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Abstract

The auditory evoked potential (AEP) is an electrical signal that can be recorded from electrodes
attached to the scalp of a human subject when a sound is presented. The signal is considered
to reflect neural activity in response to the acoustic stimulation and is a well established clinical
and research tool to objectively assess the function and integrity of the auditory nervous system.
However, the physiological generation of AEPs represents a complicatedinteraction between
linear and nonlinear cochlear and neural processes and is not well understood in humans. This
thesis presents and evaluates a phenomenological model of AEP generation that can predict key
experimental observations of recorded AEPs. The purpose of the study was to investigate the role
of the different stages of auditory signal processing and their effectson AEP generation.

In recent years, there has been a push both clinically and in research towards using realistic and
complex stimuli, such as speech, to electrophysiologically assess the human hearing. However,
to interpret the AEP generation to complex sounds, the potential patterns in response to simple
stimuli needs to be understood. Therefore, the model was used to simulate auditory brainstem
responses (ABRs) evoked by classic stimuli like clicks, tone bursts and chirps. The ABRs to
these simple stimuli were compared to literature data and the model was shown to predict the
frequency dependence of tone-burst ABR wave-V latency and the level-dependence of ABR wave-
V amplitude for clicks and chirps varying sweeping rates. The model was also evaluated based on
ABR recordings evoked by speech syllables, and was shown to account for the differences in the
responses observed between the stimuli. It was demonstrated that the generation of the syllable-
evoked ABRs was highly influenced by cochlear and afferent neuralprocessing, which supported
the importance of cochlear processing for the generation of AEPs.

A second major contribution of this study was the investigation of whether auditory steady-state
responses (ASSRs) can be used to assess human cochlear compression. Sensorineural hearing
impairments is commonly associated with a loss of outer hair-cell functionality, anda measurable
consequence is the decreased amount of cochlear compression at frequencies corresponding to
the damaged locations in the cochlea. In clinical diagnostics, a fast and objective measure of
local cochlear compression would be of great benefit, as a more precisediagnose of the deficits
underlying a potential hearing impairment in both infants and adults could be obtained. It was
demonstrated in this thesis, via experimental recordings and supported by model simulations, that
the growth of the ASSR amplitude with stimulus level can indeed be used as such an estimate of
local cochlear compression.





Resumé

Akustisk udløste potentialer (Auditory evoked potentials, AEP)1 er elektriske signaler, der kan
måles via elektroder fastgjort til hovedskallen af en person, når lyd bliver præsenteret for personen.
Signalet, der forventes at reflektere den neurale aktivitet, der sker i respons til et akustisk stimulus,
er et anerkendt værktøj til at evaluere funktionaliteten og integriteten af det auditive neurale
system. De fysiologiske mekanismer, der genererer AEPer, repræsenterer dog en kompliceret
interaktion mellem både lineære og ulineære processer, som ikke er særlig godt forstået. Denne
afhandling præsenterer og evaluerer en fænomenologisk model af AEP generering, som kan
simulere vigtige eksperimentelle AEP observationer.

I de senere år har der været en øget interesse i både den kliniske verden og i forskningsverdenen
for at bruge realistiske og komplekse stimuli, som fx tale, til elektrofysiologiskat evaluere den
menneskelige hørelse. For at kunne fortolke AEPer målt med komplekse stimulier det dog
nødvendigt at have forstået de potentielle mønstre, som mere simple stimuli genererer. I denne
afhandling blev AEP modellen derfor brugt til at simulere akustiske hjernestammeresponser
(Auditory brainstem response, ABR) til klassiske stimuli som klik, tonepulser og chirps. De
simulerede ABRer blev sammenlignet med data fra litteraturen. Det blev vist, at modellen kunne
simulere frekvensafhængigheden af ABR bølge-V-latenstiden, når stimulivar tonepulser, samt
simulere niveauafhængigheden af ABR bølge-V-amplituden når stimuli var enten klik eller chirps
med varierende stigningstid. Modellen blev også evalueret på ABR målt med stavelsesstimuli,
og det blev vist at den kunne redegøre for målte responsforskelle mellemforskellige stavelser.
Det blev demonstreret, at genereringen af AEPer målt med stavelsesstimuli var meget påvirket af
cochleær processeringen og den afferente neurale processering.Dette understreger vigtigheden af
cochleær processeringen i AEP-genereringen.

Et andet vigtigt bidrag i denne afhandling er studiet af, hvorvidt det akustiske steady-state
respons (Auditory steady-state response, ASSR) kan bruges til at evaluere cochleær kompression
i mennesker. Sensorineurale høretab bliver ofte associeret med tab affunktionaliteten af de ydre
hårceller. En målbar konsekvens af dette er en nedsat cochleær kompression ved de frekvenser, der
svarer til de beskadigede steder i øresneglen. I klinisk diagnostik ville enhurtig og objektiv test af
lokal cochleær kompression være meget værdsat, da mere præcise diagnoser af den underliggende
fysiologiske årsag til et potentielt høretab ville kunne blive stillet for både spædbørn og voksne.
I denne afhandling blev det demonstreret, via eksperimentelt arbejde såvel som simulationer, at
væksten i ASSR-amplitude med stigende stimulusniveau kan bruges som et sådant værktøj til at
estimere den lokale cochleær kompression.

1 I dette resume er begreber så vidt muligt oversat til dansk, hvorimod forkortelser, for at undgå forvirring, er bibeholdt
i deres originale engelske version.
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Chapter 1

Introduction

The auditory evoked potential (AEP) is a sub branch of electroencephalography (EEG) that has

been in use since the 1930s. It is an electrical signal that can be recorded from electrodes attached

to the scalp of a human subject, when a sound is presented. The signal is believed to reflect neural

activity in response to the acoustic stimulation, and can as such be used as a tool to objectively

assess the function and integrity of the auditory nervous system. Unlike psychoacoustic measures,

it does not necessarily (depending on the particular AEP understudy) require the attention of

the test subject, making it specifically interesting to use with small children. The AEP is well

established as a clinical tool to screen the hearing of infants. Besides clinical usage, it represents a

powerful tool for research purposes. The AEP is objective, fairly fast to record and reproducible.

It can be recorded from all stages in the auditory pathway, from the auditory nerve (AN) over the

brainstem to the cortex. The earliest responses, stemming from the AN or brainstem, provides

an assessment of the integrity of the mechanoelectrical transduction of sound in the auditory

periphery and initial neural encoding prior to higher order cognitive processing, and thus offers a

more direct method to investigate the auditory system than traditional psychoacoustic methods

allow. However, much interest is typically focused on the behavioral outcome measures and

the link between the two is currently not well understood. Given the type of stimulus and

the recording settings, the neural generation site of the AEP can be varied. Common for all

types of AEPs, independent of generation site and stimulus type, is that theyproduce a one-

dimensional AEP pattern, where the electrical potential varies as a functionof time. This pattern

reflects a complex signal in the brain, where individual nerves contributein various degrees to the

recorded AEP. Further, the acoustic stimulation evoking the response hasbeen processed through

the entire auditory periphery including the nonlinear cochlea. The AEP is thus the result of an

acoustic stimulation and the processing through the middle ear, the nonlinear cochlear, and various

subsequent neural sites, all of which produce complex neural activitythat is then recorded on the

scalp of the human subject. It is difficult to deduce the contributions from thedifferent underlying

physiological mechanisms, based on recorded AEPs. There is thus a need for models such as the

AEP model presented in this thesis.

The generation of AEPs depend on various linear and nonlinear processes along the auditory

pathway. One way to test hypotheses about the generator mechanisms underlying AEPs is to

develop a model. Such a model should be able to predict key experimental observations of AEPs

to various stimuli, as a benchmark. The present study develops and evaluates such an AEP model.



2 1. Introduction

The model is phenomenological implying that it has been built to mimic experimentally measured

phenomena instead of strictly modeling the physiology of the auditory pathway.The model is

divided into stages similar to the auditory system, and a link between simulated phenomena and

the model stage producing the key feature of the phenomena can be established. This means

that, if a simulated AEP predicts key features of experimentally measured AEPs, it is likely that

the underlying physiology behind the actual recording resembles the functionality that has been

modeled. The AEP model built in this study is capable of testing current hypotheses regarding the

functionality of the different stages of the auditory pathway, and open for investigations of where

the current knowledge is limited. Furthermore, the model can be a valuable tool to understand the

consequences of hearing loss on the formation of AEPs and can help to improve the use of AEPs

as a diagnostic tool.

The present thesis is structured as a collection of papers, where each chapter is based on a peer-

reviewed paper published in a journal or a conference proceeding. The only exceptions are chapter

7 which is based on a submitted journal paper and chapter8 which presents recent work, not yet

submitted for a journal publication.

1. Chapter2 provides a background overview of auditory evoked potentials and reviews

existing models of AEP generation and selected models of the auditory periphery. This

provides the reader with a historic overview of the field and presents the approaches

attempted to auditory and AEP modeling found in the literature.

2. Chapter3 is based onRønne et al.(2012) and develops an auditory brainstem (ABR) model

capable of simulating transiently evoked potentials. The modeling framework and the

underlying assumptions, used throughout this thesis, are presented in thischapter. The

developed model contributes with insights into the complex nature of ABR generation, and

the importance of the auditory periphery. Further, the model has been madeavailable online1

and can be used to investigate the representation of other types of stimuli as well.

3. Chapter4 is based onRønne et al.(2011). It investigates a limitation of the ABR model

found in chapter3, that the level-dependent latency of click-evoked ABRs is under-

estimated. A second model, based on a different simulation of the auditory periphery, is

developed in this chapter. This is done to investigate whether the implementation ofthe

peripheral model has a significant influence on this limitation. The chapter contributes

with a discussion of the potential stages in the auditory periphery that are likely to affect

the level-dependency of ABR latency. The chapter highlights that the ABR model fails to

simulate a realistic ABR latency behavior even though two established models of peripheral

processing, the auditory-nerve (AN) model and the dual-resonance non-linear (DRNL) filter

model, are used.

1 The ABR model is included in the Auditory Modeling (AM) toolbox (Søndergaard et al., 2011) and can be
downloaded from:http://amtoolbox.sourceforge.net/.

http://amtoolbox.sourceforge.net/
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4. Chapter5 is based onRønne and Gøtsche-Rasmussen(2011) and presents a study of the

alignment of high- and low-frequency content when recording rising-chirp-evoked ABRs.

This study is motivated based on the simulations using the ABR model, and evaluates the

hypothesis found in literature that chirps evoke larger ABR amplitudes than clicks due to

the time-alignment of low-frequencies.

5. When investigating AEPs evoked by longer-duration stimulus, a key feature of the auditory

system becomes the adaptation of the inner-hair-cell (IHC) - auditory-nerve (AN) synapse

in the cochlea. Chapter6, which is based onHarte et al.(2010), investigates this adaptation

using experimental recordings and simulations of click trains. The chapter contributes by

discussing the extent to which the modeling approach can be used to simulate responses of

longer-duration stimuli.

6. Chapter7 is based onRønne et al.(2012a) and presents an investigation of whether auditory

steady-state responses (ASSR) can be used to assess cochlear compression in humans. This

study examines two potential experimental paradigms, level-growth and modulation-growth

functions, using an analytical approach, ASSR recordings in humans, and an extended

version of the ABR model (referred to as the ASSR model). The clear recommendation

given in this chapter is to use the level-growth function. This is a potential clinical

application that could be of interest in both infant hearing screening and inhearing aid

fitting procedures for both children and adults.

7. Chapter8 evaluates the ABR model capabilities to simulate speech evoked AEPs. It is

demonstrated that, even with highly complex stimuli such as speech syllables, themodel

captures key features of the AEP responses, demonstrating the importance of peripheral

processing for the generation of ABRs evoked by complex stimuli. Further,the chapter

contributes with a discussion of the effects of cochlear tuning on the neural encoding of

speech syllables.

8. Chapter9 provides a general discussion of the modeling approach and its limitations.

Further, the implications and perspectives of this study are presented.
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Chapter 2

Background

2.1 Auditory evoked potentials

In 1875, Richard Caton recorded electrical activity from the brain of a rabbit. What he recorded

became known as electroencephalography (EEG) and has since developed into a major diagnostics

and research tool. Fifty years later,Berger(1929) became the first to record EEGs in human

subjects.Wever and Bray(1930) recorded cochlear microphonics in animals and were the first

to use EEG for audiological purposes. The first reported measurementof acoustically evoked

responses in humans was undertaken byFromm et al.(1935). Since 1935 the recordings of

auditory evoked potentials (AEP) have developed fast and now represents a well known and

used technique both for clinical and research purposes (seeCollura (1993) andHall (1992) for

a historical review).

A common setup for recording AEPs includes a computer generating digital sounds, a D/A

converter and an acoustic transducer presenting the sounds to the subject. On the recording

side, the setup includes electrodes attached to the scalp, a recording amplifier including an A/D

converter and a computer to store and post-process the recordings. The recordings are time-

aligned with the stimulus and, by using multiple repetitions and averaging, the noisecan be

suppressed sufficiently to record a signal where the response to the stimulus is detectable. Noise

remains though a major obstacle to AEP recordings, and post-processing like filtering and artifact

rejection schemes are often applied. The AEP formation is highly dependenton the location

of the electrodes on the scalp. An often used configuration is to record differentially between

the vertex and the ipsi-lateral mastoid, with a ground electrode placed on the forehead. This

configuration is sensitive to sources of electrical activity originating fromthe brainstem, whereas

other configurations are used depending on the AEP of interest. Throughout this thesis, the vertex

/ ipsi-lateral mastoid configuration, is used both for modeling work and experimental work.

AEPs represent the summed electric potential from many remotely located neurons firing in

response to an acoustic stimulus. They are often classified in terms of time of occurrence after

stimulus onset, specifically when transient stimuli are used. The AEPs are thus called auditory

brainstem responses (ABRs) with latencies between 1 and 15 ms (first described byJewett, 1970),

middle-latency responses (MLRs) with latencies in the range of 15-50 ms (first described by

Geisler et al., 1958) and auditory late responses (ALRs) with latencies in the range of about 75-200
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ms (first described byDavis et al., 1939). The latencies can be associated with generation place,

such that longer latencies corresponds to higher generation sites in the auditory pathway. The

generation site of the AEP has also alternatively been used to classify recordings, such that; AEPs

from the hair cells in the cochlea are called cochlear microphonics (CM) (e.gWithnell, 2001);

AEPs from the distal end of the auditory nerve (AN) are called compound action potentials (CAPs)

(e.g Chertoff et al., 2010); AEPs from the brainstem are called auditory brainstem responses

(ABR); and AEPs from the cortex has been named cortical auditory evoked potentials (CAEPs)

(e.gSharma and Dorman, 1999). The term ABR is in the present study used to denote both an AEP

evoked by a transient signal producing a response with a latency between 1 and 15 ms, and also

as an AEP recorded at brainstem level to any arbitrary stimulus. A third potential classification

is to classify recordings according to the stimulus that evokes them. An AEP can be evoked by

any acoustic stimulation, however, in literature some stimuli have been studied intensively and

have been established as de facto standards for investigating AEP generation and the underlying

physiology. These stimuli include transients like clicks, chirps and tone-bursts (e.g.Jewett,

1970; Jewett and Williston, 1971; Dau et al., 2000, and chapter3 of this thesis), steady-state

signals such as amplitude modulated (AM) tones (e.g.John and Picton, 2000; Galambos et al.,

1981; Kuwada et al., 1986; Picton et al., 1987; Rees et al., 1986, and chapter7 of this thesis), but

also more complex signals like speech syllables (e.g.,Warrier et al., 2004; Agung et al., 2006;

Aiken and Picton, 2008; Akhoun et al., 2008; Lalor and Foxe, 2010; Chandrasekaran and Kraus,

2010, and chapter7 of this thesis). Auditory steady-state responses (ASSRs) are often associated

with the special case where a pure tone carrier is modulated by a lower-frequency tonal modulator.

The response to complex stimuli like syllables have often been referred to ascomplex auditory

brainstem responses (cABR) (e.g.Skoe et al., 2011) or frequency following responses (FFR) (e.g.

Dau, 2003; Swaminathan et al., 2008). In this study, the syllable evoked cABR (studied in chapter

8) will be denoted ABR, as the division between a “complex” and “non-complex” stimulus is

difficult to define.

To summarize, important parameters for the AEP generation are generation site, electrode

montage, onset latency, amplitude range, subject attention and plasticity1, as well as stimulus

characteristics like duration, intensity, frequency content and variation over time. Table2.1

summarizes the differences in the characteristics between the different types of responses. The

responses have been grouped to aid clarity. The ASSR has not been included in the table as the

modulation frequency alters both the generation site and the dependence onsubject arousal. At

high modulation rates, the ASSR would belong in the column alongside the ABR whereas at

lower modulation rates, the ASSR would behave as the CAEP. The first chapters (3, 4, 5 and6)

of this study focus on the transiently-evoked ABR, because these are reproducible and largely

unaffected by subject arousal. Chapter7 investigates the low modulation rate 40-Hz ASSR (i.e.

an ASSR belonging in the CAEP column). Besides being an interesting clinical tool, the 40-Hz

ASSR challenges the developed AEP model of the present study, as it includes higher-stage neural

processing and adds potential complications of subject arousal to the model. Chapter8 investigates

1 physiological changes of the nervous system due to e.g. learning
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CM CAP / ABR / MLR CAEP / ALR
FFR / cABR

Generation site Cochlea Auditory nerve (AN) Cortex
and brainstem

Typical electrode Within ear canal Vertex and mastoid Multiple electrodes
montage

Onset latency < 1 ms 1 to 50 ms > 50 ms

Amplitude range µv nv µv

Subject arousal Unaffected Largely unaffected. Eliminated in
Subjects can sleep sleeping subjects

Plasticity Unaffected Experience slightly Experience alters
alters the AEP the AEP

Stimulus intensity no latency shifts latency shifts latency shifts

Table 2.1: Differences between groups of AEPs.

the syllable-evoked ABR (cABR). This challenges the model further, as ithas been suggested in

the literature that the syllable-evoked ABR is subject to plasticity.

2.2 Auditory models

Several models of the (human and animal) auditory pathway have been proposed. Some of which

aim at modeling cochlear mechanics and the underlying physiology as strictly as possible while

others model the observed responses without having the intention of strictlymodeling each stage of

the physiological pathway. The latter is called a phenomenological model. Thissection describes

two well-established phenomenological auditory models, the auditory nerve (AN) model and the

dual-resonance non-linear (DRNL) model. The AN model is used as the basis for the AEP

model developed in this study. The DRNL model, is considered as an alternative AEP model

(Rønne et al., 2011, chapter4).

2.2.1 The AN model

The AN model is a phenomenological model developed over many years (1993 - to present),

designed to simulate AN responses of cats. The original AN model (Carney, 1993) simulates

single-fiber responses which are linked to a specific place on the BM with a specific characteristic

frequency (CF). Even though the model only simulates responses from one fiber at a time,
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the simulation of the response to broad-band stimuli is possible, as the BM filter stage of the

model simulates the contributions from both on- and off-frequency stimulationto the single-fiber

response. This ensures that the simulated single-fiber responses can be compared to experimental

single-fiber AN recordings (in this model from cats). The first stage of the original AN model

is a time-varying BM filter, implemented as a symmetric gamma-tone filter, with a feed-back

control path simulating broadening tuning with increasing stimulus level. The output is delayed

in time to simulate the travelling-wave delay on the BM. The signal path of the model does

further contain an inner hair-cell (IHC) non-linearity that gives a physiologically-inspired half-

wave rectification. Combined with a low-pass filter, this simulates the transition between responses

following the fine-structure of the stimulus at low stimulus-frequencies and responses following

the stimulus-envelope at higher stimulus-frequencies. The IHC-AN stage produces adaptation

(similar toWesterman and Smith, 1988) resulting in an onset emphasis and a slight suppression of

the late part of a long duration response. The last stage in the model simulatesthe refractoriness

of the neural AN responses. The refractory stage is not included in theAEP model developed on

basis of the AN model.

The AN model has been modified several times.Zhang et al.(2001) exchanged the feed-back

control path of the BM filtering with a feed-forward control path. Further, the control path filter

was made broader than the signal path filter, and the tip was shifted slightly towards a higher CF.

These updates made the model capable of simulating two-tone suppression, asymmetrical growth

of suppression and the offset of suppression tuning curves (compared to excitatory tuning curves).

The Zhang et al.(2001) cat-version of the AN model was transformed into a human version by

Heinz et al.(2001) which was later used byDau(2003) to develop a human ABR model.

Tan and Carney(2003) implemented a middle-ear filter and exchanged the gamma-tone BM

filters by chirping BM filters. The latter was done to simulate best frequency2 shifts with

stimulus level and frequency glides in the impulse repsonses independent of stimulus levels.

Experimentally, the best frequency has been observed to shift upwards with increasing stimulus

levels. The frequency glides, also accounted for by theTan and Carney(2003) AN model, is

based on the experimental observation that the early part of the impulse response of a BM filter

is not dominated by the same frequency components as the later part of the impulse response

(Carney et al., 1999). The frequency glide was found to be independent of stimulus level, such

that the zero-crossings of the fine structure was independent of levelwhereas the envelope of the

response changes with level.

Zilany and Bruce(2006) andZilany and Bruce(2007) modified the model to be able to account for

the effect of high stimulus levels. Tones presented at high stimulus levels have been shown to be

subject to a sharp transition of up to 180◦ of the phase-level function (Kiang, 1990). This transition

is called the component 1 (C1)/component 2 (C2) transition, where C1 is the response to low

stimulus-levels and C2 the response to high stimulus levels. At the levels of the C1/C2 transition,

approximately 90 to 105 dB SPL, “peak splitting” occurs (Kiang, 1990). Peak splitting describes

2 The best frequency was defined as the frequency at which the fiber response is strongest at a certain stimulus level,
whereas the CF can be defined as the frequency where the threshold ofthe fiber is lowest (Tan and Carney, 2003)
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the phenomena that the phase-locked response to a high-level tone can result in a doubling of the

number of peaks in the recorded time histograms. In this case, peaks in-between the phase-locked

peaks appear when the stimulus-level approaches 95 dB SPL and growswith stimulus-level until

they completely dominates above 105 dB SPL, resulting in a 180◦ phase shift (C1/C2 transition).

These two related effects, the C1/C2 transition and peak splitting, were implemented in the model

as a parallel C2 filter path, complementing the regular (C1) signal path.

The latest version of the model (Zilany et al., 2009) exchanged the double logarithmic adapta-

tion with a combined logarithmic and power-law adaptation which have been shown to provide

a more realistic IHC-AN adaptation behavior. Among the achieved improvementswere a more

accurate prediction of forward-masking, an improved recovery of the AN response after stimulus-

onset and improved predictions of the response-synchrony to amplitude-modulated tones. In table

2.2, the differences between the AN model versions are shown with respectto the phenomena they

can simulate.

TheZilany and Bruce(2007) AN model was used here as basis for the ABR model discussed in

chapters3, 4, 5 and6. TheZilany et al.(2009) AN model was used as basis for the ASSR model

and the ABR model presented in chapters7 and8.

2.2.2 The DRNL model

Another well established audiotry model is the DRNL model which build upon theDRNL filter.

The DRNL filter (Meddis et al., 2001) resembles the BM stage of the AN model such that it also is

a phenomenological model that simulates the response of a single place on theBM. Furthermore,

the original DRNL model (Meddis et al., 2001) was also evaluated on animal data (chinchilla and

guinea pig). The input to the model is stapes velocity and the output BM motion. Although the

model is implemented in a different way as the AN model (the DRNL filter is implementedas

the sum of two parallel processes, one linear and one nonlinear, whereas the AN model uses a

feed-forward control path to control the BM filter), it is capable of simulating many of the same

BM related phenomena, such as compressive input/output functions, two tone suppression and

frequency glides3. Lopez-Poveda and Meddis(2001) exchanged the animal-fitted parameters of

the Meddis et al.(2001) DRNL model with human-data-fitted parameters, and added an outer-

and middle-ear filter stage before the DRNL filter. In the model presented byMeddis(2006)4 an

advanced model of the IHC functionality was added to the DRNL model5. Furthermore, a spike

generating AN stage which includes refractoriness was iplemented. The output of the peripheral

part of the DRNL model, including stages from the outer ear to the AN, were used as input to

3 Tan and Carney(2003) argued that the frequency glides of the DRNL model are level-dependent, contrary to
experimental data

4 parts of the work was presented inSumner et al.(2002) andSumner et al.(2003)
5 this far more complicated model is sometimes referred to as the “model ofthe auditory periphery”, however, to

avoid confusion the term DRNL model are used here. The term DRNL model has to be distinguish from the DRNL
filter described previously
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Auditory function / Carney Zhang Tan Zilany Zilany
processing stage 1993 2001 2003 2007 2009

Middle ear
Middle ear filtering + + +

Basilar membrane filtering
Broadening tuning with stim. level + + + + +
Compressive input/output functions + + + + +
Travelling wave delay + + + + +
Two-tone suppression + + + +
Assym. growth of suppression + + + +
Frequency glides + + +
Best frequency shifts + + +
C1/C2 transition + +
Peak splitting + +

IHC transduction
Physiological rectification + + + + +
Upper limit of phase locking + + + + +

IHC-AN synapse
Double logarithmic adaptation + + + + +
Power law adaptation +

Spike generator
Refractoriness + + + + +

Table 2.2: Overview of the AN model development, with respect to the phenomena simulated by the respective version
of the model. The corresponding papers correctly referenced are;Carney(1993), Zhang et al.(2001), Tan and Carney
(2003), Zilany and Bruce(2007) andZilany et al.(2009). TheHeinz et al.(2001) model is similar to theZhang et al.
(2001) only human- instead of cat-fitted parameters are used.

a neural model of a single cochlear nucleus chopper neuron, effectively being a decision making

stage that compares inputs from several modeled AN responses (tuned todifferent CFs).

2.3 Modeling AEPs

In this section, a convolutive approach to simulating AEPs is described. Thisconvolutive approach

has been used in the present study to develop an ABR model, as convolutionbetween single fiber

responses produced by the AN model and a so-called unitary response(UR).
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2.3.1 Convolutive approach

Elberling(1976) defined a “unit function” as the recorded electrical waveform that is synchronous

to a single event (one spike) in one neuron. Given the assumption that the same waveform is

generated by all types of neurons,deBoer(1975) developed a model of CAP generation. The CAP

model was based on linear BM filtering, half-wave rectification and envelope extraction. The

output of this peripheral part of the model was the firing rate function. Tomodel CAPs, recorded

in the ear canal,deBoer(1975) proposed a unit function describing the waveform recorded in

the ear canal when a distal AN neuron discharges. Theoretically the summation of contributions

from all AN neurons would lead to the CAP, assuming that there are no otherinterfering electrical

potentials. However, as summation of all neurons were not computationally viable,deBoer(1975)

suggested to use 64 representative neurons, each related to a different BM filter tuned to a specific

CF. The summed activity pattern, from the 64 channels, convolved with a (calibrated) unit function

provided the simulated CAP. Following this concept,Melcher and Kiang(1996) suggested, in a

more general description, that the potential produced at surface mounted electrodes by any cell

in the auditory pathway, including higher neural stages, can be described by the convolution of

the instantaneous discharge rate with a unitary response (UR). This concept was adopted byDau

(2003) who developed an ABR model.Dau(2003) used the AN model byHeinz et al.(2001) to

produce instantaneous discharge rates and a summed activity pattern. AsdeBoer(1975), this was

done using independent channels tuned to different CFs. InDau(2003), 500 channels between 100

Hz and 10 kHz were considerec. The summed activity pattern representedthe activity at the distal

end of the AN and was inDau (2003) convolved with a UR representing not only contributions

from wave-I (the CAP) of the ABR (as the unit function ofdeBoer, 1975), but also contributions

from wave-II to wave-VII, i.e. components spanning the first 7 ms of the neural processing. The

UR idea was thus that a single spike in IHC-AN traveling up the auditory pathway, will elicit

potentials at several places, each delayed and scaled compared to the previous one.Dau (2003)

assumed the UR to be a linear function independent of stimulus, thus arguing that convolving the

instantaneous discharge rate functions with the UR and adding the contributions afterwards, yields

the same result as convolving the summed activity pattern with the UR. The UR wascalculated

as the deconvolution between the summed activity pattern evoked by a click stimulus, and an

experimentally recorded ABR evoked by an identical click stimulus. Figure2.1shows the derived

UR and the recorded click evoked ABR (reprinted with permission fromDau, 2003). The UR

bears a large resemblance to the recorded click evoked ABR, and wavescorresponding to wave-I,

-III and -V can be detected.

In contrast to thedeBoer(1975) model, not only the CAP component but also later waves of the

ABR response was considered inDau(2003). Furthermore, the effect of nonlinear BM processing

on the potential pattern was considered, whiledeBoer(1975) used a linear model. However, both

models were based on the same assumptions that, 1) the complete set of AN fiberscan be replaced

by a limited set of simulated fibers (channels), each corresponding to a representative place on the

BM tuned to a specific CF. 2) The individual channels creating the instantaneous discharge rates
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Figure 2.1: The UR derived byDau(2003) and corresponding click evoked ABR.

act independently of one another. 3) The UR is linear. Meaning that it is invariant to the type of

stimulation, subject and the type of neurons involved.

The third assumption was evaluated byChertoff (2004), who found that his unit function was

slightly dependent on both stimulus-frequency and stimulus-level; however, the the stimulus-

dependencies were small and no general description was attempted.

Regarding the simualtion of steady-state responses,Bohorquez and Oezdamar(2008) presented

a convolution approach to predict the 40-Hz ASSR. This convolution approach has little

resemblance to the UR method described above.Bohorquez and Oezdamar(2008) modeled

the 40-Hz ASSR as a convolution between a click-train and the single-click evoked MLR, thus

modeling the ASSR as a linear convolution between two linear functions. The click-evoked MLR

consist of three main peaks, the ABR wave-V thePa and thePb, each of which are typically

separated by approximately 25 ms. When a click-train at a rate of 40 Hz is presented to the

auditory system, the components of the MLR were argued to add up in phase,such that theNa

peak of one click will add up in phase with theNb peak of the previous click. A convolutive

approach thus seems to be modeling the 40 Hz ASSR well.

2.3.2 Dipole modeling and ABR physiology sources

Scherg and von Cramon(1985a) developed a spatio-temporal dipole model of AEP generation.

The model was focusing on the electrical dipole components in the brain, andhad therefore no

model of the auditory periphery. The basic assumption was that scalp potentials result from the

superposition of all charges within the brain. Further, it was argued that,as the net charge in

the brain is zero, only pairs of positive and negative charges exist. Each pair is thus producing

a dipole field. The primary idea was that the scalp potentials result from the superposition

of the far fields of many microscopic dipoles, i.e. the same assumption asdeBoer (1975),

Elberling (1976), Melcher and Kiang(1996) and Dau (2003) used to argue for the UR idea.

The main difference between the approaches was the use of multi-channelrecordings in both

Scherg and von Cramon(1985a) andScherg and von Cramon(1985), and the fact that the UR of

Dau (2003) includes neural processing whereasScherg and von Cramon(1985a) only considers

the propagation from the dipole to the electrodes. The aim ofScherg and von Cramon(1985)



2.4. Background summary 13

andScherg and von Cramon(1985a) were to provide a full description of the waveforms at all

electrodes simultaneously. By searching for the minimal number of equivalent dipoles sufficient

to explain the scalp potential, each dipole source (defined by stationary location and orientation)

could be associated with a hypothesized anatomical source. This approach led to the conclusion

that the spread of local potential to the electrodes was only dependent onthe location and

orientation of the recording electrodes and dipole sources. The UR of, e.g., Dau (2003) can

thus be seen as the special case, where the electrode locations where atvertex and mastoid

(giving the orientation as direction between them), and where only the dipole sources in the

brain aligned with this orientation (or weighted according to their misalignment) were effective.

Scherg and von Cramon(1985) found that the generation of wave-I of the classic ABR was located

to the distal end of the auditory nerve. Wave-III of the ABR, was located tobe in, or near to, the

cochlear nucleus. Wave-IV and wave-V could not be located precisely; however, an origin in the

early parts of the brainstem was suggested.

2.4 Background summary

This chapter reviewed the literature on some of the key aspects of this study.It was outlined how

this study models the transiently evoked ABR, the 40 Hz ASSR and the syllable-evoked ABR.

Furthermore, the present study develops an AEP model based on the convolutive approach, where

the AN model produces a summed activity pattern, that is convolved with a linear UR, to produce

the simulated AEP. The following chapter is based onRønne et al.(2012), which develops and

evaluate the ABR model, designed to simulate transiently evoked ABRs.
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Chapter 3

Modeling auditory evoked brainstem
responses to transient stimuli

This chapter develops an ABR model. The theoretical modeling framework is presented, as is

the main implementation details on how the AN model has been humanized. Both the theoretical

framework and the humanization is used throughout this thesis. This chaptercan thus be read both

as an independent study of modeling transiently evoked ABRs, and as the method section for the

rest of this thesis. The chapter is based onRønne et al.(2012).

3.1 Abstract

A quantitative model is presented that describes the formation of auditory brainstem responses

(ABR) to tone pulses, clicks and rising chirps as a function of stimulation level.The model

computes the convolution of the instantaneous discharge rates using the “humanized” nonlinear

auditory-nerve (AN) model of Zilany and Bruce (2007) and an empiricallyderived unitary

response function which is assumed to reflect contributions from different cell populations within

the auditory brainstem, recorded at a given pair of electrodes on the scalp. It is shown that

the model accounts for the decrease of tone-pulse evoked wave-V latency with frequency but

underestimates the level dependency of the tone-pulse as well as click-evoked latency values.

Furthermore, the model correctly predicts the nonlinear wave-V amplitude behavior in response

to the chirp stimulation both as a function of chirp sweeping rate and level. Overall, the results

support the hypothesis that the pattern of ABR generation is strongly affected by the nonlinear and

dispersive processes in the cochlea.

3.2 Introduction

When sound is presented to the ear, it is possible to record auditory evoked potentials (AEPs) on

the surface of the human scalp. AEPs represent the summed electric potential from many remotely

located neurons firing in response to the stimulus applied. They are typically grouped in terms of

time of occurrence after stimulus onset and are thus denoted as auditory brainstem responses

(ABRs) with latencies between 1 and 7 ms, middle-latency responses (MLRs)with latencies in
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the range of 15-50 ms, and auditory late responses (ALRs) with latencies inthe range of about

75-200 ms.

AEPs have been used to asses the neural encoding of sound both for clinical and research

purposes. Various types of stimuli have been considered, such as transients like clicks,

chirps and tone-bursts (e.g.,Jewett and Williston, 1971; Dau et al., 2000), steady-state signals

such as amplitude modulated (AM) tones (e.g.John and Picton, 2000; Galambos et al., 1981;

Kuwada et al., 1986; Picton et al., 1987; Rees et al., 1986), but also more complex signals like

speech (e.g.,Warrier et al., 2004; Agung et al., 2006; Swaminathan et al., 2008; Aiken and Picton,

2008; Akhoun et al., 2008; Lalor and Foxe, 2010; Chandrasekaran and Kraus, 2010). Tone-burst

evoked ABRs have been studied to objectively estimate frequency-specific hearing sensitivity, for

example in newborn and young children (e.g.Ribeiro and Carvallo, 2008) or to estimate effects

of cochlear group delay as a function of frequency and level of stimulation (e.g.Gorga et al.,

1988; Harte et al., 2009; Neely et al., 1988; Murray et al., 1998). Broadband rising chirps have

recently been developed for ABR recordings to maximize synchronous firing of nerve fibers

across frequency, leading to an increase of ABR wave-V amplitude and ahigher signal-to-

noise ratio compared to traditional click stimulation (e.g.Dau et al., 2000; Elberling and Don,

2008; Fobel and Dau, 2004; Junius and Dau, 2005; Shore and Nuttall, 1985). It is argued

(Dau et al., 2000), that these broadband chirp stimuli compensate for the frequency-dependent

group delay seen in the basilar membrane (BM) velocity/displacement travellingwaves. In a

recent study,Elberling et al.(2010) presented five chirps with different frequency-delay functions

and investigated the resulting wave-V amplitude of their responses at stimulationlevels of 20, 40

and 60 dB normal hearing level (nHL). Their results demonstrated that thedispersion function, or

sweeping rate, of the chirp that evoked the largest wave-V amplitude was afunction of stimulation

level. With increasing level, the “optimal” chirp that created the largest wave-V response was

found to become progressively shorter (Elberling et al., 2010), i.e. to have the fastest sweeping

rate.

It is well known that thefrequencydependency of wave-V latency is related to the tonotopical

coding of frequency on the BM in the cochlea. High-frequency stimulation excites basal parts of

the BM and thus produces a shorter delay than low-frequency stimulation that mainly excites

apical parts of the BM (Gorga et al., 1988; Greenwood, 1990; Harte et al., 2009; Neely et al.,

1988; Murray et al., 1998). The level dependency of wave-V latency is not so well understood.

Cochlear tuning is known to be level dependent, where an increase of thestimulus level results

in broader auditory filters and thus a broader excitation pattern on the BM (Glasberg and Moore,

1990; Recio and Rhode, 2000). This means that regions of the BM with characteristic frequencies

further away from the stimulus frequency are also excited.Elberling (1976) andFolsom(1984)

reasoned that the broadening of excitation with level might result in shorterlatencies, as more

basal regions of the BM are activated that are associated with shorter implicit delays. Another

inherent feature of the filter tuning is the change in the envelope of the BM impulse response

at a given location, as level is increased. The timing of the individual peaks of the physiological

impulse response are level independent but the amplitude of the earlier peaks are more emphasized
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as the stimulus level increases (e.g.,Kiang (1965), Recio and Rhode(2000)). This change in the

envelope, as stimulus level is increased, results in an onset emphasis that could result in a decrease

of the wave-V latency. Adaptation in the inner-hair cell (IHC)-AN synapse similarly enhances

the onset of a signal while attenuating later parts (Westerman and Smith, 1988) in the stimulus.

Thus, adaptation in the IHC-AN synapse might also contribute to the level-dependence of wave-V

latency.

The wave V amplitude is both stimulus frequency and stimulus level dependent. The general

shape of the frequency dependence is considered to be mainly controlledby the transfer functions

of the outer and middle ear effectively acting as a band-pass filter (Pascal et al., 1998; Puria, 2003),

with maximal transduction at 1-2 kHz. The level dependence of the wave-Vamplitude results

from the summation of the individual neural responses after the non-linear processing through

the BM at the individual characteristic frequencies (CFs), where compressive behavior has been

found for medium-level stimulation at the CF while linear behavior has been found for low-level

stimulation (e.g.Ruggero et al., 1997). The chirp-evoked ABRs obtained inElberling et al.(2010)

demonstrated non-monotonic level-dependent behavior, assumed to result from the broadening

of neural excitation with increasing level (Harte et al., 2010). At low levels, each frequency

component of the chirp might excite a narrow region on the BM and, given the timing associated

with each component, might add up in phase (e.g.Dau et al., 2000). At high stimulus levels, each

frequency component excites a broader region on the BM, due to upwards spread of excitation

(Rhode and Recio, 2000). Thus, a specific location on the BM is excited by a broader range of

frequency components. These different components contribute with different timing which results

in desynchronization and a reduction of ABR wave-V amplitude (Elberling et al., 2010).

However, while it appears obvious that cochlear processing affects ABR amplitudes and

latencies, only very few studies have actually attempted to provide quantitativepredictions of ABR

data. In the present study, a computational model is presented that simulatesevoked responses

to tone pulses of various frequencies and levels, upward chirps with different sweep rates and

levels as well as click stimuli. The key stages in the model are (i) the nonlinear processing

in the cochlea, including key properties such as compressive basilar-membrane filtering, inner

hair-cell (IHC) transduction, and IHC-AN synapse adaptation, and (ii)the (linear) transformation

between the neural representation at the output of the AN and the recorded potential at the scalp.

This approach was inspired byGoldstein and Kiang(1958), who described evoked responses as a

linear convolution of an elementary unit waveform of a given neuron, called the unitary response,

with the instantaneous auditory nerve (AN) discharge rate in response to agiven stimulus. This

approach was applied to simulate cat compound action potentials (CAP) bydeBoer(1975).

Based on the work ofGoldstein and Kiang(1958), deBoer (1975) and Melcher and Kiang

(1996), Dau (2003) proposed a model for the generation of ABRs and frequency following

responses (FFR) to tones. InDau (2003), the unitary response was estimated empirically based

on measured ABR data, via deconvolution of average click-evoked responses and the simulated

neural activity pattern at the output of an AN model.Dau(2003) demonstrated that the auditory
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periphery strongly affects the simulated ABR patterns and could account for some of the key

features observed in the recordings of chirp- versus click-evoked responses. However, while that

study provided a proof of concept, it did not consider a more detailed analysis of the responses

as a function of stimulation frequency and level. Furthermore, significant discrepancies between

the predicted and measured wave-V latencies were observed but not further evaluated. Here,

the original modeling framework ofDau (2003) was extended to include current advances in

AN modeling, such as linear BM filters at high stimulus levels, peak splitting (Kiang, 1990)

and a shift of best frequency with level. The AN model developed byZilany and Bruce(2007)

was used here which is based on current knowledge derived from both behavioral and objective

measures of cochlear processing. The model was originally developed for cat but also adopted

by the same authors for humans including corresponding middle-ear filteringand BM filter tuning

(Ibrahim and Bruce, 2010).

3.3 Model for ABR generation

3.3.1 Convolution model of ABR generation

Melcher and Kiang(1996) described the generation of ABR in cats as a summation of individual

brainstem cell potentials,vi , in response to a given stimulus,s;

ABR(t, x̄1, x̄2,s) = ∑
i

vi(t, x̄1, x̄2,s) (3.1)

where ¯x1 and ¯x2 are the locations of the electrodes on the scalp. The potential,vi , in response to a

given acoustic stimulus, can be determined by a convolution between the instantaneous firing rate

of theith cell, r i(t,s), and a unitary response function,u(t, x̄1, x̄2). This latter function is defined as

the potential produced between the electrode positions on the scalp, ¯x1 and ¯x2, each time the cell

discharges;

vi(t, x̄1, x̄2,s) = r i(t,s)⋆ui(t, x̄1, x̄2) (3.2)

where ⋆ denotes the convolution operation. To obtain an ABR with this method, all cells

need to be considered individually, which would be computationally prohibitive. To avoid this,

Melcher and Kiang(1996) suggested the use of the cell population potential,V. Cells can be

grouped by the physio-anatomical type of the cell,p, whereP is the number of different cell

types:

ABR(t, x̄1, x̄2,s) =
P

∑
p=1

Vp(t, x̄1, x̄2,s) (3.3)

It is reasonable to assume that all cells of the population described have thesame unitary



3.3. Model for ABR generation 19

response (UR),u(t,x1,x2), as they have the same morphological and electrical properties

(Melcher and Kiang, 1996). The combination of eqn. (3.2) and (3.3) yields a general expression

for ABR generation:

ABR(t, x̄1, x̄2,s) = u(t, x̄1, x̄2)⋆
P

∑
p=1

Np

∑
i=1

rpi(t,s) (3.4)

whereNp is the total number of cells of type,p. The three main peaks in the click-evoked ABR are

waves I, III and V.Dau(2003) made the assumption that the instantaneous firing functions in the

medial superior olive (MSO), anterior ventral cochlear nucleus (AVCN) are the same as in the AN,

following the suggestion byMelcher and Kiang(1996). Thus, the instantaneous firing functions

for the different cell populations are given byr i,MSO = r i,AVCN = r i,AN = r i , simplifying Eqn.3.4

to:

ABR = u(t, x̄1, x̄2)⋆
N

∑
i=1

r i(t,s) (3.5)

The generation of an ABR is thus represented as the sum of the instantaneous firing from all cells,

convolved with a UR that is dependent on the electrode location on the scalp but assumed to be

independent of cell type, efferent influence and stimulus.

3.3.2 Model structure

The structure of the ABR model is shown in Fig. 1. The AN model calculates theinstantaneous

discharge rate for individual AN fibers, in response to a given acoustic stimulus defined in pascals.

Each AN fiber is tuned to a specific characteristic frequency (CF). The CFs chosen were spaced

according to the human cochlear map ofGreenwood(1990). The number of fibers included was

a trade-off between computational time and model accuracy. Throughoutthis study, 500 fibers

ranging from 100 Hz to 16 kHz were used in all simulations. The fibers werechosen so they were

spaced equally on the BM according to the human cochlear map (Greenwood, 1990). The output

of the AN model, the instantaneous firing rate of all the AN fibers, were summedand convolved

with the UR function.

The AN model ofZilany and Bruce(2006) is shown schematically in Fig. 2. The input to the

AN model is the instantaneous pressure waveform of the stimulus in units of pascals. The output of

the AN model is the spike rate in response to the stimulus pressure. The model includes a number

of key functional stages: a middle-ear filter; a feed-forward control path; a primary signal-path

filter (C1) representing the basilar membrane (BM) filtering adapted by the control path; a parallel-

path filter (C2) for high-level stimuli; an inner-hair cell (IHC) section followed by a synapse model

and a stochastic AN spike discharge generator. In Fig. 2, the following abbreviations are used:

outer hair cell (OHC), low-pass (LP) filter, static nonlinearity (NL), characteristic frequency (CF)

and inverting nonlinearity (INV).COHC andCIHC are scaling constants that indicate the OHC and
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Figure 3.1: Schematic structure of the ABR model. 500 AN fibers tuned to different CFs are individually simulated
by the AN model. The summed activity, integrated across frequency, is then convolved with a unitary response and
represents the simulated ABR to a given stimulus.
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Figure 3.2: Diagram of the auditory-nerve model developed byZilany and Bruce(2006). Reprinted from
Zilany and Bruce(2006) with permission from the Acoustical Society of America (©2006). The input to the AN
model is the instantaneous pressure waveform of the stimulus in units of pascals. This waveform is band pass filtered
by a middle-ear filter. A feed-forward control path filter determines the characteristics of the main C1 filter path which
is mainly active at levels below approximately 96 dB SPL. A parallel C2 filter path is mainly active at higher stimulus
levels. The two filter paths are followed by a nonlinear inner hair-cell (IHC) stage and a nonlinear synapse model. The
output of the AN model, used in this study, is the instantaneous discharge rate obtained at the output of the synapse
model.

IHC status, respectively. The black and gray curves in the filter stages represent the tuning at low

and high sound pressure levels, respectively. The wideband C2 filter shape is fixed and is the same

as the broadest possible C1 filter. The black and gray functions in the stage following the C1 filter

indicate the nonlinearity in the IHC input/output functions in normal and impaired (scaled down

according toCIHC) hearing, respectively. Details about the model implementation can be found

in Zilany and Bruce(2006). In the present study, the spikes/s output from the synapse model was

used, rather than the stochastic output from the spike generator. The stochastic spike generator

requires averaging over many repetitions before it becomes repeatable and thus usable to ABR

modeling.
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3.3.3 Features of the humanized AN model

The parameters of the AN model ofZilany and Bruce(2006) andZilany and Bruce(2007) were

originally fitted to cat AN data. Later, the model was modified to estimate human responses by

the same authors. First, the original cat middle-ear transfer function was replaced by a human

middle-ear transfer function, based on the linear circuit model ofPascal et al.(1998). Second,

the cat BM tuning was replaced by human BM tuning (seeIbrahim and Bruce, 2010, for details).

Two prominent and different estimates of BM tuning exist in the literature, hence the relative

broad tuning byGlasberg and Moore(1990) and the sharper tuning byShera et al.(2002). In this

study, the tuning fromShera et al.(2002) was used. It has been argued that humans have this

significantly sharper BM mechanical tuning than experimental animals such ascats and guinea

pigs (Shera et al., 2002, 2010; Bentsen et al., 2011). The sharper human tuning is also probable in

light of the recent findings byJoris et al.(2011) who showed that macaque monkeys have sharper

tuning than rodents and cats. Further, the simulations using the ABR model produced the best

results with theShera et al.(2002) tuning compared to the alternative broader tuning presented by

Glasberg and Moore(1990). To incorporate the sharper tuning, the model equivalent rectangular

bandwidth (ERB) quality factor,QERB, for cochlear tuning was modified to be:

QERB = 12.7

(

CF
1000

)0.3

(3.6)

where CF is the center frequency of the BM filter. According toShera et al.(2002), this function

is applicable to humans at frequencies at and above 1 kHz. To map theQERB to theQ10 estimates

used by the AN model the following mapping function was used (Ibrahim and Bruce, 2010):

Q10 = 0.2085+0.505QERB (3.7)

Fig. 3.3shows the quality factor, Q, for the model’s filters for different levels andCFs derived from

simulated responses. The Q-values were derived from tuning curves by evaluating the magnitude

response at CF to a number of pure tones with equal amplitude covering the frequency range

around CF. The output from the C1 filter path was used for this calculation.

Third, cochlear suppression tuning curves have been found to have apeak at a higher frequency

than the tip of an excitatory tuning curve (Delgutte, 1990), i.e., maximum suppression has been

observed when stimulating at a higher frequency than CF. This was implemented in the original

Zilany and Bruce(2006) model by basally shifting the CF of the so-called control path filter

by 1.2 mm on the BM. The 1.2 mm basal shift was retained in the humanized model, but

Greenwood(1990)’s human frequency-place mapping was implemented to link the 1.2 mm shift

to the corresponding characteristic frequency.
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Figure 3.3: Filter bandwidths,QERB, derived from the output of the C1 filter path (from Fig. 2). The dashedcurve
showsQERB estimates based onShera et al.(2002)’s data obtained at a stimulation level of 40 dB pe SPL.

3.4 Method

3.4.1 Estimation of the unitary response

The unitary response (UR) was obtained by deconvolving a “template” click-evoked ABR with the

summed neural activity pattern generated by the AN model in response to a click stimulus. Given

the assumed superposition, any stimulus should in theory be usable. In this study, a click stimulus

was chosen as it is most commonly used in clinics. The deconvolution is an ill-posed mathematical

problem and has an infinite number of solutions. A stable and probable solution was, like inDau

(2003), found using Tikhonov regularization (Tikhonov, 1963) as implemented in the MATLAB

Regularization Tools ofHansen(1998). The UR is subject dependent. In an attempt to employ a

general UR,Elberling et al.(2010)’s grand average ABR data (left panel of Fig. 4) was used for

the deconvolution. The resulting general UR was advantageous as the simulations presented in

this study were compared to reference data, typically averaged across many subjects.

The grand average ABR (Elberling et al., 2010) was made by aligning wave-V peaks across

recordings from 20 ears. The stimulus was a 100µs standard click presented at 60 dBnHL (≈
95.2 dB pe SPL, see section III.B.3 for conversion factor). The alignment procedure created a

standardized click-evoked ABR that had the disadvantage that the wave-V amplitude was smaller

than in an individually measured ABR, due to inter-subject variability of the individual wave-

forms. The UR was therefore scaled such that the simulated click-evoked ABR at 40 dBnHL had

the same amplitude as the mean ABR amplitudes (rather than the amplitude of the grandaveraged

waveforms) fromElberling et al.(2010). The right panel of Figure3.4 shows the UR, obtained

with the grand averaged ABR (from the left panel) as the target. The UR function is similar to

the one obtained inDau (2003). The ABR model using this UR is also capable of simulating

the latency of wave-I. Given the linearity of the UR function the wave-I to wave-V interval will

remain constant. Simulated wave-I amplitudes will however be smaller due to the way the UR was

derived from the grand average ABR. If the model were to simulate wave-I amplitudes, the UR

should either be scaled according to a representative wave-I amplitude, or be recalculated based
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Figure 3.4: Left panel: Grand average ABR evoked by 60 dBnHL click(Elberling et al., 2010). Right panel: The
derived unitary response function used throughout this study. This was calculated as the deconvolution of the grand
average ABR and the summed neural activity pattern generated by the ANmodel in response to an identical click
stimulus.

Frequency Total Length
kHz ms cycles
0.5 10 5
0.75 7 5.25

1 5 5
1.5 5 7.5
2 5 10
3 3.4 10.2
4 2.5 10
6 1.7 10.2
8 1.25 10

Table 3.1: Tone burst stimuli used, with durations represented in ms andas number of cycles.

on a click-response where the wave-I is more faithfully represented. Inthe present model, linear

superposition was assumed above the level of the AN synapse; thus, the derived UR function was

applied to any input stimulus at any level.

3.4.2 Stimuli

Tone bursts

Hanning-windowed tone bursts as inHarte et al.(2009) were used as stimuli. The tone bursts with

center frequencies of 2 kHz and above included approximately 10 cyclesand therefore ranged

from 5 to 1.25 ms (see Table3.1). The number of cycles during the rise time period was reduced

to 7.5 at 1.5 kHz and 5 at 1.0 kHz. These durations represent a trade-off between having an equal

number of cycles across frequencies and a relatively narrow spreadin their spectrum. Levels of

40 to 100 dB peSPL were used, in steps of 10 dB.
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k d Chirp
0.4501 0.6373 5
0.2207 0.5468 4
0.1083 0.4563 3
0.0531 0.3658 2
0.0260 0.2753 1

Table 3.2: Values of the paired parameter, k and d, which define the delay-frequency function (eq.3.8)

Broadband chirps and clicks

Five chirps with different delay functions were used as defined inElberling et al.(2010). The

frequency-dependent delays of the chirps were defined as:

τ = k ·CF−d (3.8)

whereτ represents the latency associated with frequency CF, andk andd are paired constants.

Table 3.2 lists the parameters representing the individual chirps, following the choices of

Elberling et al.(2010). The delay difference between 710 and 5700 Hz for the chirps 1 to 5 were

thus 1.86, 2.56, 3.32, 4.12 and 5.04 ms, respectively. For comparison, a “standard” click stimulus

of 100 µs duration was presented at 20, 40 and 60 dB nHL. The five chirps werecalibrated such

that they had the same spectrum level as the click.

Calibration of the stimuli

As the experimental data were described in dB pe SPL or dB nHL, it was necessary to acoustically

calibrate the transient stimuli used in this study with an IEC 60711 coupler. Thetone bursts and

the click were measured acoustically with an Etymotic ER2 earphone connectedto an IEC 60711

coupler (Brüel and Kjær 4157) through a Brüel and Kjær external earsimulator DB 2012. For each

stimulus in the tone burst simulation (6 tone bursts and 1 click), the amplitude was adjusted until

the acoustically measured peak-to-trough amplitude was similar to the peak-to-trough amplitude

of a reference 1-kHz pure tone signal. A scaling factor was found to calibrate the numerical model.

As in Elberling et al. (2010), the chirps were adjusted to have the same spectrum level

(rather than dB pe SPL) as the calibrated click.Elberling et al.(2010) provided the click and

chirp levels in dB nHL, and the stimuli needed to be converted to dB peSPL at the eardrum
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before being presented to the model. The correct conversion factor was found to be 35.2 dB1

(Richter and Fedtke, 2005), and hence the levels corresponding to 20, 40 and 60 dB nHL were

found to be 55.2, 75.2 and 95.2 dB peSPL, respectively.

3.5 Results

3.5.1 Simulation of tone-burst evoked wave-V latencies

Figure3.5shows the simulated tone-burst evoked ABR wave-V latencies obtained with the ABR

model (symbols connected with solid lines). For direct comparison, functions fitted to measured

data fromNeely et al.(1988) are indicated as dashed lines.Neely et al.(1988)’s fitted lines were

described by:

τb = a+bc−(i/100)(CF/1000)−g (3.9)

where i is the tone-burst intensity in SPL (divided by 100), CF is the tone burst center frequency

in Hertz, anda = 5 ms,b = 12.9 ms,c = 5.0 andg = 0.413 were fitted constants. Additionally,

measured data obtained inHarte et al.(2009) at a level of 66 dB peSPL are shown as a dotted line.

The differences betweenNeely et al.(1988) andHarte et al.(2009)’s stimuli resulted in negligible

differences in simulation results, therefore onlyHarte et al.(2009)’s stimuli are simulated here.

The inter-subject variability (the standard deviation) on theHarte et al.(2009) data is 1.36 ms for

1 kHz, 0.93 ms for 2 kHz, and 0.71 ms for 8 kHz.Neely et al.(1988) does not explicitly state any

inter-subject variability. The click data (Elberling et al., 2010) showed an inter-subject variability

of 0.61 ms, 0.92 ms and 0.91 ms for hence 20 dB HL, 40 dB HL and 60 dB HL stimulus level.

The simulated and measured ABR wave-V latencies decrease exponentially as a function of

frequency. At the highest stimulation levels, the simulated latencies are close tothose observed in

Neely et al.(1988). With decreasing level, the rate of change of latency with frequency increases

both in the simulations and the measured data. However, the dynamic range of latencies across

levels is smaller in the predictions than in the data. This effect is dominant towards higher tone-

burst frequencies where latencies of about 6-7 ms were predicted in contrast to 6-8 ms in the

measured data. The squared correlation coefficient (the zero lag of thenormalized covariance

1 The ISO 389-6:2007 standard specifies that the peak-to-peak reference equivalent threshold sound pressure level
(peRETSPL) is 43.5 dB peRETSPL, for an ER2 earphone connected toan IEC 60711 coupler through the external
ear simulator DB 0370. Unfortunately, the tube diameter for the standard ear tip for the ER2 earphone (ER1-
14) is 1.37mm whereas it is 3mm for the DB 0370. This mismatch creates anacoustic horn effect which affects
the spectrum (Richter and Fedtke, 2005; Elberling et al., 2012) and thus the level.Richter and Fedtke(2005) also
measured the peak-to-peak reference equivalent threshold soundpressure level (peRETSPL) for an ER2 earphone
connected to a head and torso simulator (HATS) and found it to be 35.2 dB. The change of the external ear simulator
from the DB 0370 (ISO 389-6:2007) to the HATS (Table 7Richter and Fedtke, 2005), results thus in a 8.3 dB
change in the peRETSPL. As the acoustic horn effect is not present in human fittings, the ISO 389-6:2007 does not
represent the pe SPL at the eardrum. For the modeling presented in the present study, the HATS measurements from
Richter and Fedtke(2005) were therefore used as the reference.
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Figure 3.5: Simulated (solid curves) and modeled (dashed curves based on eq.3.9, dotted curve, based onHarte et al.,
2009) ABR wave-V latencies as a function of tone-burst center frequency and level. Each line fitted toNeely et al.
(1988)’s empirical data corresponds to one simulated level. Open symbols to theright show simulated click-evoked
ABR wave-V latencies, filled symbols showElberling et al.(2010) measured click latencies. All levels are given in dB
pe SPL.

function) between tone-burst data and simulations is found to beR2 = 0.90, showing a nice

covariance between simulations and data. The simulated click-evoked latencies are indicated

by the symbols next to the 8-kHz tone-pulse results. The filled circles on the right show the

corresponding measured click data taken fromElberling et al.(2010). The stimulus levels used

for the simulations were the same as those for the tone-burst simulations, whereas the levels of

the click in the experimental study ofElberling et al.(2010) are stated next to the respective data

points. As for the high-frequency tone pulses, the model predicts a reduced dynamic range of

wave-V latencies across levels compared to the measured values.

3.5.2 Simulation of broadband chirp-evoked wave-V amplitudes and latencies

The black lines in Fig.3.6 shows the simulated wave-V amplitudes obtained for the five chirps

described inElberling et al.(2010), at the three levels tested. In addition, click-evoked wave-V

amplitudes for the same stimulation levels are shown on the left. The “change of delay” abscissa

refers to the delay differences between the 5700-Hz component to the 710-Hz component of the

stimulus. This reflects that a chirp with a faster sweeping rate has a shorter duration. The click

is represented by a 0-ms change of delay as all the frequency components have the same delay.

The gray lines of Fig.3.6 shows the corresponding measured data fromElberling et al.(2010).

The squared correlation coefficient between data and simulations isR2 = 0.90, demonstrating

good covariance between simulations and data. The measured data shows that, for the highest

stimulation level of 60 dB nHL, the chirp with a relatively short duration (chirp2) i.e. a small

delay difference between the low- and high-frequency stimulus components, had the largest wave-

V amplitude. Chirp 2 thus represents the stimulus that is most effective at synchronizing the neural

output across frequency. In contrast, for the stimulation levels of 40 dB nHL and 20 dB nHL,
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the corresponding maxima were found with chirp 3 and chirp 5, respectively, suggesting that

other sweeping rates provided maximal synchronization across frequency. These key features

observed in the measured data are also reflected in the simulations. The click-evoked responses

show a smaller amplitude than those obtained with all chirps both in the data and the predictions.

However, the maxima in the simulated functions are slightly shifted towards chirpswith shorter

durations. Overall, the correspondence between simulations and measured data is remarkable and

the results support the hypothesis that the dynamic nonlinear processes inthe cochlea strongly

affect ABR formation.

Figure3.7 shows wave V latencies simulated (black lines) by the ABR model and measured

(gray lines) byElberling et al.(2010) in response to the click and the five chirps. The squared

correlation coefficient between data and simulations is found to beR2 = 0.96, indicating

covariance of simulations and data.R2 does not tell anything about the agreement between

absolute latency values, it only shows that the data and simulation co-vary to alarge degree.

The measured latencies can probably be explained in terms of upwards spread of excitation

(Elberling et al., 2010) and the fact that the frequency region dominating the ABR response is

2 to 4 kHz (Eggermont and Don, 1980) for the lower levels of 20 and 40 dB HL (for higher levels

the region broadens towards higher frequencies). As stimulus level is increased, the BM filters

broaden and lower frequency parts of the stimulus will excite the main frequency region. The

longer the chirp is, the earlier is the low frequency part of the stimulus presented and an early

excitation of the main frequency region is possible. Thus, at high levels (e.g. 60 dB HL) and

long chirp delays (e.g. chirp 5), the latency will be very short due to the early presentation of low

frequencies and the upward spread of excitation. The simulated results show the same trends, i.e.

that the shortest duration is observed for high stimulus levels and long chirpdelays. However, the

level-dependence seems, as in the previous simulation of tone bursts and clicks, much compressed.

3.6 Discussion

This study evaluated the developed ABR model by comparing simulations with literature data,

using clicks, tone-bursts and chirps as stimuli. The wave-V amplitudes simulatedin response

to a click presented at three stimulus-levels showed good correspondence to literature data,

demonstrating that the overall calibration of the model was correct. Further, the correct level-

dependence indicates that cochlear compression was well implemented. Thelatencies of the

simulated tone-burst evoked ABRs showed good frequency-dependence, whereas the level-

dependence was somewhat compressed. First, this shows that the travelling wave delay (the

frequency-dependence) was modeled well. Second, the compressed level-dependence suggests

that either the level-dependence of the BM tuning or the adaptation of the AN-IHC synapse was

modeled imprecisely, or alternatively, that the assumptions underlying the UR were too extensive.

This will be further discussed below. The chirp simulations showed a good correlation with

literature data. The simulations of the five chirps with different sweeping rates at three different

levels demonstrated that the current model was capable of simulating responses to complex stimuli
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and that the interaction between the travelling wave delay and the level-dependent BM tuning

seems to be working well.

3.6.1 Limitations of the conceptual approach

The assumption that all nonlinearity is restricted to the BM and AN and that the remaining

processing is linear is an obvious over-simplification given the high complexityof neural

processing within the brainstem. Specifically, the assumption that the rate functions in the MSO

and AVCN within the brainstem are the same as in the AN is most likely erroneous (Dau, 2003).

For example, it has been shown that neural synchronization in the AVCN can be enhanced

compared with AN fibers, due to the convergence of inputs from two or more AN fibers on an

AVCN cell and postsynaptic cells that require coincident input spikes before firing (Joris et al.,

1994). Furthermore, even though the human ABR may be largely generated by brainstem cells

in the spherical cell pathway (Melcher and Kiang, 1996), there is probably also some contribution

from other cell types such as globular and multipolar cells. There is still some controversy about

the exact generating sites of the ABR peaks beyond wave I. The whole modeling approach should

therefore be considered as a rough approximation of the real neural mechanisms involved in the

generation of brainstem potentials. Nevertheless, it appears that the chosen approach represents

an effective approximation since major characteristics of the measured datacan be accounted for.

These major characteristics include the wave-V amplitude, the frequency dependence of the wave-

V latency and, to a lesser degree, the level-dependence of the wave-V latency.

3.6.2 Effects of the unitary response function

In the present study, the UR was empirically obtained by deconvolving a grand average click ABR

with the discharge rate function at the output of the AN model. The UR was onlyobtained once,

for this 95.2 dB SPL click evoked grand averaged ABR, and all other stimulus conditions made

use of this UR. Only using one UR derived from a single waveform ensured that the generality

of the modeling framework could be tested. Simple linear convolution of a UR mightbe an over-

simplification for several reasons. First, the UR can be assumed to be subject dependent. In the

present study, all simulations were rerun using individually estimated UR functions from three

different subjects (not shown explicitly). However, this only resulted in achange to the overall

simulated response amplitudes, and introduced an individual latency offset. The differences were

minimal and reflected inter-subject differences, keeping the same broad dynamics as observed for

the grand averaged UR. Second,Chertoff(2004) investigated the level and frequency dependency

of a UR used to model compound action potentials (CAP) in Mongolian gerbils. He showed that

the UR has both a slight level and frequency dependence in this species (the first peak of the

CAP-UR shifts up to 0.1 ms). However, no general formulation of the dependency was stated

and no formulation of a level-dependent UR for humans has yet been attempted in the literature.

Further, the interval between wave-I and wave-V peaks has been shown to be remarkably robust
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across stimulus level in ABR recordings (Don and Eggermont, 1978; Eggermont and Don, 1980),

indicating that a level-dependent UR is not required. Contradictory to this,however,Chertoff et al.

(2010) measured compound action potential (CAP) latency in humans, and demonstrated that

CAPs could have a smaller latency change with level than what has been reported for ABR wave-

V latency (Serpanos et al., 1997; Dau, 2003; Elberling et al., 2010). This would tend to suggest

that the wave-I (which is believed to have the same origin as the CAP) to wave-V interval, and

thus the UR, should be level-dependent. It is unclear from the literature whether a level-dependent

UR is in fact needed.

3.6.3 Wave-V latency dependency on frequency and level

Taking the variability on the measured data into account, the simulated tone-burst evoked response

latencies showed reasonable agreement with the measured data (Harte et al., 2009; Neely et al.,

1988) for the frequency range 1 - 8 kHz and for a level range of 40 - 100 dB SPL. In particular,

for a given stimulation level, the change of latency with frequency can be accounted for quite well

by the model. However, the latency change with level was smaller in the simulationsthan in the

data, particularly at high frequencies. Click-evoked ABRs were also simulated to test the model’s

performance when considering broadband excitation. The simulated click-evoked latencies of the

present study decreased by only 0.6 ms for a 40 dB increase of stimulus level (from 55 to 95dB

pe SPL), corresponding to -0.015 ms / dB, which is in contrast to the decrease of a little less

than 2 ms observed in theElberling et al.(2010) data, corresponding to -0.043 ms / dB. Other

literature studies report latency decreases in the order of -0.043 ms / dB (Serpanos et al., 1997)

and -0.046 ms / dB (Dau, 2003) for similar stimulus ranges. Even though the variability on the

individual data set was high (a standard deviation of 0.81 ms on average for Elberling et al., 2010),

the discrepancy between model and data is noticeable.

BM filter tuning and IHC-AN synapse adaptation determine the level dependency of ABR

wave-V latency in the model. The ABR model latency change of -0.015 ms / dB isa small

improvement over the earlier modeling study byDau (2003) who obtained latency changes of -

0.005 ms / dB for a similar stimulus level range. Additional simulations, where the BM tuning

was altered (and reported inRønne et al., 2011), demonstrated that the improvement was the

result of the use of the humanized version ofZilany and Bruce(2007)’s AN model instead of the

model byHeinz et al.(2001). The humanized AN model uses the sharper tuning estimates from

Shera et al.(2002) (seeIbrahim and Bruce, 2010) while Heinz et al.(2001) used the estimates of

Glasberg and Moore(1990). The filters ofShera et al.(2002) (derived at only 40 dB SPL) are more

sharply tuned than those described inGlasberg and Moore(1990) since they were estimated based

on behavioral forward-masking data and otoacoustic emission data. In contrast, the estimates

of Glasberg and Moore(1990) are based on behavioral simultaneous masking, which is affected

by peripheral suppression (Shera et al., 2002; Bentsen et al., 2011). However, there is still a

substantial discrepancy between the simulated and the measured latency-level range. As shown

in Fig. 3.3, the model incorporates a level dependence in the C1 filter tuning factor. While the
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empirical evidence for the frequency dependence of the tuning factor (Shera et al., 2002, 2010;

Bentsen et al., 2011) is well documented, there is little data existing for the level dependence in

humans. This quality factor level dependence will strongly affect wave-V latency and could be

one reason for the underestimation observed in the simulations. Additionally, neural adaptation in

the IHC-AN synapse enhances the onset and leads to shorter delays. For analysis purposes (data

not shown in this paper, seeRønne et al., 2011), click-evoked wave-V latencies were simulated

using an altered version of the ABR model where the IHC output of the AN model was used,

thus not including any adaptation process. However, while adaptation affected the absolute value

of the wave-V latency in the framework of the present model, it did not havea major impact on

the latency variation with level. A possible level-dependence of the UR, thoughnot implemented

in the model, could also affect the ABR wave-V latency. As discussed above, the literature is

inconclusive on this matter. Further,Chertoff et al.(2010)’s CAP latencies decrease by -0.030 ms

/ dB over the level range of 75 to 105 dB SPL. So, even if a level-dependent UR was implemented

to account for the difference in latency change betweenChertoff et al.(2010) andElberling et al.

(2010), the AN model would still under predict the wave-V latency. It thus remainsunclear why

the model fails to account more accurately for the level-dependent behavior of wave-V latency.

3.6.4 Across-frequency synchronization for broadband stimulation

When considering effects of level-dependent neural synchronization across frequency, the simu-

lations illustrate the crucial role of nonlinear cochlear processing for the formation of brainstem

responses to transient stimuli. The chirps presented inElberling et al.(2010) were considered here

as “critical” stimuli to challenge and evaluate the model. The results support thehypothesis that the

dynamic behavior of ABR generation is mainly due to peripheral mechanisms asall processing

at higher neural stages beyond the level of the AN was essentially considered as a linear filter.

Further, the results reinforce the need to have level dependent chirp stimuli to get maximum wave-

V amplitude clinically (Elberling and Don, 2010).

3.6.5 Perspectives

The model might be useful as a tool for studying consequences of different types of cochlear

hearing impairment on the evoked potential waveform, provided that pathology can be adequately

simulated in the model. Furthermore, brainstem responses to complex stimuli (cABR), such as

consonant-vowel utterances, have been considered as an objectiveindex of the neural transcription

of features (e.g. temporal, spectral) that are important for speech understanding in quiet and

noise (e.g.Anderson et al., 2011). The model could be used to analyze which spectro-temporal

characteristics of the speech-evoked patterns can be accounted for by cochlear processes. Finally,

an important step would be to consider ”steady-state” responses (SSR) obtained with temporally

fluctuating stimuli such as complex tones or amplitude modulated tones or noises. These responses

are assumed to be generated by units in the auditory brainstem and in the primary auditory
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cortex (e.g.Kuwada et al., 1986). Therefore, the corresponding unitary response would have to

be extended by a middle-latency component. It is not clear, to what extent such a convolution

approach can be successfully applied to middle-latency responses (MLR), to transients as well

as amplitude modulation following responses. Regarding MLRs, at least, it has been shown

that the “classical” SSR to click trains presented at a 40 clicks/sec repetition rate can be

modeled reasonably well using a linear convolution approach (Bohorquez and Oezdamar, 2008;

Junius and Dau, 2005).

3.7 Summary and conclusion

A computational model for the generation of ABRs to transient stimuli was presented. The

model was based on the assumption that an ABR can be simulated as the convolution between

an instantaneous discharge rate function and a unitary response. The instantaneous discharge rate

function was obtained from a state-of-the-art nonlinear AN model (Zilany and Bruce, 2006). The

UR was derived “empirically” as the deconvolution between the simulated instantaneous discharge

rate AN function in response to a click stimulus and measured average click-evoked ABR.

The model was evaluated by comparing the predicted responses to measured ABR data from

the literature. It was shown that a realistic simulation of the level-dependent signal processing in

the cochlea is essential for the interpretation of ABR to tone pulses, clicks and chirps presented at

various stimulation levels. In particular, the model could account reasonably well for the nonlinear

wave-V amplitude behavior as a function of chirp stimulus level and sweepingrate which supports

the strong role of cochlear nonlinearities, such as compression and level-dependent tuning, for

the formation of ABR. However, the model clearly underestimated the level dependence of the

response (wave-V) latency and it remained unresolved in the frameworkof the modeling work

presented here what mechanisms are responsible for the relatively largelatency changes with level

observed in the data.

Overall, the developed model can provide insight into the complex nature of ABR generation.

It can be used to investigate the representation of other types of stimuli (such as speech in noise)

or to study effects of (different types of cochlear) hearing impairment on the predicted potential

patterns. Furthermore, the modeling approach might provide a basis for theinvestigation of longer-

latency responses, such as steady-state responses to amplitude modulatedtones and noises.

The ABR model including, grand average ABR, UR, and key simulations, is included in

the Auditory Modeling (AM) toolbox (Søndergaard et al., 2011) and can be downloaded from:

http://amtoolbox.sourceforge.net/ (date last viewed 02/14/12).

http://amtoolbox.sourceforge.net/


Chapter 4

Modeling the level-dependent latency of
the auditory brainstem response

This chapter is based onRønne et al.(2011). In the framework of the thesis, this is an expanded

discussion on why the level-dependent latency of the click-evoked ABR isunderpredicted by the

ABR model.

4.1 Abstract

Auditory brainstem responses (ABR) are used for both clinical and research purposes to

objectively assess human hearing. A prominent feature of the transient evoked ABR is the level-

dependent latency of the distinct peaks in its waveform. The latency of the most prominent

peak, wave-V, is about 8 ms at a peak equivalent sound pressure level of 55 dB, and reduces

for increasing level by approximately 1 ms / 20 dB. A classical explanation for this finding asserts

that an increasing stimulus levels lead to a broadened excitation pattern on the basilar membrane.

This results in further activation of the basal regions of the cochlea. Given the physical properties

of the basilar membrane, increased basal activation is believed to cause a decreasing ABR latency.

An Auditory Nerve (AN) model and the Dual Resonance Non-Linearity (DRNL) filter model

are considered as separate front-end cochlear models to simulate ABRs. Even though both

models incorporate level-dependent tuning and synapse adaptation, andthus theoretically should

be capable of simulating level-dependent latencies, both models under-predict the latencies. The

failure to produce accurate simulations suggests, that the level-dependingtuning in the models is

not accurately modelled. The level dependency of the basilar membrane filter tuning in humans is

not well described in the literature and could therefore cause the modelling difficulties.

4.2 Introduction

ABRs in response to transient sound stimuli represent the summed electric potential from many

remotely located neurons, recorded via scalp electrodes. The ABR has 7distinct waves, where

wave-V is the most prominent. One key feature of the ABR wave-V is the peaklatency which

is dependent on both frequency (Neely et al., 1988) and level (Dau, 2003). This frequency

dependence is due to the tonotopic mapping on the basilar membrane (BM) with high frequency
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at base and low frequency at apex. The result is that high frequencyauditory nerve responses

occur earlier than low frequency responses. The level-dependenceis not as well understood, but is

thought to be determined by the frequency specificity of the basilar membrane(BM), i.e. its tuning,

and the inner hair cell (IHC) - auditory nerve (AN) synapse adaptation.This study has investigated

the ability of two established auditory models, when used as a front-end in an ABR model, to

simulate level-dependent wave-V latency in response to click stimuli. Both the Auditory Nerve

(AN) model (Zilany and Bruce, 2006, 2007) and the Dual Resonance Non-Linearity (DRNL) filter

model (Meddis, 2006) were assumed to contain the nonlinear processes required to account for

level-dependent wave-V latency. Two front-end models are used to minimisethe potential effect of

implementation errors, and to evaluate whether the individual differences between the two models

are important.

4.2.1 Level-dependent latency theory

Cochlear tuning is level-dependent, where an increase in stimulus level results in broader auditory

filters. On the BM, the broader filters result in broader excitation patterns,i.e. regions of the

BM with characteristic frequencies further from the center-frequencyof a stimulus are recruited.

Elberling(1976) andFolsom(1984) discussed how this broadening in excitation with level results

in shorter latencies as more basal regions of the BM are activated, i.e. regions with shorter

implicit delays. Another inherent feature of the filter tuning is the change in theenvelope of

the local BM impulse response. An increase in level will result in an inherently shorter impulse

response. The delay of the individual peaks will be constant but the amplitude of the earlier peaks

will be emphasised, and given the associated delay will decrease with increasing stimulus level.

Recio and Rhode(2000) demonstrated that this phenomena can be physiologically measured on

the chinchilla BM, andKiang (1965) showed that the effect is also measurable in the cat AN.

Across many filters, the envelope change with increasing stimulus level acts as an onset emphasis

that results in a decrease of wave-V latency. The IHC-AN synapse adaptation has similar

properties, amplifying the onset of a signal and attenuating later parts (Westerman and Smith,

1988). This effect enhances the level-dependent effects on wave-V latency created by the filter

tuning.

4.3 ABR Model structure and unitary response

The structure of the ABR model is shown in Fig.4.1. The ABR model uses either the DRNL

filter model (DRNL-ABR) (Meddis, 2006) or the AN model (AN-ABR) (Zilany and Bruce, 2006,

2007) as the front-end cochlear model. The AN model calculates the instantaneous discharge

rate for individual AN fibres, in response to a given stimulus defined in Pascals. Equivalently,

the DRNL filter model calculates the vesicle release probability also for single AN fibres. Each

fibre (in both models) is tuned to a specific characteristic frequency (CF).The CFs chosen were

spaced according to the human cochlear map ofGreenwood(1990). The number of fibres included
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Figure 4.1: Schematic structure of the ABR model. 500 AN fibers tuned to different CFs are individually simulated
by the AN model. The summed activity, integrated across frequency, is then convolved with a unitary response and
represents the simulated ABR to a given stimulus.

was a trade-off between computational time and model accuracy. Throughout this study, 500

fibres ranging from 100 Hz to 16 kHz were used in all simulations. The output of the front-

end cochlear models was summed across all fibres and convolved with a unitary response (UR)

function, derived separately for the two models. The UR is defined as the potential produced

between the electrode positions on the scalp each time a cell discharges. TheURs, one for

each of the models, were obtained by deconvolving a template 95.2 dB peSPL click-evoked ABR

Elberling et al.(2010), shown in the left panel of Fig.3.4, with the summed neural activity pattern

generated by either front-end model in response to a similar click stimulus. Thedeconvolution is

an ill-posed mathematical problem and has an infinite number of solutions. A stable and probable

solution was, like inDau (2003), found by using the Tikhonov regularizationTikhonov (1963),

and the MATLAB toolbox fromHansen(1998). Figure4.2 (right) shows the unitary responses,

obtained with a grand averaged ABR at 95.2dB peSPL as the target. Linearsuperposition was

assumed above the level of the AN synapse, and thus the calculated unitaryresponse functions

given in Fig. 4.2 was used for any input stimulus level. As expected, the two derived URs are

almost identical (seeHarte et al.(2010) for further information on the modeling framework).

4.3.1 Cochlear models

The input to the auditory nerve (AN)Zilany and Bruce(2006, 2007) model is the instantaneous

pressure waveform of the stimulus in units ofPa. The output of the AN model is the spike rate

in response to the stimulus pressure. The model includes a number of key functional stages:

a middle-ear filter; a feed-forward control path representing the activemechanism; a primary

signal-path filter (C1) representing the basilar membrane (BM) filtering adapted by the control

path; a parallel-path filter (C2) for high-level stimuli; an inner-hair cell (IHC) section followed

by a synapse model and a stochastic AN spike discharge generator. In the present study, the

spikes/s output from the synapse model was used, rather than the stochastic output from the

spike generator. The input to the dual-resonance nonlinear (DRNL) filter modelMeddis(2006)
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Figure 4.2: Left panel: Grand average template ABR evoked by a 95.2dB peSPL clickElberling et al.(2010). Right
panel: Derived unitary response functions for hence the AN-ABR andthe DRNL-ABR model. Both are calculated as
the deconvolution of the grand average ABR and the summed neural activity pattern generated by the front-end cochlear
model in response to an identical click stimulus. The two URs has for displaybeen shifted in amplitude.

is also the instantaneous pressure waveform inPa. The output from the model is the vesicle

release probability. The modelMeddis(2006) used in this work consists of an outer and middle

ear-filter, the DRNL filter (BM filter stage), an inner hair cell (IHC) transduction stage and a

IHC-AN synapse. The DRNL (Lopez-Poveda and Meddis, 2001; Meddis et al., 2001) filter is a

computational algorithm which aims at simulating a number of features characteristic of the basilar

membrane. One of many features is a compressive input-output function, and consequently level-

dependent tuning. The output from both models were deterministic and the effects of refractoriness

were thus not considered in this work.

4.3.2 Stimuli and calibration

As the literature data are described in dB peSPL it was necessary to acoustically calibrate the

transient stimuli used. The click were measured acoustically in an IEC 60711coupler. The

numerical stimulus peak-to-trough amplitude of a reference 1-kHz pure tone signal was adjusted

until the acoustically measured peak-to-trough amplitude was similar to that of theclick. A scaling

factor, defined as the ratio between the stimulus peak-to-trough amplitude of the pure tone and the

stimulus peak-to-trough amplitude of the transient signals, was derived as;

S=
LSignal

LRe f erence
(4.1)

whereS is the scaling factor,LSignal is the stimulus peak-to-trough amplitude of the transient

signal, andLRe f erenceis the stimulus peak-to-trough amplitude of the reference pure tone. The AN

model was calibrated such that the root-mean-square value of a reference pure tone signal was 1,

whereas the DRNL model is calibrated such that the peak value of a reference pure tone signal was

1. The amplitude of the numerical click in Elberling et al.Elberling et al.(2010), used as stimuli
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Figure 4.3: Left panel: AN-ABR model simulations to click stimulus at 50, 70 and 90 DB peSPL. Note the latency
change of the wave-V peak. Right panel: Simulations of click-evoked ABR wave-V latencies across stimuli levels,
using both the AN-ABR and the DRNL-ABR model. Both models show compressed level-dependent latencies
compared to DauDau(2003) experimental data.

to the models, was thus scaled by the derived factorS for the DRNL model, and by S√
(2)

for the

AN model.

4.4 Results

The left panel of Fig.4.3shows ABRs simulated by the AN-ABR model in response to clicks at

50, 70 and 90 dB peSPL. A shift in the wave-V peak to shorter latencies withincreasing stimulus

level is clearly observed. The right panel of Fig.4.3 shows simulated click-evoked ABR wave-

V latencies as a function of stimulus level. Also shown are recorded click ABRlatenciesDau

(2003). Simulations were done with both the DRNL-ABR and the AN-ABR model. The two

models produce similar results for stimuli levels between 70 and 100 dB peSPL.For lower levels,

the DRNL-ABR model no longer produces a distinct wave-V, thus deriving a latency associated

to those levels was not possible. As expected, it is seen that both models simulated reduced wave

latency for increasing stimulus level. However, a clear disparity between both sets of simulations

and the recorded reference data is observed. The recorded data shows a decrease in wave-V

latency of approximately 2 ms for a 40 dB stimulus level increase, whereas themodels simulates

approximately 0.6ms decrease for 40dB increase in stimulus level.

4.5 Discussion

Fig. 4.3 (right) showed that both models under-predicted the ABR latency. The classical

theoretical explanations of the ABR latency change with stimulus level says that the IHC-AN

synapse adaptation and the cochlear tuning should be the key features. To quantify whether these

features were captured, the impact of the tuning and the adaptation in the AN-ABR model was

investigated. The focus was on the AN-ABR model as it produces the most reliable results over
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Figure 4.4: Simulations of click-evoked ABR wave-V latencies across stimuli levels. In both figures are the data
recorded byDau(2003) and the simulations from Fig.4.3shown as reference. The figure to the left additionally shows
wave-V latencies simulated by the AN-ABR model where the filter tuning was based onGlasberg and Moore(1990).
The figure to the right shows wave-V latencies simulated by an AN-ABR model that excluded the IHC-AN synapse
adaptation.

the widest range of input stimulus levels. To be able to interpret the model correctly, URs for each

new version of the model were derived. The URs were derived from the same 95.2 dB peSPL

click-evoked template ABR, thus results shown in this section have by defaultcorrect latency

estimation at 95.2 dB peSPL.

The key feature producing the level dependency of wave-V latency was the filter tuning. Fig.4.4

(left) shows the effect of exchanging theShera et al.(2002) filter tuning, originally implemented

in the AN model, with the less sharply tunedGlasberg and Moore(1990) filters, on wave-V

latency. It is observed that the latency change with stimulus level is approximately halved. Both

Shera et al.(2002) andGlasberg and Moore(1990) describe the frequency dependence of the filter

tuning. Thus, exchangingShera et al.(2002) tuning with theGlasberg and Moore(1990) tuning

makes all the filters broader, independent of level. The reason for the larger latency change

with stimulus level found when usingShera et al.(2002) tuning is that sharper filters increase

the frequency specificity and thus limit the upward spread of excitation at lowlevels. At higher

levels, there is thus room for a significant increase in upward spread ofexcitation, thus creating

larger latency changes with level.Shera et al.(2002) measured the filter tuning using a forward

masking paradigm. The tonal target stimuli was presented at 40dB SPL. Literature data obtained

at higher levels and high frequencies, measured with this paradigm, are however not available.

For the high levels, the lack of data is likely due to the practical limitations of presenting an off-

target masker that does not get uncomfortably loud when measuring the skirts of the filters. As the

sharpness of the tuning was shown to be important for the level dependency of wave-V latency,

the lack of trustworthy data is however a large uncertainty. Getting the level-dependency of the

tuning correctly could prove to be key when modelling wave-V latencies. Fig.4.5 shows filter

bandwidths,QERB, at different centre frequencies and levels, derived from the current AN model.

Data to which these simulatedQ-values could be compared with, would be benefitial.

The right panel of Fig.4.4shows simulated click-evoked ABR wave-V latencies, generated by
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Figure 4.5: Filter bandwidths,QERB, derived from the output of the C1 filter path. The dashed curve showsQERBbased
onShera et al.(2002)’s experimentally derived function for a stimulation level of 40 dBpeSPL.

the AN-ABR model where the adaptation of the IHC-AN synapse has been left out. The removal

of the adaptation clearly shows a reduction of latency change with stimulus level. Note that the

UR was calculated based on a 95.2 dB peSPL click, and that the latency of thesimulations around

this level by default therefore is correct. The "correct" picture when removing the adaptation

should therefore have been a curve shifted upwards, as the inclusion of adaptation sharpens

the onset and thus leads to shorter delays. However, the simulated results show that removing

the adaptation approximately halves the latency change with level. This was supported by an

additional simulation (not shown) where the adaptation was removed from theAN-ABR model

based on theGlasberg and Moore(1990) tuning. The IHC-AN synapse adaptation used in the

AN model was revised byZilany et al.(2009). Additional simulations were performed using this

synapse model; however, no effect on the level-dependent latency was found. The adaptation is

thus argued to be important for wave-V latency but not the reason for theunder-estimated latency

change.

Two other modelling features could be thought to affect the ABR latency. The first is the

unitary response (UR).Chertoff (2004) investigated the level dependency of a UR used to model

compound action potentials (CAP) in Mongolian gerbils.Chertoff(2004) showed that the UR was

level-dependent in this species. However, no general formulation of thedependency was stated,

and no formulation of a level-dependent UR for humans has been found inthe literature. It cannot

be excluded that a level-dependent UR would affect the latencies. The interval between wave-I and

wave-V, is however, remarkably robust across stimulus level. The UR models the auditory pathway

from the wave-I generation site, argued to be the IHC-AN synapse, to thewave-V generation site.

Thus, it is not likely that a level-dependent UR would have a major impact on the latencies. The

second alternative feature that could affect the ABR latency is the auditory nerve refractory period

which was not included in the AN-ABR model of the present study. This choice was made to make

the model computationally faster. Additionally simulations were carried out where the refractory
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period was included. However, no improvement on the wave-V latency change with level was

observed.

4.6 Conclusion

Two ABR models were build, both using a principle where a cochlear front-end model was

convolved with a unitary response (UR). Both ABR models were shown to significantly under-

estimate the click-evoked ABR wave-V latency change with stimulus level. The twomodels

should, given classical explanations, be able to model click-evoked ABRlatencies. The fact that

they fail leads to the suggestion that the cochlear tuning is likely to be imprecise at high levels and

high frequencies.



Chapter 5

Low-frequency versus high-frequency
synchronization in chirp-evoked audi-
tory brainstem responses

In chapter3 the ABR model was developed. It was quantified that the model was capable of

simulating ABR wave V latencies and amplitudes to click, tone bursts and chirps. First, this

chapter develops two tools to illustrate details of the ABR model simulations. Theseillustration

tools, the AN-spectrogram and the AN-UR-spectrogram, has proven a valuable tool aiding

stimulus creation for experiments, as well as the understanding of simulations.Here they are used

to motivate the “Low-frequency versus high-frequency synchronization in chirp-evoked auditory

brainstem responses” study1.

5.1 The ABR model used as an illustration tool

5.1.1 Stimuli

The two stimuli used, a click and a chirp, were both taken fromElberling et al.(2010) and were

thus identical to the click stimulus and the “chirp-3” stimulus in chapter3. Both stimuli were band-

limited from 100Hz to 10kHz. All simulations were carried out at 75.2 dB peSPL, corresponding

to 40dB HL for the click (see section3.4.2)

5.1.2 Spectrograms

Fig. 5.1 and 5.2 show hence a simulated click and chirp evoked ABR. Wave I, III and V are

clearly visible. The latency and amplitude of the wave V’s were naturally similar tothe ones

presented in Fig.3.7 and3.6. Each simulated ABR was the summation of 500 channels, each

tuned to a different CF. In Fig.5.3 click evoked AN responses are shown in a AN-spectrogram

representation. The Y-axis shows the 500 AN fibers characterized by their CF. Each horizontal

line in the figure are thus the click evoked response of the humanizedZilany and Bruce(2007)

AN model tuned to a CF. The color represents the instantaneous dischargerate at a specific time

1 This study is based onRønne and Gøtsche-Rasmussen(2011)
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in a specific fiber. Fig.5.4shows AN-UR-spectrogram representation, created by convolving each

horizontal line in Fig.5.3 with the unitary response (UR, see section3.4.1). As the convolution

was a linear process, the summation over channels of this figure give the ABR shown in Fig.5.1.

The color represents each channels contribution to the summed ABR potential(unit of µv).
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Figure 5.1: Simulated ABR evoked byElberling et al.
(2010) click.
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Figure 5.2: Simulated ABR evoked byElberling et al.
(2010) chirp-3.
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Figure 5.3: AN-spectrogram showing the simulated neural
activity at the AN in response to click stimulus.
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Figure 5.4: AN-UR-spectrogram visualizing the compo-
nents that sum up to form the simulated ABR. This figure is
created by convolving Fig.5.3 line by line with the UR.

In the spectrograms, details of the underlying processing can be observed. In the AN-

spectrogram it can be observed that the fine-structure information is available at low frequencies

whereas only the envelope seems to be tracked at higher frequencies. This is seen as the impulse

responses at low frequencies (a single horizontal line) has multiple peaks, with a periodicity

corresponding to the fiber CF. In the AN-UR-spectrogram the ABR waveIII and V are visible

as the two red lines occurring around 4 and 6 ms. A clear latency shift fromthe AN-spectrogram

is observed due to the UR.

Fig. 5.5and5.6shows spectrograms evoked by theElberling et al.(2010) chirp-3. It is clearly

observed that much of the activity in the AN-UR-spectrogram is time-aligned atthe discrete

values of 4,5 and 6 ms. It is further observed that the impulse responses have a long duration

at low frequencies. This has the consequence that it is impossible to time-align all of the activity

stemming from low frequencies. It is however observed, that the peaks of the low frequency

impulse responses are aligned with the peaks of the high frequency contributions. A larger wave-

V amplitude is thus observed using a chirp stimulus than a click stimulus.
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Figure 5.5: AN-spectrogram showing the simulated neural
activity at the AN in response to anElberling et al.(2010)
chirp-3 stimulus.
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Figure 5.6: AN-UR-spectrogram visualizing the compo-
nents that sum up to form the simulated ABR. This figure is
created by convoliving Fig.5.5 line by line with the UR.

5.1.3 Motivation for the following study

It was shown that the simulated the low frequency contributions to the click-evoked ABR was not

time-aligned with the high-frequency contributions and were thus not addingup in phase (Fig.

5.4). The chirp evoked ABR showed a much more time-aligned response at low frequencies (Fig.

5.6); however, it was also indicated that the alignment of high-frequencies was significantly better.

This contradicts the common belief in literature (e.g.Shore and Nuttall, 1985; Dau et al., 2000)

where it has been argued that the alignment of the low frequencies were the only reason for the

larger wave-V amplitude evoked by a chirp rather than a click. This deviation between literature

explanations and simulations led to the following study, where it was investigatedwhether the

better alignment of the high-frequencies contribute significantly to the largerchirp evoked ABR

wave-V amplitude.

5.2 Abstract

This study investigates the frequency specific contribution to the auditory brainstem response

(ABR) of chirp stimuli. Frequency rising chirps were designed to compensate for the cochlear

traveling wave delay, and lead to larger wave-V amplitudes than for click stimulias more auditory

nerve fibers fire synchronously. Traditional click stimuli were believed toonly excite high-

frequency fibers synchronously. It is still currently unclear whetherthe broad-band chirp stimulus

leads to increased synchronization of both low- and high-frequency fibers. It is also unclear if

both these groups of fibers contribute significantly to the overall wave-V amplitude. In the present

study, ABRs were recorded from 10 normal-hearing listeners using low-and high-frequency

band-limited chirps and clicks (0.1 - 1.5 kHz and 1.5 - 10 kHz) presented at alevel of 40 dB

HL. The results showed significantly larger wave-V amplitudes for both low and high-frequency

band-limited chirps than for the filtered clicks. This demonstrates that the synchronization of

nerve fibers occurs across the entire frequency range at this presentation level, and this leads to

significant increases in wave-V amplitudes. The increase for the low-frequency chirp was found

to be clearly larger than that obtained at the higher frequencies.
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5.3 Introduction

ABRs in response to transient sound stimuli represent the summed electric potential from many

remotely located neurons, recorded via scalp electrodes. The click evoked ABR has 7 distinct

waves, where wave-V is the most prominent. One key feature of the ABR wave-V is the peak

latency which is dependent on both stimulus frequency (Neely et al., 1988) and level (Dau, 2003).

The frequency dependence is due to the tonotopic mapping on the basilar membrane (BM) with

high-frequency at base and low-frequency at apex (Greenwood, 1990). Each frequency component

of a stimulus is associated with a certain delay, and a click stimulus will thus elicit responses over a

relatively large time span. This limits the synchrony of the response, and thereby reduces the ABR

amplitude evoked by such a stimulus (Elberling et al., 2007). Frequency rising chirps have been

designed to compensate for the cochlear travelling wave delay. The use ofchirp stimulus lead to

larger wave-V amplitudes than for click stimuli as more auditory nerve fibers fire synchronously

(seeElberling et al., 2007, for review). The increase in synchrony has traditionally been argued

to occur mainly at low frequencies, where the peaks of the individual nerve responses are most

delayed. E.g.Shore and Nuttall(1985) andDau et al.(2000) argue that the low frequencies are the

key to the improved wave-V amplitudes, as low frequencies are least synchronous with the more

aligned high frequencies and the room for improvement thus is largest. However, the impulse

responses of the nerve fiber responses at low frequencies are muchlonger in time citepKiang1965,

and it is thus not possible to align all the excitation at low frequencies. A chirpis though designed

to align all frequencies (Elberling and Don, 2008), and the better alignment of high frequencies,

with short impulse responses, could thus be an alternative hypothesis. Itis still currently unclear

whether the broad-band chirp stimulus leads to increased synchronizationof both low- and high-

frequency fibers. It is also unclear if both of these groups of fibers contribute significantly to the

overall wave-V amplitude. The research questions addressed in this paper are: 1) Is the increased

wave-V amplitude (increased nervous synchrony) observed for bothhigh and low frequencies

when stimulating with chirps instead of clicks? 2) Are high or low frequencies key to the increased

wave-V amplitude observed when stimulating with broad-band chirps?

5.4 Test design

Six stimuli were created. A broad-band click and a broad-band chirp, containing the frequencies

from 100 Hz to 10 kHz, were used as reference. The click was a 100 ţsstandard click, and the

chirp was identical to "chirp 3" in (Elberling et al., 2010). Further were low-frequency and high-

frequency versions of hence click and chirp created. The method described by (Elberling et al.,

2007) was used. The phase delays for hence chirps and clicks were the sameas used to create the

broad-band stimuli. Both the high-frequency and low-frequency cut-off frequency was 1500 Hz.

Fig. 5.7and Fig.5.8shows the time series representation of the three hence click and chirp stimuli.

The power spectra of the two broad-band stimuli were identical. The summed versions of hence

the low-frequency and high-frequency click, and the low-frequencyand high-frequency chirp has
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also identical power spectra as the broad-band versions. The power of hence the low-frequency (-

3.1 dB relative to broad-band condition) high-frequency (-0.6 dB relative to broad-band condition)

stimulus are thus smaller than the power of the broad-band versions. Fig.5.9 shows the power

spectra of the stimuli, note that hence the two broad-band stimuli, the two low-frequency stimuli

and the two high-frequency stimuli have identical spectra. The six stimuli were linked to each

other in terms of the power spectra as described above. Therefore onlythe broad-band click was

calibrated, and the rest adjusted correspondingly. By inserting ER1-14ear plug in a B&K Ear

Simulator Type 4157 (IEC 60711) using adapter B&K DB 2012 the click was calibrated to a level

of 75.2 dB peSPL. The reference equivalent threshold sound pressure level (RETSPL) for the click

calibrated this way is 35.2 dB RETSPL (taken from the corresponding headand torso simulator

measurement ofRichter and Fedtke(2005), and the measurements are thus carried out at 40 dB

HL.
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Figure 5.7: The three click stimuli.
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Figure 5.8: The three chirp stimuli, all based on “chirp 3”
from Elberling et al.(2010).

5.4.1 Test subjects

The ABR measurements were carried out at the Centre for Applied HearingResearch (CAHR),

Technical University of Denmark. Ten normal-hearing test subjects (10left ears) participated in
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Figure 5.9: Spectra of the different stimuli. The sum of the two hence low-and high-frequency clicks or chirps have
the same power spectrum as the broad-band stimulus.
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the study. All subjects had normal hearing defined as pure tone thresholds equal to or better than

20 dB HL in the range from 125 Hz to 8 kHz. The subjects were all students between 20-30 years

old (2 females and 8 males). The session lasted for maximally 1.5 hours including ashort briefing

and fitting of electrode cap. Only the left ear was tested.

5.4.2 Measurement procedure

The test subject was placed in an electrically and acoustically shielded booth.The signals were

presented at 48 kHz sampling frequency through an Etymotic Research ER-2 insert earphone. The

recording of the ABR was done using a Medical Equipment ApS Synamps2,which sampled the

recorded signal at 10 kHz. The electrodes were placed at vertex (reference), ipsi-lateral mastoid,

and forehead (ground). An impedance between the electrodes below 1 kω was achieved for the

majority of the test subjects. The post-processing was done using MATLAB. The raw data was

averaged, and filtered using a band-pass filter with cut-off frequencies at 100 and 3000 Hz. Wave-

V was detected in a time interval from 0 - 7 ms after the offset of the stimulation. The wave-V

amplitude was calculated as the difference in amplitude between the maximum amplitudeand the

minimum amplitude found in the subsequent 2 ms.

5.5 Results

Fig. 5.10shows the mean and one-standard deviation of wave-V amplitudes of the 6 conditions

measured. The broad-band click and chirp used in this study are identicalto the ones presented by

Elberling et al.(2010). They found an averaged click evoked wave-V amplitude of 0.368 ţV and

an averaged chirp evoked amplitude of 0.645 ţV. This compares well with theamplitudes measured

in this study.

The mean amplitudes indicate that the chirp stimuli generate larger ABR Wave-V amplitude

compared to the click stimuli across all conditions. The high-frequency chirp condition is

significantly different from both the broad-band chirp (High6= Broad: p value = 0.014) and the

low-frequency chirp condition (High6= Low: p value = 0.005), indicating that both high and low

frequencies are adding to the measured amplitude. It cannot be rejected that the high-frequency

click gives rise to the same amplitude as the broad-band click (High6= Broad: p value = 0.614)

indicating that the broad-band click is entirely determined by the high-frequency contribution. The

p-values were calculated using a two-sample t-test.

The difference between the click evoked and chirp evoked wave-V amplitude was calculated for

each test subject to reduce the influence of the inter-subject variability. The mean and standard

deviation of the improvements from click to chirp are shown in Fig.5.11. A t-test was applied

to analyse the data (see Table5.1). All three stimuli types show significantly larger amplitudes

for chirps over clicks, supporting the hypothesis that the increased synchrony happens over the

entire frequency range. It is also shown that the high-frequency improvement was significantly
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Figure 5.10: Mean ABR Wave-V amplitude and one standard deviation plotted for each stimulus condition.

Broad Low High
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Stimulus

W
av

e 
V

 a
m

pl
itu

de
 im

pr
ov

em
en

t [
µV

]

Figure 5.11: Improvement in wave-V amplitude from click to chirp evoked responses. The mean and one standard
deviation are plotted.

different from the broad-band improvement, and thus the high frequencies cannot be the entire

explanation for the larger amplitude measured with a chirp instead of a click. Itcannot be rejected

that the improvement measured with the low-frequency stimuli are equal to the improvement of

the broad-band conditions. These results will be further discussed in thediscussion section.

Hypothesis P-value
Low > 0 « 0.001
High > 0 0.006
Broad > 0 « 0.001

Low 6= Broad 0.237
High 6= Broad 0.004

Table 5.1: Statistical analysis of data in Fig.5.11. The three upper P-values are calculated using a one sided one-sample
t-test. The two lower using a two-sample t-test.



48 5. Low versus high-frequency synchronization in chirp-evoked ABRs

5.6 Discussion

This study investigated the frequency regions contributing to the chirp ABR Wave-V amplitude. It

was found that an increase in ABR wave-V amplitude when stimulating with a chirpstimulus

rather than a click, was observed both at lower and higher frequencies, indicating that the

increased synchrony of the nervous responses takes place acrossthe entire frequency range. It

was also shown that the high-frequency region cannot explain the improvement from click to chirp

when stimulating with the broad-band stimuli. However, the improvements observed at the low-

frequency conditions and the broad-band conditions were not significantly different, indicating

that the lower frequencies can explain all the improvement from the click to chirp condition.

This contradiction in the results, that the high-frequency improvement is significantly larger than

zero, and that the low-frequency improvement is not significantly different from the broad-band

improvement, would likely be clarified if more test subjects had been used.

Fig. 5.10shows that high frequencies were the main contributor to the formation of ABRWave-

V amplitudes for both clicks and chirps. This was likely due to the fact that the high-frequency

stimuli contains more power, and to the fact that the high-frequency basilarmembrane responses

have short impulse responses that were inherently better aligned than the longer impulse responses

at low frequencies. However, the improvement from click to chirp at high frequencies was small.

In Fig. 5.12the amplitudes of the low-frequency and high-frequency responses were added for

each test subject and compared to the broad-band evoked amplitudes. Itis clearly observed that the

summed amplitude is larger than the broad-band evoked amplitude. This shows that the auditory

pathway behaves nonlinearly. The explanation is that the outer-hair-cells(OHC) amplifies weak

sounds more than louder sounds (compression) and the fact that the filtered responses gives rise

to spread of excitation on the basilar membrane in the region surrounding the 1500 Hz cut-off

frequency. The 1500 Hz region would in the broad-band conditions have been masked. The low

level "off-frequency" excitation will be amplified by the OHC and the summed response of the

two frequency limited conditions will thus be stronger than the one measured withthe broad-

band stimulus. The increased amplitudes observed with the summed low and high responses, are

though equally large for both click and chirp stimulus. This leads to a very limited effect on the

wave-V improvements shown in Fig.5.11, and the possible uncertainty regarding the unmasked

off-frequency effects were thus negligible.

5.7 Conclusion

This study examined the influence of frequency range on chirp evoked ABR at a presentation level

of 40 dB HL. It was shown that both low and high frequencies contribute tothe increase in wave-V

when using a chirp stimulus instead of a click stimulus. This demonstrates that synchronization of

nerve fibers occur across the entire frequency range. However, the largest increase in wave-V is

observed at lower frequencies.
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mean and one standard deviation are shown.
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Chapter 6

Modeling human tone-burst and click-
train evoked ABRs

This chapter is based on the paper called “Modeling human auditory evokedbrainstem responses

based on nonlinear cochlear processing” (Harte et al., 2010), and describes simulations of tone

bursts and click-train evoked ABRs. The simulation of click-train evoked ABRs represents the

first step, in this thesis, towards simulating responses to longer-duration stimuli. In the following

two chapters the 40-Hz ASSR and speech-syllable evoked ABRs are simulated. Compared to the

original publication, the description of the theoretical framework, which already was described in

chapter3, has been taken out from the method section to avoid repetition.

6.1 Abstract

The aim of this study was to accurately simulate auditory evoked potentials (AEPs) from various

classical stimuli such as clicks and tones, often used in research and clinical diagnostics. In an

approach similar toDau(2003), a model was developed for the generation of auditory brainstem

responses (ABR) to transient sounds and frequency following responses (FFR) to tones. The

model includes important cochlear processing stages (Zilany and Bruce, 2007) such as BM tuning

and compression, inner hair-cell (IHC) transduction, and IHC auditory-nerve (AN) synapse

adaptation. To generate AEPs recorded at remote locations, a convolutionwas made of an

elementary unit waveform (obtained empirically) with the instantaneous discharge rate function

for the corresponding AN unit. AEPs to click-trains as well as to tone pulsesat various frequencies

were both modelled and recorded at different stimulation levels and repetitionrates. The observed

nonlinearities in the recorded potential patterns with respect to ABR wave latencies and amplitudes

could be largely accounted for by level-dependent BM processing as well as effects of short-term

neural adaptation. The present study provides further evidence forthe importance of cochlear

tuning and AN adaptation on AEP patterns and provides a useful basis forthe study of more

complex stimuli including speech.
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6.2 Introduction

For sounds which convey information, such as speech and music, much ofthe information is

carried in the changes in the stimulus, rather than in the parts of the sound which are relatively

stable. Through the last decades both psychoacoustic and physiological studies have investigated

how the auditory system analyses the temporal modulations of sounds. Whenvarious sounds are

presented to human subjects, it is possible to record auditory evoked potentials (AEPs) on the

surface of the human scalp. Auditory evoked potentials are the summed response from many

remotely located neurons recorded via scalp electrodes. They can be recorded from all levels of

the auditory pathway, from the auditory nerve, the brainstem up to the cortex. They are typically

grouped in terms of time of occurrence after stimulus offset and thus are known as; auditory

brainstem responses (ABRs) recorded between 1 and 7 ms after stimulus offset; middle latency

responses (MLRs) recorded in the interval 15-50 ms after acoustic stimulus; and auditory late

response (ALR) recorded in the interval 75-200 ms after stimulus.

Hearing deficiencies often lead to difficulties in understanding speech, especially in noisy

and reverberant environments. Auditory evoked potentials are a powerful tool used to diagnose

and assess classical hearing deficiencies. This has led to a trend in the literature of assessing

and investigating speech and complex speech-like stimuli with AEPs (e.g.Aiken and Picton,

2008; Akhoun et al., 2008; Chandrasekaran and Kraus, 2010; Lalor and Foxe, 2010). AEPs are

relatively well understood for basic stimuli, i.e. transients, tone bursts and tones. However, for

more complex stimuli, which include amplitude and frequency modulations as well assharp on-set

and off-set transients, it is still relatively poorly understood how the various neurophysiological

processing along the auditory pathway gives rise to the AEP recorded atsurface electrodes. A

clearer understanding of how the underlying neurophysiology in the auditory system leads to

surface-recorded scalp potentials could help to assess hearing impairment, or to evaluate how

well this has been compensated for with an auditory prosthesis (Aiken and Picton, 2008), such as

a hearing aid or cochlear implant.

The long-term goal of this study is to model and simulate speech evoked and complex (non-

speech) sound evoked AEPs originating in the auditory nerve and brainstem, based on current

knowledge of neural auditory signal processing. Dau (2003) developed a model for the generation

of early AEPs, including auditory brainstem responses (ABR) to transient sounds like clicks

and frequency following responses (FFR) to tones. Both of these AEPsare generated by

neurons in the auditory nerve (AN) and subsequent stages along the auditory brainstem. The

model included important cochlear processing stages such as basilar-membrane filtering with a

compressive feedback loop, inner hair-cell (IHC) transduction, andIHC-AN synapse adaptation.

The instantaneous AN discharge rate from the model was convolved with anempirically obtained

elementary unit waveform, to simulate AEPs.

In the present paper, theDau (2003) model is extended to include current advances in AN

modellingZilany and Bruce(2007) and is humanised. The originalDau (2003) model used the

Heinz et al.(2001) AN model fitted to experimental cat AN data. Here, theZilany and Bruce
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(2007) AN model will be adapted for humans by ensuring that the model has appropriate

thresholds, tuning curves, BM travelling wave latencies etc., based on current state-of-the-art

knowledge derived from both behavioural and objective measures where possible. This study

will present a comparison of the model output with basic transient, tone-burst and click-train data,

in an attempt to build up stimulus complexity towards the final goal of speech. Thus it is possible

to challenge the model with relatively basic stimuli, before increasing complexity.This study

focuses on the role of basilar membrane tuning and the adaptation mechanism of the AN model

and looks at the consequences for AEPs generated. Neural adaptation is the phenomenon where

the neural output is reduced due to prolonged or repeated stimulation, in each stage of the auditory

pathway.

The role of adaptation in AEPs, and more specifically ABRs is important because in clinical

practice it is highly desirable to obtain accurate recordings of ABRs quickly, particularly from

uncooperative subjects and neonates. Any morphological differences, such as amplitude and

latency, from normative data caused by stimulus rate adaptation could interfere with diagnosis.

The desire for quicker acquisition time has led to the use of rapid rates of stimulation via so-

called pseudo-random binary sequences or maximum length sequences (e.g.Burkard et al., 1990;

Jewett et al., 2004). The response to these pseudo-random pulse trains needs to be deconvolved

to obtain an estimate of the ABR. The higher rate of the sequence leads to typically smaller ABR

amplitudes. This is believed to be a result of neural adaptation.

6.3 Methods

6.3.1 Model for AEP generation

The structure of the ABR model is shown in Fig.6.1. Within the overall ABR model, a parallel

bank of AN fibers is individually modelled. Each AN fiber is tuned to a specificCF. The number

of fibers included is a trade off between computational time and model precision. Throughout this

study 500 fibers were used for each simulation, representing a range of0.1 to 10kHz. The output

of the AN model, the instantaneous firing rate of all the AN fibers, is summed andconvolved with

the unitary response function.

A humanized AN model

Zilany and Bruce(2006, 2007)’s AN model was fitted to cat AN data, and has thus been modified

to better model human AN response here. The following changes to the original cat AN model

were implemented by Bruce and co-workers:

The original cat middle-ear transfer function has been replaced by a human middle ear. This was

based on the linear circuit model ofPascal et al.(1998) of human cadavers. The model magnitude

response function is shown in Fig.6.2.
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Figure 6.1: Structure of the ABR model. 500 AN fibres tuned to differentCFs are individually modelled by the AN
model. The summed instantaneous firing rate is then convolved with a unitaryresponse to create the modelled ABR.
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Figure 6.2: Frequency response of the human middle ear implemented inthe AN model.

It has been argued that humans have significantly sharper BM mechanical tuning than cats

and other experimental animals (Shera et al., 2002). To incorporate this, the model equivalent

rectangular bandwidth quality factor,QERB, for cochlear tuning was defined to be,

QERB = 12.7

(

fc
1000

)0.3

(6.1)

where fc is the center frequency of the BM filter. This function was taken fromShera et al.(2002)

and is applicable to humans at frequencies at and above 1 kHz. The choice of QERB will be

further discussed later.

The tip of a suppression tuning curve is at a slightly higher frequency thanthe tip of the

excitatory tuning curve (Delgutte, 1990). This is implemented in the originalZilany and Bruce

(2007) model by shifting the CF of the so-called control path filter by 1.2 mm on the BM.Without

sound knowledge of how this mechanism works in humans, the default is retained here. However,

a human frequency-place mapping for the BM is needed and has been updated from the original

to the human fit from Greenwood (1990):
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Figure 6.3: Model example tuning curves (solid curves) for representative CFs and simulated (dashed curve) and
reference (dotted curve) absolute thresholds.

fc = A(10ax−k) (6.2)

wherex is the distance on the BM apex in mm, and the constants are;A = 165.4,a = 0.06 andk =

1.

Two additional changes to theZilany and Bruce (2007) model was made here. In

Zilany and Bruce(2007), the synapse gain, which describes the relationship of the inner hair

cell potential to the synaptic release rate, varies as a function of CF to ensure that the model

thresholds match empirical data from cats. Without such physiological data available, human

behavioural monaural absolute thresholds (Killion , 1978) were used to fit the model. Thus, the

synapse gain function fromZilany and Bruce(2007) was changed to be;

KCF = 0.91·min{4000,100.1 fc/103+0.4} (6.3)

where the characteristic frequency,fc, is in units of hertz.

Figure6.3(solid curves) shows example tuning curves of AN fibers across a range of CFs for the

revised AN model. The same procedure fromZilany and Bruce(2007) andChintanpalli and Heinz

(2007) was used to adaptively determine the tuning curves. Absolute thresholds are also shown on

the figure as the lower dashed line, as well as the reference behavioural thresholds (dotted curve)

from Killion (1978).

Fig. 6.4 shows theQERB versus CF measured from theQ10 from the model tuning curves, via

the transformation fromIbrahim and Bruce(2010):

QERB=
Q10−0.2085

0.505
(6.4)

Also shown in Fig.6.4are theQERB from Shera et al.(2002) used to set the BM tuning in the

model.
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Figure 6.4:QERB values vs CF, measured from the model tuning curves and referencefrom Shera et al.(2002).

As described above and shown in Fig.6.3 and 6.4, the AN model tuning properties are

determined by the frequency dependentQERB in Eq. 6.1. However, an additional delay function

exists in the primary C1 filter path of the AN model. This acts as a so-called signal-front delay (see

Ruggero and Temchin, 2007). This has been altered in the present model, to ensure that the model

produces overall delays (signal front and travelling wave group delays) similar to the estimated

BM delay reported inShera et al.(2002). To achieve this, each AN impulse response function was

determined, the envelope was extracted (via lowpass filtered hilbert envelope), and the latency of

the peak of the enveloped recorded. The following logarithmic function wasthen fitted to the

difference between the model output latencies and those reported inShera et al.(2002):

τCF = 10−3 ·max{0,−10.09· log10( fc)+29.23} (6.5)

By using this additional delay, it is hypothesised that physiologically plausibleBM latencies

can be approximated in the model. This is vital as it is well known that cochlear processing and

delay has a strong influence on recorded brainstem evoked potentials (Dau, 2003; Dau et al., 2000;

Wegner and Dau, 2002).

The unitary response

The unitary response describes the transformation of the output of the auditory nerve to the

potential measured at electrodes placed on the scalp. The unitary response, like inDau(2003), was

obtained by deconvolving an experimentally recorded click ABR with the summedneural activity

pattern for the click, generated by the AN model. The deconvolution is an ill posed mathematical

problem and has an infinite number of solutions. A stable and probable solution was found by

using Tikhonov regularization (Tikhonov, 1963). The calculations were carried out in Matlab

using a toolbox provided byHansen(1998).
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Frequency Total Length
kHz ms cycles
0.5 10 5
0.75 7 5.25

1 5 5
1.5 5 7.5
2 5 10
3 3.4 10.2
4 2.5 10
6 1.7 10.2
8 1.25 10

Table 6.1: Tone burst stimuli used, with length in ms and number of cycles.

6.3.2 Tone-burst simulation

Auditory evoked potentials have been used historically to obtain indirect estimates of cochlear

delay in humans. Tone-burstevoked ABRs have been studied extensively in the literature as

a means of estimating BM delay (Gorga et al., 1988; Neely et al., 1988; Harte et al., 2009).

Thus, this was a logical choice of basic stimuli to test if the AN model in the present study

adequately modelled cochlear delay. In order to test if the BM delay introduced within the

present model is reasonable, a simulation was run using hanning windowedtone bursts as stimuli,

with CFs and durations given in table 1. Levels of 40 to 100 dBpe SPL were used, in 10 dB

steps. The choice of stimuli was inspired by the experiments fromNorton and Neely(1987) and

Serbetcioglu and Parker(1999). The tone-burst durations represent a trade-off between having

an equal number of cycles for all frequencies and a relative narrow spread in their spectrum.

The organisation of frequency along the cochlear partition is roughly logarithmic and tone bursts

with a fixed number of cycles result in uniform energy splatter in log-frequency. The stimulus

rise time is responsible for the simultaneous neural activation leading to the brainstem responses

(Suzuki and Horiuchi, 1981) and to obtain a detectable ABR response. A sharp stimulus onset

(i.e., a short rise time) producesa large amount of synchronised neuralactivity, but also decreases

the frequency specificity of the stimulus. Rise times for frequencies of 2 kHzand above include

approximately 5 cycles and therefore ranged from 2.5 to 1.25 ms. Below 2 kHz it was felt that

the reduced energy spread, by keeping a fixed number of cycles, would make it almost impossible

to record a wave-V response. Therefore, a compromise was struck, similar to Gorga et al.(1988),

between the need for rapid stimulus onsets and reduced energy spread inthe choice of rise time.

The number of cycles in the rise time were reduced to 3.25 at 1.5 kHz and approximately 2.5 for

1.0 kHz.

ABR wave V is the wave with the largest amplitude and hence the most easily detectable. In the

simulation, the ABRs for the tone burst stimuli were generated and the wave V latency calculated

and plotted againstNeely et al.(1988)’s empirically determined model of latency derived from

tone burst simulations:
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τwaveV= a+bc−i
(

fc
1000

)−d

(6.6)

wherei is the tone-burst intensity (divided by 100),fc is the tone burst center frequency in Hertz,

anda = 5 ms,b = 12.9 ms, c = 5:0 and d = 0:413 were fitted constants toNeely et al.(1988)’s data.

6.3.3 Experimental methods

A total of four normal hearing test subjects (four female) participated in theexperimental part

of this study, and were aged between 22-26 years. The experiments were conducted in an

electrically and acoustically shielded audiometric booth (IEC 268-13). The basic stimulus used

in this experiment was a 5 sample duration impulse played at 44.1 kHz. Five setsof stimuli

conditions were presented at a constant inter-epoch rate of≈ 8 Hz (i.e. a duration of 125 ms).

The first stimuli set was a single impulse to evoke s standard ABR used to empirically determine

the unitary response functions. The remaining sets were trains of impulses with a within-train rate

of 40, 80, 190 and 250 Hz. A total of 4000 averages were made per stimulus type and repeated

twice (three times for the single impulse condition) to ensure repeatability of results. The stimuli

were all presented at a level of 80 dB pe SPL, to ensure reasonable SNR and test subject comfort.

The stimuli were generated in MATLAB and A/D conversion made through an RME ADI-8 Pro

24-bit sound card. The levels were set via a TDT PA5 programmable attenuator. The stimuli

were presented to the left ear of the test subject via an ER-2 insert earphone. EEG activity was

recorded differentially between the vertex and ipsilateral mastoid, with the ground electrode placed

on the forehead. Silver/silver chloride electrodes were used, and an inter-electrode impedance was

maintainedbelow 5kW. EEG activity was recorded on a SynAmps2 amplifier at asampling rate of

10000 Hz, and band-pass filtered between 0.05 and 2000 Hz. After recording, the EEG-data were

epoched and filtered againfrom 100 to 1500 Hz using a 200 tap FIR filter withzero phase delay.

The epochs were averaged using an iterative weighted-averaging algorithm (Riedel et al., 2001).

6.4 Results

6.4.1 Auditory brainstem response and unitary response

Single transient evoked potentials were averaged across 12000 epochs (all 3 runs) for subject ML

and are shown by the dotted curve in Fig.6.5. The recorded ABR shows the typical pattern with

clear waves I, III, and V at latencies that are consistent with the literature. The wave V peak is the

largest occurring at≈ 6.5 ms.

Figure6.6shows the calculated unitary response obtained from a deconvolution of the recorded

potential with the AN model. The unitary response function obtained in the present study is similar

to and consistent withDau(2003). There is significant subject dependence of the unitary response,
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Figure 6.5: Recorded (dotted line) and simulated (solid line) auditory brainstem response to single transient stimuli.

Figure 6.6: Unitary response function, calculated via deconvolving the recorded potential with the output of the AN
model.

but the essential morphology remains the same. The interested reader is referred toDau(2003) for

a detailed discussion of the form of the unitary response and comparisonswith previous studies.

The simulated AEP obtained from the convolution of the AN model output with the unitary

response is indicated by the solid curve in Fig.6.5. There is a very good agreement between the

recorded and the simulated potentials, over the length of the unitary response calculated (10 ms).

The unitary response wasnot calculated for longer durations as this would have included evoked

potential contributions higher than the brainstem, which are not of interest inthe present study. In

the present study, linear superposition is assumed above the level of the AN, and thus the caculated

unitary response function given in Fig.6.6was used for any input stimulus at any level.

6.4.2 Tone-burst simulation

Figure6.7shows the wave V latencies for the ABR model simulations to tone-burst stimuli, with

center frequencies from 1 to 8 kHz and excitation levels 40 to 100 dB pe SPLin 10 dB steps. Also

shown are dotted lines representing the empirically fitted latency model ofNeely et al.(1988)

given in Eq.6.6. Both the simulated ABR and modelled latencies show exponentially decreasing



60 6. Modeling human tone-burst and click-train evoked ABRs

1 1.5 2 3 6 8
5

6

7

8

9

10

11

12

13

La
te

nc
y 

of
 w

av
e 

V
 [m

s]

CF of toneburst [kHz]

 

 

 40
 50
 60
 70
 80
 90
100

Figure 6.7: Simulated (solid curves) and modelled (dashed curves, based on Eq.6.6) ABR wave V latencies as a
function of tone-burst center frequency and level.

delays as a function of frequency. At the lowest levels of excitation, the simulated ABR latencies

have a slopesimilar to that seen inNeely et al.(1988)’s modelled latencies. This is logical as the

AN model tuning and delay was based onShera et al.(2002)’s stimulus frequency otoacoustic

emission delay estimates, made at 40 dB SPL. Further, as excitation levels increase the simulated

ABR rate of change of latency with frequency decreases. The overallspread of simulated ABR

latencies with level is reasonable at lower frequencies(1-2 kHz), but seems compressed at higher

frequencies relative toNeely et al.(1988)’s results.

6.4.3 Click-train ABR

Figure6.8 shows the recorded (dot-dashed curve) and simulated (solid curve) ABR to a single

click and click-train stimuli with within-train rates of 40, 80, 190 and 250 Hz forone illustrative

subject. The noise floor for the recorded ABR is shown by the vertical bar near 0 ms on each trace.

The vertical line to the right of the single click ABR indicates the scale on the figure.

As the within-train rate increases the smaller waves that make up the click ABR (waves I, II,

III and IV ) become more difficult to distinguish and only the wave V seems to bevisible. As the

within-train rate increases, the peak amplitudes of the wave V decrease forrates higher than 80 Hz.

The first peaks are typically the largest, and these then decrease as rates increase. The modelled

ABR seems to accurately predict the recorded ABR at moderate within-train rates of 40 Hz. Wave

V amplitude seems unchanged within trains and latencies seem well modelled. As the within-train

rate increases, the modelled ABR amplitude seems to decrease faster than the recorded ABR. In

addition, the timing of the peaks of modelled ABR are faster for higher rates than for the recorded

potentials at the same rate. For the highest rate stimuli, the simulated ABR wave V peaks drop

in magnitude seemingly exponentially for successive stimuli. The recorded ABR on the other
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Figure 6.8: Recorded (dot-dashed line) and simulated (solid line) auditory evoked brainstem potentials to click-train
stimuli at 40, 80, 190 and 250 Hz within-train rates.

hand tends to have a sharp initial drop in magnitude and does not demonstratesuch an exponential

decrease. Similar trends were observed for all of the subjects tested, though the magnitudes and

timing of the responses demonstrated some subject-dependent variability.

6.5 Discussion

6.5.1 Frequency-dependent delay

The intrinsic relationship between frequency and travel time in the cochlea is fairly well

represented by the AN and the ABR model.Gorga et al.(1988), in the original study on tone-

burst evoked ABR wave V latency, did not specify the earphones they used to present the stimuli

nor the coupler used to calibrate them. Therefore there is some ambiguity as to the exact levels

used byNeely et al.(1988) to model these, and reproduced here in Eq.6.6. With that in mind, one

could not expect an exact fit of the present simulated ABR wave V latencies with those modelled

by Eq. 6.6. The range of latencies across level and frequency, should be covered however. As

mentioned earlier, the simulated ABR latencies at higher frequencies seem compressed relative to

those seen within the literature. This could be an indication that the level-dependent bandwidth is

not well implemented in the AN model.

At low excitation levels, the simulated ABR wave V latencies accruately reproduces the
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latencies across frequency seen in the literature. The frequency dependent delay in the AN

model used here arose due to the cochlear tuning,QERB, incorporated. This was given in

6.1 and the additional delay in6.5. There is some contention in the literature about accurate

estimates ofQERB in humans (Bentsen et al., 2011). In the present study,QERB estimates from

Shera et al.(2002) were used. TheseQERB values were obtained by averaging objective (based

on stimulus frequency otoacoustic emission group delay) and behavioural(forward masking)

estimates. In theseQERB values, as seen in Fig.6.4, the auditory filters are very sharp and

become effectively sharper as frequency increases. Alternative estimates ofQERB suggest much

broader tuning, and a near frequency independence. These estimatescome from objective stimulus

frequency otoacoustic emission iso-suppression tuningcurves (Keefe et al., 2008), and behavioural

simultaneous masking (Glasberg and Moore, 1990).

Ruggero and Temchin(2007) offered an alternative novel estimate of in vivo cochlear delay in

humans using post-mortem delay estimates with the post-mortem effects compensated for via com-

parison with experimental animal data.Bentsen et al.(2011) showed thatRuggero and Temchin

(2007)’s cochlear delay estimates led toQERB estimates similar to those obtained with simultane-

ous masking and stimulus frequency otoacoustic emission isosuppression tuning curves. IfQERB

were much smaller than those used in the present model (whereRuggero and Temchin(2007)’s

were approximately 2.5 times shorter thanShera et al.(2002)), then the latency estimates of the

modelled wave VŠs seen in Fig.6.7 would be much shorter. Thus a greater degree of disparity

would be seen between the modelled and historically reported latencies. This provides some

indirect evidence to supportShera et al.(2002)’s estimates ofQERB.

An alternative source of error lies with the unitary response function. Inthe present ABR

model, the only frequency dependent delay is due to the BM filtering in the AN model. It

is implicitly assumed that linear-superposition holds at higher stages in the model,with the

frequency- and level-independent unitary response function. If theunitary response function were

to be strongly frequency- or level-dependent, then the wave V latencies simulated in Fig. 6.7

would be significantly altered. However, there is good physiological evidence to suggest this is

not the case. Wave-V latency is often considered to be composed of the sum of the synaptic

delay, tsynaptic, the neural delay,τneural, as well as the cochlear delayτBM (Neely et al., 1988).

The synaptic delay is the time between the inner haircells activity and the auditory-nerve fibers

firing. It is typically around 1 ms (Burkard and Secor, 2002; Kiang, 1975; Kim and Molnar,

1979; Mø ller and Jannetta, 1983) and frequency- and level-independent (Don et al., 1998). The

neural conduction time (neural delay) is the time between the auditory-nerveactivity and the place

generating the ABR wave. Synaptic delay and cochlear delay are both included in the AN model.

However, the neural conduction time is not, and is implicitly in the unitary response function.

There is no historical neurophysiological evidence to suggest that the neural conduction time

is frequency dependent (Don and Eggermont, 1978; Don and Kwong, 2002; Eggermont and Don,

1980). However, it would still be prudent to investigate both the frequency andlevel dependence

of the unitary response function in future studies.
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Figure 6.9: Summed auditory nerve model output for within-click train rates of (a) 40 Hz, (b) 80 Hz, (c) 190 Hz and
(d) 250 Hz.

6.5.2 Click-train ABR and neural adaptation

The simulated ABR were successful at modelling the recorded ABR for within-train rates of 40

Hz, as seen in Fig.6.8. At these relatively slow rates, little or no neural adaptation was expected.

Figure6.9a shows the output of the summed AN model in the present study, for the 40 Hzwithin-

train rate stimuli.

The model output clearly reverts to baseline (50 spikes/s, AN spontaneous rate) after each

click, and the peak of the response for each new stimulus click within the train does not decrease

significantly.Thus the stimuli do not interfere with each other within the AN model. As the within-

train rate increases, the ABR wave V tends to dominate the response due to theconvolution of

smaller peaks and the reduction in amplitude of the spikes in the summed AN model output,

as seen in Fig.6.9. For the higher-rate stimuli the summed AN model output never returns to

baseline, and the peak magnitudes reduce. The model does not return to baseline due to the ringing

of the filters in the AN model. The reduction in the peak spike rates is linked with adaptation and

appears to follow an exponential decrease with each new click.Zilany and Bruce(2007)’s rate
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adaptation at the synapse between IHC and AN fibers was a purely exponential model, albeit with

multiple short and long time constants.Zilany et al.(2009) have suggested a new rate adaptation

model incorporating both exponential and power-law dynamics. Incorporating this model revision

into the present model might help to improve the under-predicted wave V amplitudes at high rates.

This will be investigated in future versions of the ABR model.

6.5.3 Outlook

It was stated in the introduction that the role of neural adaptation in AEP recording was important

to understand, due to the clinical use of high rate stimuli. In addition to this, thereis a trend

in AEP studies to use steady state signals, where neural adaptaion will play an even greater

role. Auditory steady state responses (ASSR) are typically responses tocarrier signals with

amplitude modulation (AM) imposed on them at different rates. Such ASSRs give excellent

frequency specificity as the response will mainly contain energy at the AM from a narrow

band of AN fibers at the carrier frequency (John and Picton, 2000). This is obviously an

advantage clinically to test auditory function at specific frequencies. Invasive animal studies

and magnetoencephalographic (MEG) source analysis studies in humans have shown that the

ASSR is generated in different brain regions, depending on the modulationfrequency of the

stimulus (Kuwada et al., 2002; Schoonhoven et al., 2003). For low rates of AM, around 40 Hz,

a number of studies have demonstrated that the ASSR can be predicted fromthe convolution of

single middle-latency and brainstem transient responses with a click train with the appropriate

repetition rate (Galambos et al., 1981; Picton et al., 1987; Hari et al., 1989; Gutschalk et al., 1999;

Bohorquez and Oezdamar, 2008). This is further supported by the finding in the present study,

that little or no interaction occurs in the AN model for the different clicks in the 40 Hz click

train, as seen in Fig.6.9a. For modulation rates above 80 Hz, ASSRs are typically argued to be

generated by neurons in the brainstem that both respond to transient stimuliand are locked to the

envelopes of AM tones (John and Picton, 2000; Kuwada et al., 2002; Sininger and Cone-Wesson,

2002). The different within-train rates were chosen in the present study to span the AM rates

investigated in the literature. The present study has the potential to help understand the brainstem

contribution to ASSRs. This is an advantage as sources due to the brainstemare hard to investigate

using classic dipole source modelling (Scherg, 1990), due to the brainstem sources depth and small

signal strength.



Chapter 7

Investigating the potential of auditory
steady-state responses to assess loss of
cochlear compression

This chapter is based upon the submitted paperRønne et al.(2012a). It is mainly a study of the

possibility of using ASSRs to assess cochlear compression in humans. This isinvestigated using

both a simple analytical model, experimental work with human subjects and simulations using an

extended version of the ABR model, called the ASSR model. It can thus be read as an independent

study, or as another step in the developement and evaluation of the modeling work in this thesis.

7.1 abstract

In this study, it is investigated whether the auditory steady state response (ASSR) can be used as a

tool to estimate human cochlear compression. First, a simplified analytical model is presented, for

amplitude modulated tones passing through a static nonlinear system. The approximate closed-

form solution derived from this analysis is used to construct two hypotheses for ASSR level

growth as input level and modulation depth are varied. Two experiments arethen presented

measuring ASSR modulation and level-growth functions in human subjects. Finally, a more

complex nonlinear numerical model for ASSR generation is presented. Thissecond model is

capable of accurately simulating the complex processing carried out in the auditory periphery, and

is used here to evaluate the assumptions of the simple static model and to interpretthe experimental

ASSR findings. The study demonstrates that both the level- and modulation growth functions can

be used to measure cochlear compression. However, the clear recommendation is to measure

level-growth functions due to their larger accuracy and efficiency. A secondary finding, based

on the experimental modulation-growth function, is the indication of an effective compression,

seemingly independent of cochlear compression. This second compressive mechanism remains

unexplained by both the analytical and the numerical ASSR model.
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7.2 Introduction

The human auditory system is able to perceive root-mean-square (RMS) fluctuations in air pres-

sure from as low as 20µPa, corresponding to a dynamic range of about 106 or 120 dB. To achieve

this, the local mechanical vibration of the basilar membrane (BM) in the cochlea, excited at its

natural frequency, grows in a nonlinear or compressive fashion with increasing sound pressure

level (Ruggero, 1992; Harte et al., 2005). A number of studies and reviews (Sellick et al., 1982;

Nuttall and Dolan, 1996; Rhode and Recio, 2000; Robles and Ruggero, 2001) have investigated

and reported BM input-output level curves in experimental animals, wherethe 120 dB input

dynamic range is mapped to 30-40 dB output range usable for neural encoding. The compressive

input-output level curve for humans is estimated to have linear growth at excitation levels below

sound pressure levels (SPL) around 40 dB, i.e. a 10 dB increase in input leads to a 10 dB increase

in output. Between 40 and 90 dB SPL, sharp compression is observed, where an increase in 10

dB only leads to about 3 dB increase in the response. Above approximately90 dB, the level curve

tends to become linear again. This is often explained in terms of the active mechanism within the

cochlea supplying significant amplification at low excitation levels and saturating at mid-levels.

At high levels, this mechanism becomes exhausted and is unable to further contribute to the BM

response. This compressive behavior will be termed cochlear compression throughout this study.

The local input-output compressive nonlinearity depends on the integrity of the outer hair cells

(OHC) (Ruggero, 1992; Robles and Ruggero, 2001). Damage to OHCs, common in many forms

of sensori-neural hearing losses, reduces or completely eliminates the active amplification of low-

level sounds, leading to a linearized input-output level curve. Sensory-neural hearing loss thus

often leads to loss of cochlear compression. It is desirable to have an objective physiological

metric sensitive to cochlear compression and its loss. Such a measure will necessarily be sensitive

to local BM vibration and could be used as a further objective audiometric tool for neonates

or uncooperative subjects, where subjective methods are challenging.The auditory steady-state

response (ASSR), being a robust objective measure already used clinically for other purposes,

could be an interesting and suitable choice for such a metric.

When transient sounds are presented to human subjects, the summed response from many

remotely located neurons can be recorded via scalp (non-invasive) electrodes. These auditory

evoked potentials (AEPs) can be recorded from all levels of the auditorypathway, from the

auditory nerve (compound action potential, CAP); the brainstem (auditory brainstem response,

ABR); up to the cortex (cortical auditory evoked potential, CAEP). Theseclassical AEPs are

obtained by presenting transient stimuli at slow repetition rates. At more rapid rates, the

responses to each stimulus overlap with those evoked by the preceding stimulus to form a steady-

state response (Picton et al., 1987). Typically, such auditory steady-state responses (ASSR) are

evoked by sinusoidally amplitude modulated (AM) tones (Kuwada et al., 1986; Rees et al., 1986;

Picton et al., 1987), and are argued to give excellent frequency specificity as the stimulus only

contains energy at the carrier frequency and the side-bands due to themodulation (John and Picton,

2000). The ASSR is therefore typically analyzed in the frequency domain, where the amplitude
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of the Fourier component at the AM rate is used as the ASSR response magnitude. AM rates of

around 40 Hz have been shown to produce the largest ASSR responseamplitude (Kuwada et al.,

2002, 1986). Although the ASSR has been heavily studied, the effect of cochlear compression on

the ASSR is still unclear.

The amplitude of a recorded ASSR is necessarily dependent on cochlearmechanical processing

and reflects the variation in level of the amplitude modulated sinusoid used to elicitit. Thus, one

might expect to see cochlear compression reflected in the ASSR amplitude, aseither the depth of

amplitude modulation or the stimulus level is systematically varied. However, the recorded ASSR

is a compound potential arising from the summation of many neural fibers alongthe auditory

pathway. Intuitively, fibers along the tonotopic axis tuned close to the carrier frequency will

typically have the largest contribution, and thus one might expect to see evidence of local cochlear

compression.

Only a few studies have examined ASSR magnitude as a function of modulation depth for

sinusoidally amplitude modulated stimuli (Kuwada et al., 1986; Rees et al., 1986; Picton et al.,

1987; Boettcher et al., 2001). The ASSR modulation-growth functions (defined here as the

log. ASSR response magnitude plotted as a function of the log. modulation depth) generally

seems to grow in a slightly compressive fashion. Typical slopes vary between 0.5 and 0.8

dB/dB as modulation depth is varied. This might support the assertion that theyreflect local

cochlear compression. However, the degree of compression estimated is significantly less than

expected, of the order of 0.2 to 0.3 dB/dB as seen in other physiological estimates of compression

(e.g. Prieve et al., 1996; Ruggero et al., 1997; Moore et al., 1999). Unfortunately, there is also

significant variation in absolute amplitudes across the historical studies, probably due to variations

in electrode placement, excitation level used and the limited number of test subjects used. It is not

clear whether the limited compression seen in the ASSR modulation-growth function truly reflects

cochlear compression, or some other property of the ASSR generation mechanism. Cochlear

compression could also be estimated using ASSR by varying the stimulus level. Typical slopes

of compression were historically reported to be≈ 0.2 dB/dB (Kuwada et al., 1986; Picton et al.,

1987). These slopes are similar to those observed when measuring cochlear compression

psychoacoustically, with oto-acoustic emissions (OAE) or in vivo in animals (e.g. Prieve et al.,

1996; Ruggero et al., 1997; Moore et al., 1999). It is, however, difficult to establish whether

the ASSR level and modulation-growth functions reflect cochlear compression, and not effective

compression applied at higher, retro-cochlear, stages of the auditory pathway.

This study develops two models to investigate the role of cochlear compressionon ASSR

generation. The first, provided in section7.3, is a highly simplified analytical model, used to

explain how amplitude modulated stimuli are processed through simple static nonlinear systems.

This is used to derive experimentally testable predictions on the nature of modulation-growth and

level-growth functions. A second, more physiologically plausible, nonlinear numerical model

is also developed (section7.5) by extending an existing model of ABR generation (Dau, 2003;

Harte et al., 2010; Rønne et al., 2012) to be able to account for the ASSR. Two experiments, using

normal-hearing test subjects, were carried out and reported here (section 7.4), measuring ASSR
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magnitude growth functions as modulation depth and level are varied. The numerical ASSR

model and the simple analytical model make reasonable predictions of the experimental results

and are used to argue that local cochlear compression can indeed be estimated using both ASSR

modulation-growth and level-growth functions. However, care should betaken with modulation-

growth estimates as they are more prone to experimental uncertainty, and it is recommended that

level-growth functions be employed in future studies.

7.3 Analytical model for AM tones passing through a static nonlinear

system

The physiology underlying the generation of auditory steady state responses is complex. A

sinusoidal amplitude modulated tone consists of a carrier with two side tones, whose equal

frequency separation from the carrier equals the modulation frequency. Cochlear mechanical

processing spatially filters the stimulus to yield a place-specific excitation pattern. This will

necessarily be subject to cochlear compressive nonlinearity. The innerhair-cells (IHC) in the

cochlea are responsible for mechanoelectrical transduction, and act like a half-wave rectifier and

a low-pass filter (Russell and Sellick, 1978). This processing extracts the envelope for stimuli

with a high enough carrier frequency,fc & 1.5− 2 kHz (Palmer and Russell, 1986). Thus, the

nonlinearities in the peripheral processing and mechanoelectrical transduction process effectively

ensure that AN fibers firing patterns reflect the compressed envelope of an amplitude modulated

stimulus. Additionally, the transmission of neural spike trains from the brainstem to surface

potentials acts like another low-pass filter stage, effectively ensuring thatonly the compressed

envelope can be recorded.

To illustrate how AM signals are represented after such processing, a simpleanalytical model

is presented. It is explored what happens to a sinusoidally amplitude modulated tone when it is

passed through a static compressive nonlinear system. Specifically, an approximate closed-form

solution is derived for the amplitude of the first harmonic of the AM frequency, after passing

through the nonlinear system. It is argued that this could reflect the experimentally recorded

ASSR, and yield testable hypotheses for the experimental part of the study.

The basic stimuli used in the present study are sinusoidally amplitude modulated tones, defined

as;

st = S·sin(2π fct) ·
(

1+m·sin(2π fmt)
2

)

(7.1)

where fc = 1 kHz is the carrier frequency,fm = 40 Hz the modulation frequency,m the

modulation depth andS defines the overall stimulus level. The subscriptt represents a variable

with time dependency throughout the paper.
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7.3.1 Static nonlinear model of compression

Static or memoryless nonlinearities are defined such that the current outputtime series,yt , is a

function only of the current input time series,xt , i.e.

yt = f (xt) (7.2)

A simple example of a static nonlinear system is a power-law nonlinearity, givenby

yt = |xt |αsgn
[

xt
]

(7.3)

where compression is ensured if the power,α , is less than unity. The signum function, defined

by

sgn[xt ] =







−1, for xt < 0,

+1, for xt ≥ 0
(7.4)

ensures asymmetry in the nonlinear characteristic.

Figure 7.1 illustrates a SAM tone (bottom left) passing through a static compressive power-

law nonlinearity (eqn.7.3) with compression ratioα = 1/3. Also shown is the instantaneous

characteristic function (top left),y(x), of the compressive nonlinearity and the output time series

(top right). The variation of the input envelope is mapped to a reduced range in the output, indicted

by the dashed lines.

Figure 7.1: Illustration of a SAM tone passing through a static compressive nonlinearity (withα = 1/3) and resulting
output time series. The envelopes of the input an output are shown in black curves.
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7.3.2 Approximate closed-form solution for envelopes processed through a com-
pressive nonlinearity

It is assumed that the envelope varies at a much slower rate than the carrierfrequency. This means

that it is possible to treat the envelope and the carrier components of the stimulus passing through

the nonlinear characteristic as separate. Assuming that the stimulus is given by

st = χt ·sin(2π fct) (7.5)

with the input envelope given by

χt = S

(

1+m·sin(ωmt)
2

)

(7.6)

wherem is the modulation depth,ωm = 2π fm the angular modulation frequency, and S defines the

level. Passing this sinusoidally amplitude modulated tone through the instantaneous power-law

nonlinearity, given by Eq.7.3, and noting thatχt > 0 then it can be shown that

yt = χα
t · |sin(2π fct) |αsgn

[

sin(2π fct)
]

(7.7)

The two last terms on the right hand side constitute the carrier of the output time series and can

be considered a harmonic tone complex ofnωc(with minimal contribution to the overall envelope

as it was assumedωm << ωc). Thus, in the present analysis only the output envelope,ηt , will be

considered:

ηt = χα
t , for χt > 0

ηt = Sα ·
(

1+m·sin(ωmt)
2

)α
(7.8)

For a compressive nonlinearity, 0< α < 1. It is clear that the output envelope’s dependence on

the overall levelS is a simple power law.

Special attention is needed for the right-hand term in eqn.7.8, which is defined in the range

from 0 to 1, with

ζ α
t =

(

1+m·sin(ωmt)
2

)α
(7.9)

It is possible to expandζ α in terms of a Taylor series about the arbitrary pointζ̂ :

ζ α = ζ̂ α





∞

∑
k=0

(

α
k

)

(

ζ
ζ̂
−1

)k


 (7.10)

= ζ̂ α



1+α

(

ζ
ζ̂
−1

)

+
α(α −1)

2!

(

ζ
ζ̂
−1

)2

+ · · ·
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where
(α

k

)

represent generalized binomial coefficients, defined as

(

α
k

)

:=
α(α −1)(α −2) · · ·(α −k+1)

k!
(7.11)

It is possible to representηt , the output envelope, in an alternative form as an infinite sum of

harmonics of the fundamental modulation frequency:

ηt =
∞

∑
p=0

Apsin(p(ωmt +β0)) (7.12)

whereAp are Fourier coefficients,p is the order of the infinite sum, andβ0 is some phase offset.

Using the method of harmonic balance (Nayfeh and Mook, 1995), each term in the power series

in Eq. 7.10 is expanded and factored by sin(qωm + φ0), whereq is an integer and represents

harmonics of the modulation frequency. Finally combining equations7.6, 7.8and7.10, allows the

derivation of an approximate closed-form solution for the first harmonic,A1, corresponding to the

Fourier coefficient ofωm:

A1 =

(

S

2ζ̂

)α
[

m

(

∞

∑
k=0

(

α
k

)

k(1− ζ̂ )k−1

ζ̂ k

)

+m3(·)+m5(·)+O(m2n−1)+ . . .

]

(7.13)

Thus,A1 is represented as an infinite power series in terms of the modulation depthm, comprising

only odd-orders(2n−1) of m. The terms for the orders ofm higher than 1 are not shown here

for brevity. Assuming thatm is small, i.e.m<< 1, it is possible to ignore the higher-order terms,

such that:

A1 ≈
(

Sζ̂
2

)α

·m
(

∞

∑
k=0

(

α
k

)

k(1− ζ̂ )k−1

ζ̂ k

)

(7.14)

It can be shown that the infinite summation in the right hand set of brackets is equal toαζ̂−α , and

thus

A1 ≈
(

S
2

)α
·mα (7.15)

Eq. 7.15 represents a simple approximate closed-form solution for the response amplitude at

the amplitude modulation frequency after passing through a compressive static nonlinearity. To

test this simple model, a numerical simulation was carried out in MATLAB, passinga SAM tone

with S= 1 through a static nonlinearity withα = 1/3, and taking the Hilbert envelope. Figure7.2

shows the numerically determined value of the Fourier coefficient (solid curve) at the modulation

frequencyωm as the modulation depthm was varied between 0 and 1. The approximate closed-

form solution of eqn.7.15is shown by the dotted curve, and is a good approximation for the true

value for smallm.

According to Eq.7.15, the amplitude of the first harmonic in the response is dependent on the
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Figure 7.2: Comparison of approximate closed form solution (dotted line)for 1st-Fourier component and numerically
simulated (solid line) result, forα = 1/3 andS= 1.

input levelSvia a power-law relation. Therefore, given a fixed modulation depth, the slope ofA1

as a function of the excitation level on double log axes yields a straight line withslopeα . This

can be used to estimate the degree of compression in the input/output level-curve, i.e. cochlear

compression. If the excitation level is fixed, while varying the modulation depth, A1 will yield a

straight line with slopeα(S/2)α , if plotted on a linear axis. Again, this could lead to an estimate

of the local compression. On a log-log axis, this simple analytical model predicts a slope of 1.

Thus BM compression can be obtained from experimental data via:

1. the slope,α , of the ASSR level-growth function, plotted on a double logarithmic scale.

2. via the slope,α(S/2)α , of the ASSR modulation-growth function plotted on linear scales.

The easiest method to deriveα from the slopeα(S/2)α is to vary excitation level and derive

the parameter estimate, rather than by directly inverting1.

1 It is possible to invert eq.7.15solving for the compression ratioα , by recasting the equation as

α log

(

S
2

)

eα log( S
2) =

A1

m
log

(

S
2

)

This has the formx(α) = w(α)ew(α) and its solution forα is given by the Lambert W function (Corless et al.,
1996), also known as the product logarithm, i.e.

α =
W
(

A1
m log

(

S
2

))

log
(

S
2

)

whereW(·), the Lambert W function, is a multi-valued function that can be complex. Care must be taken to pick the
appropriate branch of this function for a physically realistic solution and in this application this is not necessarily
trivial. Therefore two methods are later proposed to experimentally fit/approximateα from the slope of the ASSR-
level growth function (plotted on double log. axes) and via the slope of the modulation growth function (on linear
axes).
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7.4 ASSR experiment: Evoked response growth as a function of

modulation depth and stimulus level

7.4.1 Methods

Subjects

In experiment A, the left ear of eight normal hearing subjects were tested. In experiment B, both

ears of a total of ten normal hearing test subjects were tested, yielding a total of 20 datasets. All

subjects had hearing thresholds≤ 25 dB HL between 0.5 and 6 kHz in both ears. The experiments

were conducted in an electrically and acoustically shielded audiometric booth (IEC 268-13). To

control the subjects attention and prevent them from sleeping, they remained supine and watched

a silent subtitled movie during the recording session.

Stimuli

In both experiments, the subjects were presented with sinusoidally amplitude modulated tones

(eqn.7.1). In experiment A, the stimulus level was varied between 55, 65, 75 and 85dB SPL, with

the modulation depth held constant atm= 0.75. These stimulus levels were chosen to be within

the expected compressive region of the cochlear input/output function. Experiment B variedm

(in Eq. 7.1) between 0.25, 0.5, 0.75 and 1.0. A constant stimulus level of 55 dB SPL wasused.

The stimuli were calibrated to have identical RMS values. This resulted in actual post calibration

modulation depths of 0.3, 0.58, 0.81 and 1.0. On a logarithmic scale, relative to amodulation

depth of 1.0, this corresponds toMdB = −10.41,−4.77,−1.81,0 dB, respectively.

The starting and end phases of the stimuli were matched to ensure that it couldbe repeated

continuously without audible discontinuities. Each epoch lasted 375 ms, corresponding to 375

cycles of the carrier and 15 cycles of the modulation frequency. In experiments A and B, a total

of 1200 and 2000 averages were made for each test condition, respectively. All stimuli were

generated in MATLAB and playback was made through an RME ADI-8 Pro 24-bit sound card

at a sampling frequency of 44.1 kHz. Stimulus levels were set via a TDT PA5 programmable

attenuator. The stimuli were presented to the subjects via ER-2 insert earphones.

ASSR recording and data analysis

EEG activity was recorded differentially between the vertex and the ipsi-lateral mastoid, with the

ground electrode placed on the forehead. Ag/AgCl electrodes were used, and an inter-electrode

impedance was maintained below 5kΩ and within 1kΩ of each other. EEG activity was recorded

on a SynAmps2 amplifier at a sampling rate of 10 kHz (experiment A) and 5 kHz(experiment

B), and band-pass filtered between 0.05 and 500 Hz. After recording,the EEG-data were epoched

and filtered again from 10 to 300 Hz, using a 40 tap FIR filter with zero phasedelay. The epochs
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were averaged using an iterative weighted-averaging algorithm (Riedel et al., 2001). The recorded

averaged time series were transformed to the frequency domain using a Fast Fourier transform.

The amplitude of the complex vector of the 40-Hz component was calculated.

A frequency domain F-ratio test (John and Picton, 2000) was used to detect if an ASSR

was present in the recorded signal. The energy at 40 Hz was comparedwith the background

noise, estimated from 7 neighboring spectral bins where no evoked response would be present

(Dobie and Wilson, 2001). This yielded an F-distribution with [2,14] degrees of freedom with a

critical value of 6.51 at the 1% significance level. Responses were only included in the study if

their F-value exceeded the critical value. Data sets from an individual ear were only included

if more than 1 data point was accepted. These acceptance criteria resultedin one subject being

removed from experiment A, and one ear of one subject being removed from experiment B.

An analysis of covariance (ANOCOVA) was performed on the ASSR modulation-growth

functions. The ANOCOVA assumes linear regression. In the log.-log. plotsthis was obtained

by taking the logarithm on both variables. An estimate of the slope of the best fitted single line

and a standard deviation on the slope estimate was obtained. Each ear were treated as a separate

data set in the analysis.

7.4.2 Experiment A - Results

Averaged ASSR magnitude and standard errors for all 7 subjects are shown in Fig.7.3(diamonds),

as a function of stimulus level (dB SPL). The spectral magnitude of the 40-Hz component is

given relative to 1µV rms. Error bars with±1 standard error are also shown and reflect the large

individual differences. For each recording from a given subject, the ASSR magnitude increases

monotonically as stimulus level increases.

An ANOCOVA analysis was carried out on the ASSR magnitudes (solid line in Fig. 7.3).

The slope estimate was found to be 0.20 dB/dB with a standard deviation of 0.06.A slope of

1 would indicate linearity, and a slope of< 1 implies compression. The low uncertainty on the

slope estimate from the ANOCOVA confirms that the individual differences,indicated by the error

bars, were mainly offsets of the overall ASSR amplitude in the individual recordings, rather than

variations of the slope. For comparison, Fig.7.3 also reproduces the data fromKuwada et al.

(1986) (triangles). Kuwada et al.(1986) measured ASSR with similar electrode placements,

modulation depth, and stimulus modulation- and carrier-frequency. The slope of the level-growth

function fromKuwada et al.(1986) obtained by linear regression on the log. variables was 0.18.

The same slope (0.18) was found for a similar data set presented byPicton et al.(1987) (not shown

on figure). Thus the estimates reported in the present study are similar to historically published

ones. The slope of the ASSR level-growth function thus show compressionof an amount similar

to cochlear compression, as previously discussed in section7.3.
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Figure 7.3: ASSR amplitude versus stimulus level averaged over the 7 normal-hearing subjects. Modulation depth was
75%, and the error bars show±1 standard error. The estimated slope (compression ratio) is indicated aswell as the
±1 standard deviation on the slope estimate. Also shown are literature data derived fromKuwada et al.(1986) (dotted
curve).

7.4.3 Experiment B - Results

Averaged ASSR magnitude and standard errors for all ten subjects (19 ears) measured at 55 dB

SPL are shown in Fig.7.4(diamonds), as a function of log. modulation depth relative to 100%. As

in the level-growth functions from Fig.7.3, the magnitudes increase monotonically as modulation

depth increases. A direct comparison with historical data is difficult due to differences in stimulus

level and calibration, carrier and modulation frequency, electrode placement and, in some cases,

a very limited number of subjects. However, the ASSR RMS-amplitudes reported here are in

agreement with those reported byKuwada et al.(1986); Rees et al.(1986); Picton et al.(1987);

Boettcher et al.(2001).

The ANOCOVA analysis, carried out on the ASSR magnitudes (solid line in Fig.7.4), gave

a slope estimate of 0.78 dB/dB with a standard deviation of 0.09. For comparison, Fig. 7.4 also

reproduces the data fromBoettcher et al.(2001) (upwards and downwards pointing triangles). The

dotted curve was fitted to log. ASSR amplitudes recorded in response to AM tones, with carrier

frequency of 520 Hz, a modulation frequency of 40 Hz, and a stimulus level of 65 dB SPL. The

dashed curve (also fromBoettcher et al., 2001) was obtained at a carrier frequency of 4 kHz. Slope

estimates obtained by linear regression of the two curves are 0.73 (fc = 520 Hz) and 0.62 (fc = 4

kHz). Slope estimates were also derived fromKuwada et al.(1986) andPicton et al.(1987) (not

reproduced here to aid clarity) for comparison and were found to be 0.62and 0.61, respectively.

Thus, the estimates reported in the present study are in reasonable agreement with historically

published results, even though stimulus conditions varied significantly across studies. The ASSR

modulation-growth functions are not consistent with the theoretical predictions from section II.
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In the theoretical predictions ASSR growth functions had a slope of 1, when plotted on double

logarithmic scales.
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Figure 7.4: ASSR amplitude versus modulation depth averaged over the 10 normal hearing subjects and left and right
ears. Stimulation level was at 55 dB SPL, and the error bars show±1 standard error. The estimated slope (compression
ratio) is indicated as well as the±1 standard deviation on the slope estimate. Also shown are literature data derived
from Boettcher et al.(2001) (dotted and dashed curves), see the text for details.

The closed-form solution derived in the section7.3 predicted that the compression could be

estimated from the slopes of the modulation-growth function, as long as two independent datasets

of different stimulus levels were measured. For this reason, three of the subjects included in

experiment B were retested and their ASSR modulation-growth functions measured at a higher

level of 71 dB SPL. Unfortunately the uncertainty on the slope estimates fromthe ANOCOVA

was almost 50% of its value, probably due to the few test subjects available. Due to this large

uncertainty, an estimate of the compression coefficient,α , based on the simplified closed form

solution, could not be obtained.

7.4.4 Experiment summary

In summary, the ASSR level-growth function showed compressive behavior, with a slope

estimate in the order of 0.2 dB/dB and thus corresponded well to both ASSR literature slopes,

theory predictions and cochlear compression estimated using alternative psychoacoustic or

OAE measures. The modulation-growth function, demonstrated a slope of 0.78 dB/dB. On

double logarithmic scales, this suggests a power-law relation withm not predicted by a simple

instantaneous compressive nonlinearity (Sec.7.3). If cochlear compression should have been

derived, two estimates of the ASSR modulation-growth function slope (estimatedat linear scales)

at different excitation levels would have been needed. However, due tothe high variability of the

ASSR magnitudes, the variation in the slope estimates, for the small number of subjects (three)

measured at two levels, rendered this impossible to fit.
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The most serious inconsistency between the analytical model predictions and the experimental

recordings is the slope of the ASSR modulation-growth function being less than unity. In an

attempt to investigate this further, the next section develops a more physiologically plausible

numerical model of ASSR generation.

7.5 ASSR model

7.5.1 Modeling framework

This section derives an ASSR model, which is used to predict how local BM compression is

reflected in ASSR magnitudes. The ASSR model is inspired by the work ofGoldstein and Kiang

(1958), who described evoked responses as a linear convolution of a single fiber instantaneous

auditory nerve (AN) discharge rate in response to a given stimulus with an elementary unit

waveform, called the unitary response (UR). The UR describes the contributions made to the AEP

each time a cell discharges. Following this idea,Dau(2003) proposed a model for the generation

of ABRs using the instantaneous discharge rate for single nerve fibers summed across frequency

at the level of the AN to create a neural activity pattern.Harte et al.(2010) andRønne et al.(2012)

updated and evaluated an ABR model, following the principles ofDau (2003). This model was

shown to be successful in simulating ABR responses to varies stimuli as clicks, tone bursts and

chirps. A number of studies (e.g.Galambos et al., 1981; Hari et al., 1989; Plourde et al., 1991;

Gutschalk et al., 1999; Bohorquez and Oezdamar, 2008) have demonstrated that the ASSR, at

modulation rates around 40 Hz, can be predicted from the convolution of single middle-latency

transient responses with a click train with the appropriate repetition rate. Thus, the predominant

response in the ASSR is due to the Na - Pa and Nb - Pb components of the middle-latency

response (MLR), originating in the early auditory cortex, and a smaller contribution due to the

ABR. Given the success of the ABR model, and the argument that the ASSR can be modeled as

a linear superposition of the ABR wave V and the Na - Pa and the Nb - Pb components of the

MLR, an ASSR model was created in this study. The ASSR model was, likeRønne et al.(2012),

based on the AN model (Zilany and Bruce, 2007; Zilany et al., 2009) and a linear, subject and

stimulus independent UR. The model distinguishes itself from simpler convolutive models (e.g.

Sparacino et al., 2004; Bohorquez and Oezdamar, 2008), in the nonlinear front end AN model.

In Fig. 7.5, a schematic diagram of the ASSR model is shown. The ASSR model builds upon the

Zilany et al.(2009) auditory nerve (AN) model, which simulated the instantaneous discharge rate

from a single AN fiber tuned to a specific frequency. The AN model, and thus the ASSR model,

includes key properties of nonlinear cochlear processing, such as compressive BM filtering, inner

hair-cell (IHC) transduction, and IHC-AN synapse adaptation. The ASSR model simulates AN

responses from 500 different characteristic frequencies (CFs), inthe range from 100 Hz to 16

kHz. The responses were summed to form the neural activity pattern and convolved with a unitary

response to produce the simulated ASSR. The stimuli presented to the ASSR model were defined

in Pascals and calibrated such that the root-mean-square value equaled 1.
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The ASSR model is similar to theRønne et al.(2012) ABR model. However, three mod-

ifications were undertaken. First, theZilany and Bruce(2007) AN model was replaced with

Zilany et al.(2009). This was done, since the latter AN model includes an updated synapse stage

that simulates effects of neural adaptation more realistically. This is highly important for longer-

duration signals (theZilany et al.(2009) AN model was “humanized” in an identical manner as

done inRønne et al.(2012)). Second, the response of low spontaneous rate fibers (0.1 spikes/s)

of the AN model was simulated, as opposed to the high-spontaneous rate (50spikes/s) used

in Rønne et al.(2012). This change was made as high-spontaneous rate fibers saturate for the

relatively high-level and long-duration AM stimuli, and the response is thus likely dominated by

low spontaneous rate fibers (Sumner et al., 2002; Zilany et al., 2009). Third, the unitary response

(UR) was recalculated to include the contribution from the middle latency response (MLR). As

discussed above, the ASSRs generated using a modulation rate of 40 Hz have contributions from

neurons in the AN, brainstem and up to the early auditory cortex. By incorporating the MLR into

the UR function, the higher-stage contributions could be modeled to a first approximation. The

UR was only calculated once as the deconvolution between the summed neuralactivity pattern

produced by the AN model (in response to a 60dB pe SPL click), and a recorded MLR (Harte,

2007) using the identical click stimulus and electrode position as in the recordings presented in

Sec. 7.4. Once obtained for the 60 dB pe SPL click, the UR was fixed for all furthernumerical

simulations carried out in this paper.

Figure 7.5: Schematics diagram of the ASSR model. A stimulus is presentedto the AN model tuned to a single
frequency. The signal is then processed through the AN model stagesof middle-ear filtering, BM filtering, IHC
transduction and IHC-AN synapse. The sum of 500 individual simulationwith the AN model tuned to different
frequencies produces the summed neural activity pattern. This patternis then convolved with the UR to produce
the ASSR.

7.5.2 Simulations

ASSRs were simulated as a function of the stimulus modulation depth (m = 0.25, 0.5, 0.75 and

1) and stimulus level (15 dB SPL to 95 dB SPL in steps of 10 dB). The ASSR components were
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Figure 7.6: Left: A 60 dB pe SPL click evoked MLR (data fromHarte(2007)). Right: The unitary response. Derived as
the deconvolution of the click evoked MLR and the summed neural activity pattern obtained as the summed responses
of the humanized AN model given the identical stimulus.

derived from the amplitude of the 40-Hz component in the spectrum of the simulated ASSR time

series. Figure7.7 (left) shows modulation-growth functions simulated at varying stimulus levels

(10 to 75 dB). A regression line was fitted to the 55 dB SPL curve and a slopeestimate of 1.04

was obtained. This is close to a linear slope of 1 as predicted by the static nonlinearity, but

deviates from the experimentally measured slope of 0.78. Figure7.7 (right) shows the level-

growth function for the 75% modulated ASSRs. It is observed that the nonlinear model produces

a slope of 0.48 in the compressive region above 35 dB SPL stimulus level, anda close-to-linear

slope below this stimulus level.
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Figure 7.7: Left: Simulated ASSR amplitudes of the 40Hz component as a function of stimulus modulation depth
and stimulus level, plotted on log.-log. axes. Compressive growth, of similar magnitude as expected from cochlear
compression is observed as function of level. Whereas linear processing is observed as a function of modulation depth.
Right: Simulated ASSRs as function of stimulus level. The modulation depth is kept at 75% and the stimulus level is
varied from 15 to 95 dB SPL in steps of 10dB.

In Fig. 7.8 (left panel), the same simulated results are shown on linear scales. For each

modulation-growth function, a regression line was fitted and a slope estimate obtained. In section

7.3it was shown that, for a static nonlinearity, the compression ratio,α , can be estimated from two

adjacent modulation-growth functions (n =1,2). Based on Eq.7.15, the slope of the modulation-

growth function,kn, can be described as:
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kn =

(

Sn

2

)α
·α (7.16)

whereS is the stimulus level. Assuming that the compression affecting two different modulation-

growth functions is the same, an estimate of the compression ratio can be foundas:

α =
log10(

k2
k1

)

log10(
S2
S1

)
(7.17)

The right panel of Fig.7.8 shows compression ratios calculated based on Eq.7.17 and two

adjacent slope estimates from Fig.7.8. The abscissa represents the average stimulus level, such

that the compression ratio derived based on the 55 dB SPL and 65 dB SPL slopes are plotted at 60

dB SPL. The compression ratios amounts to 1 at low levels, and decreases towards the dotted line

representing the compression ratio, CR = 0.48, found in Fig.7.7(right).
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Figure 7.8: Left panel: Simulated ASSR amplitudes of the 40Hz component as a function of stimulus modulation depth
plotted on linear scales. The different curves show the results of different stimulus levels. Right panel: CRs calculated
using Eq.7.17and data from two adjacent curves in the left panel. The stimulus level on the abscissa represents the
average stimulus level for two adjacent curves. The CR is 1 for low stimulus levels, and close to the 0.48 (dotted line)
corresponding to the slope in Fig.7.7(right panel), at higher stimulus level.

7.5.3 ASSR model discussion

The ASSR model includes a dynamic compression function which differs significantly from

the simple static compression function used in the theoretical model, introduced inSec. 7.3.

Additionally, the numerical model includes other key stages in auditory processing important for

the generation of evoked potentials, such as IHC transduction and IHC-AN synapse adaptation.

The numerical ASSR model simulates contributions to the ASSR from 500 parallel channels

reflecting AN fibers across the tonotopoic axis. For channels with center frequencies close to the

carrier frequency of the AM stimulus, the response was compressive. For off-frequency channels,
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the contributions showed linear growth. The numerical model is capable of describing far more

details than the simple analytical treatment in Sec.7.3.

The numerical model showed that realistic cochlear mechanical filters, IHCmechanoelectrical

transductions and IHC-synapse adaptation resulted in the same ASSR modulation growth

functions and level-growth functions as a static compressive nonlinear function processing

the amplitude-modulation of the stimulus. Plotted on log.-log. axes, the model predicts a

modulation-growth function slope of 1.04 which is nearly linear and thus doesnot reflect cochlear

compression, whereas the simulated level-growth function in the compressive region above 35 dB

SPL shows a compression ratio of 0.48. In Sec7.3, it was argued that a compression ratio could

be derived for the modulation-growth functions plotted on linear axes (Fig.7.8). The numerical

simulations supported the theoretical model and found a compression ratio close to 0.48. This

method of estimating the compression ratio, from two slope estimates from two stimuluslevels,

is fine for the numerical simulations here, as the results were entirely noise free. Any variation or

uncertainty on the slope estimates,k1,2, as one would see in experimental data, would be increased

as the ratio is taken. Thus, this is not considered to be the preferred methodfor obtaining estimates

of compression.

The simulated cochlear compression ratio was found to be 0.48, i.e. considerably larger than

the experimentally measured ratio of 0.2 dB/dB. To investigate the cause of this,an additional

simulation was made (not shown) with only the 30 fibers closest to the stimulus frequency, i.e. the

frequency region of 868 Hz to 1158 Hz. This eliminated off-frequency contributions, which would

be expected to have linear growth (Rhode and Recio, 2000). The simulation yielded a level-growth

function with linear growth below 35 dB and compressive growth above 35 dB with a slope of 0.19.

A similar compression of 0.20 can be observed for simulated single fiber response to a pure-tone

stimulus level growth. This follows the experimental findings better where a compression ratio of

0.20 was estimated. Thus, the numerically simulated broad band level-growth function does not

strictly show local cochlea compression, but rather exhibits a slope that is the result of a mixture of

on-frequency compression and off-frequency linearity. In human measurements, a similar effect

might be expected. However, it is unknown to what extent the off-frequency contributions linearize

the human level growth. Further, the human cochlear compression has been measured using both

OAEs and psychoacoustics both showing compression ratios between 0.2 and 0.3. Thus, while the

numerical model seems to be capable of capturing the key physiological generator mechanisms for

ASSRs, it does not correctly model the contributions across different nerve fibers precisely. The

numerical model seems to give more weight to linear off-frequency contributions than is observed

in experimental data. Further work to look at the model nonlinear mechanicalfilters sharpness of

tuning (or Q-factor); and/or contributions from parallel high-, medium- and low-spontaneous rate

fibers (only low-spontaneous rate were simulated here), might shed light on this disparity.

It is important to emphasize that the ASSR model shows the same compression obtained using

either of the two techniques developed in section7.3. This supports the hypothesis that it is

cochlear compression that are measured using these techniques.
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7.6 Overall discussion

7.6.1 Summary

This study investigated the potential for ASSRs to estimate cochlear compression. Based on a

closed-form solution of how the envelope of an AM signal would be affected when processed

by a static nonlinear compressive system, two testable hypotheses of how to obtain estimates of

cochlear compression were made. First, the compression ratio can be obtained as the slope of

the ASSR level-growth function plotted on double log. axes. Second, the compression ratio can

be obtained from the slopes of two modulation-growth functions measured attwo different levels

plotted on linear scales. A numerical model of ASSR generation was also presented; it consisted of

a phenomenological AN model capable of accurately describing the outer and inner ear; nonlinear

cochlear mechanical filtering, IHC processing (half-wave rectification and low-pass filtering) and

IHC-AN synapse adaptation. The output of the AN model was convolved with an empirically

derived unitary response function, used to model auditory pathway processing and propagation of

cell discharge potential to the recording electrodes. The numerical modeldemonstrated that local

cochlear compression could be estimated by the two methods inspired from the simple analytic

model, provided care is taken to limit off-frequency contributions to the ASSR.

Two experiments were carried out. In one experiment, ASSR level-growth functions were

measured in a total of 8 subjects, and a compression ratio of 0.20 was obtained. In another

experiment, using 10 subjects and a total of 20 ears, modulation-growth functions were measured.

A slight compression of 0.78 was observed, when plotted on double logarithmic axes. This is not

consistent with the analytical and the numerical model both predicting a linear behavior in this

condition. The modulation-growth functions of three subjects were additionally measured at a

higher stimulus level. However, the variability was too large to derive a meaningful compression

ratio based on the second hypothesis.

The numerical ASSR model predicted a compression ratio of 0.48 for both thelevel-growth

function and the modulation-growth functions. It was found that the reason for the the decreased

amount of compression in the simulations results from the contributions of the off frequency

fibers where the signal is processed linearly, such that the overall resulting response becomes less

compressive than in the region around the stimulus frequency.

7.6.2 Best practice for estimating cochlear compression using ASSR

This study demonstrated that cochlear compression can be estimated using ASSR, by either

measuring level- or modulation-growth functions. However, estimating cochlear compression

from ASSR modulation-growth functions requires double the number of measurement points as

two slope estimates have to be obtained. Any experimental recording of a physiological parameter

will necessarily be noisy, i.e. have an associated uncertainty. To estimate thecompression ratio,

the ratio of the two modulation-growth functions needs to be taken. This has theeffect of adding
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the two variances or mean-square errors for the individual slope estimates to give the uncertainty

on the compression ratio. This makes the estimate of compression ratio implicitly more uncertain

than via the level-growth functions. This was confirmed by the difficulty in deriving a useful

compression ratio from the modulation-growth experiments. The clear recommendation is thus

to measure level-growth functions if cochlear compression is to be estimated from the ASSR.

A single measurement point can be measured using 1200 epochs of each 375ms length, giving a

measurement time per stimulus level of 7.5 minutes. An estimation of a compression ratio can thus

be done by measuring ASSRs at 3 or 4 different levels, and would require less than 30 minutes

of recording time. This is still a lengthy procedure and does not lend itself asa clinically viable

option at this stage.

7.6.3 Is cochlear compression reflected in experimental logarithmic modulation-
growth functions?

Plotting the experimental modulation-growth functions on double log. axes (Fig. 7.4) demon-

strated a small degree of compression, with a slope of 0.78± 0.09. This is at odds with the

simple theoretical predictions and the results from simulations with the physiologically inspired

numerical model, both predicting linear growth, i.e. a slope of 1.0. The experimental modulation-

growth functions were obtained from only 10 normal-hearing subjects, sothis disparity could be

ascribed to experimental uncertainty. However, the ANOCOVA fitting of the data yielded a low

uncertainty on the slope estimate of only±0.09.

It could be argued that the small degree of compression seen in the experimental data might

arise from a compressive stage in auditory processing independent oflocal cochlear compression.

If one considers the AN model employed to give an accurate description ofperipheral processing

and nonlinearity, then the IHC-AN synapse or early brainstem might containthe additional stage.

An effect that could give rise to such an independent compression could be the modulation gain

(e.g.Joris and Yin, 1992; Frisina et al., 1996; Joris et al., 2004; Malone et al., 2010).

Joris and Yin(1992) measured the ability of cat AN fibers to synchronize their firing to AM

stimuli. They normalized the synchrony by the modulation depth employed to derive a modulation

gain function. Using a stimulus level of 49 dB SPL,Joris and Yin(1992) found a modulation gain

of ≈ 9 dB at 10% modulation depth, monotonically decreasing to≈ 2 dB at 100% modulation

depth. No exact physiological mechanism was suggested as being responsible for the gain. In

the AN model employed here,Zilany et al.(2009) demonstrated that it is capable of simulating

the modulation gain fromJoris and Yin(1992) for the cat. There is no way of ensuring that this

is correctly modeled in humans for the present study.Malone et al.(2010) described how the

gain was increased in the rostral field and even further increased in the auditory cortex, indicating

that the ascending auditory pathway privileges low amplitude modulation depths, and indicating

that higher stages of the auditory pathway also influence the modulation gain.Joris and Yin(1992)

showed that synchrony and, consequently, the modulation gain are also stimulus level dependent in

a nonmonotonic way. The nonmonotonic stimulus level dependency and the increasing magnitude
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with ascending place in the auditory pathway lead to the conclusion that the underlying mechanism

might be independent from cochlear compression. However, the modulation gain does not seem

to be the major cause of the small degree of compression seen in the modulation-growth function.

This conclusion is based on the fact that the simulations using the ASSR model do not show a

compressive slope even though the modulation gain is modeled by the underlying AN model. The

reason could be that the modulation gain in all literature studies (and the AN simulation) were

measured in single nerve fibers of different species of animals. It has not been studied how the

modulation gain would be expected to affect a real ASSR, which naturally consists of the response

of numerous on- and off-frequency tuned fibers.

The apparent compression observed in the logarithmically analyzed modulation-growth function

is thus still unexplained. It might be reflecting a compression independent of the regular cochlear

compression, i.e. at a retro-cochlear stage, which is not reflected in the model provided here.

7.7 Conclusion

This study evaluated the potential of using ASSR as a tool to estimate cochlear compression.

Two different methods were evaluated, from measurements of the modulation- and level-growth

functions. To evaluate these methods, three different approaches were taken, a simple analytical

model based on a static nonlinearity, experimental measurements and a numerical nonlinear

ASSR model. The two modeling approaches illustrated that both level and modulation growth

functions could be used to estimate cochlear compression. However, the level-growth function

was found to be superior as it requires less measured data and has less uncertainty. The level-

growth function was experimentally measured in seven subjects and a compression ratio of

0.20 was found, corresponding to compression ratios found in literature using both ASSR and

psychoacoustic measures. Additionally, the measured modulation-growth function, when plotted

on double logarithmic scales, showed a small degree of compression, contradictory to the model

predictions. It was argued that this was evidence for an effective compressive stage independent

of cochlear compression.



Chapter 8

Modeling auditory evoked brainstem
responses to speech syllables

This chapter presents work that, in cooperation with coauthors James Harteand Torsten Dau, is in

preperation for submission to the Journal of the Acoustical Society of America.

8.1 Introduction

Auditory evoked potentials (AEP) have been used to assess the neural encoding of sound both

for clinical and research purposes. Various types of stimuli have beenconsidered, such as

transients like clicks, chirps and tone-bursts (e.g.Jewett and Williston, 1971; Neely et al., 1988;

Dau et al., 2000, and chapter3); steady-state signals such as amplitude modulated (AM) tones

(e.g.Galambos et al., 1981; Picton et al., 1987; Rees et al., 1986, and chapter7), but also more

complex signals like speech (e.g.,Warrier et al., 2004; Agung et al., 2006; Swaminathan et al.,

2008; Chandrasekaran and Kraus, 2010). Most studies have focused on the auditory brainstem

response (ABR) as they are less affected by attention and sleep than potentials with origin at

higher neural stages. The ABR has also been observed to be unaffected by training. However,

a number studies have recently investigated and found plasticity1 of the ABR, both considering

short term training effects (e.g.Russo et al., 2005; Song et al., 2008) and long-term experience

effects (e.g.Krishnan et al., 2005; Johnson et al., 2008a, seeChandrasekaran and Kraus(2010) for

review).Russo et al.(2005) recorded brainstem responses to the stimulus-syllable /da/ in learning-

impaired children. The responses of the learning-impaired children were recorded before and

after an eight week period containing 35-40 one-hour sessions of auditory training. The authors

showed that the correlation between the ABR to the clean /da/ syllable and the response to /da/ in

noise, improved for the learning-impaired children over this relatively short training period, thus

demonstrating plasticity in the brainstem. This result suggested that features of the brainstem-

response might reflect the ability to comprehend speech and speech in noise. Johnson et al.

(2008a), Hornickel et al. (2009) and Skoe et al.(2011) measured brainstem responses to the

synthetically created syllable-stimuli /ba/, /da/ and /ga/, in normal and learning-impaired children.

Both groups of children were reported to have normal audiometric thresholds and ABR wave-V

latencies.Hornickel et al.(2009) measured stop consonant differentiation scores, comparing the

1 physiological changes of the nervous system due to e.g. learning
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latencies of the major peaks of the three ABRs evoked by the different syllables, and reading

abilities and speech-in-noise perception. They reported a correlation between the stop consonant

differentiation score and the two behavioral measures, such that large differences between peak-

latencies (large consonant differentiation score) correlated with good performance in the speech-

in-noise test and the test of reading ability.Hornickel et al.(2009) argued that this result showed

plasticity in the brainstem, as the group with the good behavioral performancehad undergone

long-term learning and that the better performance was an indication of thatlearning had affected

both the behavioral performance and the electrophysiological brainstemrecordings. The observed

differences, between the learning-impaired and the normal-learning subject groups in the ABR

measures of stop-consonant differentiation scores, were thus argued to be the result of efferent

(top-down) neural processes, and not the result of peripheral auditory afferent processing.

Johnson et al.(2008) presented similar syllable-evoked ABR recordings from 22 normal-

hearing children. They measured the latency of the major peaks for each of the three syllable-

evoked ABRs and found that, although the three recorded time-series were much alike, the peaks

of the time-series response to /ga/ had shorter latencies than the peaks of /da/ which again had

shorter latencies than /ba/. The three syllables only differed in the frequency content of the second

formant, f2, and the third formant,f3. Hornickel et al.(2009) andSkoe et al.(2011) used almost

identical stimuli. Due to the difference in the frequency content of the syllables and due to the

tonotopic mapping of frequencies to places on the BM, the peaks of the ABR responses were

represented early for the /ga/ (f2 = 2480 Hz), later for the /da/ (f2 = 1700 Hz) and latest for the

/ba/ (f2 = 900 Hz). The underlying processes accounting for the findings ofJohnson et al.(2008)

thus appears to be afferent (bottom-up). However, since the stimuli weresimilar, any efferent

processing that affected the recordings fromHornickel et al.(2009) should also have affected the

Johnson et al.(2008) recordings. Skoe et al.(2011) developed a “cross-phaseogram” from the

time-varying cross-power-spectral-density between two ABR recordings. When analyzed in time-

frames, the outcome was a spectrogram-like representation of the phase-lag as a function of time

and frequency. It allowed for a more detailed investigation of which part of the stimuli caused the

peak-latency difference observed byJohnson et al.(2008).

A crucial stage in simulating ABR latencies is the cochlear filter stage and its tuningwithin

the model (Rønne et al., 2012, and3). Broad cochlear filter tuning, often associated with loss of

OHC functionality, is believed to lead to shorter wave-V latencies (e.g.Elberling, 1976; Folsom,

1984). However, in subjects with an audiometric threshold within “normal hearing”(<20 dB HL)

there is still a considerable variation in tuning. In a recent studyElberling et al.(2010) showed

that the travelling-wave delay is highly individual. The travelling wave delay isalso believed to

be dependent on the cochlear tuning, and it can be shown (see calculation in section8.2.5) that

subjects with broader tuning in a group of normal-hearing subjects can have Q-values that are less

than half the Q-values of subjects with sharper but still normal tuning. The possible consequence

of different filter tuning on the simulations of the syllable-evoked phase-shifts will be investigated

in this study.

In the present study, a phenomenological ABR model was developed based purely on bottom-up
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afferent processing. The developed ABR model was similar to the model ofRønne et al.(2012)

(developed in chapter3); however, the AN model used to create the summed activity pattern was

updated fromZilany and Bruce(2007) to Zilany et al.(2009), as the IHC-AN synapse adaptation

of the latter AN model is more precise for long-duration syllable-stimuli.

Using the ABR model to simulate syllable-evoked ABRs, two questions were adressed in

the study: a) Can the ABR model, being purely afferent, simulate key features of the syllable-

evoked responses, and b) can the difference in the recorded cross-phaseogram between normal

and learning-impaired children (Skoe et al., 2011) be explained by potential cochlear tuning

differences between the groups? To evaluate the first questionSkoe et al.(2011)’s cross-

phaseograms was used to assess three hypotheses that can be deduced from experimental

observations made byJohnson et al.(2008). First, differences in the frequency content off2
between the syllable-stimuli, should results in components of the evoked-ABRsbeing differently

delayed due to the tonotopic mapping. This should be seen as phase-shifts inthe cross-

phaseograms. Second, as the differences inf2 diminish over the course of the response, the phase-

shifts observed in the cross-phaseogram should vanish completely whensteady state is reached.

Third, due to the phase-locking properties of the IHCs (upper limit of phase-locking), neural

encoding consists largely of phase-locking to frequencies belowf2. This leads to phase-locking

to the envelope rather than the fine-structure at and above thef2 frequencies. This should result in

phase-shifts observed in the cross-phaseogram at frequencies well below the f2.

The second question will be adressed by changing the tuning of the model and evaluating the

simulations based on models with broad versus sharp tuning, however still representing limits of

normal hearing. The cross-phaseograms will be used to evaluate whether a systematic change in

the phase-shift between the syllable-evoked ABRs can be obtained by altered tuning such that, for

instance, broad tuning systematically leads to smaller phase-shifts between thesyllable-evoked

ABRs.

8.2 Method

8.2.1 ABR model

Figure8.1shows the structure of the ABR model used in this study. The model was similar tothe

model ofRønne et al.(2012) (see also chapter7). However, the AN model used to compute the

summed activity pattern was updated such that theZilany et al.(2009) AN model was used instead

of theZilany and Bruce(2007). This update was made as theZilany et al.(2009) has an improved

IHC-AN stage producing more realistic adaptation properties. As the syllable-stimuli are of longer

duration, a precise adaptation is beneficial. The change of the AN model required a recalculation

of the unitary response (UR). Fig.8.2 shows the UR (based on standard cochlear filter tuning)

calculated similar inRønne et al.(2012) as the deconvolution of a 95.2 dB peSPL grand average
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Figure 8.1: Schematic structure of the ABR model. 500 AN fibers tuned to different CFs are individually simulated by
the AN model. The summed activity pattern is convolved with a unitary response and represents the simulated ABR to
a given stimulus.
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Figure 8.2: The unitary response, calculated as the deconvolution of thesummed activity pattern and theElberling et al.
(2010) grand average click. The cochlear tuning of the AN model is theShera et al.(2002) tuning.

click-evoked ABR recording (Elberling et al., 2010; Rønne et al., 2012) and the summed activity

pattern obtained by simulating the response to an identical click-stimulus.

The simulatied ABRs were at the output filtered with a 2nd order band-pass filter with cutoff

frequencies at 70 Hz and 2 kHz. These filter settings were identical to the output filters of

Hornickel et al.(2009) andSkoe et al.(2011).

8.2.2 Stimuli

Synthetic /ba/, /da/ and /ga/ syllables (Hornickel et al., 2009; Skoe et al., 2011) was used, that only

differ in the frequency content of the second formant,f2, of the first 60 ms, corresponding to the

consonant part of the stimuli. The second formants decrease in the [ga] stimulus from 2480 Hz,

in the [da] from 1700 Hz and increased in the [ba] stimulus from 900 Hz, reaching a steady-state

frequency (corresponding to the /a/ part of the syllable) of 1240 Hz in all 3 stimuli. The /a/ vowel-

part of the syllables was the same for the three syllables, consisting of the formant frequencies
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f0 = 100 Hz, f1 = 720 Hz, f2 = 1240 Hz, f3 = 2500Hz, f4 = 3300 Hz, f5 = 3750 Hz andf6 =

4900 Hz. All three stimuli were calibrated to have a root-mean-square (RMS) level of 1, and were

presented to the model at a level corresponding to 80 dB SPL, which was also used int the study

by Skoe et al.(2011).

8.2.3 Cross-phaseogram

Skoe et al.(2011) proposed a cross-phaseogram to illustrate the phase-differences and thus the

time delays between two ABR recordings. The first step in the procedure was to divide the two

recordings into time frames of 20 ms, starting with the first frame at t = -40 ms. Each successive

frame started 1 ms later than the previous one, creating an overlap of 19 ms. AHanning window

of 20 ms length, indcluding 10 ms onset and 10 ms offset ramps was applied to each frame,

resulting in a 3 dB main lobe width of 141 Hz. The cross power spectrum density, i.e. the power

spectrum density of the cross correlation, was computed between each pair of frames from the two

recordings. An artificial frequency resolution of 4 Hz was obtained by zero padding, effectively

acting as a smoothing operation. Finally, the unwrapped phase (in radians)was extracted and

plotted as a function of time (midpoint of the 20 ms frames) and frequency.

Skoe et al.(2011) also proposed the average phase-shift to simplify the cross-phaseogram into

a single number that could be compared to other measures, such as the psychoacoustic speech-in-

noise performance. The average phase-shift (inπ radians) was calculated on the formant transition

period (15 to 60 ms) of the syllable-evoked ABR in the frequency range of70 to 1100 Hz.

8.2.4 Weighted cross-phaseogram

The cross-phaseogram weights time-frequency bins with little activity as highas bins with much

activity. This limits the use of the cross-phaseogram as it is impossible to distinguish between

time-frequency bins of presumable little importance due to low activity from bins of major

importance due to large activity. A weighted cross-phaseogram is therefore suggested in this

section. The first step in the procedure was to derive the energy in similar time-frequency bins as

those chosen in theSkoe et al.(2011) cross-phaseogram (Fig.8.5). Each of the two syllable-

evoked ABRs were thus divided into 20 ms frames with 19 ms overlap, and the fast Fourier

transform (fft) was calculated with a frequency resolution of 4 Hz. The two resulting matrices

were summed and normalized with the average bin activity. This matrix was then multiplied

bin-per-bin with the original cross-phaseogram. The reason for the normalization of the activity

matrix was to create a weighted cross-phaseogram that highlights the phase-shifts and does not

just express the overall activity.

Fig. 8.3displays both the cross-phaseograms (left) and the weighted cross-phaseograms (right)

for the different stimulus pairs. Each time-frequency bin represents the corresponding phase lead

(warm colors) or lag (cold colors) of the first syllable-stimulus in the title overthe second. The

period from 15 to 60 ms shows the formant transition period, the period after60 ms the steady
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Figure 8.3: The three left panels show cross-phaseogram representations of the three comparisons between the syllable-
stimuli. Warm colors indicates that the syllable mentioned first in the respective title phase-leads the other. The time
axis refers to the center point of the 20 ms time frame. The three right panels, show weighted cross-phaseograms of the
same stimuli-comparisons.

state part of the response (Skoe et al., 2011). Both sets of figures (left and right panels) show that

the phase-shifts between the stimuli are in the frequency region above 1 kHz.

8.2.5 Variability of cochlear filter tuning

Cochlear filter tuning and BM delay are inherently related (Folsom, 1984; Eggermont, 1979;

Bentsen et al., 2011), such that broader filters lead to shorter delays.Elberling and Don(2008)

measured derived-band latencies from a total of 81 normal-hearing subjects (hearing thresholds

< 15 dB HL), at four different band center frequencies (bCF; 710,1400, 2800 and 5700). ABR

wave-V latency and a inter-subject standard deviation (SD) was derived. The BM delay was

acchieved by subtracting the wave I-V delay (4.1 ms) and the synaptic delay(1 ms), see table

8.1. A representation of the variation of cochlear filter tuning in normal-hearingsubjects can

be obtained from the mean latencies± 1 standard deviation. The stimulus ofElberling and Don

(2008) was a click presented at approximately 90 dB peSPL.

Eggermont(1979) derived a theoretical relation between the cochlear filter tuning,Q10, and the

average number of cycles in the impulse response up to the latency (minus 1 ms of synaptic delay)

of the derived band CAP,Nav;

Nav =
0.5
π2

(

5(1+ γ)(2+ γ)

12γ
Q10−1

)(

2+ ln
5(1+ γ)(2+ γ)

12γ
+ lnQ10

)

(8.1)

whereNav can be calculated as(CF/1000)∗ τCF, whereτ is the BM latency of at theCF. In table
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bCF (Hz) Mean latency SD Nav Nav (-SD) Nav (+SD)
5700 1.17 0.32 6.7 4.8 8.5
2800 1.86 0.40 5.2 4.1 6.3
1400 2.93 0.56 4.1 3.3 4.9
710 4.57 0.79 3.2 2.7 3.8

Table 8.1: Derived-band latencies and a one standard deviation (SD) from Elberling et al.(2010). The 1 ms synaptic
delay has been subtracted from the latencies. The number of cycles in theimpulse response up to the bCF latency,Nav,
for the mean latencies and for the mean latency± the standard deviation is also shown.
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Figure 8.4:QERB’s calculated based onElberling and Don(2008)’s measured derived band latencies (diamonds). In
circles and trangles,QERB estimates based onElberling and Don(2008)’s measured latencies±1 SD an±2 SD. Also
shown is theShera et al.(2002) tuning (solid line) which is implemented in the standard ABR model. The alternative
tuning curves (dotted lines) are fitted to theElberling and Don(2008) based tuning (±1 SD and±2 SD) and also
implemented in the model.

8.1 Nav values derived from the mean latencies and from the latencies±1 standard deviation are

shown (±2 SD wer also calculated but not shown in the table due to clarity).γ = 2 is representative

of a normal cochlea (Eggermont, 1979), and Q10 values can thus be calculated based on the

Nav values from table8.1 and equation8.2.5. To convert theQ10 values intoQERB values, the

conversion fromIbrahim and Bruce(2010) was applied:

QERB=
Q10−0.2085

0.505
(8.2)

Fig. 8.4 shows theQERB values derived fromElberling and Don(2008)’s measured delays±1

SDs and±2 SDs. TheQERB’s calculated the mean delays corresponds well with theShera et al.

(2002) estimates of tuning (solid curve). New tuning-curve estimates were obtainedfrom the±1

SD and±2 SD based Q-estimates, by multiplying theShera et al.(2002) estimates by a constant

offset. The broader tuning-estimates were obtained by multiplyingShera et al.(2002)’s tuning

estimates by 0.80 and 0.60, the sharper tuning-estimates by 1.15 and 1.28. Thefour suggested

tuning curves were implemented in the ABR model. For each simulated condition, a new UR was

calculated. The URs were almost identical to the ones presented in Fig.8.2and are thus not shown

explicitly here.
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Skoe et al. (2011) Simulations Simulations (weighted)
/ga/-/ba/ 0.317±0.040 0.353 3.040
/da/-/ba/ 0.288±0.031 0.243 2.163
/ga/-/da/ 0.208±0.028 0.141 1.660

Table 8.2: Average phase-shifts ofSkoe et al.(2011) recordings (left column), simulated average phase-shifts (center
column), and weighted average phase-shifts (right column). The average is taken across the region from 15 to 60 ms,
and from 70 to 1100 Hz.
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Figure 8.5: Cross-phaseogram (left panels) and weighted cross-phaseogram (right panels) representations of the three
comparisons between the syllable-evoked ABRs. Warm colors indicates that the syllable mentioned first in the
respective title phase-leads the other. The time axis refers to the center point of the 20 ms time frame. It can be
observed that the largest phase-shift is found in the /ga/ v. /ba/ plot, and the least phase-shift is found between /ga/ and
/da/.

8.3 Results

Figure8.5presents cross-phaseograms and weighted cross-phaseograms derived from each of the

three possible combinations of the simulated ABRs. Figure8.6reproduces the cross-phaseograms

presented inSkoe et al.(2011). These results can thus be compared to the simulated cross-

phaseograms (left panels of Fig.8.5). Table 8.2 shows the average phase-shifts obtained in

Skoe et al.(2011) and the corresponding values obtained from the simulations presented in Fig.

8.5. Both experimental results and simulations show the largest phase-shift between /ga/ and /ba/,

which also differs most in their frequency spectrum. Also, the data and the simulations both show

that the phase-shift between /ga/ and /da/ is smaller than the phase-shift between /da/ and /ba/.

The cross-phaseogram in Fig.8.5show that the /ga/ phase leads both /da/ and /ba/ (warm colors

in the formant transition period of panel 1 and 3), and that /da/ phase leads /ba/ (warm colors in

panel 2). Further, the only difference between stimuli was the frequency content of f2, and the

observed phase-shifts in the cross-phaseograms can thus be arguedto be caused by the stimuli-

frequency differences. This is also confirmed by table8.2 presenting average phase-shifts of the
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Figure 8.6: Cross-phaseograms fromSkoe et al.(2011) of the three comparisons between the syllable-evoked ABRs.
Left panels, are calculated based on the top performing group of subjects in a hearing in noise test (HINT). Right panels,
presents the worst performers. Note that the frequency range is notindetical to the frequency range presented in Fig.
8.5. © Journal of Neuroscience Methods.

consonant period, where it is seen that /ga/ phase leads /da/ that phase leads /ba/. Furhter, Fig.8.5

illustrates that the simulated phase-shifts clearly diminishes over time, and that thephase-shifts are

vanished at steady state (>60ms). This shows that the memory of the peripheral non-linearities,

e.g. the IHC-AN synapse adaptation, is short compared to the duration of the stimuli. In Fig.

8.5 it can also be observed that there are phase-shifts up to approximately 1500 Hz, i.e. both

below and in the second formant frequency range. However, the weighted cross-phaseograms of

Fig. 8.5 (right panels) does not show components at these frequencies, indicating that the high-

frequency phase-shifts reflect time-frequency bins with very little activity, and thus potentially

little importance. The main trend is thus that thef2-frequency-difference between stimuli, results

in phase-differences at frequencies well below thef2. The cause for this finding in the simulations

are discussed later.

Figure 8.7 shows weighted cross-phaseograms of the syllable pairs, for simulations of a

relatively sharp (x 1.28) and relatively broad (x 0.80) tuning. It can beseen (more bins with

warm colors) that the phase-shift is larger for the sharp tuning. In Fig.8.8, weighted average

phase-shifts for all syllable comparisons and all five different tuning-curve implementations are

shown. Although the growth of the phase-shift with increasing tuning amountis not monotonic,

a trend is observed, where sharp tuning leads to larger phase-shifts. This confirms that the state

of the auditory periphery affects the cross-phaseogram and weightedaverage phase-shifts. The

implications for theHornickel et al.(2009) andSkoe et al.(2011) studies are discussed further

below.
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Figure 8.7: Weighted cross-phaseograms for each of syllable combinations, for both broad (x 0.80) and sharp (x 1.28)
tuning. No major systematic differences are observed.
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Figure 8.8: Weighted average phase-shifts for each of the syllable combinations, for both broad (0.60 and 0.80), standard
(1.00) and sharp (1.15 and 1.28) tuning.

8.4 Discussion

8.4.1 Unweighted versus weighted cross-phaseogram

The cross-phaseogram and the average phase-shifts was developed by Skoe et al.(2011) and has

proven to be a valuable tool for investigating phase-shifts between different frequency components

of the recorded (or simulated) ABR. However, the equal weighting of all time-frequency bins

limits the value of the average phase-shiftSkoe et al.(2011), since a bin with little activity will

hardly influence the ABR generation. In fact, a time-frequency bin with little energy is likely to

be dominated by measurement noise, and the average measure might thus emphasize noise.

In the simulations presented in this study, noise is not included. This makes a comparison
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between simulations and data in the terms of the average phase-shift difficult,as a systematic

phase-shift at bins with little activity will be included in the simulated average phase-shift, whereas

such a phase-shift is likely to be influenced or masked by measurement noise in the data-derived

average phase-shift. This could be solved by adding noise to simualations.However, this would

imply that the model would no longer be deterministic which has not been considered in the

present study.

8.4.2 Explaining the presence of phase-shifts below the second formant

In section8.3 is was shown that second formant differences between stimuli, result in phase-

differences at frequencies well belowf2. Johnson et al.(2008) argued that this is due to the phase-

locking properties of the IHCs (upper limit of phse-locking), and that neural encoding consists

largely of phase-locking to frequencies belowf2. This leads to phase-locking to the envelope

rather than the fine-structure at and above thef2 frequencies. However, the IHC stage of the AN

model (effectively modeling the upper limit of phase-locking) consists of a nonlinearity and a low-

pass filter with a cut-off frequency at 3 kHz. It is thus unlikely that the IHCstage should be the

cause of the simulated phase-shifts at frequencies belowf2 in the simulations.

Figure 8.9 visualizes the simulated response to the syllable /da/ in an AN-UR-spectrogram.

Each horizontal line represents the output from one AN model, i.e. the response to the stimulus

at the respective model CF, convolved with the UR. A summation across CFs will thus yield the

simulated ABR (see section6 for introduction to the AN-UR-spectrogram). It can be observed that

most of the energy in the simulations is centered at the onset response and the frequency regions

of 100, 200 and 500 Hz (latter one highlighted by the ellipse). It can be seen in Fig. 8.9that phase-

locking clearly occurs in the frequency range up to 1 kHz (this can be observed as the number of

peaks at, e.g. 500 Hz is 5 peaks per 10 ms, i.e. the corresponding periodicity). The response at

larger CFs exhibits primarily a periodicity corresponding to the fundamental frequency,f0=100Hz,

i.e. the envelope of the response (highlighted by the arrows in Fig.8.9).

To fully explain the presence of phase-shifts belowf2 the stimulus and model has to be analyzed

step by step. The syllable-stimuli formants (e.g.f2) are modulated at the rate of the fundamental

frequency (f0 = 100Hz) and its higher harmonics. Thus, at the characteristic places on the BM

of the f2 frequencies, a signal with anf2 carrier frequency modulated by anf0 (+ harmonics)

modulation frequency will be processed. Further, the stimulus-level was high (80 dB SPL) causing

upwards spread of excitation. The left panels of Fig.8.10shows the single channel response at

the output of the filter stage (see Fig.3.2 for diagram of AN model), tuned to CF = 2405 Hz, in

response to the /ga/ stimulus. The time-series shows a periodic signal and its spectrum (shown

below it) clearly shows frequency components seperated byf0. Further, is it seen that the energy

is centered around the CF, but also that upwards spread of excitation results in this channel being

excited by contributions from lower frequencies. The IHC stage applies physiologically inspired

half-wave rectification and low-pass filtering. The output of the IHC stageis shown in the right

panels of Fig.8.10for the same CF channel and stimulus. It is seen that the half-wave rectification
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creates low-frequency energy, as inter-modulation and harmonic distortion products. However, the

majority of energy is still centered around the CF. The synapse adaptation stage, that occurs after

the IHC stage (see Fig.3.2 for AN model), has no significant effect on the spectrum of the single

channel response. However, the UR that is convolved onto the single channel response effectively

acts like a low-pass filter. The left panels of Fig.8.11show the UR and the spectrum of the UR.

As a convolution is effectively the same as a multiplication in the frequency domain, the UR is

effectively acting as a low pass filter with the frequency response corresponding to the spectrum

shown in the lower left panel. Thus the resulting simulated single channel potential (shown in

the right panels) are limited to low frequencies. The 2405 Hz fiber will thus contribute with

frequency components at low frequencies, which will carry the travellingwave delay (and thus

phase) of the CF of the fiber. The frequency-differences between stimuli at the f2 frequencies

will thus be depicted as phase-differences at thef0 and correponding harmonic frequencies in the

phaseograms.

The outcome measure predicted by the hypotheses ofJohnson et al.(2008), that phase-shifts

should be found at low frequencies, was thus found in bothSkoe et al.(2011)’s experimental

analyzis and in this study’s simulations. However, the simulations showed that the predicted phase-

shifts were mainly caused by a combination of upwards spread of excitation and the effective

low-pass filtering applied by the UR. Further, it was shown not to be caused by the upper limit of

phase-locking, as hypothesized byJohnson et al.(2008).

Note, the UR represents the contributions made from local potentials in the AN and the

brainstem to the far-field potential recorded at the electrodes on the scalpof the subject. The

peaks of the UR and the time between them, thus describes ascending places along the auditory

pathway were local potentials are generated, that contributes to the ABR potential. The UR is

thus not representing the neural encoding in the brainstem but rather thetimes after onset where a

contribution to the surface potential is made. In this study, the UR is seen to limit thetransmission

of the neurally encoded signal to the recorded surface potential. This is the consequence of the

effective low-pass filtering that again is the consequence of the distancebetween the major peaks,

and thus neural generators, of the UR. The effective low-pass filtering is also limiting the utility of

this kind of electrophysiology in investigating neural encoding of sound.

8.4.3 Limitation of simulating high spontaneous rate fibers

A deviation between simulations and data is the absolute amplitude of the simulated ABRs (not

shown). The simulated peak-to-trough amplitude is approximately 0.1µv, whereas the measured

data in bothJohnson et al.(2008) andHornickel et al.(2009) indicates amplitudes around 0.5µv.

The reason for the under prediction is the choice of simulating the responses of high spontaneous

rate fibers. The high stimulus-level of 80 dB SPL results in saturated fiber responses for high

spontaneous rate fibers (Sumner et al., 2002). This saturation reduces the overall amplitude of

the response. However, the phase-information in the ABR was the point ofinterest in this study,

not the amplitude of the response, and the choice was therefore to simulate high spontaneous
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Figure 8.9: AN-UR-spectrogram visualizing the components in frequency range from 100 to 3000 Hz that adds up to
form the simulated /da/ evoked ABR. It is created by convolving each of the simulated AN fibers responses with the
UR. The ellipse highlights the region with the most activity. At frequencies above approximately 1 kHz, the single fiber
response tracks the envelope, i.e the fundamental-frequency periodicity of 10 ms (indicated by the arrows), rather than
the fine-structure of the signal.
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Figure 8.10: Left panels: Time-series and spectrum of the C1 filter output. Right panels: Time-series and spectrum of
the IHC stage output. The CF of the fiber was 2405 Hz and the stimulus was /ga/.
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Figure 8.11: Left panels: Time-series and spectrum of the UR. Right panels: Time-series and spectrum of the single
fiber response of the model (AN model output convolved with UR). TheCF of the fiber was 2405 Hz and the stimulus
was /ga/.

rate fibers, as these has been shown to be mainly responsible for the onset of signal-components.

However, if other speech-evoked ABRs with an amplitude-based outcome measur, were to be

simulated this limitation would need to be adressed. A possible solution would be to simulate

a mixture of both high and low spontaneous rate fibers, to predict both the amplitude and the

phase-information as accurately as possible.

8.4.4 Implications of changing cochlear tuning on Skoe et al. (2011) conclusions

Hornickel et al.(2009) andSkoe et al.(2011) found correlations between learning-impairments

of children, and recorded cross-phaseogram phase-shifts (peaklatencies inHornickel et al.,

2009) between syllable-evoked ABRs, such that a small average phase-shift was an indication

of learning-impairment. A basic assumption ofHornickel et al. (2009) was that the two

groups of hence normal and learning-impaired children have equally good peripheral hearing.

Hornickel et al.(2009) argued that this was the case as all subjects had audiometric thresholds

below 20 dBHL and had normal ABR wave-V latencies. The wave-V latencywas measured as

an indication of the state of the cochlear tuning, as broad cochlear tuning are believed to lead

to shorter wave-V latencies (e.g.Elberling, 1976; Folsom, 1984). However, in a recent study

Elberling and Don(2008) showed that the travelling wave delay was highly individual. The

traveling wave delay is also thought to be dependent on the BM tuning, and itwas in the present

study suggested that the broadest BM tuning in a group of audiometric-wisenormal-hearing

subjects can have a Q-value that is less than half the Q-value of the sharpest BM tuning. Given

the possible variation of “normal” BM tuning an alternative explanation for theHornickel et al.

(2009) results can be hypothesized. A broad cochlear tuning leads to shorter peak-latencies for

all three stimuli. Further, do the travelling-wave delay decrease logarithmicallywith increasing

stimulus frequency (e.g.Neely et al., 1988; Elberling et al., 2010). A broad tuning would thus

lead to a decreased difference between the ABR peaks, and thus a smallerphase-shift. Phase-shift

differences similar to the oneSkoe et al.(2011) finds between the groups of normal and learning-
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impaired children, could thus be hypothesized to also be found when measuring ABRs to two

normal-hearing groups but with different cochlear tuning.

The results from this modeling study showed that there is indeed a relation between filter tuning

and weighted averaged cross-phaseogram values, where sharpertuning leads to larger phase-shifts.

Although this relation was not strictly monotonic it do indicate that the phaseograms are sensitive

to changes in the auditory periphery. Whether this finding offers an alternative explanation for the

results ofHornickel et al.(2009) andSkoe et al.(2011) are, however, questionable. That would

require the assumption that the group of learning-impaired children, had significantly overall

broader cochlear tuning than the normal children. Although this hypothesisis not unlikely, this

study cannot be any chance verify such a claim. That would require a major study, where the

cochlear tuning of learning-impaired and normal subjects were measured carefully, and correlated

with weighted average phase-shifts. The conclusion of this part of this study is thus, that the

huge spread of normal-hearing cochlear-tuning, in the simulations, leads toa huge spread in

weighted average phase-shifts.Skoe et al.(2011) showed that average phase-shifts was related

to learning-impairment. Further, didSkoe et al.(2011) conclude that the correlation between

learning-impairment and average phase-shifts show plasticity of brainstem.This conclusion was

based on the assumption that the state of the auditory periphery was equal (i.e. normal heraring)

in both groups. However, this study has indicated, that the cochlear tuningof the normal-hearing

subjects could have an effect on the average phase-shift, and do thuschallenge the underlying

assumption of the conclusions fromHornickel et al.(2009) andSkoe et al.(2011). Further, this

study has shown that the use of audiograms and click-evoked ABR wave-V latencies are unlikely

to be precise enough to claim that the cochlear tuning are similar between two groups.

8.5 Summary and conclusion

This study evaluated the performance of an ABR model to simulate ABR responses to three

synthetic syllables. The ABR model was shown to predict phase-shifts between the responses to

the three syllable stimuli. It was also shown that the model accounts for these phase-shifts which

diminish over time, as the spectral differences between the stimuli also decrease, and that there

are no differences in the steady-state part of the responses. The model also correctly decribed

that the frequency-region of the response that were mainly phase-shifted was well below the

frequency-region that differed between the three stimuli. Based on the simulations it was shown

that this phase-shift was mainly due to upwards spread of excitation and effective low-pass filtering

applied by the UR and not the consequence of the upper limit of phase-locking as hypothesized

by Johnson et al.(2008). Furthermore, it was shown that altering the cochlear tuning influenced

the simulated phase-shifts, illustrating that the state of the auditory periphery iscrucial when

analyzing responses based on the cross-phaseogram. The results suggests that the assumption

of Hornickel et al.(2009) andSkoe et al.(2011), that the peripheral hearing was similar between

their two grousp of test subjects, might be flawed and the following conclusion, that the larger
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phase-shifts for the non-learning-impaired children was the consequence of plasticity, might thus

be wrong.



Chapter 9

General discussion

9.1 Summary

In this Ph.D. thesis, AEP models based on a convolutive approach were developed, where the

response of a nonlinear peripheral model were convolved with a linear UR. The peripheral model

simulated single-fiber responses to a given stimulus. The response from 500 individually tuned

fibers were summed to form the summed activity pattern, i.e. the activity at the distal end of

the AN. This summed activity pattern was then convolved with a linear UR, representing the

contributions made to the formation of the far field potential (AEP), from ascending places along

the neural auditory pathway in response to the events in the summed activity pattern. The UR

thus represented the impulse response of the transmission from the activity at the distal end of

the AN to the electrodes attached to the scalp of a test subject. This approachmade use of the

assumptions that the UR was independent of test subject and stimulus, and unaffected by nonlinear

neural processing. Two different peripheral models were used. The Zilany and Bruce(2007)

AN model to simulate transiently evoked responses to clicks, tone bursts and chirps, and the

Zilany et al.(2009) AN model to simulate evoked responses to amplitude modulated tones and

speech syllables. Both AN models were originally fitted to cat data. TheZilany and Bruce(2007)

model was humanized by Ian Bruce and colleagues, such that the frequency-dependent cochlear

tuning was fitted to the human tuning estimates ofShera et al.(2002), and the middle ear stage

was replaced by the human model ofPascal et al.(1998). This humanization was also applied to

the Zilany et al.(2009) model. The difference between the two models was the more advanced

IHC-AN synapse adaptation stage included in theZilany et al.(2009) model. This more precise

adaptation was argued to be important when longer-duration stimuli like amplitudemodulated

tones or syllables were used.

The ABR model developed inRønne et al.(2012) was based on theZilany and Bruce(2007) AN

model and a UR covering the first 10 ms of neural processing, i.e. including the ABR wave I-VII.

The ABR model was shown to predict the frequency dependence of tone-burst wave-V latencies

and the amplitude of wave-V’s evoked by clicks and chirps at different stimulus-levels and chirp

sweeping rates. However, the ABR model under estimated the stimulus-level dependence of

wave-V latencies. An alternative ABR model, using the DRNL model as peripheral model, was

also considered (seeRønne et al., 2011) to investigate whether the under estimation of the level-

dependence of click-latencies was bound to the structure of the AN model. However, the DRNL-
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based ABR model was not found to improve predictions. The models capabilityto simulate

ASSRs was also evaluated. This was done as part of theRønne et al.(2012a) study, where the

possibility of using ASSRs to assess cochlear compression was evaluated both experimentally

and in simulations. The ASSR model was based on theZilany et al. (2009) AN model and a

UR covering the first 80 ms of processing, thus including the middle-latency response (MLR)

components. The model was shown to be able to predict the main trends of ASSRs to a wide

range of stimulus levels and modulation depths. However, the model failed to predict the slight

compression observed in the experimentally measured modulation-growth function (Rønne et al.,

2012a). The model accounted for on-frequency level-growth compression similar to what would

be expected. However, when simulating responses from all 500 fibers,the mixture of on- and off-

frequency contributions provided a weaker compression than experimentally measured. In chapter

8 an ABR model was developed based on theZilany et al.(2009) AN model and a UR covering

the first 10 ms of the neural processing, with the purpose to evaluate whether the model could

simulate responses to complex stimuli. This model was used to simulate the responseto speech

syllables. One key prediction was that the phase-shifts between two ABRs evoked by two different

syllables were correctly accounted for frequencies significantly lower than the frequency content

that differed between the two syllables. This simulation was explained as resulting from upwards

spread of excitation and the effective low-pass filtering applied by the UR.The effect of variation

of cochlear tuning within what could be expected from a group of normal hearing test-subjects was

also investigated. Here it was found that sharper tuning generally led to larger phase-shifts. Based

on the assumption that the peripheral hearing was equal between groups, Skoe et al.(2011) argued

that the difference in recorded phase-shift between two groups of normal and learning-impaired

children was caused by plasticity of the brainstem. However, the conclusionof the simulations

from the present study was that the variation in normal-hearing tuning is large enough to cause

significant phase-shifts, and the underlying assumption ofSkoe et al.(2011)’s conclusion might

thus be incorrect.

This thesis also comprised two experimental studies. One of them investigated whether

the higher amplitude of an ABR evoked by a rising chirp compared to a click wasmainly a

consequence of the better alignment of the low-frequency (<1500 Hz) versus the high-frequency

(>1500 Hz) components. Although both regions were found to contribute tothe ABR, the region

with the largest additional contribution to the chirp-evoked compared to the click-evoked ABR was

the low frequencies. In the other experimental study, it was investigated whether the ASSR could

be used to assess human cochlear compression. The conclusion was thatboth the level-growth

function and the modulation-growth function could be used to obtain an estimate of cochlear

compression. However, the modulation-growth function required the double amount of data and

had inherently more noise associated. Thus, the clear recommendation was touse the level-

growth function in future work both clinically and in research. One interesting finding was the

slight compression observed when plotting the modulation-growth function ondouble logarithmic

scales. According to the developed analytical model and the ASSR model, nocompression should

have been observed this way. The result remained unexplained.
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9.2 Revisiting assumptions of the convolutive approach to modeling

The modeling work of this study was built upon the convolutive approach assuming linear

superposition, where a nonlinear summed activity pattern was convolved witha linear UR. The UR

was assumed to be independent of stimulus-type (level, frequency and fluctuations), independent

of subjects, unaffected by top-down efferent processing as training, and unaffected by bottom-up

nonlinear neural processing.

A UR with level- and frequency-dependence, as proposed byChertoff (2004) has already been

discussed in section3.6.3and4.5. However, the UR could also be thought to be dependent on

temporal fluctuations/modulations of the stimulus. In chapter7, it was reported that a slight

compression was observed when recording ASSR modulation-growth functions and plotting them

on double logarithmic scales. A slope of 1 was predicted by the ASSR model, but a slight

compression was observed experimentally (slope = 0.78). It was suggested that the modulation

gain, reported byJoris and Yin(1992) for single-fiber cat AN responses, could be the cause of

the compression, as the modulation gain describes how synchrony1 is increased in the neural

representation of the AN. However, the modulation gain was included in the ANmodel and

could thus not explain the found compression (Zilany et al., 2009). Joris et al.(1994) reported

a further increased neural synchronization in the AVCN compared with thesynchronization

in the AN fibers. They argued that this was due to the convergence of inputs from two or

more AN fibers on an AVCN cell that require coincident input spikes before firing (Joris et al.,

1994). Malone et al.(2010) showed that the synchronization is further increased at ascending

places along the auditory pathway. An increased synchronization represents nonlinear processing

and thus is not described by the linear UR. Future work could be to implement aneural stage

where the increased synchronization could be accounted for in the framework of the present AEP

model. Such an extra neural stage could potentially improve the simulations, such that the slight

compression found in the logarithmically plotted ASSR modulation-growth functions could be

explained.

Another basic assumption underlying the linear UR of the present AEP model isthat the model

is independent of test subject and independent of time. In chapter3, subject independence was

investigated and all simulations were rerun using individually estimated UR functions from three

different subjects. This resulted in small changes to the overall simulated response amplitudes and

introduced an individual latency offset. However, the shape of the UR and the distance between

peaks remained the same, as expected. This investigation was though only interested in the first

5 ms of the UR, i.e. up to wave-V. Furthermore, all subjects were young normal-hearing adults.

A test of whether higher neural stages, potentially affecting wave-V andhigher generation sites,

differed between individual subjects was never conducted. Such a potential neural difference

could arise from brainstem plasticity, i.e. physiological changes to the brainstem processing due

to learning. A potential effect of plasticity was described byHornickel et al.(2009) andSkoe et al.

1 Synchrony measures how densely nerve-firing is clustered around the peaks of the envelope response (Malone et al.,
2007)
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(2011), where degrees of learning impairment were found to correlate with electrophysiological

ABR phase-shift measures. It was argued that the reason for the correlation was that the normal-

learning children were better trained and thus showed plasticity of the brainstem, i.e. that auditory

training had resulted in physiological changes of the brainstem. If this was true, a general across-

subject UR would not be reflective of the individual differences in neural processing. However,

plasticity is the effect of long-term learning in the range from weeks to several years, and the

consequence is thus that the UR does not necessarily need to be non-linear to simulate these

differences. Rather, the consequence is that the UR should be calculated for each individual subject

and could benefit from frequent recalculations (to anticipate plasticity of the brainstem over time).

9.3 Limitations of the present AEP model

The AEP model of this study was shown to be limited with regards to two differentsets of

simulations. The first was the level-dependence of click-evoked ABR latencies where the predicted

slope of the latency-growth function was -0.015 ms/dB compared to the slope of -0.05 ms/dB

found in literature. The second limitation was the ASSR level-growth compression, yielding a

compression ratio of 0.48 dB/dB compared to experimentally measured compression ratios of

0.2 dB/dB. The underestimation of the click-latencies was investigated inRønne et al.(2011),

with focus on the influence of the auditory periphery. It was found that the major contributor to

click-latencies was the tuning of the cochlear filters and, to a lesser degree, the IHC-AN synapse

adaptation. Therefore, the conclusion from that study was that the filter tuning at high stimulus

levels and high stimulus frequencies might have been incorrect.

The under-estimated ASSR compression ratio was found inRønne et al.(2012) to be a

consequence of on-frequency compression and off-frequency linearity. The on-frequency com-

pression was shown to have a compression ratio of 0.2, i.e. similar to the experimentally

recorded compression. However, when mixed with off-frequency linear contributions, the mixture

demonstrated compression with a ratio of 0.48. Three suggestions for this disparity were made: 1)

The filter tuning of the model could be imprecise, such that the mixture of on- and off frequency

contributions were wrong. An updated implementation would result in either a stronger on-

frequency compression or a surpression of off-frequency contributions, for instance by making

the filter skirt roll-off sharper. 2) The potentially increased synchronyin the AVCN could also

affect the cochlear compression measured by ASSR, as the neural synchrony has been shown to

be stimulus-level dependent. The increased synchrony is though not monotonically dependent

on the stimulus-level, and can thus not be a major contributor to a simulated compression that

is too low over the entire compressive stimulus-level region. 3) In the ASSR study, only low-

spontaneous rate fibers were simulated. This was done as high-spontaneous rate fibers were

shown to be saturated at most stimulus levels. However, a saturation represents effectively an

extreme compression. An appropriate mixture of low- and high-spontaneousrate fibers, could

thus potentially increase the on-frequency compression, such that that the mixture of on- and

off-frequency contributions would be changed, and an effectively higher compression could be
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obtained. Additional simulations showed that simulating the response of high-spontaneous rate

fibers led to a saturated on-frequency response as expected. However, as the level of the saturated

on-frequency responses were low (due to the saturation), the off-frequency contributions (which

were not saturated) were inherently given more relative weight. The resulting mixture of extreme

on-frequency compression and linear off-frequency contributions with higher weight resulted in a

compression ratio very close to the originally simulated compression ratio of 0.48. This does thus

likely neither provide an explanation for the weak simulated compression.

Common for the two main limitations of the AEP model is thus the uncertainty about the

implemented cochlear tuning. It has not been within the scope of this Ph.D. to update the cochlear

filters, it has rather been the scope to investigate the limitations of the current knowledge and

the present model. However, a future study should focus on getting the filter tuning accurately

modeled. At present, uncertainties remains regarding the tuning (Q-values) at high stimulus-levels

and high stimulus-frequencies and further regarding the slope of the filterskirts, i.e. the part of the

filter description not included in theQ10 value.

9.3.1 Modeling high- versus low-spontaneous rate fibers

Throughout this study, either high or low-spontaneous rate fibers havebeen modeled. At no point

has a mixture of low- and high-spontaneous rate fibers been attempted. Thelow-spontaneous rate

fibers show slow recovery after stimulation whereas high-spontaneous rate fibers recover faster

(Relkin and Doucet, 1991), making the high-spontaneous rate fibers important when simulating

timing and onset responses. Further, the high-spontaneous rate fibersshow saturating response

characteristics for increasing stimulus level, whereas the low-spontaneous rate fibers show a

linear growth (Winter et al., 1990). It thus seems evident that low-spontaneous rate fibers are

responsible for encoding high stimulus-level signals, whereas the high-spontaneous rate fibers

encode low stimulus levels and onsets of signals. Thus, to be able to simulate all aspects of AEPs

evoked by fluctuating stimuli, like AM signals or syllables, the inclusion of a mixtureof low and

high spontaneous-rate fibers is needed. A starting point for a future inclusion of low- and high-

spontaneous rate fibers would be to determine an appropriate ratio of the number of hence low-

and high-spontaneous rate fibers to include in the model, and secondly to ensure that the two types

of fibers have appropriate sensitivity. Thus, the summed activity pattern would consist of 500

channels, each consisting of the sum of a low and high spontaneous rate fiber response.

9.4 Perspectives

9.4.1 ASSRs as an objective predictor of cochlear compression

Rønne et al.(2012a) investigated the potential use of the ASSR to assess cochlear compression. It

was found that measuring compression via the level-growth function was possible on a group basis

for normal-hearing subjects. The measurement of compression at one CFtook approximately
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30 minutes. Han et al. (2006) showed that ASSRs can be recorded at four different CFs

simultaneously. Therefore, ASSRs could potentially be a fairly fast (< 30 min) method to get

a broad overview (at four CFs) of the cochlear compression. However, there are still important

questions that need to be addressed before such a method would be ready for clinical usage. First,

Rønne et al.(2012a) showed that compression could be assessed on a group basis, but it was never

shown that the method also was reproducible and accurate on an individual subject level, which

is crucial if the method should be applied in clinical diagnostics. Second, it was neither shown

that the method works with hearing-impaired subjects. In hearing-impaired subjects with resulting

broader filters, the hearing threshold will typically also be elevated. Further, it is difficult to raise

the stimulus-level as the test needs to be restricted to the compressive regionof the cochlear I/O

function of (approximately 40 to 90 dB SPL). Therefore, the ASSR recording will be carried

out closer to threshold. This could lead to a weaker neural signal and thus more noise-prone

recordings. It should therefore be tested whether the ASSR can be recorded on individual hearing-

impaired subjects as well. Finally, the question is what the information of the state of the cochlear

compression in a hearing-impaired subject can be used for in technical application. Currently, no

hearing aid or cochlear implant manufacturer uses such information in their fitting procedures.

Therefore studies on how to use the information should also be undertakenin the future. A

reproducible ASSR test of individual local cochlear compression wouldbe a major benefit to

both the research community and the outside world.

9.4.2 Electrophysiologicall correlate of speech perception

In chapter8, Skoe et al.(2011)’s cross-phaseogram was introduced as a method to visualize

the difference in ABR recordings between two syllable-evoked ABRs. This cross-phaseogram

analysis could be highly interesting for research and clinical purposes,specifically, if it could be

used as an electrophysiological correlate of speech intelligibility. This wouldbe the case if it was

shown that the weighted average phase-shift correlate with speech-in-noise test results, for a wide

variety of stimuli and subjects.Hornickel et al.(2009) andSkoe et al.(2011) have indicated for

a very specific set of stimuli, /ba/, /da/ and /ga/ syllables, that this could be thecase. However,

a series of studies has to be carried out to assess, the sensitivity of the measure, how general the

measure is and, finally, how the measure is influenced by hearing impairment, before it can be

claimed that cross-phaseogram and the average phase-shift is an electro-physiologically correlate

of speech intelligibility. On a short time scale, a first study to carry out could be to determine

whether the cross-phaseogram can be generalized to also account for differences between other

syllable pairs. It could be hypothesized that the cross-phaseogram is adistance measure between

two syllables and, thus, that the larger the average phase-shift is the easier distinguishable would

two syllables be. An outcome measure could be a correlate between a psychoacoustic test giving a

syllable confusion matrix, and the ABR-based averaged phase-shifts. Further, tests with a series of

synthetical syllables, forming a range of stimuli that are morphing from one syllable into another

(e.g.Stephens and Holt, 2011) could be interesting. Here the hypothesis that the cross-phaseogram

is a distance measure could be tested directly. Furthermore, the sensitivity and repeatability should
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be tested such that it is investigated whether the cross-phaseogram can be used to assess individual

intelligibility.

9.4.3 AEP model improvements

The present AEP model is capable of simulating many features of AEPs evoked by both complex

and simple stimuli. However, there are still many types of responses this model cannot simulate

accurately. Improvements of the model would be highly beneficial for the research community as

it would allow the testing of our understanding of the underlying physiology behind AEPs evoked

by more complex stimuli.

Suggestions for future improvements of the model have already been made inthis thesis, to

make the current simulations more accurate. It was suggested that the cochlear tuning might be

imprecise and that the simulations of the cochlear compression using ASSR as well as the click-

evoked ABR wave-V latency could benefit from an update of this cochlear tuning. Such an update

would require reliable data and thus a thorough investigation of tuning at highstimulus levels and

high stimulus frequencies, as well as an investigation of the slope of the filter-skirts. Another

suggestion was to include a mixture of high- and low-spontaneous rate fibers. This could make

the model capable of accurately simulating both the phase and the amplitude of syllable-evoked

ABRs. Finally, it was suggested to include an AVCN stage to increase the AM synchrony and thus

the modulation gain. This AVCN stage should only influence the components of the UR associated

with an onset delay of more than 3-5 ms. This would complicate the AEP modeling as anon-linear

stage would be added. Amongst the complications would be that the deconvolutive approach to

estimate the UR would become invalid.

The AEP model could also be developed to include higher neural stages. This could be

important if complex speech-like stimuli were to be considered. As a starting point the modeling

work by Dugue et al.(2010) could be used.Dugue et al.(2010) measured evoked potentials in

epileptic patients where the electrodes were implanted in the primary auditory cortex. These

data were compared to modeling work based on the DRNL model.Dugue et al.(2010) extended

the DRNL model, such that the chopper neurons from the DRNL model, werecombined in

a coincidence detector argued to simulate the inferior colliculus. These stages were followed

by stages simulating the medial geniculate body, the thalamic reticular nucleus andthe primary

auditory cortex. The model was shown to be able to account for the temporal-modulation transfer-

function data. The model is, however, not directly comparable to the modelingwork of this thesis,

as the data used to fit the model were recorded from electrodes inside the scalp. Some kind of

unit function associated to each of the neural stages should thus also be developed to be able to

simulate the scalp-recorded AEPs.

A final improvement of the model would be to simulate the responses from hearing-impaired

subjects. This would be highly relevant for studies where clinically relevant stimuli were to be

developed. A starting point could be to consider the hearing-impairment related to the loss of

OHC functionality. The implementation of OHC loss in the AN model has already been attempted



for the cat-fitted version (Zilany et al., 2009). However, the outcome measure were single-fiber

AN responses and not scalp-recorded AEPs.Zilany and Bruce(2007) could though inspire a

fairly easy implementation of hearing-impairment in the form of broader tuning due to loss of

OHC functionality in the AEP model. Whether such an implementation of OHC loss would be

sufficient to simulate AEP responses from hearing impaired subjects is unknown, and an evaluation

of the capabilities of the hearing-impaired AEP model should thus be carried out.
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