies. &igshows filter
bandwidthsQgrg, at different centre frequencies and levels, derived from theentikN model.
Data to which these simulaté@tvalues could be compared with, would be benefitial.

The right panel of Fig4.4 shows simulated click-evoked ABR wave-V latencies, generated by
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Figure 4.5: Filter bandwidth€erg, derived from the output of the C1 filter path. The dashed curve stpwg based
on Shera et al(2002’s experimentally derived function for a stimulation level of 40 dBpeSPL

the AN-ABR model where the adaptation of the IHC-AN synapse has b&esute The removal
of the adaptation clearly shows a reduction of latency change with stimulds Nwgte that the
UR was calculated based on a 95.2 dB peSPL click, and that the latencysifilations around
this level by default therefore is correct. The "correct" picture whemaving the adaptation
should therefore have been a curve shifted upwards, as the inclusiataptation sharpens
the onset and thus leads to shorter delays. However, the simulated résutshat removing
the adaptation approximately halves the latency change with level. This wpsrteg by an
additional simulation (not shown) where the adaptation was removed froNR&BR model
based on thé&lasberg and Moorél990 tuning. The IHC-AN synapse adaptation used in the
AN model was revised b¥ilany et al.(2009. Additional simulations were performed using this
synapse model; however, no effect on the level-dependent latercjowad. The adaptation is
thus argued to be important for wave-V latency but not the reason famtier-estimated latency
change.

Two other modelling features could be thought to affect the ABR latencye firkt is the
unitary response (URXhertoff (2004 investigated the level dependency of a UR used to model
compound action potentials (CAP) in Mongolian gerb@hertoff(2004 showed that the UR was
level-dependent in this species. However, no general formulation afe¢pendency was stated,
and no formulation of a level-dependent UR for humans has been fouhd literature. It cannot
be excluded that a level-dependent UR would affect the latencies. Temeahbetween wave-I and
wave-V, is however, remarkably robust across stimulus level. The URImtte auditory pathway
from the wave-I generation site, argued to be the IHC-AN synapse, todhe-V generation site.
Thus, it is not likely that a level-dependent UR would have a major impactetathncies. The
second alternative feature that could affect the ABR latency is the ayditove refractory period
which was not included in the AN-ABR model of the present study. Thisceh@was made to make
the model computationally faster. Additionally simulations were carried outewtier refractory
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period was included. However, no improvement on the wave-V latenaygehwith level was
observed.

4.6 Conclusion

Two ABR models were build, both using a principle where a cochlear frodtfeodel was
convolved with a unitary response (UR). Both ABR models were shown tuofisigntly under-
estimate the click-evoked ABR wave-V latency change with stimulus level. Themadels
should, given classical explanations, be able to model click-evoked la®Rcies. The fact that
they fail leads to the suggestion that the cochlear tuning is likely to be impredigghdevels and
high frequencies.



Chapter 5

Low-frequency versus high-frequency
synchronization in chirp-evoked audi-
tory brainstem responses

In chapter3 the ABR model was developed. It was quantified that the model was capiable o
simulating ABR wave V latencies and amplitudes to click, tone bursts and chirpst, this
chapter develops two tools to illustrate details of the ABR model simulations. Theseation
tools, the AN-spectrogram and the AN-UR-spectrogram, has provealumbie tool aiding
stimulus creation for experiments, as well as the understanding of simulatieresthey are used

to motivate the “Low-frequency versus high-frequency synchrdioizan chirp-evoked auditory
brainstem responses” studly

5.1 The ABR model used as an illustration tool

5.1.1 Stimuli

The two stimuli used, a click and a chirp, were both taken filberling et al.(2010 and were
thus identical to the click stimulus and the “chirp-3” stimulus in chaBtéoth stimuli were band-
limited from 100Hz to 10kHz. All simulations were carried out at 75.2 dB peS®Btresponding
to 40dB HL for the click (see sectidh4.2

5.1.2 Spectrograms

Fig. 5.1 and5.2 show hence a simulated click and chirp evoked ABR. Wave |, lll and V are
clearly visible. The latency and amplitude of the wave V’'s were naturally simildhé¢oones
presented in Fig.3.7 and3.6. Each simulated ABR was the summation of 500 channels, each
tuned to a different CF. In Fig5.3 click evoked AN responses are shown in a AN-spectrogram
representation. The Y-axis shows the 500 AN fibers characterizedeloyGR. Each horizontal
line in the figure are thus the click evoked response of the humaditaay and Bruceg(2007)

AN model tuned to a CF. The color represents the instantaneous dischtege a specific time

1 This study is based oR@nne and Ggtsche-Rasmusgail 1)
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in a specific fiber. Fig5.4shows AN-UR-spectrogram representation, created by convolviig ea
horizontal line in Fig.5.3 with the unitary response (UR, see sect®d.]). As the convolution
was a linear process, the summation over channels of this figure give tResA@vn in Fig.5.1
The color represents each channels contribution to the summed ABR potentiaf uv).
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Figure 5.1: Simulated ABR evoked bklberling etal. Figure 5.2: Simulated ABR evoked bklberling et al.
(2010 click. (2010 chirp-3.
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Figure 5.4: AN-UR-spectrogram visualizing the compo-
Figure 5.3: AN-spectrogram showing the simulated neurahents that sum up to form the simulated ABR. This figure is
activity at the AN in response to click stimulus. created by convolving Figh.3line by line with the UR.

In the spectrograms, details of the underlying processing can be eldserin the AN-
spectrogram it can be observed that the fine-structure informationilalaeaat low frequencies
whereas only the envelope seems to be tracked at higher frequenitis$s $een as the impulse
responses at low frequencies (a single horizontal line) has multiple ,pedtksa periodicity
corresponding to the fiber CF. In the AN-UR-spectrogram the ABR wWhwend V are visible
as the two red lines occurring around 4 and 6 ms. A clear latency shifttiierAN-spectrogram
is observed due to the UR.

Fig. 5.5and5.6 shows spectrograms evoked by tberling et al.(2010 chirp-3. It is clearly
observed that much of the activity in the AN-UR-spectrogram is time-aligneteatliscrete
values of 4,5 and 6 ms. It is further observed that the impulse respoagesalong duration
at low frequencies. This has the consequence that it is impossible to time-hlgnhe activity
stemming from low frequencies. It is however observed, that the peatteedow frequency
impulse responses are aligned with the peaks of the high frequency ctioimg) A larger wave-
V amplitude is thus observed using a chirp stimulus than a click stimulus.
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Figure 5.5: AN-spectrogram showing the simulated neuraFigure 5.6: AN-UR-spectrogram visualizing the compo-
activity at the AN in response to dlberling et al.(2010 nents that sum up to form the simulated ABR. This figure is
chirp-3 stimulus. created by convoliving Figs.5line by line with the UR.

5.1.3 Motivation for the following study

It was shown that the simulated the low frequency contributions to the clickeeVABR was not
time-aligned with the high-frequency contributions and were thus not adging phase (Fig.
5.4). The chirp evoked ABR showed a much more time-aligned response atdquencies (Fig.
5.6); however, it was also indicated that the alignment of high-frequena@sssignificantly better.
This contradicts the common belief in literature (eStnore and Nuttall1985 Dau et al, 2000
where it has been argued that the alignment of the low frequencies veeoalhreason for the
larger wave-V amplitude evoked by a chirp rather than a click. This deviagbmden literature
explanations and simulations led to the following study, where it was investigdtether the
better alignment of the high-frequencies contribute significantly to the latygy evoked ABR
wave-V amplitude.

5.2 Abstract

This study investigates the frequency specific contribution to the auditaipdtem response
(ABR) of chirp stimuli. Frequency rising chirps were designed to comgerfsa the cochlear
traveling wave delay, and lead to larger wave-V amplitudes than for click stamutiore auditory
nerve fibers fire synchronously. Traditional click stimuli were believearty excite high-
frequency fibers synchronously. It is still currently unclear whethebroad-band chirp stimulus
leads to increased synchronization of both low- and high-frequeneysfibt is also unclear if
both these groups of fibers contribute significantly to the overall waveplitude. In the present
study, ABRs were recorded from 10 normal-hearing listeners using #md- high-frequency
band-limited chirps and clicks (0.1 - 1.5 kHz and 1.5 - 10 kHz) presentedeatet of 40 dB
HL. The results showed significantly larger wave-V amplitudes for both lesvtagh-frequency
band-limited chirps than for the filtered clicks. This demonstrates that thengymezation of
nerve fibers occurs across the entire frequency range at thimpatse level, and this leads to
significant increases in wave-V amplitudes. The increase for the layudirecy chirp was found
to be clearly larger than that obtained at the higher frequencies.
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5.3 Introduction

ABRs in response to transient sound stimuli represent the summed eledaidipbfrom many
remotely located neurons, recorded via scalp electrodes. The clicke@WRR has 7 distinct
waves, where wave-V is the most prominent. One key feature of the ABR-Was the peak
latency which is dependent on both stimulus frequeisely et al, 1988 and level Dau, 2003.
The frequency dependence is due to the tonotopic mapping on the basilaraneniBM) with
high-frequency at base and low-frequency at a@neénwood1990. Each frequency component
of a stimulus is associated with a certain delay, and a click stimulus will thus elipitmess over a
relatively large time span. This limits the synchrony of the response, arebthezduces the ABR
amplitude evoked by such a stimulusli§erling et al, 2007). Frequency rising chirps have been
designed to compensate for the cochlear travelling wave delay. The gh@pstimulus lead to
larger wave-V amplitudes than for click stimuli as more auditory nerve fibers§inchronously
(seeElberling et al, 2007, for review). The increase in synchrony has traditionally been argued
to occur mainly at low frequencies, where the peaks of the individualenessponses are most
delayed. E.gShore and Nuttall1985 andDau et al (2000 argue that the low frequencies are the
key to the improved wave-V amplitudes, as low frequencies are leastreyris with the more
aligned high frequencies and the room for improvement thus is largest.evowthe impulse
responses of the nerve fiber responses at low frequencies ardangehin time citepKiang1965,
and it is thus not possible to align all the excitation at low frequencies. A @httpugh designed
to align all frequenciesHlberling and Don2008, and the better alignment of high frequencies,
with short impulse responses, could thus be an alternative hypotheisistilt currently unclear
whether the broad-band chirp stimulus leads to increased synchronigtioth low- and high-
frequency fibers. It is also unclear if both of these groups of fibensribute significantly to the
overall wave-V amplitude. The research questions addressed in tlis gnap 1) Is the increased
wave-V amplitude (increased nervous synchrony) observed for ltigth and low frequencies
when stimulating with chirps instead of clicks? 2) Are high or low frequenagddthe increased
wave-V amplitude observed when stimulating with broad-band chirps?

5.4 Testdesign

Six stimuli were created. A broad-band click and a broad-band chirgaiong the frequencies
from 100 Hz to 10 kHz, were used as reference. The click was a 1§tdnsard click, and the
chirp was identical to "chirp 3" inElberling et al, 2010. Further were low-frequency and high-
frequency versions of hence click and chirp created. The methodilleddy Elberling et al,

2007 was used. The phase delays for hence chirps and clicks were theasarsed to create the
broad-band stimuli. Both the high-frequency and low-frequency dutr@fuency was 1500 Hz.

Fig. 5.7and Fig.5.8shows the time series representation of the three hence click and chirp stimuli.
The power spectra of the two broad-band stimuli were identical. The sumensirs of hence

the low-frequency and high-frequency click, and the low-frequemay high-frequency chirp has



5.4. Test design 45

also identical power spectra as the broad-band versions. The pbivemae the low-frequency (-
3.1 dB relative to broad-band condition) high-frequency (-0.6 dB reddti broad-band condition)
stimulus are thus smaller than the power of the broad-band versions5Bighows the power
spectra of the stimuli, note that hence the two broad-band stimuli, the two loweney stimuli
and the two high-frequency stimuli have identical spectra. The six stimuk Vigked to each
other in terms of the power spectra as described above. Therefortherbyoad-band click was
calibrated, and the rest adjusted correspondingly. By inserting ERgad plug in a B&K Ear
Simulator Type 4157 (IEC 60711) using adapter B&K DB 2012 the click whbreged to a level
of 75.2 dB peSPL. The reference equivalent threshold soundyedssel (RETSPL) for the click
calibrated this way is 35.2 dB RETSPL (taken from the corresponding &eadorso simulator
measurement dRichter and Fedtké2005, and the measurements are thus carried out at 40 dB

HL.
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Figure 5.8: The three chirp stimuli, all based on “chirp 3”
Figure 5.7: The three click stimuli. from Elberling et al.(2010.

5.4.1 Test subjects

The ABR measurements were carried out at the Centre for Applied HeRaagarch (CAHR),
Technical University of Denmark. Ten normal-hearing test subject$efi@ars) participated in
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Figure 5.9: Spectra of the different stimuli. The sum of the two hence émal-high-frequency clicks or chirps have
the same power spectrum as the broad-band stimulus.



46 5. Low versus high-frequency synchronization in chirp-evokB&R#

the study. All subjects had normal hearing defined as pure tone threstapldl to or better than
20 dB HL in the range from 125 Hz to 8 kHz. The subjects were all studetteden 20-30 years
old (2 females and 8 males). The session lasted for maximally 1.5 hours inclusligtdriefing
and fitting of electrode cap. Only the left ear was tested.

5.4.2 Measurement procedure

The test subject was placed in an electrically and acoustically shielded bbwthsignals were
presented at 48 kHz sampling frequency through an Etymotic ResearghrisRrt earphone. The
recording of the ABR was done using a Medical Equipment ApS Synamys2h sampled the
recorded signal at 10 kHz. The electrodes were placed at verfiexginee), ipsi-lateral mastoid,
and forehead (ground). An impedance between the electrodes belawnag achieved for the
majority of the test subjects. The post-processing was done using MATIAB raw data was
averaged, and filtered using a band-pass filter with cut-off frequeati00 and 3000 Hz. Wave-
V was detected in a time interval from 0 - 7 ms after the offset of the stimulatior. Wave-V
amplitude was calculated as the difference in amplitude between the maximum amaiitlithe
minimum amplitude found in the subsequent 2 ms.

5.5 Results

Fig. 5.10shows the mean and one-standard deviation of wave-V amplitudes of thedicos
measured. The broad-band click and chirp used in this study are iddnttbal ones presented by
Elberling et al.(2010. They found an averaged click evoked wave-V amplitude of 0.368 f}/ an
an averaged chirp evoked amplitude of 0.645 {V. This compares well witmtipdtudes measured
in this study.

The mean amplitudes indicate that the chirp stimuli generate larger ABR Waveplitade
compared to the click stimuli across all conditions. The high-frequencyp atondition is
significantly different from both the broad-band chirp (HighBroad: p value = 0.014) and the
low-frequency chirp condition (Higké Low: p value = 0.005), indicating that both high and low
frequencies are adding to the measured amplitude. It cannot be rejeatddethigh-frequency
click gives rise to the same amplitude as the broad-band click (Higroad: p value = 0.614)
indicating that the broad-band click is entirely determined by the high-frexyueontribution. The
p-values were calculated using a two-sample t-test.

The difference between the click evoked and chirp evoked wave-V amhtias calculated for
each test subject to reduce the influence of the inter-subject variability.nfean and standard
deviation of the improvements from click to chirp are shown in FBgll A t-test was applied
to analyse the data (see TaBld). All three stimuli types show significantly larger amplitudes
for chirps over clicks, supporting the hypothesis that the increasethsymy happens over the
entire frequency range. It is also shown that the high-frequency wveprent was significantly
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Figure 5.10: Mean ABR Wave-V amplitude and one standard deviation glfatteeach stimulus condition.
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Figure 5.11: Improvement in wave-V amplitude from click to chirp exbkesponses. The mean and one standard
deviation are plotted.

different from the broad-band improvement, and thus the high fregeeicannot be the entire
explanation for the larger amplitude measured with a chirp instead of a clickniot be rejected
that the improvement measured with the low-frequency stimuli are equal to thieviempent of
the broad-band conditions. These results will be further discussed dhisitigssion section.

Hypothesis | P-value
Low >0 «0.001
High >0 0.006
Broad >0 | «0.001

Low # Broad | 0.237
High = Broad | 0.004

Table 5.1: Statistical analysis of data in Fig11 The three upper P-values are calculated using a one sided one-sample
t-test. The two lower using a two-sample t-test.
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5.6 Discussion

This study investigated the frequency regions contributing to the chirp ABRW amplitude. It
was found that an increase in ABR wave-V amplitude when stimulating with a shimulus
rather than a click, was observed both at lower and higher frequenicidiating that the
increased synchrony of the nervous responses takes place dwamstire frequency range. It
was also shown that the high-frequency region cannot explain the ipewvt from click to chirp
when stimulating with the broad-band stimuli. However, the improvements olasat\the low-
frequency conditions and the broad-band conditions were not sigttificdifferent, indicating
that the lower frequencies can explain all the improvement from the click itp clondition.
This contradiction in the results, that the high-frequency improvement iffisegmtly larger than
zero, and that the low-frequency improvement is not significantly difteirem the broad-band
improvement, would likely be clarified if more test subjects had been used.

Fig. 5.10shows that high frequencies were the main contributor to the formation of\AWBWe-
V amplitudes for both clicks and chirps. This was likely due to the fact that igiie-fnequency
stimuli contains more power, and to the fact that the high-frequency bas#arbrane responses
have short impulse responses that were inherently better aligned thangeeilmpulse responses
at low frequencies. However, the improvement from click to chirp at higguencies was small.

In Fig. 5.12the amplitudes of the low-frequency and high-frequency responsesagdeed for
each test subject and compared to the broad-band evoked amplitudesedtly observed that the
summed amplitude is larger than the broad-band evoked amplitude. This stadvlsetlauditory
pathway behaves nonlinearly. The explanation is that the outer-hairtC¢l€) amplifies weak
sounds more than louder sounds (compression) and the fact that thedfiésiponses gives rise
to spread of excitation on the basilar membrane in the region surroundindp@@eHz cut-off
frequency. The 1500 Hz region would in the broad-band conditions haen masked. The low
level "off-frequency" excitation will be amplified by the OHC and the sumnegponse of the
two frequency limited conditions will thus be stronger than the one measuredheithroad-
band stimulus. The increased amplitudes observed with the summed low anés$pginses, are
though equally large for both click and chirp stimulus. This leads to a very limifedteon the
wave-V improvements shown in Fig.11, and the possible uncertainty regarding the unmasked
off-frequency effects were thus negligible.

5.7 Conclusion

This study examined the influence of frequency range on chirp evoB&lak a presentation level
of 40 dB HL. It was shown that both low and high frequencies contributieddncrease in wave-V
when using a chirp stimulus instead of a click stimulus. This demonstrates tlthirepization of
nerve fibers occur across the entire frequency range. Howeediartest increase in wave-V is
observed at lower frequencies.
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Chapter 6

Modeling human tone-burst and click-
train evoked ABRs

This chapter is based on the paper called “Modeling human auditory evo&ettem responses
based on nonlinear cochlear processingaite et al. 2010, and describes simulations of tone
bursts and click-train evoked ABRs. The simulation of click-train evokedr8Bepresents the
first step, in this thesis, towards simulating responses to longer-duratioriistimiine following
two chapters the 40-Hz ASSR and speech-syllable evoked ABRs are s@chulzompared to the
original publication, the description of the theoretical framewaork, whicbaaly was described in
chapter3, has been taken out from the method section to avoid repetition.

6.1 Abstract

The aim of this study was to accurately simulate auditory evoked potentialss{AEfn various
classical stimuli such as clicks and tones, often used in research andlatli@ignostics. In an
approach similar t®au (2003, a model was developed for the generation of auditory brainstem
responses (ABR) to transient sounds and frequency following nsggo(FFR) to tones. The
model includes important cochlear processing staggany and Bruce2007) such as BM tuning
and compression, inner hair-cell (IHC) transduction, and IHC auditerye (AN) synapse
adaptation. To generate AEPs recorded at remote locations, a convodmmade of an
elementary unit waveform (obtained empirically) with the instantaneous dgehate function
for the corresponding AN unit. AEPSs to click-trains as well as to tone palsesrious frequencies
were both modelled and recorded at different stimulation levels and repetitiesn The observed
nonlinearities in the recorded potential patterns with respect to ABR wavelateand amplitudes
could be largely accounted for by level-dependent BM processingelssveffects of short-term
neural adaptation. The present study provides further evidenaldamportance of cochlear
tuning and AN adaptation on AEP patterns and provides a useful basibeg@tudy of more
complex stimuli including speech.
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6.2 Introduction

For sounds which convey information, such as speech and music, muble afformation is
carried in the changes in the stimulus, rather than in the parts of the sounil avkicelatively
stable. Through the last decades both psychoacoustic and physibkigitias have investigated
how the auditory system analyses the temporal modulations of sounds. WAlthemns sounds are
presented to human subjects, it is possible to record auditory evokediplst¢ AEPS) on the
surface of the human scalp. Auditory evoked potentials are the summeazhsesfrom many
remotely located neurons recorded via scalp electrodes. They candsded from all levels of
the auditory pathway, from the auditory nerve, the brainstem up to thexcdrtey are typically
grouped in terms of time of occurrence after stimulus offset and thus anerkas; auditory
brainstem responses (ABRs) recorded between 1 and 7 ms after stinffakts imiddle latency
responses (MLRs) recorded in the interval 15-50 ms after acoustic ssmama auditory late
response (ALR) recorded in the interval 75-200 ms after stimulus.

Hearing deficiencies often lead to difficulties in understanding speeg®ciedly in noisy
and reverberant environments. Auditory evoked potentials are a fudi@ol used to diagnose
and assess classical hearing deficiencies. This has led to a trend in theeildesf assessing
and investigating speech and complex speech-like stimuli with AEPs Ag&gn and Picton
2008 Akhoun et al, 2008 Chandrasekaran and KraiX1Q Lalor and Foxe2010. AEPs are
relatively well understood for basic stimuli, i.e. transients, tone bursts arestoHowever, for
more complex stimuli, which include amplitude and frequency modulations as v&lbag on-set
and off-set transients, it is still relatively poorly understood how théwuarneurophysiological
processing along the auditory pathway gives rise to the AEP recordadfate electrodes. A
clearer understanding of how the underlying neurophysiology in thé&aaydsystem leads to
surface-recorded scalp potentials could help to assess hearing impaioném evaluate how
well this has been compensated for with an auditory prosthas#ierf and Picton2008, such as
a hearing aid or cochlear implant.

The long-term goal of this study is to model and simulate speech evokedoamglex (non-
speech) sound evoked AEPs originating in the auditory nerve and ten@inbased on current
knowledge of neural auditory signal processing. Dau (2003) dpedla model for the generation
of early AEPs, including auditory brainstem responses (ABR) to trahsieuands like clicks
and frequency following responses (FFR) to tones. Both of these AfE®generated by
neurons in the auditory nerve (AN) and subsequent stages along ditergibrainstem. The
model included important cochlear processing stages such as basilaranenfitiering with a
compressive feedback loop, inner hair-cell (IHC) transduction,|BIGIAN synapse adaptation.
The instantaneous AN discharge rate from the model was convolved wimpimnically obtained
elementary unit waveform, to simulate AEPs.

In the present paper, tHeau (2003 model is extended to include current advances in AN
modelling Zilany and Brucg(2007) and is humanised. The originBlau (2003 model used the
Heinz et al.(2001) AN model fitted to experimental cat AN data. Here, @i&any and Bruce
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(2007 AN model will be adapted for humans by ensuring that the model has ajgep
thresholds, tuning curves, BM travelling wave latencies etc., based oentistate-of-the-art
knowledge derived from both behavioural and objective measuresenpossible. This study
will present a comparison of the model output with basic transient, torst-énd click-train data,
in an attempt to build up stimulus complexity towards the final goal of speects iTlupossible
to challenge the model with relatively basic stimuli, before increasing compleXitys study
focuses on the role of basilar membrane tuning and the adaptation mechédrnismAN model
and looks at the consequences for AEPs generated. Neural adajgatie phenomenon where
the neural output is reduced due to prolonged or repeated stimulatiochisege of the auditory
pathway.

The role of adaptation in AEPs, and more specifically ABRs is important seciauclinical
practice it is highly desirable to obtain accurate recordings of ABRs quigisticularly from
uncooperative subjects and neonates. Any morphological diffesesteh as amplitude and
latency, from normative data caused by stimulus rate adaptation could iaterih diagnosis.
The desire for quicker acquisition time has led to the use of rapid rates of diomnulaa so-
called pseudo-random binary sequences or maximum length sequerg8sifkard et al. 199Q
Jewett et a].2004. The response to these pseudo-random pulse trains needs to bealesd
to obtain an estimate of the ABR. The higher rate of the sequence leads tdlyypmaller ABR
amplitudes. This is believed to be a result of neural adaptation.

6.3 Methods

6.3.1 Model for AEP generation

The structure of the ABR model is shown in Fig.1 Within the overall ABR model, a parallel
bank of AN fibers is individually modelled. Each AN fiber is tuned to a spe€lfic The number
of fibers included is a trade off between computational time and model preciEwoughout this
study 500 fibers were used for each simulation, representing a raidge tf 10kHz. The output
of the AN model, the instantaneous firing rate of all the AN fibers, is summedamnalved with
the unitary response function.

A humanized AN model

Zilany and Brucg2006 2007's AN model was fitted to cat AN data, and has thus been modified
to better model human AN response here. The following changes to theabraginAN model
were implemented by Bruce and co-workers:

The original cat middle-ear transfer function has been replaced byammiddle ear. This was
based on the linear circuit model Bascal et al(1998 of human cadavers. The model magnitude
response function is shown in Fi§.2
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Figure 6.1: Structure of the ABR model. 500 AN fibres tuned to diffef@fs are individually modelled by the AN
model. The summed instantaneous firing rate is then convolved with a uréspgnse to create the modelled ABR.
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Figure 6.2: Frequency response of the human middle ear implemerttesl AN model.
It has been argued that humans have significantly sharper BM mechamaay than cats

and other experimental animalSHera et a.2002. To incorporate this, the model equivalent
rectangular bandwidth quality fact@ggrg, for cochlear tuning was defined to be,

f.\03
o c
Qere = 12.7(100()) (6.1)
wheref is the center frequency of the BM filter. This function was taken f@mera et al(2002

and is applicable to humans at frequencies at and above 1 kHz. The cfoQERB will be
further discussed later.

The tip of a suppression tuning curve is at a slightly higher frequency tiarip of the
excitatory tuning curvelelgutte 1990. This is implemented in the origin&ilany and Bruce
(2007 model by shifting the CF of the so-called control path filter by 1.2 mm on the \Bithout
sound knowledge of how this mechanism works in humans, the defaultiise@taere. However,

a human frequency-place mapping for the BM is needed and has beatedficbm the original
to the human fit from Greenwood (1990):
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Figure 6.3: Model example tuning curves (solid curves) for reprtesiee CFs and simulated (dashed curve) and
reference (dotted curve) absolute thresholds.

fo = A(10P*— k) (6.2)

wherex is the distance on the BM apex in mm, and the constantsfarel65.4,a = 0.06 andk =
1.

Two additional changes to th&ilany and Bruce (2007 model was made here. In
Zilany and Bruce(2007), the synapse gain, which describes the relationship of the inner hair
cell potential to the synaptic release rate, varies as a function of CF toeetisi the model
thresholds match empirical data from cats. Without such physiological datkalae, human
behavioural monaural absolute thresholdglion, 1978 were used to fit the model. Thus, the
synapse gain function froilany and Brucg2007) was changed to be;

Kcr = 0.91- min{400Q 10°-fe/10°+041 (6.3)

where the characteristic frequendy, is in units of hertz.

Figure6.3(solid curves) shows example tuning curves of AN fibers across & @rgFs for the
revised AN model. The same procedure frailany and Bruc€2007) andChintanpalli and Heinz
(2007 was used to adaptively determine the tuning curves. Absolute thresheldsa shown on
the figure as the lower dashed line, as well as the reference behatioeshnolds (dotted curve)
from Killion (1978.

Fig. 6.4 shows theQerg versus CF measured from tkg0 from the model tuning curves, via
the transformation frontbrahim and Bruc€2010:

Q10— 0.2085

0.505 ©.4)

QerB=

Also shown in Fig.6.4 are theQe RBfrom Shera et al(2002 used to set the BM tuning in the
model.
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Figure 6.4:Qgrp values vs CF, measured from the model tuning curves and refefreme&hera et al(2002).

As described above and shown in Fig.3 and 6.4, the AN model tuning properties are
determined by the frequency depend®akg in Eq. 6.1 However, an additional delay function
exists in the primary C1 filter path of the AN model. This acts as a so-called digmaldelay (see
Ruggero and Temchji2007). This has been altered in the present model, to ensure that the model
produces overall delays (signal front and travelling wave groupydglsimilar to the estimated
BM delay reported irBhera et al(2002. To achieve this, each AN impulse response function was
determined, the envelope was extracted (via lowpass filtered hilbert payetnd the latency of
the peak of the enveloped recorded. The following logarithmic function thexs fitted to the
difference between the model output latencies and those repor&teia et al(2002):

Tcr = 1073 -max{0, —10.09- logyo( f) +29.23} (6.5)

By using this additional delay, it is hypothesised that physiologically plaug§iMeatencies
can be approximated in the model. This is vital as it is well known that cochteaegsing and
delay has a strong influence on recorded brainstem evoked potebD&al003 Dau et al, 200Q
Wegner and Da2002).

The unitary response

The unitary response describes the transformation of the output of th®mgunerve to the
potential measured at electrodes placed on the scalp. The unitarysesfikeinDau (2003, was
obtained by deconvolving an experimentally recorded click ABR with the sunmeerl activity
pattern for the click, generated by the AN model. The deconvolution is anségmathematical
problem and has an infinite number of solutions. A stable and probable solds found by
using Tikhonov regularizationT{khonov, 1963. The calculations were carried out in Matlab
using a toolbox provided bidansen1998.
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Frequency| Total Length
kHz ms | cycles
0.5 10 5
0.75 7 5.25

1 5 5
15 5 7.5
2 5 10
3 34 | 10.2
4 25 10
6 1.7 | 10.2
8 1.25| 10

Table 6.1: Tone burst stimuli used, with length in ms and number of cycles

6.3.2 Tone-burst simulation

Auditory evoked potentials have been used historically to obtain indirect @éssno& cochlear
delay in humans. Tone-burstevoked ABRs have been studied exignisivihe literature as
a means of estimating BM delayGérga et al. 1988 Neely et al, 1988 Harte et al. 2009.
Thus, this was a logical choice of basic stimuli to test if the AN model in the ptestedy
adequately modelled cochlear delay. In order to test if the BM delay intemtudthin the
present model is reasonable, a simulation was run using hanning windometursts as stimuli,
with CFs and durations given in table 1. Levels of 40 to 100 dBpe SPL waad,un 10 dB
steps. The choice of stimuli was inspired by the experiments fiamon and Neely(1987 and
Serbetcioglu and Park€999. The tone-burst durations represent a trade-off between having
an equal number of cycles for all frequencies and a relative narppead in their spectrum.
The organisation of frequency along the cochlear partition is roughlyitbgasic and tone bursts
with a fixed number of cycles result in uniform energy splatter in log-fraque The stimulus
rise time is responsible for the simultaneous neural activation leading to timstiera responses
(Suzuki and Horiuchi1981) and to obtain a detectable ABR response. A sharp stimulus onset
(i.e., a short rise time) producesa large amount of synchronised rastiraty, but also decreases
the frequency specificity of the stimulus. Rise times for frequencies of 2&kidzabove include
approximately 5 cycles and therefore ranged from 2.5 to 1.25 ms. Belowz3tkihs felt that
the reduced energy spread, by keeping a fixed number of cyclef] wmake it almost impossible
to record a wave-V response. Therefore, a compromise was stimnilardo Gorga et al(1988),
between the need for rapid stimulus onsets and reduced energy spthachvice of rise time.
The number of cycles in the rise time were reduced to 3.25 at 1.5 kHz andxapjptely 2.5 for
1.0 kHz.

ABR wave V is the wave with the largest amplitude and hence the most easilyatdéedn the
simulation, the ABRs for the tone burst stimuli were generated and the waventiacalculated
and plotted againdtleely et al.(1988’s empirically determined model of latency derived from
tone burst simulations:
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7 f 0\
— —I c
Twavev— a-+ bC <1000) (66)
wherei is the tone-burst intensity (divided by 10G},is the tone burst center frequency in Hertz,
anda=5ms,b=12.9 ms, c =5:0 and d = 0:413 were fitted constantddely et al(1988’s data.

6.3.3 Experimental methods

A total of four normal hearing test subjects (four female) participated iredtperimental part
of this study, and were aged between 22-26 years. The experimergscarducted in an
electrically and acoustically shielded audiometric booth (IEC 268-13). &se Istimulus used
in this experiment was a 5 sample duration impulse played at 44.1 kHz. Fivefsstisnuli
conditions were presented at a constant inter-epoch rate®Hz (i.e. a duration of 125 ms).
The first stimuli set was a single impulse to evoke s standard ABR used to esipidetermine
the unitary response functions. The remaining sets were trains of imputbes within-train rate
of 40, 80, 190 and 250 Hz. A total of 4000 averages were made per sfityda and repeated
twice (three times for the single impulse condition) to ensure repeatability digeghe stimuli
were all presented at a level of 80 dB pe SPL, to ensure reasonaBl@&iNtest subject comfort.
The stimuli were generated in MATLAB and A/D conversion made through i RDI-8 Pro
24-bit sound card. The levels were set via a TDT PA5 programmable at@nulhe stimuli
were presented to the left ear of the test subject via an ER-2 insehossrp EEG activity was
recorded differentially between the vertex and ipsilateral mastoid, with thendrelectrode placed
on the forehead. Silver/silver chloride electrodes were used, and arlattrode impedance was
maintainedbelow 5kW. EEG activity was recorded on a SynAmps2 amplifiesaingling rate of
10000 Hz, and band-pass filtered between 0.05 and 2000 Hz. Aftedieg, the EEG-data were
epoched and filtered againfrom 100 to 1500 Hz using a 200 tap FIR filterzerthphase delay.
The epochs were averaged using an iterative weighted-averaginglaiy¢Riedel et al.2007).

6.4 Results

6.4.1 Auditory brainstem response and unitary response

Single transient evoked potentials were averaged across 12000%sgpd&runs) for subject ML
and are shown by the dotted curve in F&5. The recorded ABR shows the typical pattern with
clear waves I, lll, and V at latencies that are consistent with the literafimewave V peak is the
largest occurring at 6.5 ms.

Figure6.6 shows the calculated unitary response obtained from a deconvolutioa i&fdbrded
potential with the AN model. The unitary response function obtained in theprstudy is similar
to and consistent witBau(2003. There is significant subject dependence of the unitary response,
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Figure 6.5: Recorded (dotted line) and simulated (solid line) auditory $teimresponse to single transient stimuli.
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Figure 6.6: Unitary response function, calculated via deconvolvinggberded potential with the output of the AN
model.

but the essential morphology remains the same. The interested readerrisd-édDau (2003 for
a detailed discussion of the form of the unitary response and compavigibrnsrevious studies.

The simulated AEP obtained from the convolution of the AN model output with tlit@anyn
response is indicated by the solid curve in Fégs. There is a very good agreement between the
recorded and the simulated potentials, over the length of the unitary respalaslated (10 ms).
The unitary response wasnot calculated for longer durations as thig Wwawe included evoked
potential contributions higher than the brainstem, which are not of interdst jpresent study. In
the present study, linear superposition is assumed above the level dfiftend thus the caculated
unitary response function given in Fi§.6 was used for any input stimulus at any level.

6.4.2 Tone-burst simulation

Figure6.7 shows the wave V latencies for the ABR model simulations to tone-burst stimuli, with
center frequencies from 1 to 8 kHz and excitation levels 40 to 100 dB perSFLdB steps. Also
shown are dotted lines representing the empirically fitted latency moddkely et al.(1988

given in Eq.6.6. Both the simulated ABR and modelled latencies show exponentially decreasing
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Figure 6.7: Simulated (solid curves) and modelled (dashed curvesdlmn Eq.6.6) ABR wave V latencies as a
function of tone-burst center frequency and level.

delays as a function of frequency. At the lowest levels of excitation,ithelated ABR latencies
have a slopesimilar to that seenNieely et al.(1988’s modelled latencies. This is logical as the
AN model tuning and delay was based 8Shera et al(2002’s stimulus frequency otoacoustic
emission delay estimates, made at 40 dB SPL. Further, as excitation levetsmtne simulated
ABR rate of change of latency with frequency decreases. The owmadhd of simulated ABR
latencies with level is reasonable at lower frequencies(1-2 kHz),dmrms compressed at higher
frequencies relative thleely et al.(1988's results.

6.4.3 Click-train ABR

Figure 6.8 shows the recorded (dot-dashed curve) and simulated (solid curv@)téB single
click and click-train stimuli with within-train rates of 40, 80, 190 and 250 Hzduoe illustrative
subject. The noise floor for the recorded ABR is shown by the verticalda O ms on each trace.
The vertical line to the right of the single click ABR indicates the scale on thedigu

As the within-train rate increases the smaller waves that make up the click AB®$wW, I,
Il and 1V') become more difficult to distinguish and only the wave V seems tadible. As the
within-train rate increases, the peak amplitudes of the wave V decreas¢d®higher than 80 Hz.
The first peaks are typically the largest, and these then decreasesascatase. The modelled
ABR seems to accurately predict the recorded ABR at moderate within-aizis of 40 Hz. Wave
V amplitude seems unchanged within trains and latencies seem well modelled: Wit im-train
rate increases, the modelled ABR amplitude seems to decrease faster thecotdeda ABR. In
addition, the timing of the peaks of modelled ABR are faster for higher ratesd¢ahe recorded
potentials at the same rate. For the highest rate stimuli, the simulated ABR wavak¥ g@p
in magnitude seemingly exponentially for successive stimuli. The recorderl @Bthe other
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Figure 6.8: Recorded (dot-dashed line) and simulated (solid line) ayditmked brainstem potentials to click-train
stimuli at 40, 80, 190 and 250 Hz within-train rates.

hand tends to have a sharp initial drop in magnitude and does not demosstiai@n exponential
decrease. Similar trends were observed for all of the subjects testedhttite magnitudes and
timing of the responses demonstrated some subject-dependent variability.

6.5 Discussion

6.5.1 Frequency-dependent delay

The intrinsic relationship between frequency and travel time in the cochleairly fvell
represented by the AN and the ABR mod@&orga et al(1988, in the original study on tone-
burst evoked ABR wave V latency, did not specify the earphones theg to present the stimuli
nor the coupler used to calibrate them. Therefore there is some ambiguity @&sdxeitt levels
used byNeely et al(1988 to model these, and reproduced here in &§. With that in mind, one
could not expect an exact fit of the present simulated ABR wave V lateméth those modelled
by Eqg. 6.6. The range of latencies across level and frequency, should beecbliewever. As
mentioned earlier, the simulated ABR latencies at higher frequencies segonassed relative to
those seen within the literature. This could be an indication that the level-depebandwidth is
not well implemented in the AN model.

At low excitation levels, the simulated ABR wave V latencies accruately repexithe
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latencies across frequency seen in the literature. The frequencydipedelay in the AN
model used here arose due to the cochlear tunipggg, incorporated. This was given in
6.1 and the additional delay i6.5 There is some contention in the literature about accurate
estimates oQerg in humans Bentsen et al.2011). In the present studyerg estimates from
Shera et al(2002 were used. Thes®ggrg values were obtained by averaging objective (based
on stimulus frequency otoacoustic emission group delay) and behavigoratard masking)
estimates. In thes®ggrp values, as seen in Fig6.4, the auditory filters are very sharp and
become effectively sharper as frequency increases. Alternativeatss ofQgrg suggest much
broader tuning, and a near frequency independence. These estioratfom objective stimulus
frequency otoacoustic emission iso-suppression tuningcukessd et al.2008, and behavioural
simultaneous maskings{asberg and Moot 990).

Ruggero and Temchi(2007) offered an alternative novel estimate of in vivo cochlear delay in
humans using post-mortem delay estimates with the post-mortem effects cotepdéosgia com-
parison with experimental animal datBentsen et al(2011) showed thaRuggero and Temchin
(2007’s cochlear delay estimates led@grg estimates similar to those obtained with simultane-
ous masking and stimulus frequency otoacoustic emission isosuppressianaurves. IfQerp
were much smaller than those used in the present model (viveggero and Temchi(R2007)’s
were approximately 2.5 times shorter th@hera et al(2002), then the latency estimates of the
modelled wave VSs seen in Fi§.7 would be much shorter. Thus a greater degree of disparity
would be seen between the modelled and historically reported latencies. rokidgs some
indirect evidence to suppaBhera et al(2002’s estimates oQere.

An alternative source of error lies with the unitary response functionthénpresent ABR
model, the only frequency dependent delay is due to the BM filtering in the ANemolt
is implicitly assumed that linear-superposition holds at higher stages in the muidelthe
frequency- and level-independent unitary response function. litfiary response function were
to be strongly frequency- or level-dependent, then the wave V latenioesased in Fig. 6.7
would be significantly altered. However, there is good physiological egieléo suggest this is
not the case. Wave-V latency is often considered to be composed of ihefstihe synaptic
delay, tsynaptic, the neural delayie,ra, @s well as the cochlear delayy (Neely et al, 1988.
The synaptic delay is the time between the inner haircells activity and the aud#éorg fibers
firing. It is typically around 1 msBRurkard and Secor2002 Kiang, 1975 Kim and Molnat
1979 Mg ller and Jannettd 983 and frequency- and level-independebbf et al, 1998. The
neural conduction time (neural delay) is the time between the auditory-aetivity and the place
generating the ABR wave. Synaptic delay and cochlear delay are botkéacin the AN model.
However, the neural conduction time is not, and is implicitly in the unitary respfunsction.
There is no historical neurophysiological evidence to suggest thatetalnconduction time
is frequency dependeridfn and Eggermonfi978 Don and Kwong2002 Eggermont and Dgn
1980. However, it would still be prudent to investigate both the frequencylewel dependence
of the unitary response function in future studies.
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Figure 6.9: Summed auditory nerve model output for within-click tratesaf (a) 40 Hz, (b) 80 Hz, (c) 190 Hz and
(d) 250 Hz.

6.5.2 Click-train ABR and neural adaptation

The simulated ABR were successful at modelling the recorded ABR for within-rates of 40

Hz, as seen in Fig6.8 At these relatively slow rates, little or no neural adaptation was expected

Figure6.9a shows the output of the summed AN model in the present study, for the Wtthiaz-
train rate stimuli.

The model output clearly reverts to baseline (50 spikes/s, AN spontarrete) after each
click, and the peak of the response for each new stimulus click within the toais mbt decrease
significantly. Thus the stimuli do not interfere with each other within the AN modsglth& within-
train rate increases, the ABR wave V tends to dominate the response duectmtindution of
smaller peaks and the reduction in amplitude of the spikes in the summed AN maget,ou
as seen in Fig6.9. For the higher-rate stimuli the summed AN model output never returns to
baseline, and the peak magnitudes reduce. The model does not retaselio&due to the ringing
of the filters in the AN model. The reduction in the peak spike rates is linked withtaton and

appears to follow an exponential decrease with each new chdlny and Bruceg(2007)'s rate
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adaptation at the synapse between IHC and AN fibers was a purelyengmimodel, albeit with
multiple short and long time constaniilany et al.(2009 have suggested a new rate adaptation
model incorporating both exponential and power-law dynamics. Incatiog this model revision
into the present model might help to improve the under-predicted wave V anmgdiaidhigh rates.
This will be investigated in future versions of the ABR model.

6.5.3 Outlook

It was stated in the introduction that the role of neural adaptation in AERdiecpwas important

to understand, due to the clinical use of high rate stimuli. In addition to this, thexdrend

in AEP studies to use steady state signals, where neural adaptaion will iplayea greater
role. Auditory steady state responses (ASSR) are typically responsesrier signals with
amplitude modulation (AM) imposed on them at different rates. Such ASSRsejicellent
frequency specificity as the response will mainly contain energy at the #ivh fa narrow
band of AN fibers at the carrier frequencyobin and Picton2000. This is obviously an
advantage clinically to test auditory function at specific frequenciesasing animal studies
and magnetoencephalographic (MEG) source analysis studies in humanshown that the
ASSR is generated in different brain regions, depending on the modulladqnency of the
stimulus Kuwada et al.2002 Schoonhoven et al2003. For low rates of AM, around 40 Hz,

a number of studies have demonstrated that the ASSR can be predictethéaaonvolution of
single middle-latency and brainstem transient responses with a click train \gitapiiropriate
repetition rate Galambos et al1981 Picton et al. 1987 Hari et al, 1989 Gutschalk et a].1999
Bohorquez and Oezdam&008. This is further supported by the finding in the present study,
that little or no interaction occurs in the AN model for the different clicks in tBeH& click
train, as seen in Fig6.9. For modulation rates above 80 Hz, ASSRs are typically argued to be
generated by neurons in the brainstem that both respond to transient stim@re locked to the
envelopes of AM toneslJphn and Pictor200Q Kuwada et al.2002 Sininger and Cone-Wesson
2002. The different within-train rates were chosen in the present studydn 8 AM rates
investigated in the literature. The present study has the potential to helpstartkthe brainstem
contribution to ASSRs. This is an advantage as sources due to the braametbard to investigate
using classic dipole source modellirgoherg1990, due to the brainstem sources depth and small
signal strength.



Chapter 7

Investigating the potential of auditory
steady-state responses to assess loss of
cochlear compression

This chapter is based upon the submitted pd@nne et al(20123. It is mainly a study of the
possibility of using ASSRs to assess cochlear compression in humans. Trvisssgated using
both a simple analytical model, experimental work with human subjects and simslagorg an
extended version of the ABR model, called the ASSR model. It can thus b@semn independent
study, or as another step in the developement and evaluation of the modeti@his thesis.

7.1 abstract

In this study, it is investigated whether the auditory steady state respo8&R)Acan be used as a
tool to estimate human cochlear compression. First, a simplified analytical modesenped, for
amplitude modulated tones passing through a static nonlinear system. Theiegaeoclosed-
form solution derived from this analysis is used to construct two hypethés ASSR level
growth as input level and modulation depth are varied. Two experimentthanepresented
measuring ASSR modulation and level-growth functions in human subjects.llyFiaanore
complex nonlinear numerical model for ASSR generation is presented. s€bind model is
capable of accurately simulating the complex processing carried out inditergiperiphery, and
is used here to evaluate the assumptions of the simple static model and to intergrgierimental
ASSR findings. The study demonstrates that both the level- and modulatiwwthdrmctions can
be used to measure cochlear compression. However, the clear recoatimens to measure
level-growth functions due to their larger accuracy and efficiency. doséary finding, based
on the experimental modulation-growth function, is the indication of an effectbmpression,
seemingly independent of cochlear compression. This second coimpresechanism remains
unexplained by both the analytical and the numerical ASSR model.
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7.2 Introduction

The human auditory system is able to perceive root-mean-square (RM8&)aflions in air pres-
sure from as low as 20Pa, corresponding to a dynamic range of abotak@20 dB. To achieve
this, the local mechanical vibration of the basilar membrane (BM) in the cackke#ted at its
natural frequency, grows in a nonlinear or compressive fashion witte@sing sound pressure
level (Ruggero 1992 Harte et al. 2005. A number of studies and reviewS¢€llick et al, 1982
Nuttall and Dolan 1996 Rhode and Recic200Q Robles and Rugger@001) have investigated
and reported BM input-output level curves in experimental animals, wierel20 dB input
dynamic range is mapped to 30-40 dB output range usable for neuaiagc The compressive
input-output level curve for humans is estimated to have linear growth #agen levels below
sound pressure levels (SPL) around 40 dB, i.e. a 10 dB increase iréaois to a 10 dB increase
in output. Between 40 and 90 dB SPL, sharp compression is observede &h increase in 10
dB only leads to about 3 dB increase in the response. Above approxirfgtdl, the level curve
tends to become linear again. This is often explained in terms of the active misohaithin the
cochlea supplying significant amplification at low excitation levels and satgratimid-levels.
At high levels, this mechanism becomes exhausted and is unable to furtiigbet® to the BM
response. This compressive behavior will be termed cochlear corgréissoughout this study.
The local input-output compressive nonlinearity depends on the intedrityecouter hair cells
(OHC) (Ruggerg 1992 Robles and Rugger@001). Damage to OHCs, common in many forms
of sensori-neural hearing losses, reduces or completely eliminateditresaaaplification of low-
level sounds, leading to a linearized input-output level curve. Sensaugal hearing loss thus
often leads to loss of cochlear compression. It is desirable to have agtiobjphysiological
metric sensitive to cochlear compression and its loss. Such a measure edbagty be sensitive
to local BM vibration and could be used as a further objective audiometricféoaeonates
or uncooperative subjects, where subjective methods are challerffirrgauditory steady-state
response (ASSR), being a robust objective measure already uswltfifior other purposes,
could be an interesting and suitable choice for such a metric.

When transient sounds are presented to human subjects, the summetseespm many
remotely located neurons can be recorded via scalp (non-invasiajoeles. These auditory
evoked potentials (AEPs) can be recorded from all levels of the auduatiyway, from the
auditory nerve (compound action potential, CAP); the brainstem (auditaindiem response,
ABR); up to the cortex (cortical auditory evoked potential, CAEP). Thelassical AEPs are
obtained by presenting transient stimuli at slow repetition rates. At more rapes,rthe
responses to each stimulus overlap with those evoked by the preceding sttmfdum a steady-
state responseéP{cton et al. 1987). Typically, such auditory steady-state responses (ASSR) are
evoked by sinusoidally amplitude modulated (AM) tonkswWada et al.1986 Rees et a).1986
Picton et al. 1987, and are argued to give excellent frequency specificity as the stimalys o
contains energy at the carrier frequency and the side-bands duenotheation John and Pictan
2000. The ASSR is therefore typically analyzed in the frequency domain, evtiner amplitude
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of the Fourier component at the AM rate is used as the ASSR responséudagmAM rates of
around 40 Hz have been shown to produce the largest ASSR respopsitude Kuwada et al.

2002 1986. Although the ASSR has been heavily studied, the effect of cochleapi@ssion on
the ASSR is still unclear.

The amplitude of a recorded ASSR is necessarily dependent on cogfdehanical processing
and reflects the variation in level of the amplitude modulated sinusoid used tatelidius, one
might expect to see cochlear compression reflected in the ASSR amplitugltheashe depth of
amplitude modulation or the stimulus level is systematically varied. However, tbedesst ASSR
is a compound potential arising from the summation of many neural fibers #ghenguditory
pathway. Intuitively, fibers along the tonotopic axis tuned close to the cdraquency will
typically have the largest contribution, and thus one might expect to seene@af local cochlear
compression.

Only a few studies have examined ASSR magnitude as a function of modulafiim fe
sinusoidally amplitude modulated stimuKwada et al. 1986 Rees et a).1986G Picton et al,
1987 Boettcher et al.200). The ASSR modulation-growth functions (defined here as the
log. ASSR response magnitude plotted as a function of the log. modulation) dggrtarally
seems to grow in a slightly compressive fashion. Typical slopes vary bat®& and 08
dB/dB as modulation depth is varied. This might support the assertion thatrdfegt local
cochlear compression. However, the degree of compression estimatgdiigantly less than
expected, of the order of 0.2 to 0.3 dB/dB as seen in other physiologitakdss of compression
(e.g.Prieve et al. 1996 Ruggero et a).1997 Moore et al, 1999. Unfortunately, there is also
significant variation in absolute amplitudes across the historical studidmigyodue to variations
in electrode placement, excitation level used and the limited number of testtsulged. It is not
clear whether the limited compression seen in the ASSR modulation-growth futretip reflects
cochlear compression, or some other property of the ASSR generatidmmsm. Cochlear
compression could also be estimated using ASSR by varying the stimulus leygtalTslopes
of compression were historically reported to4.2 dB/dB Kuwada et al.1986 Picton et al.
1987. These slopes are similar to those observed when measuring cochfepression
psychoacoustically, with oto-acoustic emissions (OAE) or in vivo in animats Rrieve et al.
1996 Ruggero et a).1997 Moore et al, 1999. It is, however, difficult to establish whether
the ASSR level and modulation-growth functions reflect cochlear comiprgsand not effective
compression applied at higher, retro-cochlear, stages of the audéthryay.

This study develops two models to investigate the role of cochlear compressi&ESR
generation. The first, provided in secti@B, is a highly simplified analytical model, used to
explain how amplitude modulated stimuli are processed through simple static raordirstems.
This is used to derive experimentally testable predictions on the nature of riodegaowth and
level-growth functions. A second, more physiologically plausible, nontimesnerical model
is also developed (sectionb) by extending an existing model of ABR generati@a(, 2003
Harte et al.201Q Rgnne et al.2012 to be able to account for the ASSR. Two experiments, using
normal-hearing test subjects, were carried out and reported hete(sé.4), measuring ASSR
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magnitude growth functions as modulation depth and level are varied. Tiheriual ASSR

model and the simple analytical model make reasonable predictions of thenesp&l results

and are used to argue that local cochlear compression can indeetineted using both ASSR
modulation-growth and level-growth functions. However, care shoul@ken with modulation-
growth estimates as they are more prone to experimental uncertainty, aneicbismended that
level-growth functions be employed in future studies.

7.3 Analytical model for AM tones passing through a static nonlinear
system

The physiology underlying the generation of auditory steady state respda complex. A
sinusoidal amplitude modulated tone consists of a carrier with two side tonexsewdqual
frequency separation from the carrier equals the modulation freque@oghlear mechanical
processing spatially filters the stimulus to yield a place-specific excitation patfenis will
necessarily be subject to cochlear compressive nonlinearity. The hamecells (IHC) in the
cochlea are responsible for mechanoelectrical transduction, andeet li&lf-wave rectifier and
a low-pass filter Russell and Sellick1978. This processing extracts the envelope for stimuli
with a high enough carrier frequencfy > 1.5— 2 kHz (Palmer and Russell986. Thus, the
nonlinearities in the peripheral processing and mechanoelectrical ti@tisuprocess effectively
ensure that AN fibers firing patterns reflect the compressed envel@reamplitude modulated
stimulus. Additionally, the transmission of neural spike trains from the braimstesurface
potentials acts like another low-pass filter stage, effectively ensuringotiiatthe compressed
envelope can be recorded.

To illustrate how AM signals are represented after such processing, a simgilgical model
is presented. It is explored what happens to a sinusoidally amplitude matitdae when it is
passed through a static compressive nonlinear system. Specificallypaxxiapate closed-form
solution is derived for the amplitude of the first harmonic of the AM frequeaéter passing
through the nonlinear system. It is argued that this could reflect the imgraally recorded
ASSR, and yield testable hypotheses for the experimental part of the study

The basic stimuli used in the present study are sinusoidally amplitude modula¢sd defined
as;

> (7.1)

§ = S-sin(27fd) <1+ m- S'”(Z"fmt))
where f. = 1 kHz is the carrier frequencyf,, = 40 Hz the modulation frequencyn the
modulation depth an& defines the overall stimulus level. The subsctipépresents a variable

with time dependency throughout the paper.
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7.3.1 Static nonlinear model of compression

Static or memoryless nonlinearities are defined such that the current dunteuseriesy, is a
function only of the current input time series, i.€.

v = f(x) (7.2)

A simple example of a static nonlinear system is a power-law nonlinearity, given

Yo = x| sgn[x] (7.3)

where compression is ensured if the poveerjs less than unity. The signum function, defined
by

-1, forx <0,
sgrix| = (7.4)
+1, forx, >0

ensures asymmetry in the nonlinear characteristic.

Figure 7.1 illustrates a SAM tone (bottom left) passing through a static compressiverpowe
law nonlinearity (eqn.7.3) with compression rati@ = 1/3. Also shown is the instantaneous
characteristic function (top lefty(x), of the compressive nonlinearity and the output time series
(top right). The variation of the input envelope is mapped to a reducee fiarige output, indicted
by the dashed lines.

Figure 7.1: lllustration of a SAM tone passing through a static compessialinearity (witha = 1/3) and resulting
output time series. The envelopes of the input an output are shown khdlaces.
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7.3.2 Approximate closed-form solution for envelopes pragssed through a com-
pressive nonlinearity

It is assumed that the envelope varies at a much slower rate than the fragigmcy. This means
that it is possible to treat the envelope and the carrier components of the stipagising through
the nonlinear characteristic as separate. Assuming that the stimulus is given b

S = Xt - Sin(2rtfet) (7.5)
with the input envelope given by
1+ m-sin(mt
X :s<2 (G )> (7.6)

wheremis the modulation depthyy, = 27Tf,, the angular modulation frequency, and S defines the
level. Passing this sinusoidally amplitude modulated tone through the instansgp@wear-law
nonlinearity, given by Eq7.3, and noting thaj; > 0 then it can be shown that

ye = X" - |sin(2mfet) | “sgn sin(2mfct) | (7.7)

The two last terms on the right hand side constitute the carrier of the outputdimes and can
be considered a harmonic tone complexaf(with minimal contribution to the overall envelope
as it was assumedy, << «x). Thus, in the present analysis only the output envelgpewill be
considered:

a

n = X for xi >0

n = 50’.<1+m'52in(wmt)>a (7.8)

For a compressive nonlinearity,<0a < 1. It is clear that the output envelope’s dependence on
the overall leveSis a simple power law.

Special attention is needed for the right-hand term in ég8, which is defined in the range

from O to 1, with "
1+ m-sin(wnt
go = (Frmsent)) 79)

It is possible to expand? in terms of a Taylor series about the arbitrary p(zﬁnt

;o _ ga (kio (i) <§1>k) (7.10)
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where(}) represent generalized binomial coefficients, defined as

“D(a—2)-(a—k+1
(i) —aa-1ia k!) (a ) (7.11)

It is possible to represemf;, the output envelope, in an alternative form as an infinite sum of
harmonics of the fundamental modulation frequency:

= iApSi“(p(wmtJrﬁo)) (7.12)
p=

whereA, are Fourier coefficients is the order of the infinite sum, a8 is some phase offset.

Using the method of harmonic balanddafyfeh and Mook1995, each term in the power series
in Eq. 7.10is expanded and factored by &ijoa, + @), whereq is an integer and represents
harmonics of the modulation frequency. Finally combining equaffofs/.8and7.10 allows the
derivation of an approximate closed-form solution for the first harma@xiccorresponding to the

Fourier coefficient ofuy:
s\"1. (& (a k(1—2)k1>
A= —= m —_—_r
l <ZZ> [ <,Zo<k> e (7.13)

+m3(-)+m5(-)+0(mznl)+...]

Thus,A; is represented as an infinite power series in terms of the modulationmeptimprising
only odd-orderg2n— 1) of m. The terms for the orders of higher than 1 are not shown here
for brevity. Assuming thamis small, i.e.m << 1, it is possible to ignore the higher-order terms,

such that: e .
N ¢ 2 (a\ k(1- Z)"*l

It can be shown that the infinite summation in the right hand set of brackemmmaff", and
thus

S a
A~ (2> -ma (7.15)

Eq. 7.15represents a simple approximate closed-form solution for the respondicudenat
the amplitude modulation frequency after passing through a compressivenstalinearity. To
test this simple model, a numerical simulation was carried out in MATLAB, passiBgM tone
with S= 1 through a static nonlinearity witth = 1/3, and taking the Hilbert envelope. Figu#2
shows the numerically determined value of the Fourier coefficient (soliceyat the modulation
frequencyw, as the modulation deptim was varied between 0 and 1. The approximate closed-
form solution of eqn7.15is shown by the dotted curve, and is a good approximation for the true
value for smalim.

According to Eq.7.15 the amplitude of the first harmonic in the response is dependent on the
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Figure 7.2: Comparison of approximate closed form solution (dotted fare)>-Fourier component and numerically
simulated (solid line) result, far = 1/3 andS= 1.

input levelSvia a power-law relation. Therefore, given a fixed modulation depth,ltpe of Ay

as a function of the excitation level on double log axes yields a straight lineshiffea. This
can be used to estimate the degree of compression in the input/output lexel-Hcewr cochlear
compression. If the excitation level is fixed, while varying the modulation deqthwvill yield a
straight line with slopex(S/2)?, if plotted on a linear axis. Again, this could lead to an estimate
of the local compression. On a log-log axis, this simple analytical model psegislope of 1.
Thus BM compression can be obtained from experimental data via:

1. the slopeaq, of the ASSR level-growth function, plotted on a double logarithmic scale.

2. via the slopea(S/2)?, of the ASSR modulation-growth function plotted on linear scales.
The easiest method to derigefrom the slopex (S/2)9 is to vary excitation level and derive
the parameter estimate, rather than by directly inverting

Ltis possible to invert eq7.15solving for the compression ratim, by recasting the equation as

alog (g) galog(3) — %1 log (;)

This has the formx(a) = w(a)e""<") and its solution fora is given by the Lambert W functionCrless et aJ.
1996, also known as the product logarithm, i.e.
w(%og(3))

Iog(%)

whereW(-), the Lambert W function, is a multi-valued function that can be complere @eist be taken to pick the
appropriate branch of this function for a physically realistic solution andigapplication this is not necessarily
trivial. Therefore two methods are later proposed to experimentally fidappatea from the slope of the ASSR-

level growth function (plotted on double log. axes) and via the slope of thdufation growth function (on linear
axes).

a =
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7.4 ASSR experiment. Evoked response growth as a function of
modulation depth and stimulus level

7.4.1 Methods
Subjects

In experiment A, the left ear of eight normal hearing subjects were tebtagkperiment B, both
ears of a total of ten normal hearing test subjects were tested, yieldind aftdtadatasets. All
subjects had hearing threshokd®5 dB HL between 0.5 and 6 kHz in both ears. The experiments
were conducted in an electrically and acoustically shielded audiometric bi&h?68-13). To
control the subjects attention and prevent them from sleeping, they refraipae and watched

a silent subtitled movie during the recording session.

Stimuli

In both experiments, the subjects were presented with sinusoidally amplitudeatestitones
(eqn.7.2). In experiment A, the stimulus level was varied between 55, 65, 75 ad& &L, with
the modulation depth held constantnat= 0.75. These stimulus levels were chosen to be within
the expected compressive region of the cochlear input/output functivperitnent B variedn

(in Eq. 7.1) between 0.25, 0.5, 0.75 and 1.0. A constant stimulus level of 55 dB SPluseas
The stimuli were calibrated to have identical RMS values. This resulted inlguistacalibration
modulation depths of 0.3, 0.58, 0.81 and 1.0. On a logarithmic scale, relativentmalation
depth of 1.0, this correspondsitys = —10.41, —4.77,—1.81 0 dB, respectively.

The starting and end phases of the stimuli were matched to ensure that itbeoudgheated
continuously without audible discontinuities. Each epoch lasted 375 m&spamding to 375
cycles of the carrier and 15 cycles of the modulation frequency. Inrexpats A and B, a total
of 1200 and 2000 averages were made for each test condition, tigepecAll stimuli were
generated in MATLAB and playback was made through an RME ADI-8 Rrbi2 sound card
at a sampling frequency of 44.1 kHz. Stimulus levels were set via a TDT Pdgraammable
attenuator. The stimuli were presented to the subjects via ER-2 inserbeagph

ASSR recording and data analysis

EEG activity was recorded differentially between the vertex and the ipsalatestoid, with the
ground electrode placed on the forehead. Ag/AgCl electrodes wetk aad an inter-electrode
impedance was maintained belowCbland within 1K2 of each other. EEG activity was recorded
on a SynAmps2 amplifier at a sampling rate of 10 kHz (experiment A) and 5(&kzeriment
B), and band-pass filtered between 0.05 and 500 Hz. After recotttiedEG-data were epoched
and filtered again from 10 to 300 Hz, using a 40 tap FIR filter with zero ptaks. The epochs
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were averaged using an iterative weighted-averaging algoritieuél et al.2001). The recorded
averaged time series were transformed to the frequency domain using lokiaigr transform.
The amplitude of the complex vector of the 40-Hz component was calculated.

A frequency domain F-ratio testilghn and Picton2000 was used to detect if an ASSR
was present in the recorded signal. The energy at 40 Hz was compéhethe background
noise, estimated from 7 neighboring spectral bins where no evokedn®spvould be present
(Dobie and Wilson2001). This yielded an F-distribution with [2,14] degrees of freedom with a
critical value of 6.51 at the 1% significance level. Responses were oryded in the study if
their F-value exceeded the critical value. Data sets from an individualvege only included
if more than 1 data point was accepted. These acceptance criteria reésuiael subject being
removed from experiment A, and one ear of one subject being remowedeikperiment B.

An analysis of covariance (ANOCOVA) was performed on the ASSR mdidukgrowth
functions. The ANOCOVA assumes linear regression. In the log.-log. pisvas obtained
by taking the logarithm on both variables. An estimate of the slope of the bedtditigle line
and a standard deviation on the slope estimate was obtained. Each earaty@ &s a separate
data set in the analysis.

7.4.2 Experiment A - Results

Averaged ASSR magnitude and standard errors for all 7 subjects@wa &#Fig. 7.3 (diamonds),

as a function of stimulus level (dB SPL). The spectral magnitude of the Zi@dmponent is
given relative to L4V rms. Error bars witht1 standard error are also shown and reflect the large
individual differences. For each recording from a given subjeet ABSR magnitude increases
monotonically as stimulus level increases.

An ANOCOVA analysis was carried out on the ASSR magnitudes (solid line in Fig).
The slope estimate was found to be 0.20 dB/dB with a standard deviation of A.8&pe of
1 would indicate linearity, and a slope af1 implies compression. The low uncertainty on the
slope estimate from the ANOCOVA confirms that the individual differenicecated by the error
bars, were mainly offsets of the overall ASSR amplitude in the individuard#ags, rather than
variations of the slope. For comparison, Fig.3 also reproduces the data fraduwada et al.
(1986 (triangles). Kuwada et al.(1986 measured ASSR with similar electrode placements,
modulation depth, and stimulus modulation- and carrier-frequency. The sfdpe level-growth
function fromKuwada et al(1986 obtained by linear regression on the log. variables was 0.18.
The same slope (0.18) was found for a similar data set presentidton et al(1987) (not shown
on figure). Thus the estimates reported in the present study are similar todakggublished
ones. The slope of the ASSR level-growth function thus show compressamamount similar
to cochlear compression, as previously discussed in seciBon
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Figure 7.3: ASSR amplitude versus stimulus level averaged over thenvaibearing subjects. Modulation depth was
75%, and the error bars shawl standard error. The estimated slope (compression ratio) is indicateelleass the
+1 standard deviation on the slope estimate. Also shown are literature dateddeom Kuwada et al(1986 (dotted
curve).

7.4.3 Experiment B - Results

Averaged ASSR magnitude and standard errors for all ten subjectafé¢Preeasured at 55 dB
SPL are shown in FigZ.4(diamonds), as a function of log. modulation depth relative to 100%. As
in the level-growth functions from Fig/.3, the magnitudes increase monotonically as modulation
depth increases. A direct comparison with historical data is difficult dudferehces in stimulus
level and calibration, carrier and modulation frequency, electrode plgeand, in some cases,

a very limited number of subjects. However, the ASSR RMS-amplitudes repbdee are in
agreement with those reported Kywada et al(1986; Rees et al(1986; Picton et al.(1987);
Boettcher et al(2001).

The ANOCOVA analysis, carried out on the ASSR magnitudes (solid line in Fig), gave
a slope estimate of 0.78 dB/dB with a standard deviation of 0.09. For compalfigpry.4 also
reproduces the data froBoettcher et al(2001) (upwards and downwards pointing triangles). The
dotted curve was fitted to log. ASSR amplitudes recorded in response to Add,tatith carrier
frequency of 520 Hz, a modulation frequency of 40 Hz, and a stimulu$ ¢é\&5 dB SPL. The
dashed curve (also froBoettcher et aJ2001) was obtained at a carrier frequency of 4 kHz. Slope
estimates obtained by linear regression of the two curves are .50 Hz) and 0.62fc = 4
kHz). Slope estimates were also derived friowada et al(1986 andPicton et al (1987 (not
reproduced here to aid clarity) for comparison and were found to beah®2.61, respectively.
Thus, the estimates reported in the present study are in reasonablmegredth historically
published results, even though stimulus conditions varied significantlysastodies. The ASSR
modulation-growth functions are not consistent with the theoretical predgcfirom section II.
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In the theoretical predictions ASSR growth functions had a slope of 1nwlhated on double
logarithmic scales.
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Figure 7.4: ASSR amplitude versus modulation depth averaged ove®thertnhal hearing subjects and left and right
ears. Stimulation level was at 55 dB SPL, and the error bars stibatandard error. The estimated slope (compression
ratio) is indicated as well as thel standard deviation on the slope estimate. Also shown are literature datdder
from Boettcher et al(2001) (dotted and dashed curves), see the text for details.

The closed-form solution derived in the sectiér predicted that the compression could be
estimated from the slopes of the modulation-growth function, as long as twpdndent datasets
of different stimulus levels were measured. For this reason, three ofutfjecss included in
experiment B were retested and their ASSR modulation-growth functionsuneelbat a higher
level of 71 dB SPL. Unfortunately the uncertainty on the slope estimates tlierANOCOVA
was almost 50% of its value, probably due to the few test subjects availabie.tdthis large
uncertainty, an estimate of the compression coefficientyased on the simplified closed form
solution, could not be obtained.

7.4.4 Experiment summary

In summary, the ASSR level-growth function showed compressive bahawith a slope
estimate in the order of 0.2 dB/dB and thus corresponded well to both ASS&uiterslopes,
theory predictions and cochlear compression estimated using alternagighopsoustic or
OAE measures. The modulation-growth function, demonstrated a slope &fd®8/dB. On
double logarithmic scales, this suggests a power-law relation wittot predicted by a simple
instantaneous compressive nonlinearity (S&c3). If cochlear compression should have been
derived, two estimates of the ASSR modulation-growth function slope (estiratlie@éar scales)
at different excitation levels would have been needed. However, dibe foigh variability of the
ASSR magnitudes, the variation in the slope estimates, for the small numberjettsuthree)
measured at two levels, rendered this impossible to fit.



7.5. ASSR model 77

The most serious inconsistency between the analytical model predictidribeapxperimental
recordings is the slope of the ASSR modulation-growth function being lessuhiy. In an
attempt to investigate this further, the next section develops a more physalpgxausible
numerical model of ASSR generation.

7.5 ASSR model

7.5.1 Modeling framework

This section derives an ASSR model, which is used to predict how local 8Npression is
reflected in ASSR magnitudes. The ASSR model is inspired by the wdBolafstein and Kiang
(1958, who described evoked responses as a linear convolution of a sibgteristantaneous
auditory nerve (AN) discharge rate in response to a given stimulus withesmeatary unit
waveform, called the unitary response (UR). The UR describes thelmaiuns made to the AEP
each time a cell discharges. Following this idBau (2003 proposed a model for the generation
of ABRs using the instantaneous discharge rate for single nerve fibbenmad across frequency
at the level of the AN to create a neural activity pattddarte et al(2010 andRgnne et al(2012
updated and evaluated an ABR model, following the principleBaxi (2003. This model was
shown to be successful in simulating ABR responses to varies stimuli as, dlicies bursts and
chirps. A number of studies (e.Galambos et 8l.1981 Hari et al, 1989 Plourde et al. 1991,
Gutschalk et a).1999 Bohorquez and Oezdama008 have demonstrated that the ASSR, at
modulation rates around 40 Hz, can be predicted from the convolution giesiniddle-latency
transient responses with a click train with the appropriate repetition rates, Tinel predominant
response in the ASSR is due to thg NP, and N, - P, components of the middle-latency
response (MLR), originating in the early auditory cortex, and a smallefribation due to the
ABR. Given the success of the ABR model, and the argument that the A&$SBecmodeled as
a linear superposition of the ABR wave V and thg NP, and the N - P, components of the
MLR, an ASSR model was created in this study. The ASSR model wasRlikme et al(2012),
based on the AN modek{lany and Bruce 2007 Zilany et al, 2009 and a linear, subject and
stimulus independent UR. The model distinguishes itself from simpler conweloiodels (e.g.
Sparacino et al2004 Bohorquez and Oezdama&008), in the nonlinear front end AN model.

In Fig. 7.5, a schematic diagram of the ASSR model is shown. The ASSR model buildshgo
Zilany et al.(2009 auditory nerve (AN) model, which simulated the instantaneous discharge rate
from a single AN fiber tuned to a specific frequency. The AN model, ans tinet ASSR model,
includes key properties of nonlinear cochlear processing, suchhgsressive BM filtering, inner
hair-cell (IHC) transduction, and IHC-AN synapse adaptation. Th8R®odel simulates AN
responses from 500 different characteristic frequencies (CFsheimange from 100 Hz to 16
kHz. The responses were summed to form the neural activity patterroamdleed with a unitary
response to produce the simulated ASSR. The stimuli presented to the AS®Rweoel defined
in Pascals and calibrated such that the root-mean-square value equaled 1
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The ASSR model is similar to thRgnne et al(2012 ABR model. However, three mod-
ifications were undertaken. First, tiz@lany and Bruce(2007) AN model was replaced with
Zilany et al.(2009. This was done, since the latter AN model includes an updated synagse sta
that simulates effects of neural adaptation more realistically. This is highly tengdior longer-
duration signals (th&ilany et al.(2009 AN model was “humanized” in an identical manner as
done inRgnne et al(2012). Second, the response of low spontaneous rate fibers (0.1 spikes/s
of the AN model was simulated, as opposed to the high-spontaneous raspiked/s) used
in Rgnne et al(2012. This change was made as high-spontaneous rate fibers saturate for the
relatively high-level and long-duration AM stimuli, and the response is thesyli#dominated by
low spontaneous rate fiberSymner et a).2002 Zilany et al, 2009. Third, the unitary response
(UR) was recalculated to include the contribution from the middle latency nsspVLR). As
discussed above, the ASSRs generated using a modulation rate of 4@d+zoméributions from
neurons in the AN, brainstem and up to the early auditory cortex. By iocatipg the MLR into
the UR function, the higher-stage contributions could be modeled to a fipsb@mation. The
UR was only calculated once as the deconvolution between the summed aetivigy pattern
produced by the AN model (in response to a 60dB pe SPL click), andoaded MLR Harte
2007 using the identical click stimulus and electrode position as in the recordingsrges in
Sec. 7.4. Once obtained for the 60 dB pe SPL click, the UR was fixed for all funtiuenerical
simulations carried out in this paper.
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Figure 7.5: Schematics diagram of the ASSR model. A stimulus is presemtiné AN model tuned to a single
frequency. The signal is then processed through the AN model stdfgasddle-ear filtering, BM filtering, IHC
transduction and IHC-AN synapse. The sum of 500 individual simulatidh the AN model tuned to different
frequencies produces the summed neural activity pattern. This p&ténen convolved with the UR to produce
the ASSR.

7.5.2 Simulations

ASSRs were simulated as a function of the stimulus modulation depth@.25, 0.5, 0.75 and
1) and stimulus level (15 dB SPL to 95 dB SPL in steps of 10 dB). The AS$kpooents were
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Figure 7.6: Left: A 60 dB pe SPL click evoked MLR (data frétarte(2007). Right: The unitary response. Derived as
the deconvolution of the click evoked MLR and the summed neural actigitigmn obtained as the summed responses
of the humanized AN model given the identical stimulus.

derived from the amplitude of the 40-Hz component in the spectrum of thdat@mluASSR time
series. Figurd.7 (left) shows modulation-growth functions simulated at varying stimulus levels
(10 to 75 dB). A regression line was fitted to the 55 dB SPL curve and a sltpaate of 1.04
was obtained. This is close to a linear slope of 1 as predicted by the static eavithin but
deviates from the experimentally measured slope of 0.78. Figuré¢right) shows the level-
growth function for the 75% modulated ASSRs. It is observed that the rearlimodel produces

a slope of 0.48 in the compressive region above 35 dB SPL stimulus leve elode-to-linear
slope below this stimulus level.
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Figure 7.7: Left: Simulated ASSR amplitudes of the 40Hz component asaién of stimulus modulation depth
and stimulus level, plotted on log.-log. axes. Compressive growth, dfessimagnitude as expected from cochlear
compression is observed as function of level. Whereas linear pingés®bserved as a function of modulation depth.
Right: Simulated ASSRs as function of stimulus level. The modulation deptipisak&@5% and the stimulus level is
varied from 15 to 95 dB SPL in steps of 10dB.

In Fig. 7.8 (left panel), the same simulated results are shown on linear scales. Hor eac
modulation-growth function, a regression line was fitted and a slope estimaiaaih In section
7.3itwas shown that, for a static nonlinearity, the compression ratioan be estimated from two
adjacent modulation-growth functions £1,2). Based on Eq7.15 the slope of the modulation-
growth functionk,, can be described as:
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S\
kn:<2> a (7.16)

whereSis the stimulus level. Assuming that the compression affecting two different Izt
growth functions is the same, an estimate of the compression ratio can besf&und

. logio(§2) (7.17)
logio()

The right panel of Fig.7.8 shows compression ratios calculated based onEfj7 and two
adjacent slope estimates from Fig.8. The abscissa represents the average stimulus level, such
that the compression ratio derived based on the 55 dB SPL and 65 dBdiek are plotted at 60
dB SPL. The compression ratios amounts to 1 at low levels, and decreasedddhe dotted line
representing the compression ratio, CR = 0.48, found in Fig(right).
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Figure 7.8: Left panel: Simulated ASSR amplitudes of the 40Hz comp@semfunction of stimulus modulation depth

plotted on linear scales. The different curves show the results of eiffstimulus levels. Right panel: CRs calculated
using Eq.7.17 and data from two adjacent curves in the left panel. The stimulus leveleoaltbcissa represents the
average stimulus level for two adjacent curves. The CR is 1 for low stirlalels, and close to the 0.48 (dotted line)
corresponding to the slope in Fig.7 (right panel), at higher stimulus level.

7.5.3 ASSR model discussion

The ASSR model includes a dynamic compression function which differdfisimtly from
the simple static compression function used in the theoretical model, introducgecin7.3.
Additionally, the numerical model includes other key stages in auditory psirog important for
the generation of evoked potentials, such as IHC transduction and IMGyAapse adaptation.
The numerical ASSR model simulates contributions to the ASSR from 500 parhHenels
reflecting AN fibers across the tonotopoic axis. For channels with carigudncies close to the
carrier frequency of the AM stimulus, the response was compressiv@ffifrequency channels,
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the contributions showed linear growth. The numerical model is capablesafiding far more
details than the simple analytical treatment in S&8.

The numerical model showed that realistic cochlear mechanical filterspieichanoelectrical
transductions and IHC-synapse adaptation resulted in the same ASSR tioodgeowth
functions and level-growth functions as a static compressive nonlingatidn processing
the amplitude-modulation of the stimulus. Plotted on log.-log. axes, the model tsredic
modulation-growth function slope of 1.04 which is nearly linear and thus doe®flect cochlear
compression, whereas the simulated level-growth function in the compesgion above 35 dB
SPL shows a compression ratio of 0.48. In 3&8 it was argued that a compression ratio could
be derived for the modulation-growth functions plotted on linear axes (F&). The numerical
simulations supported the theoretical model and found a compression raetol®.48. This
method of estimating the compression ratio, from two slope estimates from two stileuils,
is fine for the numerical simulations here, as the results were entirely neseAny variation or
uncertainty on the slope estimatks;, as one would see in experimental data, would be increased
as the ratio is taken. Thus, this is not considered to be the preferred nietlutdaining estimates
of compression.

The simulated cochlear compression ratio was found to be 0.48, i.e. caidid&rger than
the experimentally measured ratio of 0.2 dB/dB. To investigate the cause oathajditional
simulation was made (not shown) with only the 30 fibers closest to the stimutuseiney, i.e. the
frequency region of 868 Hz to 1158 Hz. This eliminated off-frequemeytrtbutions, which would
be expected to have linear growlRHode and Reci®000. The simulation yielded a level-growth
function with linear growth below 35 dB and compressive growth aboveB3gith a slope of 0.19.
A similar compression of 0.20 can be observed for simulated single fibesnssto a pure-tone
stimulus level growth. This follows the experimental findings better wherergoession ratio of
0.20 was estimated. Thus, the numerically simulated broad band level-gravetiofu does not
strictly show local cochlea compression, but rather exhibits a slope thattieghlt of a mixture of
on-frequency compression and off-frequency linearity. In humarsareaents, a similar effect
might be expected. However, it is unknown to what extent the off-gaqy contributions linearize
the human level growth. Further, the human cochlear compression hasieesured using both
OAEs and psychoacoustics both showing compression ratios betweerd®2a Thus, while the
numerical model seems to be capable of capturing the key physiologiaiagenmechanisms for
ASSRs, it does not correctly model the contributions across differwerfibers precisely. The
numerical model seems to give more weight to linear off-frequency comitrits than is observed
in experimental data. Further work to look at the model nonlinear mechditieed sharpness of
tuning (or Q-factor); and/or contributions from parallel high-, mediund lmv-spontaneous rate
fibers (only low-spontaneous rate were simulated here), might shed fightsodisparity.

It is important to emphasize that the ASSR model shows the same compressimedhising
either of the two techniques developed in sectfo® This supports the hypothesis that it is
cochlear compression that are measured using these techniques.
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7.6 Overall discussion

7.6.1 Summary

This study investigated the potential for ASSRs to estimate cochlear compregased on a
closed-form solution of how the envelope of an AM signal would be &ftevhen processed
by a static nonlinear compressive system, two testable hypotheses of hbtato estimates of
cochlear compression were made. First, the compression ratio can beedbasithe slope of
the ASSR level-growth function plotted on double log. axes. Second, theression ratio can
be obtained from the slopes of two modulation-growth functions measutea alifferent levels
plotted on linear scales. A numerical model of ASSR generation was alserjesl; it consisted of
a phenomenological AN model capable of accurately describing the awdén@er ear; nonlinear
cochlear mechanical filtering, IHC processing (half-wave rectificati@hlaw-pass filtering) and
IHC-AN synapse adaptation. The output of the AN model was convohittd an empirically
derived unitary response function, used to model auditory pathwaessing and propagation of
cell discharge potential to the recording electrodes. The numerical rdedeinstrated that local
cochlear compression could be estimated by the two methods inspired froimible analytic
model, provided care is taken to limit off-frequency contributions to the ASSR

Two experiments were carried out. In one experiment, ASSR level-grawtttibns were
measured in a total of 8 subjects, and a compression ratio of 0.20 was dbtdimenother
experiment, using 10 subjects and a total of 20 ears, modulation-growdtidos were measured.
A slight compression of 0.78 was observed, when plotted on double logécitxes. This is not
consistent with the analytical and the numerical model both predicting a linbavioe in this
condition. The modulation-growth functions of three subjects were addijomeeasured at a
higher stimulus level. However, the variability was too large to derive a mefaiogmpression
ratio based on the second hypothesis.

The numerical ASSR model predicted a compression ratio of 0.48 for botlewbkegrowth
function and the modulation-growth functions. It was found that the remathe the decreased
amount of compression in the simulations results from the contributions of tmregfuency
fibers where the signal is processed linearly, such that the ovenalfingsresponse becomes less
compressive than in the region around the stimulus frequency.

7.6.2 Best practice for estimating cochlear compression ugy ASSR

This study demonstrated that cochlear compression can be estimated usiity B either
measuring level- or modulation-growth functions. However, estimating cacldempression
from ASSR modulation-growth functions requires double the number of une@ent points as
two slope estimates have to be obtained. Any experimental recording ofefagical parameter
will necessarily be noisy, i.e. have an associated uncertainty. To estimatertipgession ratio,
the ratio of the two modulation-growth functions needs to be taken. This hasféoe of adding
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the two variances or mean-square errors for the individual slope estinaedgve the uncertainty
on the compression ratio. This makes the estimate of compression ratio implicitly nmeadain
than via the level-growth functions. This was confirmed by the difficulty irvitey a useful
compression ratio from the modulation-growth experiments. The clear recotati@mis thus
to measure level-growth functions if cochlear compression is to be estimatedtifie ASSR.
A single measurement point can be measured using 1200 epochs of7&awnk [@ngth, giving a
measurement time per stimulus level of 7.5 minutes. An estimation of a compresgaarathus
be done by measuring ASSRs at 3 or 4 different levels, and would eetpss than 30 minutes
of recording time. This is still a lengthy procedure and does not lend itsafcisically viable
option at this stage.

7.6.3 Is cochlear compression reflected in experimental lagithmic modulation-
growth functions?

Plotting the experimental modulation-growth functions on double log. axes (F# demon-
strated a small degree of compression, with a slope. 888 0.09. This is at odds with the
simple theoretical predictions and the results from simulations with the physiallygicspired
numerical model, both predicting linear growth, i.e. a slope of 1.0. The empatal modulation-
growth functions were obtained from only 10 normal-hearing subjectdyisalisparity could be
ascribed to experimental uncertainty. However, the ANOCOVA fitting of @ ¢ielded a low
uncertainty on the slope estimate of oatp.09.

It could be argued that the small degree of compression seen in themegptal data might
arise from a compressive stage in auditory processing independertbtochlear compression.
If one considers the AN model employed to give an accurate descriptiperipheral processing
and nonlinearity, then the IHC-AN synapse or early brainstem might cotttaiadditional stage.
An effect that could give rise to such an independent compressidd beuthe modulation gain
(e.g.Joris and Yin 1992 Frisina et al, 1996 Joris et al.2004 Malone et al.2010.

Joris and Yin(1992 measured the ability of cat AN fibers to synchronize their firing to AM
stimuli. They normalized the synchrony by the modulation depth employed teedemodulation
gain function. Using a stimulus level of 49 dB SRloris and Yin(1992 found a modulation gain
of ~ 9 dB at 10% modulation depth, monotonically decreasing:t» dB at 100% modulation
depth. No exact physiological mechanism was suggested as beingsddpdor the gain. In
the AN model employed her&ijlany et al. (2009 demonstrated that it is capable of simulating
the modulation gain frondoris and Yin(1992 for the cat. There is no way of ensuring that this
is correctly modeled in humans for the present stulflalone et al.(2010 described how the
gain was increased in the rostral field and even further increased inditery cortex, indicating
that the ascending auditory pathway privileges low amplitude modulation degttisndicating
that higher stages of the auditory pathway also influence the modulationlgaimand Yin(1992
showed that synchrony and, consequently, the modulation gain areiaistus level dependentin
a nonmonotonic way. The nonmonotonic stimulus level dependency and thasing magnitude
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with ascending place in the auditory pathway lead to the conclusion that tleeyind mechanism
might be independent from cochlear compression. However, the modutsino does not seem
to be the major cause of the small degree of compression seen in the modgtatigh-function.
This conclusion is based on the fact that the simulations using the ASSR nodet ghow a
compressive slope even though the modulation gain is modeled by the ungélyimodel. The
reason could be that the modulation gain in all literature studies (and the AN sionjilevere
measured in single nerve fibers of different species of animals. It ¢iase®n studied how the
modulation gain would be expected to affect a real ASSR, which naturalkists of the response
of numerous on- and off-frequency tuned fibers.

The apparent compression observed in the logarithmically analyzed modegatiavth function
is thus still unexplained. It might be reflecting a compression independémt oegular cochlear
compression, i.e. at a retro-cochlear stage, which is not reflected in tthel provided here.

7.7 Conclusion

This study evaluated the potential of using ASSR as a tool to estimate cochlearassion.
Two different methods were evaluated, from measurements of the modulatidrievel-growth
functions. To evaluate these methods, three different approachegaken, a simple analytical
model based on a static nonlinearity, experimental measurements and a @alimeriknear
ASSR model. The two modeling approaches illustrated that both level and rioduj@owth
functions could be used to estimate cochlear compression. However, gtgitewth function
was found to be superior as it requires less measured data and haadedsinty. The level-
growth function was experimentally measured in seven subjects and a cwiopreatio of
0.20 was found, corresponding to compression ratios found in literaging both ASSR and
psychoacoustic measures. Additionally, the measured modulation-growaticio, when plotted
on double logarithmic scales, showed a small degree of compressioradiotury to the model
predictions. It was argued that this was evidence for an effective i&ssipe stage independent
of cochlear compression.



Chapter 8

Modeling auditory evoked brainstem
responses to speech syllables

This chapter presents work that, in cooperation with coauthors Jamesafdri®rsten Dau, is in
preperation for submission to the Journal of the Acoustical Society of iseer

8.1 Introduction

Auditory evoked potentials (AEP) have been used to assess the neooalirg of sound both

for clinical and research purposes. Various types of stimuli have beesidered, such as
transients like clicks, chirps and tone-bursts (dgyvett and Williston1971 Neely et al, 1988

Dau et al, 2000 and chapteB); steady-state signals such as amplitude modulated (AM) tones
(e.g.Galambos et al.1981, Picton et al. 1987 Rees et a).1986 and chapteir), but also more
complex signals like speech (e.g\Marrier et al, 2004 Agung et al, 2006 Swaminathan et al.
2008 Chandrasekaran and Krau¥)10. Most studies have focused on the auditory brainstem
response (ABR) as they are less affected by attention and sleep thantigistevith origin at
higher neural stages. The ABR has also been observed to be uedffactraining. However,

a number studies have recently investigated and found plastifithe ABR, both considering
short term training effects (e.qRusso et aJ.2005 Song et al. 2008 and long-term experience
effects (e.gKrishnan et al.2005 Johnson et al2008a seeChandrasekaran and Kra{910 for
review). Russo et al(2005 recorded brainstem responses to the stimulus-syllable /da/ in learning-
impaired children. The responses of the learning-impaired children wemgded before and
after an eight week period containing 35-40 one-hour sessions @bguttaining. The authors
showed that the correlation between the ABR to the clean /da/ syllable anesphanise to /da/ in
noise, improved for the learning-impaired children over this relativelytdhaining period, thus
demonstrating plasticity in the brainstem. This result suggested that feafuites larainstem-
response might reflect the ability to comprehend speech and speech @ r@oknson et al.
(20083, Hornickel et al. (2009 and Skoe et al.(2011) measured brainstem responses to the
synthetically created syllable-stimuli /ba/, /da/ and /ga/, in normal and leamnmipgired children.
Both groups of children were reported to have normal audiometric thidshod ABR wave-V
latencies.Hornickel et al.(2009 measured stop consonant differentiation scores, comparing the

1 physiological changes of the nervous system due to e.g. learning
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latencies of the major peaks of the three ABRs evoked by the differenbglaand reading
abilities and speech-in-noise perception. They reported a correlatimedre the stop consonant
differentiation score and the two behavioral measures, such that ldfiggenices between peak-
latencies (large consonant differentiation score) correlated with geddrmance in the speech-
in-noise test and the test of reading abilitjornickel et al.(2009 argued that this result showed
plasticity in the brainstem, as the group with the good behavioral perforntaacteindergone
long-term learning and that the better performance was an indication dé#raing had affected
both the behavioral performance and the electrophysiological braimstmrdings. The observed
differences, between the learning-impaired and the normal-learningcsgoips in the ABR
measures of stop-consonant differentiation scores, were thusdaiguee the result of efferent
(top-down) neural processes, and not the result of periphedébay afferent processing.

Johnson et al(2008 presented similar syllable-evoked ABR recordings from 22 normal-
hearing children. They measured the latency of the major peaks for édlch three syllable-
evoked ABRs and found that, although the three recorded time-seriesmush alike, the peaks
of the time-series response to /ga/ had shorter latencies than the peaks which again had
shorter latencies than /ba/. The three syllables only differed in the fregwentent of the second
formant, f», and the third formantfs. Hornickel et al.(2009 andSkoe et al(2011) used almost
identical stimuli. Due to the difference in the frequency content of the syBadnhel due to the
tonotopic mapping of frequencies to places on the BM, the peaks of the ABpbnses were
represented early for the /galh(= 2480 Hz), later for the /da/f§{ = 1700 Hz) and latest for the
/bal (f, = 900 Hz). The underlying processes accounting for the findindslafison et al2008
thus appears to be afferent (bottom-up). However, since the stimuli simikar, any efferent
processing that affected the recordings frelarnickel et al.(2009 should also have affected the
Johnson et al(2008 recordings. Skoe et al.(2011) developed a “cross-phaseogram” from the
time-varying cross-power-spectral-density between two ABR recosdMtnen analyzed in time-
frames, the outcome was a spectrogram-like representation of the pgaseddunction of time
and frequency. It allowed for a more detailed investigation of which gaheostimuli caused the
peak-latency difference observeddghnson et al2008.

A crucial stage in simulating ABR latencies is the cochlear filter stage and its twithin
the model Rgnne et a).2012 and3). Broad cochlear filter tuning, often associated with loss of
OHC functionality, is believed to lead to shorter wave-V latencies lgerling 1976 Folsom
1984. However, in subjects with an audiometric threshold within “normal hear{©@g0 dB HL)
there is still a considerable variation in tuning. In a recent staltherling et al.(2010 showed
that the travelling-wave delay is highly individual. The travelling wave delaglss believed to
be dependent on the cochlear tuning, and it can be shown (see caltutasection8.2.5 that
subjects with broader tuning in a group of normal-hearing subjects canQwalues that are less
than half the Q-values of subjects with sharper but still normal tuning. ©kseilple consequence
of different filter tuning on the simulations of the syllable-evoked phagdsshill be investigated
in this study.

In the present study, a phenomenological ABR model was developed pasely on bottom-up
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afferent processing. The developed ABR model was similar to the modsoihe et al(2012
(developed in chapted); however, the AN model used to create the summed activity pattern was
updated fronZilany and Brucg2007) to Zilany et al.(2009, as the IHC-AN synapse adaptation

of the latter AN model is more precise for long-duration syllable-stimuli.

Using the ABR model to simulate syllable-evoked ABRs, two questions weressatien
the study: a) Can the ABR model, being purely afferent, simulate key featfirthe syllable-
evoked responses, and b) can the difference in the recordedpirassogram between normal
and learning-impaired childrerSkoe et al. 2011) be explained by potential cochlear tuning
differences between the groups? To evaluate the first queStkoe et al.(2011)’s cross-
phaseograms was used to assess three hypotheses that can bel demucexperimental
observations made byohnson et al(2008. First, differences in the frequency content of
between the syllable-stimuli, should results in components of the evoked-B&iRg differently
delayed due to the tonotopic mapping. This should be seen as phase-shifis anoss-
phaseograms. Second, as the differencds diminish over the course of the response, the phase-
shifts observed in the cross-phaseogram should vanish completelysidaaty state is reached.
Third, due to the phase-locking properties of the IHCs (upper limit of @hasking), neural
encoding consists largely of phase-locking to frequencies bé&jow his leads to phase-locking
to the envelope rather than the fine-structure at and above fhequencies. This should result in
phase-shifts observed in the cross-phaseogram at frequendidsloer the f,.

The second question will be adressed by changing the tuning of the mudlelaluating the
simulations based on models with broad versus sharp tuning, howevertisesting limits of
normal hearing. The cross-phaseograms will be used to evaluate whetpstematic change in
the phase-shift between the syllable-evoked ABRs can be obtained tpdait@ing such that, for
instance, broad tuning systematically leads to smaller phase-shifts betwesyilae-evoked
ABRs.

8.2 Method

8.2.1 ABR model

Figure8.1shows the structure of the ABR model used in this study. The model was simile to
model ofRgnne et al(2012 (see also chaptéaf). However, the AN model used to compute the
summed activity pattern was updated such thaZitany et al.(2009 AN model was used instead

of theZilany and Brucg€2007). This update was made as thigany et al.(2009 has an improved
IHC-AN stage producing more realistic adaptation properties. As the syiétinhelli are of longer
duration, a precise adaptation is beneficial. The change of the AN mayeéted a recalculation

of the unitary response (UR). Fig.2 shows the UR (based on standard cochlear filter tuning)
calculated similar irRgnne et al(2012 as the deconvolution of a 95.2 dB peSPL grand average
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Figure 8.1: Schematic structure of the ABR model. 500 AN fibers tunedfeyeht CFs are individually simulated by
the AN model. The summed activity pattern is convolved with a unitary respand represents the simulated ABR to
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Figure 8.2: The unitary response, calculated as the deconvolution sifited activity pattern and tigberling et al.
(2010 grand average click. The cochlear tuning of the AN model isShera et al(2002 tuning.

click-evoked ABR recordingHlberling et al, 2010 Rgnne et a).2012 and the summed activity
pattern obtained by simulating the response to an identical click-stimulus.

The simulatied ABRs were at the output filtered with a 2nd order band-paeswith cutoff
frequencies at 70 Hz and 2 kHz. These filter settings were identical toutpitofilters of
Hornickel et al. (2009 andSkoe et al(2011).

8.2.2 Stimuli

Synthetic /ba/, /da/ and /ga/ syllablésarnickel et al, 2009 Skoe et al.2011) was used, that only
differ in the frequency content of the second formdat,of the first 60 ms, corresponding to the
consonant part of the stimuli. The second formants decrease in theifgajus from 2480 Hz,
in the [da] from 1700 Hz and increased in the [ba] stimulus from 900 Hxhiag a steady-state
frequency (corresponding to the /a/ part of the syllable) of 1240 Hit isdimuli. The /a/ vowel-
part of the syllables was the same for the three syllables, consisting ofrtharfofrequencies
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fo = 100 Hz, f; = 720 Hz, f, = 1240 Hz, f3 = 2500Hz, f4 = 3300 Hz, fs = 3750 Hz andfs =
4900 Hz. All three stimuli were calibrated to have a root-mean-square JiRM& of 1, and were
presented to the model at a level corresponding to 80 dB SPL, whichls@ased int the study
by Skoe et al(2011).

8.2.3 Cross-phaseogram

Skoe et al (2017 proposed a cross-phaseogram to illustrate the phase-differendebies the

time delays between two ABR recordings. The first step in the procedwsdondivide the two

recordings into time frames of 20 ms, starting with the first frame at t = -40 msh &accessive
frame started 1 ms later than the previous one, creating an overlap of 19 Henmng window

of 20 ms length, indcluding 10 ms onset and 10 ms offset ramps was appliethoframe,

resulting in a 3 dB main lobe width of 141 Hz. The cross power spectrumitgeins. the power

spectrum density of the cross correlation, was computed between eachfames from the two
recordings. An artificial frequency resolution of 4 Hz was obtaineddrp padding, effectively
acting as a smoothing operation. Finally, the unwrapped phase (in radiassgxtracted and
plotted as a function of time (midpoint of the 20 ms frames) and frequency.

Skoe et al(201]) also proposed the average phase-shift to simplify the cross-phasedgo
a single number that could be compared to other measures, such as thegeeystic speech-in-
noise performance. The average phase-shiftrfiadians) was calculated on the formant transition
period (15 to 60 ms) of the syllable-evoked ABR in the frequency rang® o6 1100 Hz.

8.2.4 Weighted cross-phaseogram

The cross-phaseogram weights time-frequency bins with little activity asasdtins with much
activity. This limits the use of the cross-phaseogram as it is impossible to distinbatween
time-frequency bins of presumable little importance due to low activity from binsajor
importance due to large activity. A weighted cross-phaseogram is thersfiggested in this
section. The first step in the procedure was to derive the energy in similafréeency bins as
those chosen in th8koe et al.(2011) cross-phaseogram (Fid8.5. Each of the two syllable-
evoked ABRs were thus divided into 20 ms frames with 19 ms overlap, andagtd=burier
transform (fft) was calculated with a frequency resolution of 4 Hz. The t@sulting matrices
were summed and normalized with the average bin activity. This matrix was then lredltip
bin-per-bin with the original cross-phaseogram. The reason for thealization of the activity
matrix was to create a weighted cross-phaseogram that highlights the gifitiseand does not
just express the overall activity.

Fig. 8.3displays both the cross-phaseograms (left) and the weighted crasseginams (right)
for the different stimulus pairs. Each time-frequency bin representsotinesponding phase lead
(warm colors) or lag (cold colors) of the first syllable-stimulus in the title dliersecond. The
period from 15 to 60 ms shows the formant transition period, the period @0tens the steady
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Figure 8.3: The three left panels show cross-phaseogram regageas of the three comparisons between the syllable-
stimuli. Warm colors indicates that the syllable mentioned first in the respeitliy phase-leads the other. The time
axis refers to the center point of the 20 ms time frame. The three rigletgahow weighted cross-phaseograms of the
same stimuli-comparisons.

state part of the responsBkoe et al.2017). Both sets of figures (left and right panels) show that
the phase-shifts between the stimuli are in the frequency region above.1 kH

8.2.5 \Variability of cochlear filter tuning

Cochlear filter tuning and BM delay are inherently relat€dl$om 1984 Eggermont 1979
Bentsen et al.2011), such that broader filters lead to shorter delatherling and Don(2008
measured derived-band latencies from a total of 81 normal-hearingcssitthearing thresholds
< 15 dB HL), at four different band center frequencies (bCF; 24mO0, 2800 and 5700). ABR
wave-V latency and a inter-subject standard deviation (SD) was deriidie BM delay was
acchieved by subtracting the wave |-V delay (4.1 ms) and the synaptic ¢eleg), see table
8.1 A representation of the variation of cochlear filter tuning in normal-heasingjects can
be obtained from the mean latenciesl standard deviation. The stimulus Blberling and Don
(2008 was a click presented at approximately 90 dB peSPL.

Eggermon(1979 derived a theoretical relation between the cochlear filter tur@ag,and the
average number of cycles in the impulse response up to the latency (minud $ynajatic delay)
of the derived band CAR,;

= 08 (SN2, 1) (51,8041

= 12 12y + |nQ10> (8.1)

whereN,, can be calculated d€F /1000 * 1cg, wherert is the BM latency of at th€F. In table

radians x norm. activity
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bCF (Hz) | Mean latency SD| Nay Nay (-SD) Nay (+SD)
5700 1.17 0.32| 6.7 4.8 8.5
2800 1.86 0.40| 5.2 4.1 6.3
1400 2.93 0.56| 4.1 3.3 4.9
710 457 0.79| 3.2 2.7 3.8

Table 8.1: Derived-band latencies and a one standard deviation (@D Fiberling et al.(2010. The 1 ms synaptic
delay has been subtracted from the latencies. The number of cyclesimnghise response up to the bCF laterdy,
for the mean latencies and for the mean latefidje standard deviation is also shown.

40

—— Shera et al. (2002)

35| == Elberling et al. (2008) +2 SD
—©— Elberling et al. (2008) +SD

|| =—6— Elberling et al. (2008)
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Figure 8.4:Qerg's calculated based dBlberling and Don2008’s measured derived band latencies (diamonds). In
circles and trangle®QeRrp estimates based dElberling and Dor(2008’s measured latencies1 SD an+2 SD. Also
shown is theShera et al(2002 tuning (solid line) which is implemented in the standard ABR model. The aligena
tuning curves (dotted lines) are fitted to tEéberling and Don(2008 based tuning£1 SD and+2 SD) and also
implemented in the model.

8.1 N,y values derived from the mean latencies and from the lateaglestandard deviation are
shown &2 SD wer also calculated but not shown in the table due to clagty)2 is representative

of a normal cochleaEggermont 1979, and Qo values can thus be calculated based on the
Nay values from table8.1 and equatior8.2.5 To convert theQig values intoQggrg values, the
conversion fronlbrahim and Bruc€2010 was applied:

Qi0— 0.2085

0.505 (8.2)

QerB=

Fig. 8.4 shows theQegrg values derived fronklberling and Don(2008’s measured delays1
SDs andt2 SDs. TheQgrgs calculated the mean delays corresponds well withShera et al.
(2002 estimates of tuning (solid curve). New tuning-curve estimates were obthimmradhe +1
SD and+2 SD based Q-estimates, by multiplying tBeera et al(2002 estimates by a constant
offset. The broader tuning-estimates were obtained by multiplghegra et al(2002’s tuning
estimates by 0.80 and 0.60, the sharper tuning-estimates by 1.15 and 1.2&uiTbeggested
tuning curves were implemented in the ABR model. For each simulated conditiem; R was
calculated. The URs were almost identical to the ones presented i8.E&nd are thus not shown
explicitly here.
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Skoe et al. (2011) Simulations Simulations (weighted)
/gal-/ba/| 0.317+0.040 0.353 3.040
/da/-/ba/| 0.288+0.031 0.243 2.163
/ga/-/da/| 0.208+0.028 0.141 1.660

Table 8.2: Average phase-shifts 8koe et al(201]) recordings (left column), simulated average phase-shifts (center
column), and weighted average phase-shifts (right column). Thageeés taken across the region from 15 to 60 ms,
and from 70 to 1100 Hz.
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Figure 8.5: Cross-phaseogram (left panels) and weighted chassepgram (right panels) representations of the three
comparisons between the syllable-evoked ABRs. Warm colors indicat¢ghé syllable mentioned first in the
respective title phase-leads the other. The time axis refers to the ceimewopthe 20 ms time frame. It can be
observed that the largest phase-shift is found in the /ga/ v. /ba/ pbbtharleast phase-shift is found between /ga/ and
/da.

8.3 Results

Figure8.5 presents cross-phaseograms and weighted cross-phaseograe flem each of the
three possible combinations of the simulated ABRs. FiguBeeproduces the cross-phaseograms
presented inSkoe et al.(2011). These results can thus be compared to the simulated cross-
phaseograms (left panels of Fig8.5. Table 8.2 shows the average phase-shifts obtained in
Skoe et al(2011) and the corresponding values obtained from the simulations presentégl in F
8.5. Both experimental results and simulations show the largest phase-shiftdre/ga/ and /ba/,
which also differs most in their frequency spectrum. Also, the data andrthgations both show

that the phase-shift between /ga/ and /da/ is smaller than the phaseeshieb /da/ and /ba/.

The cross-phaseogram in F§5show that the /ga/ phase leads both /da/ and /ba/ (warm colors
in the formant transition period of panel 1 and 3), and that /da/ phase leafl(warm colors in
panel 2). Further, the only difference between stimuli was the frequenittent off,, and the
observed phase-shifts in the cross-phaseograms can thus be srdieedaused by the stimuli-
frequency differences. This is also confirmed by tehRpresenting average phase-shifts of the
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Figure 8.6: Cross-phaseograms fr@koe et al(201]) of the three comparisons between the syllable-evoked ABRs.
Left panels, are calculated based on the top performing group ofctsibjea hearing in noise test (HINT). Right panels,
presents the worst performers. Note that the frequency range isdstical to the frequency range presented in Fig.
8.5. © Journal of Neuroscience Methods.

consonant period, where it is seen that /ga/ phase leads /da/ thatlphds /ba/. Furhter, Fi§.5
illustrates that the simulated phase-shifts clearly diminishes over time, and tpatthe-shifts are
vanished at steady state (>60ms). This shows that the memory of the patipbie-linearities,
e.g. the IHC-AN synapse adaptation, is short compared to the duratior stithuli. In Fig.
8.5it can also be observed that there are phase-shifts up to approxima@lyHi% i.e. both
below and in the second formant frequency range. However, the teeighoss-phaseograms of
Fig. 8.5 (right panels) does not show components at these frequencies,tingitzat the high-
frequency phase-shifts reflect time-frequency bins with very little actiaibd thus potentially
little importance. The main trend is thus that thefrequency-difference between stimuli, results
in phase-differences at frequencies well belowtherhe cause for this finding in the simulations
are discussed later.

Figure 8.7 shows weighted cross-phaseograms of the syllable pairs, for simulatfoas o

relatively sharp (x 1.28) and relatively broad (x 0.80) tuning. It carséen (more bins with
warm colors) that the phase-shift is larger for the sharp tuning. In 8if. weighted average
phase-shifts for all syllable comparisons and all five different tunimye implementations are
shown. Although the growth of the phase-shift with increasing tuning amsurdgt monotonic,
a trend is observed, where sharp tuning leads to larger phase-shiftscanfirms that the state
of the auditory periphery affects the cross-phaseogram and weighitgdge phase-shifts. The
implications for theHornickel et al.(2009 and Skoe et al.(201]) studies are discussed further
below.



94

8. Modeling auditory evoked brainstem responses to speech syllables

Figure 8.7: Weighted cross-phaseograms for each of syllable catinis, for both broad (x 0.80) and sharp (x 1.28)
tuning. No major systematic differences are observed.

Figure 8.8: Weighted average phase-shifts for each of the syllableinations, for both broad (0.60 and 0.80), standard
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8.4 Discussion
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8.4.1 Unweighted versus weighted cross-phaseogram

The cross-phaseogram and the average phase-shifts was deMaydpleoe et al(2011) and has
proven to be a valuable tool for investigating phase-shifts betweenatifferequency components
of the recorded (or simulated) ABR. However, the equal weighting of all-fi@guency bins
limits the value of the average phase-si§ikoe et al(2011), since a bin with little activity will
hardly influence the ABR generation. In fact, a time-frequency bin with litter@nis likely to

be dominated by measurement noise, and the average measure might thasieenpbise.

In the simulations presented in this study, noise is not included. This makes@adeon

20

radians x norm. activity
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between simulations and data in the terms of the average phase-shift difi€wtsystematic
phase-shift at bins with little activity will be included in the simulated averagseishift, whereas
such a phase-shift is likely to be influenced or masked by measuremeatimeige data-derived
average phase-shift. This could be solved by adding noise to simualatoasver, this would
imply that the model would no longer be deterministic which has not been coedidte the

present study.

8.4.2 Explaining the presence of phase-shifts below the sexbformant

In section8.3 is was shown that second formant differences between stimuli, resultaiseph
differences at frequencies well beldg Johnson et al2008 argued that this is due to the phase-
locking properties of the IHCs (upper limit of phse-locking), and thatraleencoding consists
largely of phase-locking to frequencies beldw This leads to phase-locking to the envelope
rather than the fine-structure at and abovefthirequencies. However, the IHC stage of the AN
model (effectively modeling the upper limit of phase-locking) consists afrdinearity and a low-
pass filter with a cut-off frequency at 3 kHz. It is thus unlikely that the Ist&ge should be the
cause of the simulated phase-shifts at frequencies b&lagwthe simulations.

Figure 8.9 visualizes the simulated response to the syllable /da/ in an AN-UR-spectrogra
Each horizontal line represents the output from one AN model, i.e. themsspo the stimulus
at the respective model CF, convolved with the UR. A summation across {IIkfsug yield the
simulated ABR (see sectidfor introduction to the AN-UR-spectrogram). It can be observed that
most of the energy in the simulations is centered at the onset responsesdrefjtiency regions
of 100, 200 and 500 Hz (latter one highlighted by the ellipse). It can beisddg. 8.9that phase-
locking clearly occurs in the frequency range up to 1 kHz (this can bereéd as the number of
peaks at, e.g. 500 Hz is 5 peaks per 10 ms, i.e. the corresponding pigy)oditie response at
larger CFs exhibits primarily a periodicity corresponding to the fundamemeigliéncyfo=100Hz,
i.e. the envelope of the response (highlighted by the arrows inSF3j.

To fully explain the presence of phase-shifts beliowhe stimulus and model has to be analyzed
step by step. The syllable-stimuli formants (efg) are modulated at the rate of the fundamental
frequency o = 100Hz) and its higher harmonics. Thus, at the characteristic placeedMh
of the f, frequencies, a signal with af» carrier frequency modulated by dg (+ harmonics)
modulation frequency will be processed. Further, the stimulus-level igag80 dB SPL) causing
upwards spread of excitation. The left panels of RBglOshows the single channel response at
the output of the filter stage (see Fig.2 for diagram of AN model), tuned to CF = 2405 Hz, in
response to the /ga/ stimulus. The time-series shows a periodic signal apddteum (shown
below it) clearly shows frequency components seperatefy blfurther, is it seen that the energy
is centered around the CF, but also that upwards spread of excitasidisria this channel being
excited by contributions from lower frequencies. The IHC stage appligsiplogically inspired
half-wave rectification and low-pass filtering. The output of the IHC stagdown in the right
panels of Fig8.10for the same CF channel and stimulus. Itis seen that the half-wave reuaiifica
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creates low-frequency energy, as inter-modulation and harmonic distpridducts. However, the
majority of energy is still centered around the CF. The synapse adapttgms that occurs after
the IHC stage (see Fi@.2for AN model), has no significant effect on the spectrum of the single
channel response. However, the UR that is convolved onto the singimehresponse effectively
acts like a low-pass filter. The left panels of FBj11show the UR and the spectrum of the UR.
As a convolution is effectively the same as a multiplication in the frequency dorteErJR is
effectively acting as a low pass filter with the frequency responsesmreling to the spectrum
shown in the lower left panel. Thus the resulting simulated single channeit@téshown in
the right panels) are limited to low frequencies. The 2405 Hz fiber will thudritmte with
frequency components at low frequencies, which will carry the traveliiage delay (and thus
phase) of the CF of the fiber. The frequency-differences betwiémulsat the f, frequencies
will thus be depicted as phase-differences atfthend correponding harmonic frequencies in the
phaseograms.

The outcome measure predicted by the hypothesdelufison et al(2008, that phase-shifts
should be found at low frequencies, was thus found in I&kbe et al.(2011)’'s experimental
analyzis and in this study’s simulations. However, the simulations showed ¢yataticted phase-
shifts were mainly caused by a combination of upwards spread of excitattithaneffective
low-pass filtering applied by the UR. Further, it was shown not to be chloggéhe upper limit of
phase-locking, as hypothesized dghnson et a(2008.

Note, the UR represents the contributions made from local potentials in the n&Nthee
brainstem to the far-field potential recorded at the electrodes on the agictip subject. The
peaks of the UR and the time between them, thus describes ascending fdagetha auditory
pathway were local potentials are generated, that contributes to the ABRtipgh The UR is
thus not representing the neural encoding in the brainstem but rathén#gseafter onset where a
contribution to the surface potential is made. In this study, the UR is seen to lintititiemission
of the neurally encoded signal to the recorded surface potential. This tisequence of the
effective low-pass filtering that again is the consequence of the distetaeen the major peaks,
and thus neural generators, of the UR. The effective low-pass fitexialso limiting the utility of
this kind of electrophysiology in investigating neural encoding of sound.

8.4.3 Limitation of simulating high spontaneous rate fibers

A deviation between simulations and data is the absolute amplitude of the simulated (A8R
shown). The simulated peak-to-trough amplitude is approximately@.Whereas the measured
data in bothJohnson et al2008 andHornickel et al.(2009 indicates amplitudes around Q4.
The reason for the under prediction is the choice of simulating the respohbégh spontaneous
rate fibers. The high stimulus-level of 80 dB SPL results in saturated f@sponses for high
spontaneous rate fiberSymner et a).2002. This saturation reduces the overall amplitude of
the response. However, the phase-information in the ABR was the pdimieoést in this study,
not the amplitude of the response, and the choice was therefore to simulatepuigtaneous
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Figure 8.9: AN-UR-spectrogram visualizing the components in frequesnge from 100 to 3000 Hz that adds up to
form the simulated /da/ evoked ABR. It is created by convolving eacheosimulated AN fibers responses with the
UR. The ellipse highlights the region with the most activity. At frequenciesalapproximately 1 kHz, the single fiber

response tracks the envelope, i.e the fundamental-frequency ipéyi@d 10 ms (indicated by the arrows), rather than
the fine-structure of the signal.
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Figure 8.10: Left panels: Time-series and spectrum of the C1 filteutuight panels: Time-series and spectrum of
the IHC stage output. The CF of the fiber was 2405 Hz and the stimulus was /ga
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Figure 8.11: Left panels: Time-series and spectrum of the UR. Rigi¢lp: Time-series and spectrum of the single
fiber response of the model (AN model output convolved with UR). CReof the fiber was 2405 Hz and the stimulus
was /ga/.

rate fibers, as these has been shown to be mainly responsible for th@fsigaal-components.
However, if other speech-evoked ABRs with an amplitude-based outcorasumevere to be
simulated this limitation would need to be adressed. A possible solution would be tatamu
a mixture of both high and low spontaneous rate fibers, to predict both thkt@hepand the
phase-information as accurately as possible.

8.4.4 Implications of changing cochlear tuning on Skoe et a(2011) conclusions

Hornickel et al.(2009 and Skoe et al.(201]) found correlations between learning-impairments
of children, and recorded cross-phaseogram phase-shifts (peaicies inHornickel et al,
2009 between syllable-evoked ABRs, such that a small average phasevalifan indication

of learning-impairment. A basic assumption biiornickel et al. (2009 was that the two
groups of hence normal and learning-impaired children have equallg genpheral hearing.
Hornickel et al.(2009 argued that this was the case as all subjects had audiometric thresholds
below 20 dBHL and had normal ABR wave-V latencies. The wave-V latevey measured as
an indication of the state of the cochlear tuning, as broad cochlear turenigetieved to lead
to shorter wave-V latencies (e.glberling 1976 Folsom 1984. However, in a recent study
Elberling and Don(2008 showed that the travelling wave delay was highly individual. The
traveling wave delay is also thought to be dependent on the BM tuning, arasiin the present
study suggested that the broadest BM tuning in a group of audiometricneiseal-hearing
subjects can have a Q-value that is less than half the Q-value of the shBMduning. Given
the possible variation of “normal” BM tuning an alternative explanation forHleenickel et al.
(2009 results can be hypothesized. A broad cochlear tuning leads to shesdkilgtencies for
all three stimuli. Further, do the travelling-wave delay decrease logarithmiwittlyincreasing
stimulus frequency (e.d\eely et al, 1988 Elberling et al, 2010. A broad tuning would thus
lead to a decreased difference between the ABR peaks, and thus a ginatiershift. Phase-shift
differences similar to the orkoe et al(2011) finds between the groups of normal and learning-



8.5. Summary and conclusion 929

impaired children, could thus be hypothesized to also be found when rnrep#tBRs to two
normal-hearing groups but with different cochlear tuning.

The results from this modeling study showed that there is indeed a relatioadagfiker tuning
and weighted averaged cross-phaseogram values, where diiaipgieads to larger phase-shifts.
Although this relation was not strictly monotonic it do indicate that the phasewagae sensitive
to changes in the auditory periphery. Whether this finding offers an atteerexplanation for the
results ofHornickel et al.(2009 and Skoe et al(2011) are, however, questionable. That would
require the assumption that the group of learning-impaired children, hadicggtly overall
broader cochlear tuning than the normal children. Although this hypotresist unlikely, this
study cannot be any chance verify such a claim. That would require a stajdy, where the
cochlear tuning of learning-impaired and normal subjects were measanefdity, and correlated
with weighted average phase-shifts. The conclusion of this part of thity s$uthus, that the
huge spread of normal-hearing cochlear-tuning, in the simulations, leaashtme spread in
weighted average phase-shiftSkoe et al(2011) showed that average phase-shifts was related
to learning-impairment. Further, dikoe et al.(2011) conclude that the correlation between
learning-impairment and average phase-shifts show plasticity of brain3telhconclusion was
based on the assumption that the state of the auditory periphery was iegjuabfmal heraring)
in both groups. However, this study has indicated, that the cochlear tahthg normal-hearing
subjects could have an effect on the average phase-shift, and dohallsnge the underlying
assumption of the conclusions frarornickel et al.(2009 and Skoe et al(2011). Further, this
study has shown that the use of audiograms and click-evoked ABR Wiéatencies are unlikely
to be precise enough to claim that the cochlear tuning are similar betweendwasgr

8.5 Summary and conclusion

This study evaluated the performance of an ABR model to simulate ABR respdo three
synthetic syllables. The ABR model was shown to predict phase-shiftebattihhe responses to
the three syllable stimuli. It was also shown that the model accounts for thase-shifts which
diminish over time, as the spectral differences between the stimuli also deceeal that there
are no differences in the steady-state part of the responses. Thé ammleorrectly decribed
that the frequency-region of the response that were mainly phadeeshigis well below the
frequency-region that differed between the three stimuli. Based on théasioms it was shown
that this phase-shift was mainly due to upwards spread of excitation featied low-pass filtering
applied by the UR and not the consequence of the upper limit of phasedoa& hypothesized
by Johnson et ali2008. Furthermore, it was shown that altering the cochlear tuning influenced
the simulated phase-shifts, illustrating that the state of the auditory peripherydgml when
analyzing responses based on the cross-phaseogram. The regglstsiuthat the assumption
of Hornickel et al.(2009 andSkoe et al(2011), that the peripheral hearing was similar between
their two grousp of test subjects, might be flawed and the following conciu#iat the larger
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phase-shifts for the non-learning-impaired children was the consequéplasticity, might thus
be wrong.



Chapter 9

General discussion

9.1 Summary

In this Ph.D. thesis, AEP models based on a convolutive approach weeoped, where the
response of a nonlinear peripheral model were convolved with a linRaiftle peripheral model
simulated single-fiber responses to a given stimulus. The response @@individually tuned
fibers were summed to form the summed activity pattern, i.e. the activity at thé elstaof
the AN. This summed activity pattern was then convolved with a linear UR, septieg the
contributions made to the formation of the far field potential (AEP), fromradiog places along
the neural auditory pathway in response to the events in the summed activéynparhe UR
thus represented the impulse response of the transmission from the adtithty distal end of
the AN to the electrodes attached to the scalp of a test subject. This appnaaehuse of the
assumptions that the UR was independent of test subject and stimulusadfetted by nonlinear
neural processing. Two different peripheral models were usecde Zilhny and Bruce(2007)
AN model to simulate transiently evoked responses to clicks, tone burstshampd,cand the
Zilany et al. (2009 AN model to simulate evoked responses to amplitude modulated tones and
speech syllables. Both AN models were originally fitted to cat data.Zllaay and Brucg2007)
model was humanized by lan Bruce and colleagues, such that theriggdependent cochlear
tuning was fitted to the human tuning estimatessbéra et al(2002, and the middle ear stage
was replaced by the human modelRdscal et al(1998. This humanization was also applied to
the Zilany et al. (2009 model. The difference between the two models was the more advanced
IHC-AN synapse adaptation stage included in Zilany et al.(2009 model. This more precise
adaptation was argued to be important when longer-duration stimuli like amplitedielated
tones or syllables were used.

The ABR model developed Rgnne et al(2012 was based on thélany and Bruc€2007) AN
model and a UR covering the first 10 ms of neural processing, i.e. ingudenABR wave I-VII.
The ABR model was shown to predict the frequency dependence obimséwave-V latencies
and the amplitude of wave-V's evoked by clicks and chirps at differemiugus-levels and chirp
sweeping rates. However, the ABR model under estimated the stimulus-lepehdence of
wave-V latencies. An alternative ABR model, using the DRNL model as pergbimodel, was
also considered (sé®gnne et al.201]) to investigate whether the under estimation of the level-
dependence of click-latencies was bound to the structure of the AN modedevér, the DRNL-
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based ABR model was not found to improve predictions. The models capabilgimulate
ASSRs was also evaluated. This was done as part oR#drene et al(20123 study, where the
possibility of using ASSRs to assess cochlear compression was evaludtedxperimentally
and in simulations. The ASSR model was based onZifeny et al. (2009 AN model and a
UR covering the first 80 ms of processing, thus including the middle-latersponse (MLR)
components. The model was shown to be able to predict the main trends &sAS3 wide
range of stimulus levels and modulation depths. However, the model faile@dicpthe slight
compression observed in the experimentally measured modulation-grovetiofu(Rgnne et aJ.
20123. The model accounted for on-frequency level-growth compressioites to what would
be expected. However, when simulating responses from all 500 fthersjixture of on- and off-
frequency contributions provided a weaker compression than expesiltyaneasured. In chapter
8 an ABR model was developed based on Zlilany et al.(2009 AN model and a UR covering
the first 10 ms of the neural processing, with the purpose to evaluate evttathmodel could
simulate responses to complex stimuli. This model was used to simulate the respspsech
syllables. One key prediction was that the phase-shifts between two ABRsdkby two different
syllables were correctly accounted for frequencies significantly lovaar the frequency content
that differed between the two syllables. This simulation was explained dgmgdtom upwards
spread of excitation and the effective low-pass filtering applied by theTbR effect of variation
of cochlear tuning within what could be expected from a group of norelihg test-subjects was
also investigated. Here it was found that sharper tuning generally ledyer jalhase-shifts. Based
on the assumption that the peripheral hearing was equal between gdopset al(2011) argued
that the difference in recorded phase-shift between two groupsrofai@nd learning-impaired
children was caused by plasticity of the brainstem. However, the conclo§ithre simulations
from the present study was that the variation in normal-hearing tuning is &rgugh to cause
significant phase-shifts, and the underlying assumptio8kaofe et al(2011)’s conclusion might
thus be incorrect.

This thesis also comprised two experimental studies. One of them investightetthen
the higher amplitude of an ABR evoked by a rising chirp compared to a clickmsaisly a
consequence of the better alignment of the low-frequency (<1500 ¢igys the high-frequency
(>1500 Hz) components. Although both regions were found to contributestdBR, the region
with the largest additional contribution to the chirp-evoked compared to tHeelicked ABR was
the low frequencies. In the other experimental study, it was investigatetheththe ASSR could
be used to assess human cochlear compression. The conclusion wasthhiite level-growth
function and the modulation-growth function could be used to obtain an estimhatechblear
compression. However, the modulation-growth function required theld@rbount of data and
had inherently more noise associated. Thus, the clear recommendation wses tioe level-
growth function in future work both clinically and in research. One intergdiimding was the
slight compression observed when plotting the modulation-growth functiclooble logarithmic
scales. According to the developed analytical model and the ASSR modsimmpression should
have been observed this way. The result remained unexplained.



9.2. Revisiting assumptions of the convolutive approach to modeling 103

9.2 Reuvisiting assumptions of the convolutive approach to modeling

The modeling work of this study was built upon the convolutive approachinasg linear
superposition, where a nonlinear summed activity pattern was convolved litar UR. The UR
was assumed to be independent of stimulus-type (level, frequency atubfions), independent
of subjects, unaffected by top-down efferent processing as traiaimjunaffected by bottom-up
nonlinear neural processing.

A UR with level- and frequency-dependence, as propose@hmsrtoff (2004 has already been
discussed in sectioB®.6.3and4.5. However, the UR could also be thought to be dependent on
temporal fluctuations/modulations of the stimulus. In chafteit was reported that a slight
compression was observed when recording ASSR modulation-growdtidos and plotting them
on double logarithmic scales. A slope of 1 was predicted by the ASSR model blight
compression was observed experimentally (slope = 0.78). It was g¢adgest the modulation
gain, reported byloris and Yin(1992 for single-fiber cat AN responses, could be the cause of
the compression, as the modulation gain describes how syné¢hi®mycreased in the neural
representation of the AN. However, the modulation gain was included in thenaNel and
could thus not explain the found compressidigny et al, 2009. Joris et al.(1999 reported
a further increased neural synchronization in the AVCN compared withsyinehronization
in the AN fibers. They argued that this was due to the convergence ofsirfippm two or
more AN fibers on an AVCN cell that require coincident input spikes teefwing (Joris et al,
1994. Malone et al.(2010 showed that the synchronization is further increased at ascending
places along the auditory pathway. An increased synchronizatiorsezpigenonlinear processing
and thus is not described by the linear UR. Future work could be to implemeatral stage
where the increased synchronization could be accounted for in theviainef the present AEP
model. Such an extra neural stage could potentially improve the simulatiomstraidhe slight
compression found in the logarithmically plotted ASSR modulation-growth furetiauld be
explained.

Another basic assumption underlying the linear UR of the present AEP matial ithe model
is independent of test subject and independent of time. In ch@ptbject independence was
investigated and all simulations were rerun using individually estimated URifumscdrom three
different subjects. This resulted in small changes to the overall simulatpdnse amplitudes and
introduced an individual latency offset. However, the shape of the iRilze distance between
peaks remained the same, as expected. This investigation was though amdgtaten the first
5 ms of the UR, i.e. up to wave-V. Furthermore, all subjects were youngalenearing adults.
A test of whether higher neural stages, potentially affecting wave-Vhgiter generation sites,
differed between individual subjects was never conducted. Suchemt@d neural difference
could arise from brainstem plasticity, i.e. physiological changes to thedteamnprocessing due
to learning. A potential effect of plasticity was describedHnyrnickel et al (2009 andSkoe et al.

1 Synchrony measures how densely nerve-firing is clustered aroamettks of the envelope responisialone et al.
2007
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(2011, where degrees of learning impairment were found to correlate with efdutsiological

ABR phase-shift measures. It was argued that the reason for tredatmm was that the normal-
learning children were better trained and thus showed plasticity of the teainise. that auditory

training had resulted in physiological changes of the brainstem. If this wasdrgeneral across-
subject UR would not be reflective of the individual differences inrakprocessing. However,
plasticity is the effect of long-term learning in the range from weeks torakyears, and the
consequence is thus that the UR does not necessarily need to be rayntdirgmulate these
differences. Rather, the consequence is that the UR should be caldolatach individual subject
and could benefit from frequent recalculations (to anticipate plasticityedbthinstem over time).

9.3 Limitations of the present AEP model

The AEP model of this study was shown to be limited with regards to two diffesets of
simulations. The first was the level-dependence of click-evoked ABRd&®ewhere the predicted
slope of the latency-growth function was -0.015 ms/dB compared to the sfoiie06 ms/dB
found in literature. The second limitation was the ASSR level-growth compresgielding a
compression ratio of 0.48 dB/dB compared to experimentally measured caiopreatios of
0.2 dB/dB. The underestimation of the click-latencies was investigatdtbime et al(2011),
with focus on the influence of the auditory periphery. It was found thantljor contributor to
click-latencies was the tuning of the cochlear filters and, to a lesser delgecl®IC-AN synapse
adaptation. Therefore, the conclusion from that study was that the fitigrgt@t high stimulus
levels and high stimulus frequencies might have been incorrect.

The under-estimated ASSR compression ratio was foun®Rdmne et al.(2012 to be a
consequence of on-frequency compression and off-frequenesrity. The on-frequency com-
pression was shown to have a compression ratio of 0.2, i.e. similar to theiregpaally
recorded compression. However, when mixed with off-frequencyilioeatributions, the mixture
demonstrated compression with a ratio of 0.48. Three suggestions for {hésitlisvere made: 1)
The filter tuning of the model could be imprecise, such that the mixture of ahefirfirequency
contributions were wrong. An updated implementation would result in eitheroagsr on-
frequency compression or a surpression of off-frequency catititss, for instance by making
the filter skirt roll-off sharper. 2) The potentially increased synchrionghe AVCN could also
affect the cochlear compression measured by ASSR, as the neuchleyy has been shown to
be stimulus-level dependent. The increased synchrony is though nattonacally dependent
on the stimulus-level, and can thus not be a major contributor to a simulated cmoDrehat
is too low over the entire compressive stimulus-level region. 3) In the ASG®/,sonly low-
spontaneous rate fibers were simulated. This was done as high-spudaate fibers were
shown to be saturated at most stimulus levels. However, a saturationenesredfectively an
extreme compression. An appropriate mixture of low- and high-spontamatai$ibers, could
thus potentially increase the on-frequency compression, such that éatixture of on- and
off-frequency contributions would be changed, and an effectiviairdr compression could be
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obtained. Additional simulations showed that simulating the response of patteseous rate
fibers led to a saturated on-frequency response as expected. étpagthe level of the saturated
on-frequency responses were low (due to the saturation), theegffiéncy contributions (which
were not saturated) were inherently given more relative weight. Thitiresmixture of extreme
on-frequency compression and linear off-frequency contributidgtisivigher weight resulted in a
compression ratio very close to the originally simulated compression ratio af Did8does thus
likely neither provide an explanation for the weak simulated compression.

Common for the two main limitations of the AEP model is thus the uncertainty about the
implemented cochlear tuning. It has not been within the scope of this Ph.Ddébeuihne cochlear
filters, it has rather been the scope to investigate the limitations of the cumentddge and
the present model. However, a future study should focus on getting thetditteng accurately
modeled. At present, uncertainties remains regarding the tu@ivalues) at high stimulus-levels
and high stimulus-frequencies and further regarding the slope of theskitts, i.e. the part of the
filter description not included in th®19 value.

9.3.1 Modeling high- versus low-spontaneous rate fibers

Throughout this study, either high or low-spontaneous rate fibersbeame modeled. At no point
has a mixture of low- and high-spontaneous rate fibers been attemptelbwrepontaneous rate
fibers show slow recovery after stimulation whereas high-spontanateisilvers recover faster
(Relkin and Doucet1991), making the high-spontaneous rate fibers important when simulating
timing and onset responses. Further, the high-spontaneous ratestitoevssaturating response
characteristics for increasing stimulus level, whereas the low-spontaratel fibers show a
linear growth Winter et al, 1990. It thus seems evident that low-spontaneous rate fibers are
responsible for encoding high stimulus-level signals, whereas the pmftaneous rate fibers
encode low stimulus levels and onsets of signals. Thus, to be able to simulapeaatsaof AEPs
evoked by fluctuating stimuli, like AM signals or syllables, the inclusion of a mixtdidew and

high spontaneous-rate fibers is needed. A starting point for a futulkesioo of low- and high-
spontaneous rate fibers would be to determine an appropriate ratio ofrifienof hence low-
and high-spontaneous rate fibers to include in the model, and secondbute ¢imat the two types

of fibers have appropriate sensitivity. Thus, the summed activity patteutdvemnsist of 500
channels, each consisting of the sum of a low and high spontaneoubeateBponse.

9.4 Perspectives

9.4.1 ASSRs as an objective predictor of cochlear compressi

Rgnne et al(20123 investigated the potential use of the ASSR to assess cochlear comprétssion
was found that measuring compression via the level-growth function vessij@ on a group basis
for normal-hearing subjects. The measurement of compression at oneokKRpproximately
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30 minutes. Han et al. (200§ showed that ASSRs can be recorded at four different CFs
simultaneously. Therefore, ASSRs could potentially be a fairly fast (< 3Q mathod to get
a broad overview (at four CFs) of the cochlear compression. Hawtwere are still important
guestions that need to be addressed before such a method would&oredidical usage. First,
Ranne et al(20123 showed that compression could be assessed on a group basis, dsihikver
shown that the method also was reproducible and accurate on an indlisidbjiect level, which
is crucial if the method should be applied in clinical diagnostics. Second,sitngéher shown
that the method works with hearing-impaired subjects. In hearing-impailgecs with resulting
broader filters, the hearing threshold will typically also be elevated. Ruyithe difficult to raise
the stimulus-level as the test needs to be restricted to the compressiveakthercochlear 1/0
function of (approximately 40 to 90 dB SPL). Therefore, the ASSR aingrwill be carried
out closer to threshold. This could lead to a weaker neural signal asdntione noise-prone
recordings. It should therefore be tested whether the ASSR candreleecon individual hearing-
impaired subjects as well. Finally, the question is what the information of the $ttte cochlear
compression in a hearing-impaired subject can be used for in technadajon. Currently, no
hearing aid or cochlear implant manufacturer uses such information in ttieig forocedures.
Therefore studies on how to use the information should also be underimkbe future. A
reproducible ASSR test of individual local cochlear compression wbelé major benefit to
both the research community and the outside world.

9.4.2 Electrophysiologicall correlate of speech perceptio

In chapter8, Skoe et al.(2011)’s cross-phaseogram was introduced as a method to visualize
the difference in ABR recordings between two syllable-evoked ABRss €toss-phaseogram
analysis could be highly interesting for research and clinical purpspesifically, if it could be
used as an electrophysiological correlate of speech intelligibility. This woeikthe case if it was
shown that the weighted average phase-shift correlate with speewisitest results, for a wide
variety of stimuli and subjectddornickel et al.(2009 and Skoe et al(2011) have indicated for

a very specific set of stimuli, /ba/, /da/ and /ga/ syllables, that this could beagee However,

a series of studies has to be carried out to assess, the sensitivity of therendeow general the
measure is and, finally, how the measure is influenced by hearing impairneéorte it can be
claimed that cross-phaseogram and the average phase-shift is tan-plagsiologically correlate

of speech intelligibility. On a short time scale, a first study to carry out coaltbbdetermine
whether the cross-phaseogram can be generalized to also accodiftei@nces between other
syllable pairs. It could be hypothesized that the cross-phaseogradistaace measure between
two syllables and, thus, that the larger the average phase-shift is ibe diasnguishable would

two syllables be. An outcome measure could be a correlate between a asyuhtic test giving a
syllable confusion matrix, and the ABR-based averaged phase-shifteeF, tests with a series of
synthetical syllables, forming a range of stimuli that are morphing from pitede into another
(e.g.Stephens and Hgl201J) could be interesting. Here the hypothesis that the cross-phaseogram
is a distance measure could be tested directly. Furthermore, the sensitivigpamatability should
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be tested such that it is investigated whether the cross-phaseogramusedio assess individual
intelligibility.

9.4.3 AEP model improvements

The present AEP model is capable of simulating many features of AEPsewykboth complex
and simple stimuli. However, there are still many types of responses this maoutetcmulate

accurately. Improvements of the model would be highly beneficial for theareh community as
it would allow the testing of our understanding of the underlying physiolahird AEPs evoked
by more complex stimuli.

Suggestions for future improvements of the model have already been méue thesis, to
make the current simulations more accurate. It was suggested that theacdaining might be
imprecise and that the simulations of the cochlear compression using ASS&I as whe click-
evoked ABR wave-V latency could benefit from an update of this cochleéng. Such an update
would require reliable data and thus a thorough investigation of tuning askighlus levels and
high stimulus frequencies, as well as an investigation of the slope of theskitgs- Another
suggestion was to include a mixture of high- and low-spontaneous rats.fibbis could make
the model capable of accurately simulating both the phase and the amplitud&blesgvoked
ABRs. Finally, it was suggested to include an AVCN stage to increase theyAbhsony and thus
the modulation gain. This AVCN stage should only influence the components biRrassociated
with an onset delay of more than 3-5 ms. This would complicate the AEP modelingpassimear
stage would be added. Amongst the complications would be that the dective@lpproach to
estimate the UR would become invalid.

The AEP model could also be developed to include higher neural staghs cduld be
important if complex speech-like stimuli were to be considered. As a startiing the modeling
work by Dugue et al(2010 could be usedDugue et al(2010 measured evoked potentials in
epileptic patients where the electrodes were implanted in the primary auditdex.cofhese
data were compared to modeling work based on the DRNL md@igjue et al(2010 extended
the DRNL model, such that the chopper neurons from the DRNL model, s@réined in
a coincidence detector argued to simulate the inferior colliculus. Thesessiage followed
by stages simulating the medial geniculate body, the thalamic reticular nucletseapdmary
auditory cortex. The model was shown to be able to account for the telmpodalation transfer-
function data. The model is, however, not directly comparable to the modetirigof this thesis,
as the data used to fit the model were recorded from electrodes insideathe Some kind of
unit function associated to each of the neural stages should thus alsvdlegkd to be able to
simulate the scalp-recorded AEPs.

A final improvement of the model would be to simulate the responses fronngearpaired
subjects. This would be highly relevant for studies where clinically retestaimuli were to be
developed. A starting point could be to consider the hearing-impairmenédeia the loss of
OHC functionality. The implementation of OHC loss in the AN model has already &ttempted



for the cat-fitted versionZjlany et al, 2009. However, the outcome measure were single-fiber
AN responses and not scalp-recorded AERZslany and Bruce(2007) could though inspire a
fairly easy implementation of hearing-impairment in the form of broader tunuegtd loss of
OHC functionality in the AEP model. Whether such an implementation of OHC losdviazu
sufficient to simulate AEP responses from hearing impaired subjects iswnkand an evaluation

of the capabilities of the hearing-impaired AEP model should thus be cauted o
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