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Abstract

Speech perception is a complex process involving the ability to detect the speech signal, separate
it from interfering sounds and decode the transmitted speech information. In contrast to normal-
hearing (NH) listeners, hearing-impaired (HI) listeners often show a large reduction in the masking
release (MR), which is the improvement in speech intelligibility when the interferer is different
from steady-state noise (e.g., a competing talker). MR is usually measured as the difference in
speech reception thresholds (SRTs), the signal-to-noise ratio (SNR) where 50% of the speech is
understood, and has mainly been linked to the ability to separate the target from the interferer.
However, it is still not clear why HI listeners show a reduced MR and how the ability to decode
the speech information is affected by impaired hearing. Thus, the purpose of this thesis was to
investigate MR in both NH and HI listeners, to study the effects of hearing loss on the ability
to decode speech, and to establish a framework for modeling speech intelligibility based on an
auditory processing model.

The first part of the thesis established the modeling framework and showed that, by using a
model that captures the processing of the different stages of the auditory system, it is possible to
predict speech intelligibility using a very simple back end. Furthermore, the results indicated that
the high-energy segments are the most important for speech intelligibility.

The second part focused on recent indications that the large reduction in MR often observed in
HI listeners is a result of measuring the MR of HI listeners at a higher signal-to-noise ratio (SNR)
in stationary noise relative to NH listeners. The present work presented noise-band vocoded as
well as low-pass and high-pass filtered stimuli to NH listeners, thereby decreasing their speech
intelligibility and making it possible to compare the MR of NH and HI listeners not only at the
same SNR, but also at the same same percent correct, which was not done in previous studies. The
MR was found to be only partially related to the SRT obtained in stationary noise. Furthermore, for
a competing talker, noise-vocoding strongly reduced the MR of the NH listeners to that obtained
with HI listeners. This indicated that deficits in coding of temporal fine structure and fundamental
frequency (F0) information may play a critical role for the reduced MR of the HI listeners.

The third part investigated the contribution of high-rate envelope fluctuations, at the output of the
auditory filters, to MR. High-rate envelope fluctuations are produced by the interaction between
unresolved harmonics and are related to the F0 of voiced speech. A new vocoder technique was
developed to effectively attenuate the high-rate envelope fluctuations. Furthermore, high-pass
filtering was used to reduce the amount of F0 information from resolved harmonics. The results
showed high-rate envelope fluctuations, related to the F0, were sufficient to obtain a large MR.
Furthermore, F0-related information from resolved harmonics were also sufficient for MR. However,
when both high-rate envelope fluctuations and F0-related information from resolved harmonics
were reduced, the MR was strongly reduced. Thus, the results indicated that F0 information is
crucial for MR, but that it does not matter if it is obtained from low-order resolved harmonics or
from high-rate envelope fluctuations produced by interaction between unresolved harmonics.

The final avenue of investigation focused on the effects of hearing loss on the ability to decode
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speech by measuring consonant confusions for both individual HI listeners and also individual
utterances of the same consonants. In general, the results showed that individual HI listeners
consistently confused the presented utterances with only one other consonant, and that most of
the HI listeners actually made the same confusions. The results also indicated that the reason for
the large variability in the confusion patterns of HI listeners observed in previous studies is that
different utterances of the same consonant promote different confusions and that the HI listeners
experience problems with different utterances.

Overall, this thesis provides insights about the large MR observed for NH listeners, why this MR
is often reduced for HI listeners and in which way impaired hearing affects the ability to decode
speech information.
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Resumé

Taleopfattelse er en kompleks proces, der omfatter evnen til at detektere talesignalet, adskille
det fra forstyrrende lyde samt at afkode den transmitterede taleinformation. I modsætning til
normalthørende udviser hørehæmmede personer ofte en stor reduktion i masking release (MR),
hvilket er defineret som en forbedring i taleforståeligheden målt med en fluktuerende støjkilde (f.eks.
en forstyrrende taler) i forhold til en stationær støjkilde. MR er hovedsagelig blevet forbundet
med evnen til at adskille tale fra en forstyrrende lydkilde. Det er imidlertid ikke helt klart, hvorfor
hørehæmmede personer har nedsat MR samt hvordan evnen til at afkode taleinformation påvirkes
af høretab. Formålet med denne afhandling var derfor at undersøge MR i både normalthørende og
hørehæmmede personer, at studere indflydelsen af høretab på evnen til at afkode tale og at udvikle
en metode til at forudsige taleforståelighed baseret på en model af hørelsen.

I den første del af afhandlingen blev en taleforståelighedsmodel udviklet og det viste sig, at ved at
anvende en model som efterligner signalbehandlingen i de forskellige faser af det auditive system,
er det muligt at forudsige taleforståeligheden ved hjælp af en meget enkel kognitiv fase. Endvidere
viste resultaterne, at den bedste forudsigelse af taleforståeligheden blev opnået ved kun at betragte
de forholdsvis få talesegmenter indeholdende den højeste energi.

Den anden del fokuserede på de seneste indikationer af, at den store reduktion af MR i
hørehæmmede personer kan være et resultat af at deres MR ofte bliver målt ved et højere signal-støj-
forhold (SNR) i stationær støj sammenlignet med normalthørende personer. I denne del af studiet
blev de normalthørende personer testet med noise-vocoded såvel som lavpas- og højpas-filtreret
stimuli for dermed at mindske deres taleforståelighed. Dette gjorde det muligt at sammenligne
MR målt med normalthørende og hørehæmmede personer, ikke kun ved samme SNR, men også
ved samme taleforstålighed (procent korrekte sætninger), hvilket ikke er blevet gjort i tidligere
undersøgelser. Ved hjælp af denne metode viste det sig at MR kun var delvist relateret til SNR i
stationær støj. Resultaterne viste yderligere, at da støjen bestod af en konkurrende taler og stimuli
var noise-vocoded, blev den målte MR for normalthørende reduceret til de samme niveau som
målt med hørehæmmede. Dette indikerede, at en nedsat evne til at gøre brug af den temporale
fin-struktur og fundamental frekvensen (F0) af talernes stemmer, formentlig spiller en afgørende
rolle for den nedsatte MR hos hørehæmmede personer.

I den tredje del blev det undersøgt hvordan højfrekvente udsving i indhyldningskurven ved
udgangen af de auditive filtre bidrager til MR. Højfrekvente udsving i indhyldningskurven opstår
på grund af vekselvirkninger mellem uopløste harmoniske komponenter og indeholder information
om talens F0. En ny vocoder teknik blev udviklet til effektivt at dæmpe de højfrekvente udsving
i indhyldningskurven. Endvidere blev et højpasfilter brugt til at reducere den F0 information
som kan opnås baseret på opløste harmoniske komponenter. Resultaterne viste at højfrekvente
udsving i indhyldningskurven, indeholdende F0 information, var tilstrækkelig til at opnå en
stor MR. Derudover var stemme-information baseret på opløste harmoniske komponenter også
tilstrækkelig til at opnå en stor MR. Da begge disse typer af F0 information blev kraftigt dæmpet,
blev der til gengæld målt en stor reduktion af MR. Dermed viste resultaterne, at F0 information
er afgørende for MR, men at det stort set er ligegyldigt, om informationen stammer fra opløste

ix
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harmoniske komponenter eller fra højfrekvente udsving i indhyldningskurven opstået på grund af
vekselvirkninger mellem uopløste harmoniske komponenter.

Den sidste del af afhandlingen fokuserede på et høretabs indflydelse på evnen til at afkode
taleinformation. Det blev udført ved at analysere konsonantforvekslinger for individuelle
hørehæmmede personer samt hver enkelt udtalelse af en bestemt konsonant. Overordnet set
viste resultaterne at de enkelte hørehæmmede personer forvekslede de præsenterede udtalelser med
kun én anden konsonant, og at de fleste af dem faktisk lavede de samme forvekslinger. Resultaterne
viste også, at årsagen til den store variation i forvekslings-mønstrene som der tidligere er blevet
observeret i forbindelse med hørehæmmede personer skyldes, at forskellige udtalelser af den
samme konsonant giver anledning til forskellige forvekslinger, og at de hørehæmmede personer har
problemer med forskellige af udtalelserne.

Samlet set giver denne afhandling indsigt i den store MR som normalthørende personer typisk
opnår, samt hvorfor denne MR ofte er reduceret hos hørehæmmede personer. Derudover giver
afhandlingen også indblik i, hvordan høretab påvirker evnen til at afkode taleinformation.
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1
General introduction

The hearing system is very important for the acquisition of language and the development of

speech. Our hearing enables us to communicate with other people in a time where interaction and

communication are more important than ever. Communication is the foundation of fellowship and

solidarity and, thus, is important for the quality of life and the development of personality. Our

hearing provides us with information about our surroundings and warns us against potential dangers

from all directions. In addition, hearing enables us to enjoy music, acquire knowledge, listen to

radio and follow TV broadcasts.

Hearing impairment has been shown to have a negative effect on a number of psychosocial

factors leading to loneliness, depression, low self-esteem, and reduced quality of life (Shield, 2006).

According to the World Health Organization (WHO), hearing impairment in children often leads to

delayed development of language and cognitive skills and hearing impairment in adults often makes

it difficult to obtain, perform, and keep jobs (WHO, 2012). In 2004, the WHO estimated that over

275 million people in the world had moderate-to-profound hearing impairment. Furthermore, it is

assumed that approximately 20% of the adult population of Europe (Shield, 2006) and the United

States (Lin et al., 2011) have a hearing impairment of 25 dB HL or greater, while nearly 40% of

people older than 65 years are estimated to have a disabling hearing impairment (WHO, 2012).

Conductive hearing losses, due to problems in the outer or middle ear, can often be treated with

surgery. However, most sensorineural hearing losses, caused by damage to the inner ear, auditory

nerve or more central auditory stages, can only be compensated for by hearing aids or cochlear

implants.

The sound we receive through our ears often consists of a complex mixture of sounds coming

from all directions. As described by Helmholtz in 1863, the healthy auditory system possesses a

remarkable ability to separate the sounds originating from different sources (von Helmholtz, 1912).

Furthermore, normal-hearing (NH) listeners have an amazing ability to follow the conversation of

a single speaker in the presence of others, a phenomenon known as the "cocktail-party problem"

(Cherry, 1953). Later, speech intelligibility in the presence of fluctuating noise or a competing

talker was shown to be much higher than in stationary noise even when the signal-to-noise ratio

(SNR) was the same (Duquesnoy and Plomp, 1983; Festen and Plomp, 1990). This effect was

called masking release (MR) and explained by the ability to "listen-in-the-dips" of the masker.

The single most common complaint among people with hearing loss is the difficulty in

understanding speech in complex acoustic environments, such as background noise, reverberation or

competing talkers. Although compensating for the reduced sensitivity (e.g., by hearing aids) largely

improves the ability to understand speech in quiet, most hearing-impaired listeners still show great

1
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2 1. General introduction

difficulties in noise (e.g., Duquesnoy and Plomp, 1983; Gustafsson and Arlinger, 1994; Shanks et al.,

2002; Hällgren et al., 2005; Metselaar et al., 2008). In contrast to NH listeners, hearing-impaired

(HI) listeners do not benefit to the same degree when the masker is fluctuating noise or a competing

talker and exhibit very little or no MR (e.g., Festen and Plomp, 1990; Gustafsson and Arlinger,

1994; Peters et al., 1998; George et al., 2006; Lorenzi et al., 2006; Bernstein and Grant, 2009;

Strelcyk and Dau, 2009).

When speech is masked by noise or interfering sound sources, such as other speakers, the

recognition of the target message relies on a three-step process. First of all, the listener must be able

to detect the acoustic energy of the target speech. This is not possible in the time and frequency

regions where the masker is much stronger, a situation defined as energetic masking (e.g., Kidd

et al., 1998; Freyman et al., 1999; Brungart, 2001). Secondly, the listener must be able to identify

the time and frequency regions that belong to the target and the interferer in order to extract the

spectro-temporal energy pattern that corresponds to the target speech. The difficulty in extracting

the spectro-temporal energy pattern of the target speech due to an interfering sound source has been

termed non-energetic or informational masking (Brungart et al., 2006). Thirdly, the listener must

be able to decode the meaning of the spectro-temporal energy pattern.

While speech perception in stationary noise has generally been explained in terms of energetic

masking (e.g., French and Steinberg, 1947; Steeneken and Houtgast, 1980), speech perception in

fluctuating noise and competing speech is often linked to non-energetic masking and problems

with target and masker segregation (e.g., Qin and Oxenham, 2003; Hopkins et al., 2008; Brungart

et al., 2006, 2009). Voiced speech, generated by vibration of the vocal folds, consists of frequency

components (harmonics) that all are integer multiples of the fundamental frequency (F0) which

corresponds to the period of the vocal fold vibration. The F0 has been shown to play an important

role for the perceptual segregation of concurrent and sequential sources (Brokx and Nooteboom,

1982; Darwin, 1997) and several studies have suggested that the reduced MR exhibited by HI

listeners is due to deficits in the processing of F0 information (e.g., Qin and Oxenham, 2003;

Lorenzi et al., 2006; Hopkins et al., 2008; Strelcyk and Dau, 2009). Due to the increasing bandwidth

of the auditory filters with increasing frequency, the low-order harmonics are considered to be

spectrally resolved by the cochlea while the high-order harmonics are considered to be unresolved.

While several studies have indicated that F0 information is conveyed primarily by the low-order

harmonics, which are resolved by the auditory system (Houtsma and Smurzynski, 1990; Shackleton

and Carlyon, 1994; Bernstein and Oxenham, 2003; Plomp, 1967; Micheyl and Oxenham, 2007;

Bird and Darwin, 1998), it is still unclear what role resolved and unresolved harmonics play for

speech perception and, in particular, for MR. Recently, it has been proposed that the amount of MR

depends on the SNR in stationary noise of which the MR is measured. Bernstein and Grant (2009)

suggested that the reduced MR observed in HI listeners is mainly caused by the difference in the

SNR in stationary noise used when determining MR for NH versus HI listeners.

While there has been a substantial number of studies investigating the effect of hearing impairment

on the ability to detect and segregate speech by measuring speech reception thresholds (SRTs)

in individual HI listeners in the presence of various types of interferers, very few studies have
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investigated the effect of individual hearing loss on the ability to decode speech. A recent study

showed large differences in the patterns of consonant confusions between HI listeners and even

between the ears of the same HI listener (Phatak et al., 2009). Furthermore, a study by Phatak et al.

(2008) found a large variability of confusions across different utterances of the same consonants in

NH listeners. The variability of the confusions for the different utterances was linked to different

utterances that have different conflicting cues promoting specific confusions (Li et al., 2010).

By extension, the large variation across HI listeners could be caused by the HI listeners having

problems with different utterances. Thus, in order to understand how individual hearing loss affects

the ability to decode speech, consonant confusions of individual listeners should be investigated on

an utterance-by-utterance basis and combined with a spectro-temporal analysis of the presented

utterances.

The purpose of the projects presented in this thesis was three fold: to setup a framework for

modeling speech perception; to investigate the effect of the stationary-noise SNR for MR in NH

and HI listeners; and to investigate the importance of F0 information for MR as represented in

resolved and unresolved harmonics. Furthermore, the effect of individual hearing impairment on

the ability to decode speech was also studied.

Chapter 2 investigates the ability to predict speech intelligibility by combining a psychoacousti-

cally validated model of auditory preprocessing (Dau et al., 1997a) with a simple central stage that

describes the similarity of the internal representation of the test and a reference signal. Specifically,

the ability to predict the intelligibility of speech processed with ideal time-frequency segregation

(ITFS) is investigated, a technique used to study the effects of energetic and non-energetic masking

by removing all the spectro-temporal segments of the noisy speech where the SNR is below given

threshold (Brungart et al., 2006). The performance of the developed speech intelligibility model is

compared to speech-based versions of the classical speech transmission index (STI) and speech

intelligibility index (SII).

Chapter 3 studies whether the reduced MR observed in HI listeners is a result of measuring

the MR at a higher SNR in stationary noise than used for NH listeners. In contrast to Bernstein

and Grant (2009), the stimuli presented to the NH listeners in the present study are distorted by

noise-vocoding as well as low- and high-pass filtering, in order to shift the psychometric functions

of the NH listeners to the same range of SNRs that HI listeners are tested at. This makes it possible

to measure the MR of the NH and HI listeners both at the same SNR and at the same point on the

psychometric function. Furthermore, the distortions make it possible to study whether different

frequency regions of the speech or the temporal fine structure are particular important for MR.

Spectrally unresolved harmonics produce high-rate envelope fluctuations at the output of the

cochlear filters which are related to the F0 of voiced speech. In Chapter 4, it is investigated if these

high-rate envelope fluctuations contribute to MR. Oxenham and Simonson (2009) investigated if

F0 information provided by the low-order resolved harmonics is important for MR. They used

low-pass (LP) and high-pass (HP) filtered stimuli in order to either retain or eliminate low-order

harmonics. Both conditions strongly reduced the MR indicating that F0 information from resolved
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4 1. General introduction

harmonics alone is not sufficient for MR. However, it is unclear whether the large reduction in the

MR found in Oxenham and Simonson (2009) was caused by removing F0 information or due to the

filtering process strongly reducing the bandwidth and thereby also the redundancy in the speech

signal. A new vocoder technique is developed in this chapter to attenuate the F0-related envelope

fluctuations produced by the unresolved harmonics, while preserving the speech message conveyed

by the slow-varying envelope. In addition, reduced F0 information from the resolved harmonics is

also investigated by HP filtering of the stimuli. In order to preserve as much energy in the speech

as possible, the HP filtering uses a much lower cut-off frequency than in Oxenham and Simonson

(2009) where the resolved harmonics were removed completely.

Chapter 5 investigates the effect of hearing impairment on the ability to decode speech in terms

of consonant confusions. Based on the finding that different utterances of the same consonant

induce different confusions, consonant confusions of individual HI listeners are investigated on an

utterance-by-utterance basis in order to get a better understanding of how individual hearing loss

affects the ability to decode speech.

Finally, chapter 6 summarizes the main results and discusses the implications of the findings for

auditory modeling, for diagnosing individual hearing loss and for hearing-aid processing.
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Prediction of speech intelligibility

based on an auditory preprocessing model ∗

Classical speech intelligibility models, such as the speech transmission index (STI) and the speech

intelligibility index (SII) are based on calculations on the physical acoustic signals. The present

study predicts speech intelligibility by combining a psychoacoustically validated model of auditory

preprocessing [Dau et al., J. Acoust. Soc. Am. 102, 2892-2905 (1997)] with a simple central stage

that describes the similarity of the test signal with the corresponding reference signal at a level

of the internal representation of the signals. The model was compared with previous approaches,

whereby a speech in noise experiment was used for training and an ideal binary mask experiment

was used for evaluation. All three models were able to capture the trends in the speech in noise

training data well, but the proposed model provides a better prediction of the binary mask test data,

particularly when the binary masks degenerate to a noise vocoder.

∗ This chapter is based on Christiansen et al. (2010).

7
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8 2. Speech intelligibility based on a auditory model

2.1 Introduction

Speech is by far the most important method of communication between humans. However,

the transmission of speech can be affected by numerous factors, such as background noise,

room reverberation, hearing loss and distortions in hearing aids or other communication devices.

Modeling speech intelligibility can help to understand how speech is processed and which parts

of the speech signal are important for the successful recognition of the message. Furthermore, a

model provides immediate results and can be used continuously in order to examine large sets of

data. For many purposes, a model can also replace comprehensive testing with test subjects.

Speech intelligibility was first predicted by French and Steinberg (1947) who introduced the

concept of the articulation index (AI). Fundamentally, the AI predicts the speech intelligibility

by calculating the signal-to-noise ratio (SNR) between the long-term speech spectrum and the

long-term background noise spectrum in a number of frequency bands. In the 1980s and 1990s, the

AI was extended in a number of different studies, which were integrated in a new method called the

speech intelligibility index (SII; ANSI S3.5, 1997). This version included corrections for hearing

sensitivity loss, speech level as well as upward and downward spread of masking.

In the SII, the long-term spectrum of the clean speech and the background noise has to be known

in advance. However, in nonlinear systems where distortions are introduced by the processing

rather than background noise, it is not possible to apply the SII in the traditional configuration. In

order to apply the SII to nonlinear transmission systems, Kates and Arehart (2005) extended it to

work with a reference speech signal and a corresponding distorted speech signal and to include the

nonlinear distortions peak-clipping and center-clipping.

In order to account for temporal effects on speech intelligibility, such as reverberation in a

room, Steeneken and Houtgast (1980) proposed a physical method for evaluating the quality

of speech-transmission channels, called the speech transmission index (STI). Similar to the SII

method, the STI method is based on the SNR in a number of frequency bands. However, for the

STI calculation, the SNR in each band is related to the reduction of amplitude modulations caused

by the transmission system. The reduction of modulations is determined by the decrease of the

modulation index of sinusoidally modulated noise signals in different modulation frequency bands,

divided into different audio frequency bands.

In order to apply the STI to nonlinear transmission systems, such as hearing aids and modern

communication systems, several researchers have developed variants of the STI that use speech

rather than modulated noise as the probe signal. Payton and Braida (1999) calculated the

reduction of modulation power from the modulation spectra of a reference speech signal and

a corresponding distorted speech signal. Other speech-based variants of the STI calculated the

decrease in modulation power by the cross-spectral density between the reference and the distorted

envelope spectrum (Drullman et al., 1994; Payton et al., 2002). Ludvigsen et al. (1990) and Holube

and Kollmeier (1996) used the cross-correlation between the reference and the distorted envelope to

calculate the SNR in each band directly. Goldsworthy and Greenberg (2004) examined the ability
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2.1 Introduction 9

of the methods of Ludvigsen et al. (1990), Drullman et al. (1994), Holube and Kollmeier (1996) and

Payton et al. (2002) to account for nonlinear distortions caused by spectral subtraction and envelope

thresholding. Rhebergen and Versfeld (2005) did not predict effects of nonlinear distortions, but

developed the extended SII (ESII), where the SII calculation was divided into short time frames in

order to account for fluctuating noise types. However, the ESII requires access to the target speech

and the interfering noise separately and cannot be used in cases where the speech is degraded or

enhanced by some type of signal processing algorithm.

The SII, STI and variants of these all include properties of auditory frequency selectivity in the

calculations. Some of the models include ad-hoc corrections to account, to some extent, for upward

spread of masking. Still, the models operate on the physical signals and do not consider various

aspects and principles of auditory signal processing. Also, they do not take the portions of the

speech signal into account that are masked or emphasized by the processing in the auditory system.

The goal of the present study was to use a physiologically motivated model of the auditory

processing and to base the speech intelligibility predictions on the internal representations of the

stimuli. Models of the auditory periphery have been used relatively extensively for the prediction of

audio and speech quality (e.g., Beerends and Stemerdink, 1992; Beerends et al., 2002; Huber and

Kollmeier, 2006; Karjalainen, 1985; Kim, 2005; Nielsen, 1993; Thiede et al., 2000). In contrast,

only a few studies (Elhilali et al., 2003; Holube and Kollmeier, 1996) have attempted to predict

speech intelligibility based on models of auditory signal processing.

In Holube and Kollmeier (1996), consonant-vowel-consonant (CVC) words were presented after

an announcement sentence. The target word was chosen among five alternatives differing only in

one of the phonemes. Recognition scores were simulated by processing the test word and the five

alternatives with the auditory model of Dau et al. (1996a, 1997a). The alternative with the smallest

distance to the test word at the level of the internal representation of the stimuli was considered as

the recognized word. This means that the model of Holube and Kollmeier (1996) can only be used

in an experimental setup where there are reference words available for the identification of each

test word.

Elhilali et al. (2003) developed the spectro-temporal modulation index (STMI) motivated by

evidence of spectro-temporal receptive fields of neurons in the primary auditory cortex. The STMI

analyzes the temporal and spectral modulations contained in an auditory spectrogram produced

by a model of the auditory periphery. By comparing the spectro-temporal modulation content of

the distorted speech signal with that of the reference speech signal, the STMI was able to predict

speech intelligibility for additive noise, reverberation, phase-jitter and phase-shift. In order to

predict effects of presentation level and hearing-impairment on speech intelligibility, Zilany and

Bruce (2007) introduced a more physiologically detailed model of the normal and impaired auditory

periphery (Zilany and Bruce, 2006) in the STMI.

The auditory processing model used in the STMI was developed to simulate auditory-nerve (AN)

fiber responses in cats, but the ability to account for psychoacoustic detection and masking data in

humans has not yet been considered in detail. In contrast, the auditory processing model used in
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Holube and Kollmeier (1996) was originally developed to account for numerous psychoacoustical

detection and masking experiments in humans (e.g., Dau et al., 1997a,b; Derleth and Dau, 2000;

Jepsen et al., 2008; Verhey et al., 1999).

The present study presents a new speech intelligibility model where the preprocessing is based

on the psychoacoustically validated model of Dau et al. (1996a, 1997a). In contrast to the approach

of Holube and Kollmeier (1996), the presented model is based on a comparison of the reference

signal and the distorted signal and is not restricted to an experimental setup where the target word

is chosen from a number of given alternatives. The speech intelligibility model was trained on data

from one experiment and tested on data from another experiment. In the first experiment, which

was exclusively used for training, the percentage of correctly identified words was predicted as a

function of the signal-to-noise ratio (SNR) for speech-shaped noise, cafeteria noise, car noise and

bottle noise, where the cafeteria noise was characterized as fluctuating. In the second experiment,

which was exclusively used for testing, the mixtures from the first experiment were processed

with a new type of signal processing, termed ideal time-frequency segregation (ITFS), which

was introduced by Brungart et al. (2006). This technique can be regarded as an extension of the

concept of the ideal binary mask (IBM) (Hu and Wang, 2004; Wang, 2004). Ideal binary masking is

essentially a filtering technique that preserves time-frequency segments (TF-units) where the target

signal is stronger than the masker (SNR above 0 dB) and eliminates segments where the masker

is stronger (SNR below 0 dB). In ITFS, the IBM principle is extended by replacing the constant

threshold of 0 dB by a local criterion (LC). The LC can be changed in order to produce an output

signal where more or less of the TF units are retained. The present study focuses on the prediction

of existing speech intelligibility data by Kjems et al. (2009). In that study, it was shown that, for an

intermediate range of LC values (20 - 40% ones in the mask), the intelligibility was close to 100%

and independent of the overall mixture SNR, suggesting that the cues from the mask were sufficient

for the target speech to be recognized. For high LC values (below 15% ones in the mask), the effect

of the mixture SNR was absent or very weak and it was argued that fundamental frequency (F0)

tracking, periodicity, and temporal fine structure, did not affect the speech intelligibility in this

region. Thus, the ITFS processing tests a given speech perception model’s sensitivity to the overall

spectro-temporal structure of the signal, rather than the temporal fine structure. Furthermore, the

masks with only a few ones investigate if small time-frequency regions of very high energy result

in high predicted scores even if the measured speech intelligibility might be low.

The predictions of the developed model were compared to the predictions of a speech-based

version of the SII and the STI. In the following, the properties of the proposed model as well as the

classical speech intelligibility predictors (SII and STI) are described.
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2.2 Modeling speech intelligibility

2.2.1 Speech intelligibility model based on auditory signal processing

The auditory periphery

A schematic overview of the auditory perception model of Dau et al. (1997a) is shown in Fig.

2.1. The model transforms the acoustic signal into a time-varying spectro-temporal internal

representation. The incoming acoustic signal is filtered by a linear fourth-order gammatone

filterbank (Patterson et al., 1987) in order to roughly simulate the frequency selectivity of the

cochlea (Ruggero et al., 1997; Békésy, 1960). The filterbank consists of 32 band-pass filters with

center frequencies ranging from 100 to 8000 Hz, equally spaced on the equivalent rectangular

bandwidth (ERB) scale, each with a bandwidth of 1 ERB. In the following stages, the output

from each frequency band is processed separately. First, the output is half-wave rectified and

low-pass filtered at 1 kHz, where the half-wave rectification introduces a DC value in the signal.

This stage roughly simulates the transformation of the mechanical basilar membrane oscillations

into receptor potentials in the inner hair cells (Palmer and Russell, 1986; Pickles, 1988; Plack,

2005). The low-pass filtering essentially preserves the temporal fine structure of the signal for

low frequencies and extracts the envelope of the signal for high frequencies. Effects of nonlinear

adaptation as observed in the auditory nerve (e.g., Smith, 1977; Westerman and Smith, 1984) are

roughly simulated by a chain of five nonlinear adaptation loops. Each loop consists of a dividing

element and a low-pass filter, where the input of the loop is divided by a low-pass filtered version

of the output. An initially low value of the low-pass filtered output causes a strong overshoot at

the onset of a stimulus. This high onset value is reduced as the low-pass filtered output is raised

and eventually reaches a steady-state level where I/O = O. Thus, the steady-state response of a

single loop to a stationary stimulus can be expressed as O =
√

I = I
1
2 , which becomes I

1
2

5
= I

1
32 for

the entire chain of nonlinear adaptation loops. Thus, variations in the input signal that are rapid

compared to time constants of the adaptation loops are transformed linearly, whereas slow variations

and stationary signals are compressed according to an approximately logarithmic compression,

resulting in a higher sensitivity for fast temporal fluctuations. When the stimulus is switched off,

the output of the adaptation loops does not immediately return to the initial conditions due to

the charge on the capacitors. This property of the nonlinear adaptation stage makes it possible

to simulate effects of forward masking. The time constants, which are 5, 50, 129, 253 and 500

ms, were determined in order to account for forward-masking experiments. After the nonlinear

adaptation stage, an 8-Hz low-pass filter extracts the envelope of the pre-processed signal. The cut-

off frequency of the modulation low-pass filter was determined in simulations of psychoacoustical

masking experiments described in Dau et al. (1996b). A modulation filterbank that was developed

in later studies (Dau et al., 1997a), was not considered in the present investigation in order to limit

the complexity of the simulations. In the final stage, a constant-variance internal noise is added in

order to simulate the limited resolution of the auditory system in the framework of this model.
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DEN
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Halfwave rectification

Low-pass filtering

Dynamic range limitation

Nonlinear adaptation

Modulation low-pass filtering

Basilar membrane filtering

Figure 2.1: The stages of the model auditory perception model Dau et al. (1997a). A gammatone filterbank divides
the acoustic signal into several frequency bands each followed by half-wave rectification, 1-kHz low-pass filtering and
nonlinear adaptation. Subsequently, modulation low-pass filtering is applied and a constant-variance internal noise is
added to limit the resolution.
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Processing
Cross-
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Auditory
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Auditory

Model
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Internal
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High-level

Mid-level

Low-level

Reference signal
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W3

W2

W1

Internal

representation

Figure 2.2: Schematic of the proposed speech intelligibility model. The reference and the distorted speech signal are
transformed into internal representations by the auditory perception model. Subsequently, the linear cross-correlation
coefficient and the root-mean-square (rms) level are calculated in frames of 20 ms, and each frame is classified as high-,
mid- or low-level. For each level the average cross-correlation coefficient for the corresponding frames is obtained and
the final score is a linear weighting of the three level scores, which is converted to predicted intelligibility by a logistic
function.

Central processing

Figure 2.2 shows an overview of the proposed speech intelligibility model. First, the reference

speech signal and the corresponding distorted speech signal are processed through the auditory

model. The output represents the internal representations of the stimuli. In the following stage,

the linear cross-correlation coefficient between the two internal representations is calculated in

frames of 20 ms every 10 ms, resulting in an overlap of 50%. The optimum frame length of 20 ms

was found empirically based on simulations and corresponds to findings in Huber and Kollmeier

(2006). In the same stage, the root-mean-square (rms) level of each frame of the reference signal

is determined and compared to the overall rms level of the entire reference signal. Each frame is

thereby categorized as high-, mid- or low-level. In the next stage, an overall score is calculated for

each level by averaging the cross-correlation coefficients of all frames corresponding to that level.

In the final stage, the model output is calculated by a linear weighting of the three level scores and

a logistic function is used to transform the model output to predicted intelligibility. The level-based

calculation as well as the logistic transformation was motivated in the study by Kates and Arehart

(2005) where it was argued that not all segments in a speech signal are equally important. Kates and

Arehart found that the mid-level segments were most important whereas low-level segments had

very little importance and high-level segments were not relevant. High-level segments are defined

here as having an rms level of 0 dB or higher, relative to the overall rms level. The mid-level

segments are limited to the range from -5 to 0 dB and the low-level segments are those with a

relative rms of -15 dB to -5 dB. These values were chosen in order to obtain an approximately even

distribution of the frames among the three levels such that each level covers about the same duration

of the sentence. The definition of the three levels is slightly different from the values chosen in
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14 2. Speech intelligibility based on a auditory model

Kates and Arehart (2005). The expression and the parameter values for the linear weighting of the

three levels and the logistic conversion are provided in section 2.2.3.

2.2.2 Speech intelligibility models based on SII and STI

Speech-based SII

The speech-based SII model developed by Kates and Arehart (2005) essentially estimates the

speech and noise power spectra from a reference speech signal and a corresponding distorted speech

signal. These spectra are provided as input to the traditional SII method defined in the ANSI S3.5

(1997) standard. Furthermore, the speech-based SII replaces the SNR in the traditional SII by a

signal-to-distortion ratio (SDR) which also includes nonlinear distortions. The speech and noise

power spectra are estimated through the calculation of the magnitude squared coherence (MSC;

Carter et al., 1973), also known as the normalized cross-power spectrum. In Kates and Arehart

(2005), the calculations of the speech and noise power spectra as well as the SDR were performed

in short time frames. The procedure is summarized in appendix 2.6. In order to improve the

predictions, Kates and Arehart (2005) divided the procedure into three levels in the way described

above (section 2.2.1). The final score is calculated by a linear weighting of the three levels and

converted to predicted intelligibility by a logistic function. The expression for the logistic function

and the parameter values for the linear weighting are given in section 2.2.3.

Speech-based STI

The speech-based STI model, which uses speech as the probe stimulus instead of modulated noise,

was developed by Koch (1992) and Holube and Kollmeier (1996). In the speech-based STI, the

clean and the degraded speech signals are band-pass filtered using a gammatone filterbank with 32

channels between 100 to 8000 Hz. In each band, the envelope is extracted by half-wave rectification

followed by a low-pass filtering with a cutoff frequency of 50 Hz. The average SNR in each band,

SNRk,is calculated via the cross-correlation coefficient r between the reference envelope and the

test envelope. Koch (1992) and Holube and Kollmeier (1996) showed that SNRk is related to r by

the expression:

SNRk = 10log
(

r2

1− r2

)
(2.1)

From the SNRk the speech-based STI score is obtained by the same procedure as used in the

classical STI method (Steeneken and Houtgast, 1980). The final score is converted to predicted

speech intelligibility by a logistic function. The expression and the parameter values for the logistic

function are provided in section 2.2.3.
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2.2.3 Parameters in the speech intelligibility models

In the case of the proposed model and the speech-based SII method, the final model output is

obtained by a linear weighting of the three level scores:

c = wlowrlow +wmidrmid +whighrhigh (2.2)

where wlow, wmid and whigh are the weights and rlow,rmid and rhigh represent the level scores. This

step was not used in the speech-based STI method, where the calculation is not divided into three

levels. The output of all three models was converted to predicted intelligibility by a logistic function:

I =
1

1+ e(O−c)/S
(2.3)

where O and S define the offset and slope of the logistic function, respectively, and c represents the

model output.

The parameters were fitted to 2/3 of the data of the first experiment and the fitting was validated

on the last 1/3 of the data. The fitting was applied simultaneously to all four noise types and thus

not tailored to a single noise type, which should limit the risk of over-fitting. The parameters were

then kept constant for the predictions of the data in the second experiment. This was done in order

to evaluate the model in an unknown condition. An alternative approach could have been to divide

the data sets from both experiments into training subsets and test subsets. In this way, the models

could have been trained and tested on both experiments, either separately or collectively. However,

due to the high consistency in the data, this probably would not have been a real challenge for the

models.

The fitting was performed using a constrained nonlinear optimization, where the sum of the

squared errors was minimized. In the cases of the proposed model and the speech-based SII method,

where a linear weighting of the three levels was applied, the weights were constrained to be positive

and the sum of the weights was defined to be 1. The offset of the logistic function was limited to lie

between -1 and 1, whereas the slope was left unconstrained. The parameters of the three models are

listed in table 2.1. It can be seen in the table that the speech-based SII results in the best fit to the

training data when only the mid-level frames are used in the calculation. This is in agreement with

the results of Kates and Arehart (2005) where the best fit was found when the mid-level frames

were weighted much higher than the low- and high-level frames. In contrast, the best fit for the

proposed model was obtained when only the high-level frames were considered in the calculation.

This result is further discussed in section 2.5."
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16 2. Speech intelligibility based on a auditory model

S O wlow wmid whigh

Proposed model 0.056 0.39 0 0 1
Speech-based SII 0.067 0.19 0 1 0
Speech-based STI 0.075 0.20 - - -

Table 2.1: Parameters of the three models fitted to the data in the first experiment. The first two columns contain the
slope and the offset parameters of the logistic function and the linear weighting of the low-, mid- and high-level frames
are shown in columns three to five.
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Figure 2.3: Long-term spectrum of the four maskers used in the listening experiments. While the cafeteria masker has
been equalized to have the same long-term spectrum as the SSN masker, the car cabin masker and the bottle masker
contain high energy at low and high frequencies, respectively. Reproduced from Kjems et al. (2009).

2.3 Experiment I: Speech intelligibility in noise

2.3.1 Experimental data

The psychoacoustical data were collected by Kjems et al. (2009). They measured speech

intelligibility using the Dantale II sentence test (Wagener et al., 2003), which is a Danish version

of the Hagerman sentence test (Hagerman, 1982a,b, 1984a,b; Hagerman and Kinnefors, 1995).

The sentences consist of five words placed in a fixed grammatical structure (name, verb, numeral,

adjective, object), such as, "Linda owns eight white boxes". The sentences were generated by

choosing each word randomly from a list of 10 alternatives. Kjems et al. (2009) used four different

noise types as maskers in the experiments: stationary speech-shaped noise, cafeteria noise, car

noise and bottle noise.

Figure 2.3 shows the long-term spectra of the four maskers. The speech-shaped noise (SSN) was

created by superimposing 30 Dantale II sentence sequences, with random intervals of separation

(Wagener et al., 2003). The cafeteria noise was a recording of a continuous conversation in Danish
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2.3 Experiment I: Speech intelligibility in noise 17

between a male and a female talker in a cafeteria environment. As seen in Fig. 2.3, the cafeteria

masker was equalized to have the same long-term spectrum as the SSN after recording. However,

in contrast to the SSN, it is fluctuating in time. The car cabin noise was a recording from a car

driving on a highway and represents a low-frequency masker. Finally, the bottle noise, which is a

recording of bottles on a conveyor belt in a bottling hall, represents a high frequency masker. In

Kjems et al. (2009), the psychometric functions were measured in order to determine the SNRs of

the mixtures used in their second experiment, where they were processed with the binary masks.

In the present study, these psychometric functions obtained by Kjems et al. (2009) were used as

training data for the speech intelligibility models.

Figure 2.4 (upper left panel) shows the measured psychometric functions obtained by Kjems et al.

(2009). The percentage of correctly identified words for each noise type is plotted as a function of

the SNR. The SSN masker (open boxes) results in a very steep psychometric function that changes

rapidly from 0% to 100% intelligibility when the SNR is increased. The psychometric function

for the cafeteria masker (light gray diamonds) has a slightly shallower slope and a slightly lower

SRT than the SSN masker. Since the cafeteria masker has the same long-term spectrum as the

SSN masker, the better performance for the cafeteria masker is due to its fluctuating nature and the

possibility for the listener to listen in the gaps (e.g., Festen and Plomp, 1990; Miller and Licklider,

1950; Peters et al., 1998). For the bottle masker (filled circles), the psychometric function is similar

to that obtained for the cafeteria masker but slightly shallower. The large amount of high-frequency

energy in the bottle masker does not mask the speech signal as effectively as the SSN masker.

Finally, the low-frequency content of the car masker (dark gray triangles) results in a psychometric

function which is shifted horizontally towards lower SNRs compared to the SSN masker. This is

probably because much of the energy in the car masker is located at frequencies below 200 Hz,

which does not overlap strongly with the spectrum of the speech. The psychometric function for the

car masker changes rapidly from low to high scores with increasing SNR, and has a slope similar to

that of the psychometric function of the SSN masker.

2.3.2 Model predictions

Figure 2.4 also shows the predicted psychometric functions obtained with the proposed model

(upper right panel), the speech-based STI (lower left panel) and the speech-based SII (lower

right panel). The three models show very similar results. All psychometric functions have the

characteristic shape with a relatively sharp transition from 0% at low SNRs to 100% at high SNRs.

For the SSN masker, the cafeteria masker and the car masker, the SRTs obtained with the three

models lie within a few dB of the measured data. However, for the bottle masker, the three models

predict a psychometric function that is shifted horizontally towards higher SNRs, resulting in SRTs

of about 10 dB higher than the data. A reason for this discrepancy could be that the high frequency

energy of the bottle noise effectively masks most of the speech signal of the high frequencies and

the low-frequency bands therefore should be provided with more gain in the models. It is also

possible that the rhythm and the impulsive characteristic of the bottle noise make it easier for the
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  = 0.94

 MSE = 0.021

  = 0.96

 MSE = 0.015

  = 0.96

 MSE = 0.014

Figure 2.4: Psychometric functions (percentage of correctly identified words as function of SNR) measured
experimentally (upper left panel, data reproduced from Kjems et al. (2009)), and predicted by the proposed model (upper
right panel), the speech-based STI method (lower left panel) and the speech-based SII method (lower right panel). Each
panel shows the psychometric functions obtained using the SSN masker (white boxes), the cafeteria masker (light-grey
diamonds), the bottle masker (dark-grey triangles) and the car masker (black circles). The linear cross-correlation
coefficient and the mean-square-error (MSE) quantifies the strength of the linear relationship and the error between the
predicted and measured scores, respectively, based on the remaining 1/3 of the data used for validation.

listener to perceptually segregate the speech from this noise masker, which is not captured in any of

the models.

2.4 Experiment II: Intelligibility of speech processed with binary
masks

2.4.1 Experimental data

As in the first experiment, the psychoacoustical data obtained in this experiment were collected

by Kjems et al. (2009). They processed the noisy speech from the first experiment with the ideal

time-frequency segregation (ITFS) technique (Brungart et al., 2006), where the local SNR criterion

(LC) determines whether a given time-frequency region (TF-unit) is preserved in the output signal.

Increasing the LC reduces the number of the TF-units where the local SNR is above the threshold
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2.4 Experiment II: Intelligibility of speech processed with binary masks 19

Figure 2.5: Example of four binary masks with densities (percentages of one’s) of (a) 1% (b) 22% (c) 57% (d) 80%. The
white regions (ones) represent the parts of the signal that are preserved in the processed signal and the black regions
represent the parts that are removed (zeros). The corresponding LC values describe the minimum SNR of the mixture in
a given region in order to preserve it.

and decreases the number of ones in the binary mask. Similarly, a reduction in the LC increases the

number of ones in the mask. The number of ones in the mask is referred to as the mask density.

Figure 2.5 illustrates the masks obtained using four different LC values, resulting in four different

mask densities. In Kjems et al. (2009), the ITFS processing was performed with 8 different mask

densities, including a mask only containing ones that results in an unprocessed mixture. In order

to examine the dependency of the overall SNR level, they measured the intelligibility for overall

SNRs corresponding to 20% and 50% correctly identified words obtained from the psychometric
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20 2. Speech intelligibility based on a auditory model

functions in the first experiment. Furthermore, to examine the noise vocoding ability of the IBM,

Kjems et al. (2009) also measured the speech intelligibility at an SNR of -60 dB, which essentially

is pure noise.

The experimentally obtained results for the ITFS processed SSN mixtures are shown in the upper

left panel of Fig. 2.6. Only the SSN masker is considered here, since the other maskers show similar

results. The percentage of correctly identified words is shown as a function of the mask density

(i.e. the percentage of ones in the mask) for the overall SNR values of -7.3 dB (open boxes, 50%

SRT), -9.8 dB (light gray diamonds, 20% SRT) and -60 dB (dark gray triangles). The data show a

very characteristic pattern as a function of the mask density. Beginning in the right most part of the

panel, the mask density is 100% and the mixtures are actually unprocessed. Here, the intelligibility

depends on the overall SNR of the mixtures. For the higher SNRs, there are more speech cues

(F0, formants and temporal fine structure) present which lead to a higher performance. The results

obtained using an overall mixture SNR of -7.3 dB show that, when the density is decreased, the

performance is increased. This is because more zeros are included in the mask and the TF-units

with the lowest local SNRs are removed. These TF-units contain only very little or no speech

information and removing them helps the listener to separate the speech from the masker. As

the mask density is decreased further, the performance reaches 100% intelligibility in the region

of densities between approximately 60% and 10%. In this region, the binary mask has removed

sufficient interfering noise in order for the speech to be identified successfully. For densities below

about 10%, an increasing amount of the speech information is removed and intelligibility drops

rapidly to a low value of about 35%. The results obtained using mixture SNRs of -9.8 dB and -60

dB also show an increase in performance as the density of the mask is decreased. However, the

performance is still better for the higher SNRs due to more speech cues in these mixtures. For

the mixtures at -9.8 dB and -60 dB the performance also reaches 100% intelligibility (in a slightly

narrower region of densities between 40% and 10%). In this region, the performance is independent

of the overall mixture SNR and therefore not affected by the additional speech cues present in

the mixtures with higher SNRs. Thus, in this region, the binary mask successfully separates the

TF-units containing speech information from the TF-units containing noise. At densities below

10%, the results are almost identical to the results of the -7.3 dB SNR mixtures.

2.4.2 Model predictions

The predictions obtained with the proposed model, the speech-based STI and the speech-based

SII are also shown in Fig. 2.6. The simulated functions obtained with the proposed model (upper

right panel) are very similar to the measured data for the three mixture SNRs. There are only slight

deviations at mask densities above 50% where the model slightly overestimates the performance.

The speech-based STI (lower left panel) generally accounts for the intelligibility patterns. However,

for the sparsest masks, the simulated intelligibility values are more than 40% higher than the

measured data. The patterns predicted by the speech-based SII (lower right panel) deviate strongly

from the measured data, particularly in the case of the -60 dB mixtures. For this model, for the
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Figure 2.6: Percentage of correctly identified words as a function of mask density (percentage of ones in the mask)
measured experimentally (upper left panel), and predicted by the proposed model (upper right panel), the speech-based
STI method (lower left panel) and the speech-based SII method (lower right panel). The results in all the panels are based
on the SSN as masker signal. The SNRs correspond to the SRTs that result in 50% (white boxes) and 20% (light-grey
diamonds) correct responses for the SSN masker and the lowest SNR is -60 dB (dark-grey triangles). Since all four
masker types show similar results only the SSN masker is included.

two highest mixture SNRs, the predicted intelligibility is very high for the sparsest masks and

reaches a maximum at mask densities around 5%. At densities above 10%, the performance drops

slowly in contrast to the measured data where a maximum at densities of about 20% was found.

In the experiment with the -60 dB mixtures, the predictions of the speech-based SII only reach

40% compared to nearly 100% in the measured data. Furthermore, this maximum is located at the

sparsest mask with a density of 1%.

Figure 2.7 shows the correlation between the predicted and the measured data. The left, middle

and right columns present the results for the proposed model, the speech-based STI and the

speech-based SII, respectively. This figure summarizes the results of the SSN masker (first row)

presented above as well as the results obtained with the cafeteria masker (second row), the car

masker (third row), and the bottle masker (fourth row). The squares represent -60 dB SNR and the

circles and triangles represent the SNR values corresponding to 20% and 50% correctly identified

words, respectively, obtained for the unprocessed mixtures. The dashed lines indicate the diagonal;

ideally, the data points would lie on this line. Points above this line reflect an underestimation of
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intelligibility in the predictions, whereas points below the line represent an overestimation in the

predictions.

The cross-correlation coefficient, ρ , and the mean-square-error (MSE) are indicated in each

panel. The results of the proposed model are fairly close to the dashed line for all four noise

types (ρ between 0.88 and 0.96, MSE between 0.017 and 0.032). However, the model has a

slight tendency to overestimate the scores consistent with the observations from Fig. 2.6 described

above. The speech-based STI also shows to be consistent with the data (ρ between 0.84 and 0.89,

MSE between 0.038 and 0.06) but overestimates the speech intelligibility consistently in several

conditions. This is mainly caused by the very sparse masks as discussed further below. Consistent

with the observations from Fig. 2.6, the results obtained with the speech-based SII model are

relatively scattered for all four maskers (ρ between 0.47 and 0.66, MSE between 0.79 and 0.13). In

particular, for the -60 dB mixture SNR, the predictions strongly deviate from the measured scores.

Here, the simulated scores are close to zero in all conditions, including masks where the measured

intelligibility is nearly at 100%.

2.5 Discussion

2.5.1 Capabilities and limitations of the intelligibility models

The proposed model accounts reasonably well for the data in both experiments. Additional

simulations showed that all auditory preprocessing stages contributed to the accuracy of the model.

These simulations were carried out in the exact same way as described earlier in the paper.

The gammatone filterbank with filters equally spaced on the ERB scale, each with a bandwidth of

1 ERB, was crucial in order to obtain a correct weighting of the different frequencies in the signal.

If constant-bandwidth filters on a linear frequency scale were used, there would be much more

emphasis of the model output at the high frequencies. This would result in a large underestimation

of the bottle noise mixtures, where most of the masker energy is at high frequencies.

The nonlinear adaptation loops enhance the envelope fluctuations in the signal. In contrast,

stationary portions are compressed which leads to a lower weighting in the model. The importance

of these effects in the model can be seen in the bottle noise condition. Without the nonlinear

adaptation loops, the large amount of high-frequency energy in the bottle noise would not be

compressed and the speech fluctuations and onsets in the low frequency region would not be

emphasized. This would also lead to a large underestimation of the bottle noise mixtures in the

framework of the model.

In the first experiment, there was no relevant difference in the results obtained with or without

the modulation low-pass filter. However, the modulation low-pass filter was very important for the

predictions in the second experiment. Without this filter, the simulated scores were close to zero

for all conditions of the ITFS processed mixtures at -60 dB SNR. For these stimuli, the speech

information is reflected exclusively in the overall spectro-temporal structure (or envelope). The
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Figure 2.7: Prediction results in the second experiment using ITFS processed mixtures. The left, middle and right column
contains the results of the proposed model, the speech-based STI model and the speech-based SII model. For each model
the four rows from top to bottom contain the results of the SSN, cafe, car, and bottle masker. The squares represent
-60 dB SNR, whereas the circles and the triangles represents the SNR values corresponding to 20% and 50% correct
responses in the first experiment. The dashed line illustrates where the measured and predicted scores are the same
and ideally the data points should be on this line. Points above the line represent an underestimation in the predictions,
whereas points below the line represent an overestimation in the predictions. The linear cross-correlation coefficient and
the mean-square-error (MSE) quantifies the strength of the linear relationship and the error between the predicted and
measured scores, respectively
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modulation low-pass filter essentially extracts the envelope of the signal from the previous stages in

the preprocessing and thereby emphasizes the role of the envelope for speech intelligibility within

this model.

Also the central processing part of the proposed model was important. The division into short

time frames and the use of high-level frames only was found to be critical for the accuracy of the

simulations, particularly in the second experiment. The cross-correlation coefficient alone seems to

have a limited ability to model speech intelligibility in the presented framework and the central

stage is important because it compensates for this limitation. The cross-correlation coefficient,

used as an intermediate measure of the speech intelligibility in the model, is an energy-weighted

measure of the similarity of the two internal representations. If both internal representations have a

large amount of energy in a given time-frequency unit, this single unit has a large influence on the

overall cross-correlation coefficient, even if the unit constitutes an extremely small fraction of the

signal. This effect is very strong with the ITFS processed mixtures which often contain few regions

of large energy. However, this effect is reduced by the short time frames of 20 ms used in the

proposed model and this correspondingly reduced the large overestimation observed in the second

experiment without the frame calculation. Frames in the order of 20 ms have also successfully

been used for the calculation of the SII in fluctuating noise (Rhebergen and Versfeld, 2005), the

prediction of audio quality (Huber and Kollmeier, 2006) and speech perception (McClelland and

Elman, 1986).

The importance of the level classification scheme is a consequence of the fact that some speech

frames only contain speech energy in a narrow frequency region. Non-speech energy in other

frequency regions within those frames reduces the simulated speech intelligibility significantly, even

though the speech is still detectable. For the ITFS processed mixtures, the energy in the non-speech

regions of these frames is removed and the simulated speech intelligibility is therefore not reduced

in contrast to the mixtures of the first experiment except for the cafeteria noise, where same effect is

also observed. Thus, the simulated intelligibility of these frames is different in the two experiments

even though it should be the same. Thus, using these frames either leads to an overestimation in

experiment 2 or an underestimation in experiment 1. The frames described here are typically low-

and mid-level frames. Thus, in order for the proposed model to successfully simulate the speech

intelligibility both in speech-in-noise conditions and for ITFS processed mixtures it is crucial that

only the high level frames are used. In this way the classification is also crucial.

However, the level classification of the frames also represents a limitation of the proposed

model, because the exact effects of this processing, particularly in connection with the nonlinear

transformation between the model output and the predicted intelligibility, are difficult to understand

in all aspects. For example, if the central processing part is calibrated to a certain configuration of

the auditory preprocessing, it is difficult to evaluate the effects of the changes in this preprocessing,

since it requires a recalibration of the central processing part as well. Therefore, it is difficult

to evaluate whether the chosen weighting of the different levels is an indication of the general

importance of these segments in speech or whether it is a consequence of the specific auditory

preprocessing configuration that was chosen. For example, in contrast to Kates and Arehart (2005),
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where the mid-level frames of the speech almost exclusively determine the simulated intelligibility,

the proposed model only considers the high-level frames.

Kates and Arehart (2005) argued that the mid-level frames contain most of the information about

envelope transients and spectral transitions and that these indicate place and manner of articulation.

In contrast, experiment 2 of the present study showed that the relatively sparse binary masks with

a density of about 10% typically resulted in intelligibility scores of about 90% and that these

almost exclusively preserved the speech information in the high-level frames. However, it is not

argued here that the high-level frames are therefore principally more important than the mid-level

frames. As mentioned above, it is difficult to make a generalized interpretation based on the fitted

parameters of a model which is rather complex.

The speech-based STI accounts reasonably well for the data from the first experiment even

though it predicts slightly lower scores in the case of the bottle masker. In the second experiment,

the speech-based STI also accounts for most of the conditions, except for the sparsest binary masks

where the simulated percent correct were about 40% higher than in the data. This is because the

sparsest binary masks produce mixtures where only a few TF-units contain a large amount of energy.

This means that the few regions preserved in the ITFS processing have a large influence on the

energy-weighted cross-correlation coefficient used to calculate the intelligibility, even though these

regions only constitute a very small fraction of the signal. The performance might be improved by

dividing the calculation into short time frames as in the proposed model. Thus, the deviations from

the data could, to some extent, reflect a limitation in the intelligibility calculation rather than major

limitations in the preprocessing.

Similar to the two other models, the simulations of the speech-based SII account well for the

data in the first experiment where it also predicted slightly lower scores in case of the bottle masker.

In the second experiment, the speech-based SII failed to account for the data in most conditions

and failed completely for the lowest SNR where the model predicted an intelligibility of almost

0% compared to 100% in the data. One main reason why the speech-based SII cannot successfully

predict the results of the ITFS processed mixtures is the narrow bandwidth of the FFT bins in the

spectra used in the speech-based SII. Even if the activity patterns (the envelope) of the reference

spectrum and the distorted spectrum are the same, there can be large differences between the

values in the individual FFT bins. Since the comparison of the two spectra is based on the values

in the individual FFT bins and not the envelope of the spectra, this can lead to very low scores.

Additional simulations showed that the performance of this model increases by averaging the FFT

bin values into much broader frequency regions. This suggests that a more realistic type of auditory

preprocessing is required to account for the data in this experiment.

It was also investigated if the speech-based SII model would perform differently if only the

high-level frames were used as in the proposed model. This did not change the results in experiment

2 very much, since the speech-based SII model is not sensitive enough to envelope modulations

that are critical in experiment 2. Instead, the ability to account for the training data in experiment 1

was reduced.
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2.5.2 Perspectives

The present study showed that the speech-based versions of the STI and SII have limited abilities

to predict the intelligibility of speech processed with ideal binary masks including noise vocoded

speech, whereas the proposed model performed reasonably well. In order to further examine the

generality of this model, it should be tested with other stimuli and additional conditions such as,

e.g. filtered speech, peak-clipping, spectral subtraction and reverberation.

The model presented in the present study might be useful as a tool for continuously evaluating

signal processing schemes for communication systems and hearing-aids during the development

phase. It can also be used to continuously monitor the quality of hearing-aid and speech

communication systems when these are in operation. One interesting extension of the current

study would be the simulation of intelligibility for hearing-impaired listeners by integrating the

nonlinear cochlear processing stage of Jepsen et al. (2008) into the proposed model. Such a model

could allow explicitly investigating effects of sensorineural hearing loss on the prediction of speech

intelligibility. Finally, another extension would be to include the modulation filterbank of Dau et al.

(1997a) in the auditory model.

In the spectro-temporal modulation index (STMI) developed by Elhilali et al. (2003) it is

suggested that a joint spectro-temporal modulation analysis is needed in order to predict the impact

of phase distortion on speech intelligibility. Phase distortions do not change the envelope in each

frequency channel, but change the synchronization of the envelopes across different frequency

bands. The traditional STI is therefore not sensitive to these types of distortions. The three models

considered in the present study all make a comparison between the reference speech signal and

the distorted speech signal in a number of frequency channels. Thus, a phase distortion in some

frequency channels is assumed to reduce the calculated similarity between the reference signal

and the distorted signal in the models. These models should therefore also, at least to some extent,

be able to account for the phase distortions considered in Elhilali et al. (2003), but this would be

interesting to test explicitly.

2.6 Summary and conclusions

A speech intelligibility model based on a psychoacoustically validated auditory preprocessing

model was presented. The proposed model was used to simulate speech intelligibility data from

two different experiments performed by Kjems et al. (2009). The performance of the model was

compared to predictions obtained with speech-based versions of the STI and SII. In experiment 1,

psychometric functions were simulated for speech masked by speech-shaped noise, cafeteria noise,

car noise and bottle noise, where the cafeteria noise was characterized as fluctuating. In experiment

2, speech-in-noise mixtures similar to those of experiment 1 were processed by binary masks with

different mask densities and speech intelligibility was simulated as a function of mask density.
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The main results of this study are as follows:

(1) The simulated psychometric functions of all three models were comparable to the data, except

for the bottle noise, where all three models slightly underestimated intelligibility.

(2) The proposed model accounted well for the data in the second experiment based on ITFS

processing. Additional simulations showed that the different stages of auditory preprocessing

assumed in the model were important for the successful prediction of speech intelligibility in this

experiment. Also the central processing in the model, based on short time frames and the use of

high-level frames only, was important for the success of the model. This implies that also the level

classification is an essential part of the model.

(3) The speech-based STI produced reasonably good results for the ITFS processed mixtures,

except for the sparse masks where the score was dominated by short segments of high energy.

Further analysis indicated that the results might be improved by calculating the STI in short time

frames and disregarding the low-level segments.

(4) The speech-based SII was a poor predictor of the speech enhancement performed by the ITFS

processing and failed completely when predicting the noise vocoding effect of the binary mask.

The speech-based SII is limited by the narrow frequency bins of the FFT based calculation, which

results in a large dependency on the temporal fine structure of the signals.

(5) In order to examine the generality of the proposed model, it should be tested in additional

challenging conditions, such as, e.g. filtered speech, peak-clipping, spectral subtraction and

reverberation.
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Appendix

A. Speech-based SII

The MSC is estimated using the Fast Fourier Transform (FFT). The FFT of the clean speech signal

x(n) and the distorted signal y(n) are denoted by Xm(k) and Ym(k), and calculated in short segments

using a hamming window of 32 ms, where k is the FFT bin index and m denotes the segment. The
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FFT is calculated with an overlap of 50%. The MSC is defined as:

MSC(k) =

∣∣∣∣∣M−1

∑
m=0

Xm(k)Y ∗m(k)

∣∣∣∣∣
2

M−1

∑
m=0
|Xm(k)|2

M−1

∑
m=0
|Ym(k)|2

(2.4)

where M is the total number of segments m and the asterisk denotes the complex conjugate. In

Kates and Arehart (2005), the speech part P(k) of the distorted power spectrum |Ym(k)|2 is the

fraction that is linearly related to the reference power spectrum |Xm(k)|2. Based on the results

in Carter et al. (1973), this fraction is equal to the MSC and speech power spectrum is therefore

estimated by:

P(k) = MSC(k)
M−1

∑
m=0
|Ym(k)|2 (2.5)

The noise part N(k) of the distorted power spectrum is defined as the fraction that is nonlinearly

related to the reference signal and is therefore estimated by:

N(k) = (1−MSC(k))
M−1

∑
m=0
|Ym(k)|2 (2.6)

In the speech-based SII method, the SDR is calculated in a number of frequency bands by applying

the frequency response of a bank of rounded-exponential (Ro-ex) filters to the estimated speech and

noise power spectra. The center frequencies and bandwidths of the filters correspond to the critical

bands defined in table I of the ANSI S3.5 (1997) standard. By determining the Ro-ex filters for the

frequencies used in the FFT calculation, the jth filter can be expressed as Wj(k) and the SNR in the

jth band is obtained by:

SDR( j) =

M−1

∑
k=0

Wj(k)P(k)

M−1

∑
k=0

Wj(k)N(k)

(2.7)

When the speech and noise power spectra as well as the SDR have been estimated, the remaining

part of the speech-based SII calculation follows the steps of the traditional SII.
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3
Relationship between masking release in
fluctuating maskers and speech reception

thresholds in stationary noise †

In contrast to normal-hearing (NH) listeners, hearing-impaired (HI) listeners often show strongly

reduced masking release (MR) in fluctuating interferers, which has commonly been associated

with spectral and temporal processing deficits. However, it has recently been proposed that the

reduced MR could result from an increased speech recognition threshold (SRT) in stationary noise

[Bernstein and Grant, J. Acoust. Soc. Am. 125, 3358-3372 (2009)]. This was tested by presenting

noise-band vocoded as well as low-pass and high-pass filtered stimuli to NH listeners, thereby

increasing their stationary-noise SRTs to those of the HI listeners. If the primary determinant of

MR is the SRT in stationary noise then the amount of the MR should be independent of the type of

processing used to obtain the stationary-noise SRT. However, the relation between the amount of

MR and the stationary-noise SRT depended on the type of processing. For a fluctuating interferer,

none of the processing conditions reduced the MR of the NH listeners to that of the HI listeners.

In contrast, for an interfering talker, the results for vocoded stimuli were similar to those of the

HI listeners. Overall, these results suggest that the observed MR is only partially related to the

stationary-noise SRT.

† This chapter is based on Christiansen and Dau (2012).

31
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32 3. Relationship between stationary-noise SRT and MR

3.1 Introduction

The primary mode of communication between humans is via speech. Speech communication

often takes place in the presence of concurrent talkers, background noise or in a reverberant

environment. In such adverse listening conditions, speech intelligibility generally remains high

for normal-hearing (NH) listeners, whereas hearing-impaired (HI) listeners often experience major

difficulties. In conditions where the interferer fluctuates over time, compared to a situation where it

is steady, NH listeners benefit from speech information in the low-intensity parts of the interferer

(e.g., Baer and Moore, 1994; Füllgrabe et al., 2006; Rhebergen et al., 2006). This ability has been

denoted “listening in the dips" and the improvement in speech intelligibility has been referred to

as masking release (MR). In contrast, HI listeners usually show very little benefit from these dips

when tested in the same conditions as the NH listeners (e.g., Festen and Plomp, 1990; Gustafsson

and Arlinger, 1994; Peters et al., 1998; George et al., 2006; Lorenzi et al., 2006; Bernstein and

Grant, 2009; Strelcyk and Dau, 2009).

Compensation for the reduced audibility experienced by HI listeners, e.g. through amplification

in hearing aids, largely improves the ability to understand speech in quiet (e.g., Duquesnoy and

Plomp, 1983). However, the benefit from amplification is often much smaller in the presence of

noise or competing talkers (e.g., Duquesnoy and Plomp, 1983; Gustafsson and Arlinger, 1994;

Shanks et al., 2002; Hällgren et al., 2005; Metselaar et al., 2008), although some studies have shown

an improvement (e.g., Alcántara et al., 2003). A hearing loss has traditionally been characterized by

an attenuation component and a distortion component (Plomp, 1978). The attenuation component

is directly related to reduced sensitivity and is the main determinant for speech perception in quiet.

The distortion component is often associated with supra-threshold deficits, such as reductions in

temporal resolution, spectral resolution and temporal fine structure (TFS) processing and is assumed

to be mainly responsible for the speech perception problems in noise (George et al., 2006; Houtgast

and Festen, 2008).

It has been argued that reduced frequency selectivity, which is often present among HI listeners,

limits the ability to extract speech information from spectral dips in the interferer. However, the

literature is not conclusive. Studies simulating reduced frequency selectivity for NH listeners by

spectral smearing (ter Keurs et al., 1993; Baer and Moore, 1993) or vocoding (Qin and Oxenham,

2003; Nelson and Jin, 2004) showed a reduced MR, while studies comparing measurements of

frequency selectivity and speech recognition for HI listeners did not find any correlation (George

et al., 2006; Strelcyk and Dau, 2009). However, Strelcyk and Dau (2009) measured frequency

selectivity in low-frequency regions where the pure-tone sensitivity of the HI listeners was only

slightly reduced and it is possible that the frequency selectivity in the high-frequency region with

strongly reduced sensitivity would have shown a correlation. It seems still unclear to what extent

frequency selectivity affects speech recognition in the presence of fluctuating noise or a competing

talker.

Reduced MR for HI listeners has also often been associated with decreased temporal resolution

in terms of an increased amount of forward masking, which has been argued to reduce the effective
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duration of the dips in a fluctuating noise. This has been supported by studies where a correlation

between temporal resolution and speech recognition in fluctuating noise was found (Hou and

Pavlovic, 1994; Dubno et al., 2003; George et al., 2006). However, it is still not clear how much of

the reduced MR for the HI listeners can be accounted for by reduced temporal resolution.

It has also been hypothesized that TFS cues are important to identify speech in the dips of a

fluctuating noise or a competing talker and that TFS processing deficits observed in HI listeners

might result in a reduced MR (e.g., Lorenzi et al., 2006; Hopkins et al., 2008). There seems to be

evidence that TFS cues are crucial for speech recognition in the presence of a competing talker

(Qin and Oxenham, 2003; Hopkins et al., 2008; Strelcyk and Dau, 2009), but it is questionable if

TFS processing deficits affect speech recognition in fluctuating noise (e.g. Strelcyk and Dau, 2009).

To investigate whether pitch information conveyed by the TFS of low-order resolved harmonics

is important for MR, Oxenham and Simonson (2009) measured MR for NH listeners obtained

with low-pass (LP) and high-pass (HP) filtered speech in the presence of modulated noise and a

competing talker. They found similar results for LP and HP filtering, suggesting that low-order

resolved harmonics are not more important than high-order unresolved harmonics for MR. They

also found that the amount of MR decreased when the SNR in stationary noise was increased and

that the MR seemed to vanish when the SNR was 0 dB or greater.

It is well known that HI listeners need a higher signal-to-noise ratio (SNR) than NH listeners

in order to understand the same percentage of the speech in the presence of a stationary noise

masker. Inspired by Oxenham and Simonson (2009), who showed that the MR for NH listeners

is reduced when the SNR in stationary noise is increased, Bernstein and Grant (2009) suggested

that the reduced MR experienced by HI listeners might be due to this higher SNR needed for the

HI listeners (where the benefit from listening in the dips of the noise might be limited). They

measured psychometric functions for NH and HI listeners in stationary noise, modulated noise

and an interfering talker. In order to compare the results of the NH and HI listeners at the same

SNR in stationary noise, they measured the MR at different points on their psychometric functions.

The MR calculated at a high percentage of correct words for NH listeners was compared to the

MR calculated at a low percentage of correct words for HI listeners. Bernstein and Grant (2009)

found that most of the difference in the MR for speech-modulated noise between the NH and the HI

listeners could be accounted for when measuring at the same SNR in the stationary-noise condition

(the difference in MR measured at 50% correct was 7 dB and was reduced to only 1 dB when

measured at the same SNR (≈ 3 dB) in stationary noise). These results suggested that the smaller

MR for the HI listeners resulted from the higher SNR in stationary noise and not necessarily from

deficits in supra-threshold auditory processing specifically important for MR. However, for the

interfering talker, only about 50% of the difference in the MR between the NH and HI listeners

could be accounted for in this way in the same study (the difference in MR measured at 50% correct

was 11 dB and was reduced to 5 dB when measured at the same SNR (≈ 3 dB) in stationary noise).

Thus, even after compensating for a higher SNR in stationary noise, supra-threshold processing

deficits or reduced audibility might have been partly responsible for the reduced speech recognition

for the HI listeners in the presence of an interfering talker.
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In interpreting their results, Bernstein and Grant (2009) argued that the MR exhibited by

individuals at their SRT50 is similar to the MR exhibited by the population tested at the same

SNR. For example, the MR exhibited by the population tested at an SNR of 5 dB and greater than

50% correct is the same as the MR exhibited by an individual who has an SRT50 of 5 dB. This,

however, might not generally be valid. Furthermore, measuring the MR at low and high percent

correct points on the psychometric function might be problematic since it can be relatively flat.

This means that a small deviation in the estimated psychometric function can lead to a large change

in the SNR at the given percent correct, which in turn might have a large effect on the calculated

MR. Bernstein and Grant (2009) also investigated whether an increase in MR with the availability

of visual cues could be attributed to a change in the stationary-noise SNR. However, again MR was

compared at different points on the psychometric functions.

In a later study, Bernstein and Brungart (2011) manipulated the word-set size in order to

compare the MR of spectrally smeared and noise-vocoded stimuli with unprocessed stimuli at the

same stationary-noise SRT. They found no difference between the processed and the unprocessed

conditions suggesting that a reduced MR caused by distortions in the TFS and the spectral content

of the stimuli was due to increased stationary-noise SRT.

Based on these findings, the present study investigated how increased SRTs of NH listeners

obtained using low-pass (LP) filtered, high-pass (HP) filtered and noise-vocoded stimuli influence

MR and to what extent the increased SRTs of NH listeners can account for the reduced MR of

HI listeners tested with unprocessed stimuli. If the SRT in stationary noise mainly determines the

amount of MR, the results should be essentially independent of the processing used to increase

the SRTs for the NH listeners. The MR was obtained by comparing the stationary-noise results

with those obtained with an 8-Hz sinusoidally modulated noise, a single-talker interferer and the

international speech test signal (ISTS; Holube et al., 2010). The ISTS signal is based on speech

recordings in six different languages, which were cut into short segments and recombined in a

different order making the signal largely unintelligible. The ISTS was considered here in order to

investigate if the MR depends on the ability to understand the interfering speech.

In Experiment 1, the MR with unprocessed stimuli was measured for HI listeners. The listeners

were chosen to cover a range of different stationary-noise SRTs. In Experiment 2, the MR was

measured with processed stimuli for NH listeners. The stimuli were provided with different degrees

of processing in order to cover approximately the same range of stationary-noise SRTs as obtained

for the HI listeners.
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Table 3.1: Audiometric thresholds for the thirteen HI listeners.
Audiometric thresholds (dB HL)

ID Gender Age Ear 125 250 500 750 1000 1500 2000 3000 4000 6000 8000 PTA (dB HL)

HI1 M 68 L 10 15 10 15 15 15 25 60 65 65 65
31.8

R 5 10 10 15 10 15 30 55 55 60 75

HI2 F 72 L 20 30 35 35 35 45 50 60 65 55 55
43.0

R 20 35 35 35 40 45 45 50 55 50 50

HI3 F 66 L 15 15 15 20 20 15 20 50 55 60 70
29.3

R 15 15 10 10 15 10 15 35 55 50 60

HI4 F 51 L 15 25 40 50 45 50 45 50 55 50 65
45.9

R 20 25 40 60 60 55 60 55 50 40 55

HI5 M 57 L 20 25 35 30 30 30 25 30 45 60 70
37.5

R 20 30 35 35 30 30 25 40 50 60 70

HI6 F 64 L 20 35 55 65 65 60 55 55 60 65 70
54.3

R 25 45 55 65 55 55 50 55 60 55 70

HI7 M 63 L 15 20 35 45 50 50 55 60 60 65 75
50.2

R 20 25 35 50 55 55 60 65 70 70 70

HI8 M 66 L 35 35 35 40 35 30 35 55 55 60 65
41.8

R 25 30 35 40 35 30 30 50 50 55 60

HI9 F 66 L 25 25 35 45 50 551 651 801 105 100 100
66.6

R 25 20 30 45 45 851 951 1151 110 105 105

HI10 F 64 L 25 25 25 25 25 25 30 40 45 55 55
36.8

R 25 25 30 35 30 30 35 55 55 55 60

HI11 F 66 L 20 25 30 40 40 55 50 50 60 85 90
55.5

R 35 40 40 50 50 65 65 60 75 95 100

HI12 M 61 L 25 401 55 50 55 55 55 80 80 70 75
59.5

R 35 601 60 60 55 50 65 70 70 70 75

HI13 F 64 L 25 35 35 45 45 45 50 70 80 80 80
52.3

R 25 30 35 35 35 40 55 80 75 75 75

3.2 Masking release for hearing-impaired listeners

3.2.1 Methods

Listeners

Thirteen HI listeners (five male and eight female) between 55 and 70 years of age (mean age of

64) participated in the experiment. The individual audiometric thresholds are listed in Table 3.1. A

difference of less than 15 dB between the pure-tone air and bone-conduction thresholds insured that

the hearing losses were of sensorineural origin. Listeners were selected to have different degrees of

hearing loss (mild, moderate, moderate-severe and severe), based on their audiograms, assuming

that this would be associated with a range of SRTs among the listeners, even though the sensitivity

loss in terms of the audiogram is not always closely related to the SRT (Bacon et al., 1998; Houtgast

and Festen, 2008; Strelcyk and Dau, 2009). All listeners had gradually sloping and symmetric

hearing losses, with differences in audiometric thresholds between left and right ear of typically

less than 15 dB at all frequencies. Exceptions are indicated in Table 3.1.
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Figure 3.1: Long-term spectra of the four maskers used in the listening experiments, speech-shaped noise (SSN),
sinusoidally amplitude modulated noise (SAM), International Speech Test Signal (ISTS) and danish talker (DT).

Stimuli

The SRTs were measured using the Danish speech intelligibility test called conversational language

understanding evaluation (CLUE, Nielsen and Dau, 2009), which is very similar to the hearing-

in-noise test (HINT) originally developed for English (Nilsson et al., 1994). The CLUE material

consists of natural and meaningful sentences representing conversational speech and has a fixed

structure consisting of five words per sentence. The sentences were spoken by a male talker with

an average fundamental frequency (F0) of 119 Hz. The sentences were presented in four different

interferers: (1) A stationary noise with the same long-term spectrum as the sentence material, i.e. a

speech-shaped noise (SSN), (2) an 8-Hz sinusoidally amplitude-modulated (SAM) speech-shaped

noise, (3) continuous speech produced by a Danish female talker (DT) with an average F0 of 214

Hz and (4) the international speech test signal (ISTS; Holube et al., 2010), which consists of natural

speech from six female talkers speaking different languages, whereby the speech material was

segmented and remixed using a randomization procedure in order to make it largely unintelligible.

The average F0 of the ISTS is 207 Hz. The long-term average magnitude spectra of the four maskers

are shown in Fig. 3.1.

Procedure

The experiment was conducted in a double-walled sound insulated booth, where the experimenter

controlled the procedure by means of a Matlab application developed specifically for the CLUE

test. The digital signals were sampled at 22050 Hz and converted to analog signals by a high-end

24 bit soundcard (RME DIGI96/8). The stimuli were presented diotically over Sennheiser HD580

headphones. The target sentences were presented at a fixed sound pressure level (SPL) of 80 dB,

whereas the level of the interferer was determined via an adaptive procedure used to measure

the SRTs. The onset and offset of the interferer were 1 s before and 600 ms after the sentence,
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respectively, where a ramped squared-cosine function with a duration of 400 ms was applied to

the onset and the offset. For each presentation, the interferer was randomly selected from a long

sample (SSN: 22 seconds, ISTS: 52 seconds).

The listeners received approximately 30 minutes of training before the SRTs were measured. In

the training session, the first sentence was presented at a very low SNR. The SNR was increased in

steps of 2 dB until all five words were repeated correctly. The listeners were allowed to guess and

the recognized words were repeated verbally to the experimenter and registered without feedback.

For the following sentence, the SNR was decreased by 6 dB and again increased in 2 dB steps until

all the words were repeated correctly. This was done until 20 sentences were presented, for each of

the four interferers.

In the test session, a list of 10 sentences was used to measure the SRT for a given run. The

procedure for the presentation of the first sentence was the same as in the training session. However,

for the presentation of the remaining nine sentences, the SNR followed a simple adaptive procedure:

if all words were repeated correctly, the SNR was decreased by 2 dB, otherwise the SNR was

increased by 2 dB. The measured SRT was the average of the last eight SNRs from presentation

number 4 to 11 (presentation number 11 results from the response to sentence 10, although the

eleventh sentence does not exist). Five runs were conducted for each condition and the average of

these SRTs produced the final SRT.

3.2.2 Results

Figure 3.2 shows the MR for the HI listeners as a function of the SRT obtained in stationary

noise. Results are shown for the three different interferers: SAM noise (dark-gray circles), ISTS

(medium-gray squares) and DT (light-gray diamonds). The MR for each interferer is shown at the

SRT in stationary noise obtained for the individual listeners. Thus, all symbols that indicate the

same SRT in stationary noise represent the data from one listener. Linear regression lines were

fitted to the measured data obtained with the different interferers (SAM: dashed dark-gray, ISTS:

dotted medium-gray, DT: dashed-dotted light-gray). For all three interferers, it can be seen that, on

average, listeners with small SRTs show a large amount of MR and listeners with larger SRTs show

a smaller or no MR. From the lowest to the highest SRT value across the group of HI listeners, the

average MR decreased from about 3 dB to -2 dB in the case of the modulated noise (SAM) and from

about 9 dB to -1 dB in the case of the two interfering talkers (ISTS and DT). Some listeners showed

negative MR values, which indicate that the modulated noise or interfering talker actually masked

the speech more effectively than the stationary noise. The results are consistent with the results of

Bernstein and Grant (2009) and also agree with the results of George et al. (2006) and Desloge et al.

(2010) where the MR for HI listeners decreased with increasing SRT in stationary noise. However,

it can also be seen that there are large differences in MR for some of the listeners with similar

SRTs in stationary noise. Correlations were calculated in order to quantify the relation between the

SRT in stationary noise and the MR. Since listener HI9 showed a much higher SRT in stationary

noise than all other HI listeners, the correlations were calculated both with and without listener
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Figure 3.2: MR obtained for the HI listeners measured in the presence of the SAM (dark-gray circles), the ISTS
(medium-gray squares) and the DT (light-gray diamonds) interferer, respectively. For each individual listener, the MR is
shown at the corresponding SRT in stationary noise. The trends in the data are indicated by linear regression lines for the
three interferers.

HI9. When listener HI9 was included, the SRT in stationary noise was significantly correlated

with the MR for all three interferes (SAM: [r = 0.60, p = 0.03], ISTS: [r = 0.75, p = 0.003],

DT: [r = 0.84, p = 0.0004]), even though the correlation for the SAM interferer was relatively

low. When the listener HI9 was excluded from the analysis, the SRT in stationary noise was

only significantly correlated with the MR obtained with the ISTS [r = 0.67, p = 0.02] and the DT

[r = 0.74, p = 0.005] interferers, but not with the MR obtained with the SAM [r = 0.55, p = 0.06]

interferer. Based on the relatively low correlation between stationary-noise SRT and MR obtained

with the SAM interferer compared to MR obtained with the interfering talkers, it seems that the

SRT in stationary noise is only somewhat indicative of the amount of MR.

3.3 Masking release for NH listeners obtained with processed stimuli

3.3.1 Methods

Listeners

Nine NH listeners (two male and seven female) between 40 and 65 years of age (mean age of

50) participated in the experiment. All had hearing thresholds below 20 dB hearing level (HL) at

audiometric frequencies between 125 and 4000 Hz. Above 4 kHz, two listeners had thresholds at

25 and 30 dB HL, respectively.
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Stimuli

The speech material and the interferers were the same as used in Experiment 1 (Sect. 3.2). However,

in this experiment, the sentences were either LP-filtered, HP-filtered or vocoded in order to increase

the SRT for the NH listeners in stationary noise. The SRT was gradually modified by changing the

cut-off frequency of the LP and HP filtering, and by vocoding the channels below a certain cut-off

frequency, which also was modified.

The LP and HP filtering followed closely the procedure used in Oxenham and Simonson (2009).

The speech was always presented at a fixed level of 65 dB SPL, whereas the level of the interferer

was determined by the adaptive procedure. After setting the levels, the speech was combined

with the interferer and the mixture was filtered with an eighth-order Butterworth filter (slope=48

dB/octave) at a given cut-off frequency. An off-frequency noise (SSN) which was filtered at the

same cut-off frequency but covering the opposite frequency range was then added to the mixture.

Before filtering, the level of the off-frequency noise was 12 dB below the level of the unfiltered

speech signal. More details on the filtering procedure can be found in Oxenham and Simonson

(2009). A pilot experiment with three young NH listeners showed that LP filtering at the cut-off

frequencies 750, 850, 1000, 1750 and 3000 Hz and HP filtering at the cut-off frequencies 250, 1000,

1250, 1500 and 1750 Hz produced SRTs that were roughly evenly distributed between -2 and 8 dB.

Similar to the filtering, speech used in the vocoder was also presented at a fixed level of 65 dB

SPL and the level of the interferer was also determined by the adaptive procedure. The vocoded

signals were scaled to have the same overall level as the input to the vocoder. The combined

speech and interferer signal was decomposed into a number of frequency channels via processing

through a gammatone filterbank (Patterson et al., 1987). The filterbank consisted of 32 fourth-order

gammatone band-pass filters with center frequencies ranging from 100 to 8000 Hz, equally spaced

on an equivalent-rectangular-bandwidth number scale (ERBN ; Glasberg and Moore, 1990), each

with a bandwidth of 1 ERBN . The envelope in each channel was extracted by half-wave rectification

and LP filtering with a cut-off frequency of 50 Hz. The LP filter was a sixth-order butterworth filter

with a slope of 34 dB/octave. After filtering, the envelope was imposed on a white noise carrier and

filtered with the same band-pass filter before all the channels were time aligned and recombined. In

many studies, a vocoder has been used to remove TFS information in the speech signal; however,

a vocoder also introduces distortions in the spectral domain and in the temporal envelope of the

signal. A range of different SRTs for the NH listeners was achieved by only vocoding some of the

32 frequency channels and leaving the remaining channels unprocessed (the number of channels

was thus the same in all conditions). The SRT was increased by gradually vocoding more channels,

starting with channels at low center frequencies. A pilot study with three young NH listeners

indicated that vocoding 4, 14, 22, 28 and 32 channels produced SRTs that were evenly distributed

between -3 and 4 dB.
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Procedure

SRTs were measured using the same adaptive procedure and experimental setup as in Experiment

1. However, since there were 60 conditions and only 20 sentence lists, only one list was used to

measure the SRT in each condition. The listeners were tested with the three types of processing

using the same 20 sentence lists, but this was done with 2-3 week intervals between the tests. In

order to avoid differences due to training and learning effects, the experiments with the three types

of processing were performed in a random order for each listener. The final SRTs were averaged

across all NH listeners.

3.3.2 Results

Low-pass filtered stimuli

The left panel of Fig. 3.3 shows the average SRTs for the NH listeners as a function of the cut-off

frequency of the LP filter. The four curves represent the results obtained with the SSN (crosses

and solid curve), the SAM (circles and dashed curve), the ISTS (squares and dotted curve) and the

DT (diamonds and dashed-dotted curve) interferers, respectively. As expected, the highest cut-off

frequency led to the lowest SRTs, i.e. the best speech intelligibility. When the cut-off frequency

was reduced, a large increase in SRT was observed for all four interferers.

For each cut-off frequency, the MR was obtained by calculating the difference in SRT between

the stationary noise and each of the three fluctuating interferers. The obtained MRs are indicated

by the open symbols in the right panel of Fig. 3.3 as a function of the SRT obtained in stationary

noise. The individual cut-off frequencies corresponding to the respective SRTs are indicated in

the figure. Linear regression lines were fitted to the data for each of the interferers to illustrate the

overall trend in the data, but were not statistically analyzed. The interferers are indicated by the

same symbols and line styles as used in the left panel.

Overall, there is a reduction of the MR with increasing stationary-noise SRT. For the SAM

interferer (circles), the MR tends to approach zero at large stationary-noise SRTs. The reduction in

the MR obtained with the two interfering talkers (ISTS and DT) seems to be slightly larger than

for the SAM interferer, but there is still a considerable amount of MR (≈ 6 dB) at the highest

SRT in stationary noise. Most of the MR reduction occurs between the 3000-Hz and the 1000-Hz

condition for the SAM interferer and between the 1750-Hz and 1000-Hz condition for the ISTS

and DT interferers. When the cut-off frequencies are decreased further (higher stationary-noise

SRTs) the MR tends to be more stable. The results are compared to the results of the HI listeners in

Section 3.4.

These observations were supported by an ANOVA showing that the MR differed significantly

across SRT [F(4,28) = 12.4, p < 0.0001], interferer [F(2,14) = 154.7, p < 0.0001] and that there

was a significant interaction between SRT and interferer [F(8,56) = 2.9, p < 0.01]. The trends for

each interferer were investigated by performing multiple pairwise-comparisons on the difference
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Figure 3.3: The left panel shows the mean SRTs for the NH listeners in the presence of the SSN (crosses and solid black
curve), SAM (circles and dashed dark-gray curve), ISTS (squares and dotted medium-gray curve) and DT (diamonds
and dashed-dotted light-gray curve) interferer, respectively, for five different cut-off frequencies of the LP filter. Error
bars represent ± 1 standard deviation. The right panel shows the MR for the SAM, ISTS and DT interferers, reflected as
the corresponding differences from the SRT obtained with the SSN interferer for each cut-off frequency.

between all the conditions (Holm-Sidak correction was applied). For the SAM and ISTS interferers,

this analysis revealed that the MR in the 3000-Hz condition was higher than in the 1000-Hz and

700-Hz conditions [p<0.005]. For the DT interferer, the MR was higher in the 3000-Hz and

1750-Hz conditions than in all the remaining conditions [p<0.008].

High-pass filtered stimuli

The left panel of Fig. 3.4 shows the average SRTs for the NH listeners as a function of the cut-off

frequency of the HP filter. For the HP-filtered stimuli, the lowest cut-off frequency led to the lowest

SRTs and increasing the cut-off frequency led to a considerable increase in the SRTs.

The right panel of Fig. 3.4 shows the MR as a function of the stationary-noise SRT. Linear

regression lines were fitted to the data to illustrate the overall trend in the data, while details in the

results are not captured. The cut-off frequencies corresponding to the SRTs are indicated in the

figure. Overall, the effect of the HP filtering on the MR is similar to the effect of the LP filtering,

showing an overall reduction of the MR with increasing stationary-noise SRT. However, compared

to the results from the LP filtering, the reduction in the MR obtained with the SAM interferer seems

slightly smaller, whereas the reduction in the MR obtained with the ISTS and DT interferers appears

larger. Thus, there appears to be a larger interaction between SRT and MR for the HP filtering. For

all three interferers, most of the MR reduction occurs between the 250-Hz and 1000-Hz condition,

while a more modest MR reduction is observed when the cut-off frequency is increased above 1000

Hz.

An ANOVA confirmed that the MR differed significantly across SRT [F(4,28) = 19.5, p <
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Figure 3.4: The left panel shows the mean SRTs for the NH listeners in the presence of the SSN (crosses and solid black
curve), SAM (circles and dashed dark-gray curve), ISTS (squares and dotted medium-gray curve) and DT (diamonds
and dashed-dotted light-gray curve) interferer, respectively, as a function of the cut-off frequency of the HP filter. Error
bars represent ± 1 standard deviation. The right panel shows the MR for the SAM, ISTS and DT interferers, reflected as
the corresponding differences from the SRT obtained with the SSN interferer for each cut-off frequency.

0.0001], interferer [F(2,14) = 109.4, p < 0.0001] and showed that there was a larger interaction

between interferer and SRT [F(8,56) = 4.2, p < 0.001] than for the results from the LP filtering.

As for the LP-filtered stimuli, the trends in the data were investigated, for each interferer, by

performing multiple pairwise-comparisons on the difference between all the conditions. For the

SAM interferer, the MR in the 250-Hz condition was higher than in the 1500-Hz and 1750-Hz

[p<0.006], whereas the MRs in the remaining conditions were statistically the same. For the ISTS

and the DT interferers, the MR in the 250-Hz condition was higher than in all the other conditions

[p<0.0001]. Apart from a significantly higher MR in the 1250-Hz condition compared to the

1750-Hz condition for the ISTS interferer [p<0.005], the MRs in the remaining conditions were

statistically the same.

Vocoded stimuli

Figure 3.5 (left panel) shows the average SRTs for the NH listeners as a function of the number

of vocoded channels. In general, the SRTs were lowest for the condition with the least number

of vocoded channels (4 out of 32) and increased as more channels were included. The effect was

much stronger for the two single-talker interferers (ISTS and DT) than for the noise interferers

(SSN and SAM).

The right panel of Fig. 3.5 shows MR as a function of the stationary-noise SRT. Linear regression

lines were fitted to the data. The number of vocoded channels corresponding to the different SRTs

are also indicated in the figure. In the vocoded condition, the change in SRTs for the SSN (≈ 4

dB) and the SAM (≈ 7 dB) interferers were smaller than in the LP and HP-filtered conditions.
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Figure 3.5: The left panel shows the mean SRTs for the NH listeners in the presence of the SSN (crosses and solid black
curve), SAM (circles and dashed dark-gray curve), ISTS (squares and dotted medium-gray curve) and DT (diamonds
and dashed-dotted light-gray curve) interferer, respectively, as a function of the number of vocoded channels. Error bars
represent ± 1 standard deviation. The right panel shows the MR for the SAM, ISTS and DT interferers, reflecting the
corresponding differences from the SRT obtained with the SSN interferer. The number of vocoded channels from the left
panel is also indicated at the corresponding stationary-noise SRT values.

However, for the ISTS and DT interferers, the change in SRT was much larger (≈ 13.5 and 12.5 dB,

respectively) and close to the change observed in the LP and HP-filtered conditions. Consequently,

as can be seen in the right panel of Fig. 3.5, the MRs for the two single-talker interferers were

strongly reduced for large stationary-noise SRTs. Specifically, the MR was found to be reduced

from about 10 to 2 dB for a small increase of the stationary-noise SRT. In contrast, the MR obtained

with the SAM interferer was only reduced from 4.5 dB to 2.5 dB. Interestingly, the figure clearly

shows that SRT and MR are only affected when increasing the number of vocoded channels from 4

to 22 and increasing the number of vocoded channels further has no effect at all.

An ANOVA confirmed that the MR differed significantly across SRT [F(4,28) = 23.9, p <

0.0001], interferer [F(2,14) = 13.4, p < 0.001] and showed that the interaction between SRT and

MR [F(8,56) = 5.1, p < 0.0001] was larger than the interaction found in the LP and HP filtering

conditions. Furthermore, multiple pairwise-comparisons were performed on the difference between

all the conditions for each interferer showed that, for the ISTS and DT interferers, the 4-channel

condition was significantly different from all other conditions [p<0.0001]. Furthermore, for the

DT interferer, the 14-channel condition was also different from the 30-channel and 32-channel

conditions [p<0.02]. Thus, the statistical analysis supports the observation that increasing the

number of vocoded channels above 22 does not have an effect. The reduction of the MR obtained

with the SAM interferer was not significant [F(4,28) = 2.3, p > 0.08].
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3.4 Comparison of results for normal and impaired hearing

Figure 3.6 compares the MR results obtained for the NH and HI listeners. The left, middle and right

columns present the results for the SAM, ISTS and DT interferers, respectively. The top, middle

and bottom rows show the results for the NH listeners obtained with LP filtering, HP filtering and

noise vocoding, respectively. It is important to note that the HI listeners were only tested with

unprocessed speech, but for comparison with the results obtained for the NH listeners, the HI data

for each interferer were replotted for all three types of processing. In each panel, the measured

MRs for the NH listeners (open circles) and the HI listeners (crosses) are shown together with the

corresponding fitted linear regression lines indicated by the dashed and solid lines. For the NH

listeners, each symbol represents the mean across all listeners for a specific condition whereas, for

the HI listeners, each symbol shows the mean of five repetitions for a specific listener. The thin

vertical and horizontal lines in the figure indicate an SRT and a MR of zero dB, respectively.

If the SRT in stationary noise would determine the amount of MR for a given masker, the MR for

the NH listeners should be reduced by the same amount as the HI listeners for a correspondingly

increased SRT in stationary noise. In particular, the MR obtained for the NH listeners as a function

of SRT in stationary noise should be the same for the three types of processing.

Overall, there is a general reduction in the MR with increasing stationary-noise SRT. However,

for the ISTS and DT interferers, the results show that for NH listeners the MR depends both on the

SRT in stationary noise and on the type of processing. The results with the LP-filtered stimuli show

that NH listeners can achieve an MR of about 4-8 dB higher than HI listeners, with reference to the

same stationary-noise SRT. In contrast, for NH listeners presented with vocoded stimuli, the MRs

were very similar to the results obtained with the HI listeners, suggesting that the noise-vocoder

removes the cues used by the NH listeners to obtain a release from masking. For the SAM interferer,

the MR of NH listeners is similar across the three types of processing; however, a small difference

in the MR between NH and HI listeners is still observed.
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Figure 3.6: Comparison of the MR obtained with the HI listeners using unprocessed stimuli and the NH listeners using
processed stimuli. Each panel shows the MR for the HI (crosses and solid line) and NH (circles and dashed line) listeners
as a function of the SRT in stationary noise. The columns show the performance in the presence of the SAM, ISTS and
DT interferers where each row represents the three types of processing used in the measurements with the NH listeners.
The thin dashed vertical and horizontal lines indicate zero SRT and MR, respectively.

3.5 Discussion

3.5.1 Relation between the MR and the SNR in stationary noise

The results from the present study show that the MR obtained by NH listeners is reduced when

measured at increased SRTs in stationary noise. The results for the NH listeners demonstrate that

the reduction of the MR obtained with processed noisy speech stimuli depends considerably on

the type of processing and not only on the SRT in stationary noise. Specifically, the noise-vocoder

seem to remove important cues for MR when the masker is an interfering talker whereas other

factors play a role for MR in modulated noise. The finding that MR depends on the processing

is in contrast Bernstein and Brungart (2011) who found no difference between processed and

unprocessed conditions at a given SRT suggesting that reduced MR caused by noise-vocoding and

spectral smearing of the stimuli is entirely due to increased stationary-noise SRT.
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The results from the present study also show that the NH listeners still perform considerably

better than the HI listeners when measured at the same SRT in stationary noise. For the interfering

talkers, these results are similar to the findings of Bernstein and Grant (2009). However, in the case

of modulated noise they found the MR to be almost entirely predicted by the stationary-noise SRT,

which was not found in the present study.

One of the differences between the study of Bernstein and Grant (2009) and the present study

is that they reduced the influence of audibility by presenting flat-spectrum speech at 87 dB SPL

to the HI listeners, whereas normal-spectrum speech was presented at 80 dB SPL in the present

study. In quiet and stationary noise, several studies have shown that most listeners with thresholds

greater than 55-60 dB show very little or even a detrimental effect of high-frequency amplification

(e.g. Rankovic, 1991; Ching et al., 1998; Hogan and Turner, 1998; Amos and Humes, 2007). For

fluctuating noise, Moore et al. (1999) found a small decrease in the SRT of about 2 dB based on

the “Cambridge” formula, but they did not measure if the benefit was the same in stationary noise.

Peters et al. (1998) found an increase in MR of about 1.5 dB with NAL amplification. Still, the

difference in presentation level and spectral shaping between the present study and the study of

Bernstein and Grant (2009) probably only has a minor effect on the results. In the present study, a

frequency independent gain was chosen in order to deliver an undistorted broadband signal where

the inherent component relations were preserved (Halpin and Rauch, 2009b).

Another difference that might have influenced the results is that the present study used sentence

scoring whereas the study by Bernstein and Grant (2009) used word scoring. With word scoring,

where the listeners need to understand 50% or more of the words in every second sentence, they

can probably rely on mostly high-energy information in the speech. With sentence scoring, where

the listeners have to understand all the words in every second sentence, they probably also need

low-energy information in the speech. At high SNRs, dips in the interferer primarily release

low-energy information, which is probably only beneficial when using sentence scoring. This might

explain why the NH listeners still showed a large MR at high stationary-noise SRTs in LP and

HP filter conditions. However, if the scoring method would have been responsible for the large

amounts of MR at high stationary-noise SRTs, it should have affected the results obtained with the

vocoded stimuli in the same way, which is clearly not the case.

Finally, the study of Bernstein and Grant (2009) argued that the MR measured at different points

on the average psychometric function (i.e., different values of stationary-noise SNR) is the same as

the MR exhibited by the individual listeners whose SRT50 correspond to the SNRs of the different

points, regardless of hearing loss. However, compared to the MRs obtained from the average

psychometric functions, the MRs exhibited by the individual listeners at their SRT50 showed larger

differences between NH and HI listeners. Thus, while their conclusions based on the average

psychometric functions differ, their results from the individual listeners are consistent with those of

the present study.
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3.5.2 Importance of low- and high-frequency information

The coding of pitch and fundamental frequency (F0) information by the TFS of low-order resolved

harmonics has been suggested to be important for the segregation of the target speech from an

interfering noise or talker (e.g., Houtsma and Smurzynski, 1990; Shackleton and Carlyon, 1994;

Micheyl and Oxenham, 2007). In contrast, the results of the present study showed approximately

the same reduction in the MR for the LP- and HP-filtered stimuli, except for the SAM interferer

where the reduction in the MR was actually larger for the LP-filtered stimuli. Thus, the results of

the present study indicate that low-order resolved harmonics are not more important than high-order

unresolved harmonics. This is consistent with the results of Oxenham and Simonson (2009) where

LP and HP filtering were also used to investigate the effects of low-order resolved harmonics versus

high-order unresolved harmonics on MR. Oxenham and Simonson (2009) suggested that a decrease

in bandwidth could have negative effect on the MR and a smaller bandwidth in their LP-filtered

stimuli could explain that the MR for LP-filtered stimuli was not larger than for HP-filtered. They

suggested that it is possible that the MR stems from the inherent redundancy of the a broadband

speech signal. In contrast to the results from the present study, Oxenham and Simonson (2009)

found that generally the MR approached 0 dB as the SNR approached 0 dB, which was not the

case in the present study. A reason for this could be the use of sentence scoring in the present study

compared to the use of word scoring in Oxenham and Simonson (2009). SRTs measured with

sentence scoring are generally larger than SRTs measured with word scoring. Furthermore, dips

in the interferer might provide low-energy speech information which is more crucial when using

sentence scoring than when using word scoring.

3.5.3 Distortion of carrier information

For the vocoded stimuli, the SRTs produced by the SSN interferer only increased slightly when

the number of the vocoded channels was increased. In contrast, the SRTs for the two single-talker

interferers (ISTS and DT) increased strongly with increasing number of vocoded channels, resulting

in a large reduction of the MR. Similar to the results from Hopkins et al. (2008), the SRTs primarily

changed when channels in the low-frequency range (< 3000 Hz) were vocoded. Hopkins et al.

(2008) argued that this strong change is due to the distortion of TFS cues that are assumed to be

important for target and masker segregation and which are primarily conveyed in the low-frequency

region where phase-locking is most distinct (Palmer and Russell, 1986; Santurette and Dau, 2011).

However, it is still not clear to what extent the reduced speech intelligibility of vocoded stimuli

actually results from degraded TFS cues, since the vocoder also introduces distortions in the

spectral and temporal envelope of the stimuli. Assuming that degraded carrier information is the

primary consequence of vocoded stimuli, the good correspondence between the data from the

HI listeners (with unprocessed stimuli) and the data from the NH listeners using single-talker

interferers suggests that a degraded carrier representation in the HI listeners limits their ability to

segregate the target and the interferer. In contrast, the differences between the data from the NH

and the HI listeners in the case of the SAM interferer suggest that factors other than TFS coding
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may limit the HI listener’s ability to utilize the dips in a modulated noise, consistent with Qin and

Oxenham (2003) and Strelcyk and Dau (2009).

3.5.4 Effects of filtering on SRT and MR

The plateau in the MR function at higher stationary-noise SRTs observed for NH listeners with

the LP filtered and, to some extent, HP filtered stimuli could indicate that the MR reduction is

counteracted by an increase in MR due to the filtering process itself. If this is the case it could

restrict the comparison between NH and HI listeners. Since higher stationary-noise SRT are related

to decreased bandwidth, the plateau in the MR could indicate that a decreasing bandwidth has a

positive effect on the MR. However, this is in contrast to Oxenham and Simonson (2009) where

a decreasing bandwidth was suggested to have a negative effect on the MR. In the present study,

most of the MR reduction occurred in specific frequency regions whereas other regions only caused

a small change in the MR. Thus, it is possible that certain frequency regions are more important

than others for MR. For the LP filtering, most of the decrease occurred from 3000-Hz to 1000-Hz.

An explanation for this could be that the higher frequencies contain more of the low-intensity

speech information and that dips in the masker are helpful for low-intensity information. For the

HP filtering, most of the decrease occurred from 250-Hz to 1000-Hz. An explanation for this could

be that pitch or F0 cues are conveyed primarily by the low-order resolved harmonics and that this

information is important for MR.

3.5.5 Relation between audiometric thresholds and speech perception

The results for the HI listeners showed a general reduction in the MR with increasing SRT in

stationary noise. However, the results also showed a large variation among the listeners, resulting

in a weak correlation between MR in modulated noise and the stationary-noise SRT that was only

just significant when listener HI9 was included. For the two interfering talkers (ISTS and DT),

the correlation between the MR and the stationary-noise SRT was stronger. In order to investigate

if audibility was a better indicator of the MR, the correlation between the MR and the pure-tone

average (PTA) for the HI listeners was calculated. The MR obtained with the SAM interferer

was more strongly correlated [r = 0.91, p = 0.00005] with the PTA than the stationary-noise SRT

[r = 0.55, p = 0.06]. The reduced sensitivity of the HI listeners limits the amount of audible speech

information in the valleys of the modulated noise. The correlations between the PTA and the MR

obtained with the ISTS [r = 0.71, p = 0.009] and the DT [r = 0.68, p = 0.01] interferers were

similar to the correlation between the stationary-noise SRT and the MR (ISTS: [r = 0.67, p = 0.02],

DT: [r = 0.74, p = 0.005]). Thus, in the case of the two interfering talkers, the correlation between

the MR and the PTA is smaller than for the modulated noise, while the correlation between the

MR and the stationary-noise SRT is larger than for the modulated noise. Hence, other factors seem

to play a larger role in the case of an interfering talker compared to a modulated noise, which is

consistent with the studies of Bernstein and Grant (2009) and Strelcyk and Dau (2009). These



i
i

“phd_thesis_A4” — 2012/7/12 — 12:42 — page 49 — #71 i
i

i
i

i
i

3.6 Summary and conclusions 49

factors could be frequency resolution and TFS processing which might be important for segregating

the target from the interferer but less important for the processing of speech in modulated noise.

3.5.6 Effects of the linguistic content

Surprisingly, the DT interferer which was expected to distract the attention of the listeners did

not result in higher SRTs than the nonsense ISTS interferer. It is possible that the effects of the

linguistic content in the interferers were counteracted by differences in the spectral and temporal

characteristics of the interferers (Calandruccio et al., 2010). While the difference in the temporal

characteristics (short-term energy distribution) was minimal, there were clear differences in the

long-term spectra of the interferers. The calculation of the SNR for the speech material and the

interferers (in 1/3 octave bands), weighted by the band-importance function for average speech

(ANSI S3.5, 1997), resulted in values of 0.5 and 2.0 dB for the ISTS and the DT interferer,

respectively. Thus, based on the long-term spectrum, the ISTS interferer masks the target speech

more effectively than the DT interferer. A compensation for this difference would lead to SRTs for

the ISTS interferer that are below those obtained with the DT interferer [F(1,8) = 13.3, p < 0.01].
Thus, the DT interferer might actually distract the listener more than does the ISTS interferer, but

the effect seems to be only marginal.

3.6 Summary and conclusions

The present study investigated whether the reduced MR typically observed for HI listeners compared

to NH listeners might result from their larger SNR in the stationary-noise reference condition. By

processing the stimuli with LP and HP filtering as well as noise vocoding, and presenting them to

NH listeners, the performance in the reference condition was degraded to the same level as for the

HI listeners.

The main results of this study were as follows:

(1) For the modulated-noise interferer (SAM), none of the processing techniques reduced the

MR for the NH listeners to the same amount as found for the HI listeners. In contrast, for the two

speech maskers, the noise vocoder reduced the MR for the NH listeners to an amount similar to

that observed with the HI listeners.

(2) The MR for the NH listeners obtained with processed stimuli was found to strongly depend

on the type of processing, indicating that the stationary-noise SRT only partly predicts the MR

obtained for the NH listeners. Therefore, the reduction in the MR observed for the HI listeners is

probably not only determined by the stationary-noise SRT. For the interfering talker, the results are

consistent with Bernstein and Grant (2009), but not for the modulated noise where they found the

MR to be entirely predicted by the stationary-noise SRT.

(3) Assuming that degraded carrier information represents the primary distortion in the vocoded
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stimuli, the good correspondence between the NH results with the vocoded stimuli and the HI

results suggests that TFS information might be crucial for segregating the target from the interferer.

(4) Since the vocoder processing did not reduce the MR obtained with the NH listeners to the

level obtained with the HI listeners in the condition using the modulated-noise interferer, other

factors than TFS information seem to be important for utilizing low-amplitude valleys in the noise.

In the condition with the modulated-noise interferer, the MR for the HI listeners was more strongly

correlated with their audiometric thresholds than with their stationary-noise SRT, indicating that

audibility was an important factor here.

(5) LP and HP filtering reduced the MR by approximately the same amount, indicating that

low-order resolved harmonics are not more important for MR than high-order unresolved harmonics.

However, this might have resulted from the larger bandwidth of the HP-filtered stimuli.

Overall, the results from the present study show that an increased stationary-noise SRT only

partly accounts for reduced MR for the HI listeners and that auditory processing deficits appear

to affect the processing of speech particularly in fluctuating interferers. Audibility seems to be an

important factor in the case of modulated noise, while intact TFS coding might be more crucial for

the processing of competing speech. This study did not examine and characterize different hearing

impairment factors. In order to further investigate speech perception in hearing-impaired listeners,

a detailed characterization of their individual hearing losses would be required and quantitative

models would help to further test hypotheses about the impact of specific impairment factors on

speech perception.
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4
Contribution of high-rate envelope fluctuations to

release from speech-on-speech masking ‡

Masking release (MR) is the improvement in speech intelligibility for a fluctuating interferer

compared to stationary noise. Reduction in MR due to vocoder processing is usually linked to

distortions in the temporal fine structure (TFS) of the stimuli and a corresponding reduction in the

fundamental frequency (F0). However, it is unclear if high-rate envelope fluctuations, produced

by the interaction between unresolved harmonics and related to F0, contribute to MR. This was

investigated in the present study. Speech reception thresholds (SRT) were measured in the presence

of stationary speech-shaped noise and a competing talker, and the corresponding masking release

(MR) was determined. Two types of processing were applied to the stimuli. (i) An amplitude

and frequency modulated vocoder attenuated the high-rate envelope fluctuations and (ii) high-pass

filtering (cutoff = 500 Hz) reduced the influence of F0-related information from low-order resolved

harmonics. The results showed that the MR was unaffected by HP filtering, but slightly reduced

when high-rate envelope fluctuations were attenuated. When both types of processing were applied,

the MR was strongly reduced. Thus, the results indicate that F0-related information is crucial for

MR, but that it is not important whether the F0-related information is conveyed by the low-order

resolved harmonics or by high-rate envelope fluctuations of unresolved harmonics. This also means

that high-rate envelope fluctuations contribute substantially to MR.

‡ This chapter is based on Christiansen et al. (2012).

53



i
i

“phd_thesis_A4” — 2012/7/12 — 12:42 — page 54 — #76 i
i

i
i

i
i

54 4. High-rate envelope fluctuations and MR

4.1 Introduction

The most important mode of communication in our daily life is speech. However, in many

situations, speech communication takes place in adverse conditions with high levels of background

noise, several interfering talkers or reverberation. Normal-hearing (NH) listeners are typically

able to understand speech even at very low signal-to-noise ratios (SNRs). In conditions where

the interfering sound is an amplitude modulated noise or a competing talker, NH listeners are

commonly able to utilize speech information in the low-amplitude parts of the interferer such that

they are able to understand the speech at a much lower SNR than in the case of a stationary-noise

interferer. This ability has usually been referred to as “listening-in-the-dips” and the corresponding

improvement in speech intelligibility has been termed masking release (MR). Compared to NH

listeners, hearing-impaired (HI) listeners often need much higher SNRs to understand speech in

noise and often show very little or no MR (e.g., Festen and Plomp, 1990; Gustafsson and Arlinger,

1994; Peters et al., 1998; George et al., 2006; Lorenzi et al., 2006; Bernstein and Grant, 2009;

Strelcyk and Dau, 2009). Even after compensating for reduced sensitivity with hearing aids, many

HI listeners still show great difficulties in adverse listening conditions (e.g., Duquesnoy and Plomp,

1983; Gustafsson and Arlinger, 1994; Shanks et al., 2002; Hällgren et al., 2005; Metselaar et al.,

2008). The reduced MR experienced by HI listeners has traditionally been ascribed to reduced

frequency selectivity or an increased amount of forward masking that might limit their ability

to benefit from spectral and temporal dips in the masker (e.g., Glasberg et al., 1987; Festen and

Plomp, 1990; Baer and Moore, 1993, 1994; Dubno et al., 2003; Nelson and Jin, 2004). Furthermore,

it has been proposed that deficits in the processing of the temporal fine structure (TFS) of the

stimuli affect the coding of the stimuli’s fundamental frequency (F0) in HI listeners (e.g., Qin and

Oxenham, 2003; Hopkins et al., 2008; Oxenham and Simonson, 2009).

Coding of F0 plays an important role for the perceptual segregation of concurrent and sequential

sources (Brokx and Nooteboom, 1982; Darwin, 1997) and may underly the observed MR when the

masker is a competing talker (e.g. Qin and Oxenham, 2003; Bernstein and Grant, 2009; Bernstein

and Brungart, 2011; Christiansen and Dau, 2012). In general, there are two different theoretical

concepts describing how the F0 of a stimulus can be extracted by the auditory system; via place or

temporal coding. In terms of place coding (pattern matching), the F0 of a stimuli can be extracted

by matching harmonic templates to basilar membrane (BM) excitation pattern. (Wightman, 1973;

Terhardt, 1974; Cohen et al., 1995). In terms of temporal coding, the firing of auditory-nerve

cells synchronous with BM vibration can be used to extract the F0 of the input stimulus via inter-

spike intervals (ISIs) (Licklider, 1951; de Cheveigné, 1998; Meddis and Hewitt, 1991). At low

frequencies, the spectral harmonics of voiced speech are spatially resolved by the auditory system

and the F0 of the input stimuli can be extracted from the BM excitation pattern or from the the

period of individual frequency components in the corresponding channels. At high frequencies, the

harmonics are considered to be spatially unresolved due to the increasing bandwidth of the auditory

filters with increasing center frequency. However, interaction between harmonics within the same

auditory filter gives rise to high-rate envelope fluctuations related to the F0 of the stimuli. Since the
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ability of auditory-nerve cells to phase lock to the vibration of the BM is progressively reduced for

increasing frequency, it is generally assumed that at high frequencies, the ISIs of the auditory nerve

cells reflect the periodicity of the envelope fluctuations (e.g., Palmer and Russell, 1986).

Several studies have shown that low-order harmonics provide better F0 discrimination

performance than high-order unresolved harmonics (Houtsma and Smurzynski, 1990; Shackleton

and Carlyon, 1994; Bernstein and Oxenham, 2003) and dominate the perceived F0 in the case of

conflicting cues (Plomp, 1967; Micheyl and Oxenham, 2007; Bird and Darwin, 1998). However,

the contribution of high-rate envelope fluctuations to MR has not been investigated explicitly.

Oxenham and Simonson (2009) investigated if pitch information provided by the low-order

resolved harmonics is important for MR. They measured MR for NH listeners using low-pass (LP)

and high-pass (HP) filtered stimuli in order to either retain or eliminate low-order harmonics, while

achieving the same speech intelligibility in steady-state noise. In both conditions, MR was greatly

reduced. Oxenham and Simonson (2009) suggested that MR might be determined mainly by the

perceptual redundancy of the target speech instead of the F0 of resolved harmonics. Interestingly,

they also noted that although the MR was relatively small, the pitch of unresolved high-order

harmonics was sufficient for source segregation in the case of speech stimuli.

Stone et al. (2008) investigated the role of high-rate envelope fluctuations for speech perception

using vocoder processing and found that NH listeners showed a speech intelligibility benefit with

an interfering talker. In contrast, Xu and Zheng (2007) found that NH listeners showed no speech

intelligibility benefit from high-rate envelope fluctuations in stationary noise. Combined, these

results indicates that high-rate envelope fluctuations might be important for MR.

The F0 of voiced speech might be important for speech-on-speech masking in two ways: through

the identification of the time intervals that contain target speech versus those that contain competing

speech, and through the identification of the frequency regions that contain target speech versus

those that contain competing speech. In the higher frequencies this information may be provided

by the high-rate envelope fluctuations produced by unresolved harmonics.

In order to test if high-rate envelope fluctuations contribute to MR, a novel signal processing

technique was developed to attenuate these envelope fluctuations. The technique is based on a

traditional tone-vocoder but maintains the instantaneous frequency in each channel. Briefly, the

input signal was divided into 16 frequency channels where both the amplitude and the instantaneous

frequency (IF) course were estimated. In each channel, a LP filtered version of the IF course was

used to drive a sine generator which was then modulated by a LP filtered version of the estimated

envelope. Finally, all channels were recombined to generate the output signal. Using frequency

modulated tone carriers, a natural sounding speech output can be obtained using a relatively

small number of channels. This allows for a relatively large separation of carrier frequencies in

adjacent channels so that high-rate envelope fluctuations are not reintroduced in each channel due

to interaction between carriers, when the channels are recombined. The attenuation of high-rate

envelope fluctuations was combined with a reduction in the F0-related information from low-order

resolved harmonics obtained via LP filtering with a relatively low cut-off frequency of 500 Hz. It
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was thus possible to investigate separately the effect of reduced resolved harmonics and reduced

high-rate envelope fluctuations as well as the effect of reducing both.

In the present study, speech intelligibility was measured in four different processing conditions.

The cutoff-frequency of the envelope low-pass filter was chosen to be either 30 Hz or 300 Hz in

order to attenuate or retain high-rate envelope fluctuations. After vocoding, the stimuli were either

HP filtered at 500 Hz or unprocessed in order to either reduce or retain F0-related information

conveyed by the low-order resolved harmonics.

4.2 Signal processing

The stimuli were processed by a vocoder with amplitude and frequency modulated tone carriers,

as illustrated in Fig. 4.1. First, the signal was decomposed into 16 frequency channels using a

gammatone filterbank (Patterson et al., 1987). The filterbank consisted of fourth-order gammatone

band-pass filters with center frequencies ranging from 50 to 7500 Hz, equally spaced on an

equivalent-rectangular-bandwidth (ERBN) number scale (Glasberg and Moore, 1990), each with

a bandwidth of 1 ERBN . In each channel, the envelope and instantaneous frequency (IF) were

estimated in two parallel paths. The envelope was calculated by the absolute value of the analytical

signal (via the Hilbert transform) and LP filtered with a fourth-order butterworth filter (24 dB/octave

slope). The IF was estimated using the algorithm described in Nguyen et al. (2009), which is a

Kalman smoother based dynamic autoregressive model developed for tracking the IF of noisy and

non-stationary sinusoids. The estimated IF was smoothed with a 50-ms median filter and a 50-ms

moving-average filter. The estimated IF was used to drive a sine generator and the output signal

was amplitude modulated by the envelope signal. Before recombining all the channels, the root-

mean-square (RMS) value in each channel was normalized to the input RMS in the corresponding

channel. The final signal was scaled to have the same overall level as the input to the vocoder.

In order to remove or retain F0-related envelope modulations, the cut-off frequency of the

envelope LP filter was either 30 Hz or 300 Hz. The speech and interferer were processed

independently and mixed after the processing. The mixture was either presented to the listeners

without any further processing or HP filtered with a cut-off frequency of 500 Hz. Thus, four

different conditions were considered in the experiment: Two broadband conditions with a 30-Hz

(BB30) or a 300-Hz (BB300) envelope filter in the vocoder, and two HP filtered conditions with a

30-Hz (HP30) or a 300-Hz (HP300) envelope filter in the vocoder.

The HP filtering procedure was conducted in the same manner as described in Oxenham and

Simonson (2009). The signals were mixed at the appropriate SNR and then HP filtered at 500 Hz

with a fourth-order butterworth filter. An off-frequency masker was generated by LP filtering the

speech-shaped noise at 500 Hz (fourth-order butterworth filter), and the RMS level was adjusted to

12 dB below the level of the target sentence.

By using a vocoder with frequency modulated carriers it is possible, to some extent, to preserve

the original temporal and spectral structure in the speech signal and obtain a naturally sounding
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Figure 4.1: Schematic of the amplitude and frequency modulated vocoder. The input signal is divided into 16 frequency
channels. In each channels the envelope and IF is calculated and low-pass filtered. The IF drives a sine generator where
the amplitude is modulated by the estimated envelope.

representation of the speech using only 16 channels. In the 16-channel filterbank, the separation

between the center frequencies is relatively large (≈ 2 ERBN). This is advantageous because

it avoids interactions between the carriers when the channels are recombined. Thus, using this

processing technique, it is possible to generate stimuli that have the same overall spectro-temporal

energy pattern but with reduced high-rate envelope fluctuations. This is illustrated in Fig. 4.2 that

shows the auditory spectrogram of a sentence processed by the vocoder with an envelope cut-off

frequency of 30 Hz (left panel) and 300 Hz (right panel), respectively. The auditory spectrogram

was produced using 128 fourth-order gammatone filters, ranging from 0 to 8000 Hz and equally

spaced on an ERBN number scale. The output of each channel is the Hilbert envelope low-pass

filtered at 500 Hz. The two panels show that the overall spectro-temporal structure of the processed

signals is very similar. The main difference is found in the higher frequency channels where

high-rate envelope fluctuations can be seen in the right panel (300-Hz envelope LP filter) but not in

the left panel (30-Hz envelope LP filter).

Figure 4.3 shows a more detailed comparison of the envelopes obtained with the 30-Hz and the

300-Hz envelope cut-off frequency in the frequency channels at 119-Hz, 1085-Hz and 2958-Hz,

respectively. The envelopes shown in the figure are based on an analysis of the processed signal

(i.e., the vocoder output), using the same gammatone filterbank as in the vocoder. This was done

to verify that high-rate envelope fluctuations were not reintroduced in the processed signal due to

interaction between the carriers. The envelopes were low-pass filtered Hilbert envelopes similar to

the processing in the vocoder.
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Figure 4.2: Auditory spectrogram of the sentence (“Han hoppede op på cyklen”), processed by the vocoder with a 30-Hz
(left panel) and a 300-Hz (right panel) envelope low-pass filter. The spectrograms were obtained using a 128-channel
gammatone filterbank, with 1-ERBN wide filters, equally spaced on an ERBN number scale.
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Figure 4.3: Analysis of the envelopes of the vocoded signals. The processed signals were analyzed using the same front
end as the vocoder (16-channel gammatone filterbank and low-pass filtered Hilbert envelopes). The three panels show the
output of the channels with the center frequencies: 119-Hz (top), 1085-Hz (middle) and 2958-Hz (bottom). In each panel,
the envelope of the vocoded signal with a 300-Hz (dark-gray) and a 30-Hz (black) low-pass filter is shown, respectively.

In the top panel, it is clear that the two envelopes are almost identical due to the slow fluctuations

in the amplitude of the signal. At 1085 Hz (middle panel), the 300-Hz condition shows a small

amount of high-rate envelope fluctuations related to the F0 of the talker, which is not reflected in

the 30-Hz condition. At 2958 Hz (bottom panel), similarly, no high-rate envelope fluctuations are

represented in the 30-Hz condition. However, in this case, they are even more pronounced in the

300-Hz condition. Thus, the reanalysis clearly shows that high-rate envelope fluctuations in the

mid- to high-frequency channels are attenuated or completely removed when the 30-Hz low-pass

filter is applied in the vocoder processing.
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4.3 Methods

4.3.1 Listeners

Five NH listeners with audiometric thresholds of 20 dB or less at all measured frequencies between

125 and 8000 Hz participated in the experiment. The age of the listeners ranged between 22 and 32

years with a mean age of 27.

4.3.2 Speech material

Speech reception thresholds (SRTs) were measured using the Danish speech intelligibility test

called conversational language understanding evaluation (CLUE, Nielsen and Dau, 2009), which

is very similar to the hearing-in-noise test (HINT) originally developed for English (Nilsson et al.,

1994). The CLUE material consists of natural and meaningful sentences representing conversational

speech and has a fixed structure consisting of five words per sentence. The sentences were spoken

by a male talker with an average fundamental frequency (F0) of 119 Hz.

The maskers were an unintelligible single talker and a stationary noise. The single talker was

the international speech test signal (ISTS; Holube et al., 2010), which consists of natural speech

from six female talkers speaking different languages that have been segmented and remixed using

a randomization procedure in order to make it largely unintelligible. The average F0 of the ISTS

signal was of 207 Hz. The stationary noise was equalized to have the same long-term spectrum as

the ISTS signal.

4.3.3 Procedure

The experiment was conducted in a double-walled sound insulated booth, where the experimenter

controlled the procedure by means of a Matlab application developed specifically for the CLUE

test. The digital signals were sampled at 22050 Hz and converted to analog signals by a high-end

24 bit soundcard (RME DIGI96/8). The stimuli were presented diotically over Sennheiser HD580

headphones. The target sentences were presented at a fixed level of 65 dB SPL, whereas the level

of the interferer was determined via an adaptive procedure used to measure the SRTs. The onset

and offset of the interferer were 1 s before and 600 ms after the sentence, respectively, where a

ramped squared-cosine function with a duration of 400 ms was applied to the onset and the offset.

For each presentation, the interferer was randomly selected from a long sample (SSN: 22 seconds,

ISTS: 52 seconds).

The listeners received approximately 20 minutes of training before the SRTs were measured. In

the training session, the first sentence was presented at a very low SNR. The SNR was increased

in steps of 2 dB until all five words were repeated correctly. The test subjects were allowed to

guess and the recognized words were repeated verbally to the experimenter and registered without
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feedback. For the following sentence, the SNR was decreased by 4 dB and again increased in 2 dB

steps until all the words were repeated correctly.

In the test session, a list of 10 sentences was used to measure the SRT for a given run. The

procedure for the presentation of the first sentence was the same as in the training session. However,

for the presentation of the remaining nine sentences, the SNR followed a simple adaptive procedure:

If all words were repeated correctly, the SNR was decreased by 2 dB; otherwise the SNR was

increased by 2 dB. The measured SRT was the average of the last eight SNRs from presentation

number 4 to 11, where the last presentation is the SNR determined after the last sentence although

there is no sentence presented. Five runs were conducted for each condition and the average of

these SRTs produced the final SRT.

4.4 Results

The left panel of Fig. 4.4 shows the average SRTs obtained with the two maskers (SSN and ISTS)

in the four different experimental conditions. As expected, the SRTs for the ISTS masker (gray

lines) are much lower than for the SSN masker (black lines). For the SSN masker, there was a

small (≈ 1 dB) but significant difference between the 300-Hz (solid line) and the 30-Hz (dashed

line) envelope conditions [p<0.05], indicating that high-rate envelope fluctuations contribute by a

small amount to speech perception in stationary noise. For the ISTS masker, the SRT in the BB30

condition was about 3 dB higher than for the BB300 condition [p<0.0001], while the SRT in the

HP30 condition was 7-8 dB higher than in the HP300 condition [p<0.0001]. Thus, there is a clear

interaction between envelope filtering and the reduction of resolved harmonics via HP filtering.

The results for the ISTS masker indicate that, for a competing talker, high-rate envelope fluctuation

plays a substantial role for MR. However, the contribution of high-rate envelope fluctuations is

considerably smaller when the listeners can also rely on F0-related information from resolved

harmonics.

The right panel of Fig. 4.4 shows the MR for the ISTS in the four conditions, representing the

difference in SRT between the SSN and ISTS maskers. The conditions are indicated by the same

symbols and line styles as used in the left panel. A repeated measures ANOVA confirmed that

the MR differed significantly across envelope filter conditions [F(1,4) = 70.83, p < 0.002], HP

filter conditions [F(1,4) = 10.01, p < 0.04] and that there was a significant interaction between

envelope and HP filter conditions [F(1,4) = 14.99, p < 0.02]. There was no effect of reducing the

F0-related information from low-order resolved harmonics on the MR obtained with a competing

talker [p=0.72]. In contrast, there was a small but significant reduction of the MR (≈ 1.5 dB) when

high-rate envelope fluctuations were attenuated [p<0.005]. However, when F0-related information

from both resolved and high-order unresolved harmonics was reduced, a large reduction in the MR

was observed (≈ 5-7 dB) [p<0.0001].
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Figure 4.4: The left panel shows the average SRTs obtained with SSN masker (black lines) and the ISTS masker (gray
lines) in the four different conditions. The results obtained using the 300-Hz and the 30-Hz envelope filter in the vocoder
are represented by the solid and dashed lines, respectively. Whether the stimuli were broadband or high-pass filtered is
denoted on the abscissa. The right panel shows the MR calculated as the difference in SRTs between the SSN and ISTS
maskers from the left panel. Errorbars represent ± 1 standard deviation

4.5 Discussion

4.5.1 Summary of the main results

The results from the present study show that HP filtering the overall stimuli at 500 Hz had no

effect on MR. However, LP filtering the high-rate envelope fluctuations at 30 Hz reduced MR by

approximately 1.5 dB. Importantly, when both processing schemes were applied, MR was strongly

reduced (approximately 6.5 dB). Thus, as expected, the results suggest that F0 information from

low-frequency harmonics contribute significantly to MR. However, more importantly, the results

suggests that high-rate envelope fluctuations are even more important for MR. Thus, although

several studies have shown that low-order resolved harmonics dominate over high-order unresolved

harmonics in pitch perception (Houtsma and Smurzynski, 1990; Shackleton and Carlyon, 1994;

Bernstein and Oxenham, 2003; Plomp, 1967; Micheyl and Oxenham, 2007; Bird and Darwin,

1998), the results from the present study suggest that the high-rate envelope fluctuations produced

by unresolved harmonics may be more important for speech perception.

4.5.2 The role of resolved and unresolved harmonics for MR

The finding that the listeners were able to achieve a large MR mainly based on F0 information

from unresolved harmonics supports the interpretation of the results in Oxenham and Simonson

(2009) that the pitch of high-order harmonics was sufficient for source segregation in the case of

speech stimuli. It is also consistent with the indications of Stone et al. (2008) who used a noise

and a tone vocoder to investigate the importance of F0-related high-rate envelope cues for speech

perception. They measured the speech intelligibility with a competing talker and found that the
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high-rate envelope cues contributed to the speech intelligibility. However, they did not explicitly

investigate MR, i.e., the advantage of a competing talker relative to a stationary interferer.

Oxenham and Simonson (2009) used LP filtering with a cutoff frequency of 1200 Hz and HP

filtering with a cutoff frequency of 1500 Hz to isolate the effects of resolved and unresolved

harmonics. In both conditions, the MR was found to be greatly reduced indicating that resolved

and unresolved harmonics separately did not contribute substantially to MR. This differ from the

results of the present study where F0-related information from resolved harmonics and the high-rate

envelope fluctuations of unresolved harmonics considered separately, contributed substantially to

MR. However, these differences in results are likely due to differences in the procedures. Oxenham

and Simonson (2009) suggested that the greatly reduced MR in both of their conditions could

have been caused by a large reduction of the perceptual redundancy of the target speech due to

the filtering and that MR might be determined mainly by the redundancy instead of the F0 of

resolved harmonics. In the present study, the filtering of the envelope fluctuations did not reduce

the bandwidth of the overall spectro-temporal energy pattern of the speech signal and the high-pass

filtering used a relatively low cut-off frequency. Thus, the redundancy of speech information in the

processed stimuli in present study was relatively well preserved. Based on this, it seems that as long

as redundancy is preserved, F0-related information from both resolved harmonics and high-rate

envelope fluctuations of unresolved harmonics contribute substantially to MR.

The finding that F0-related high-rate envelope fluctuations produced by unresolved harmonics

contribute slightly more to MR than F0-related information from resolved harmonics could indicate

that unresolved harmonics are distributed across a slightly larger frequency range than resolved

harmonics and thereby contributing more to across frequency segregation.

4.5.3 Possible connections to reduced MR in HI listeners

Since the results of the present study showed that F0 information plays a crucial role for speech

perception in the presence of a competing talker, it is likely that HI listeners, who often experience

great difficulties in such a condition, might have difficulties in the processing of F0 information.

However, we can only speculate about why these difficulties arise. Deficits in F0 processing could

be a general deficit in extracting F0 information from the input stimuli, even if the stimuli only

consist of a single talker in quiet conditions. Since high-rate envelope fluctuations were found to be

sufficient for MR in NH listeners, difficulties in the processing F0, is probably related to deficits

in the ability to extract F0 information from the temporal response of the auditory nerve fibers.

This would indicate problems with phase-locking at frequencies as low as 100-250 Hz. However,

this seems unlikely since NH listeners show robust phase-locking up to about 1200 Hz (Lindgreen,

2009; Santurette and Dau, 2012; Heinz, 2012). However, it could also be that the extraction of F0

information from a single source is more or less intact, but that HI listeners have deficits in the

processing of F0 information from simultaneous sources and thereby have difficulties separating the

target speech from an interfering talker. This could be due to interaction of source carriers within an

auditory filter, which might be more pronounced in HI listeners with reduced frequency selectivity.
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A larger interaction of source carriers due to reduced frequency selectivity could probably be

simulated in NH listeners in future experiments using broader filters in the vocoder presented in the

current study. Further experiments with both NH and HI listeners are needed in order to determine

if HI indeed have deficits in the processing of F0 information.

4.5.4 Implications for auditory modeling

The finding that high-rate envelope fluctuations contribute substantially to MR indicate that the

auditory system analyses modulation frequencies well beyond 30 Hz. If these fluctuations are

indeed used to extract F0 information this suggest that the modulation frequencies up to about 300

Hz are analysed, which is approximately the upper limit for female speech. If MR also can be

achieved with child speech it could suggest an analysis of even higher frequencies. The auditory

system has been shown to perform a frequency selective analysis of envelope fluctuations which

have been modeled by a modulation filterbank similar to the modeling of cochlear filters (Dau et al.,

1997a,b; Ewert and Dau, 2000). A modulations-frequency specific analysis has also been found

to be crucial for the prediction of speech intelligibility (Steeneken and Houtgast, 1980; Elhilali

et al., 2003; Jørgensen and Dau, 2011) and speech quality (Kim, 2005). However, these speech

perception models only consider frequency modulations up to 32 or 64 Hz. The results from the

present study indicate that, in certain conditions, auditory models should include an analysis of

relatively high modulation frequencies, possibly up to several hundred of Hz.

4.6 Summary and conclusions

The present study investigated the contribution of F0-related high-rate envelope fluctuations to MR

obtained using a competing talker and stationary speech-shaped noise as maskers. This was done

by LP filtering the envelope fluctuations using an amplitude and frequency modulated tone-vocoder.

In addition, the contribution of F0 information from resolved harmonics was also investigated by

removing some of these using a HP filter.

High-rate envelope fluctuations were found to be important for MR obtained with a competing

talker. Indeed, the results suggest that they were equally as important as low-order resolved

harmonics, if not even more important. The presence of high-rate envelope fluctuations or resolved

harmonics were both found to be sufficient for MR. These findings suggest that, for some situations,

auditory models may require an analysis of modulation frequencies spanning the range of F0

produced by the talkers of the stimuli. Although F0 information was found to be important for MR,

further work is needed to determine if the reduced MR exhibited by HI listeners is indeed due to

deficits in the processing of F0 information.
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5
Analyzing the variation of consonant confusions

in hearing-impaired listeners §

The patterns of consonant confusions obtained with hearing-impaired (HI) listeners have been

shown to vary strongly between individual listeners and even between the left and the right ear

(Phatak et al., 2009). However, measurements with normal-hearing (NH) listeners have also shown

a large variability in confusion patterns across different utterances of the same consonants. Thus,

the variation across HI listeners could be due to each listener making errors on only one specific

utterance. To further understand the problems of the individual HI listeners, the present study

investigated confusion patterns of HI listeners on an utterance-by-utterance basis. Each listener

showed very consistent responses, confusing most utterances with only one specific consonant.

Furthermore, while the confusions for each utterance were often found to be the same across

listeners and ears, the confusions depended strongly on the utterance. A possible explanation for

the results is that all utterances contain a primary acoustic cue leading to correct recognition of

the consonant. In addition, some utterances also contain a secondary cue that leads to correct

recognition even though the primary cue is masked or inaudible. However, most of these utterances

also contain a conflicting cue that can lead to confusion with another consonant when the primary

cue is masked or inaudible, since the conflicting cue often is stronger than the secondary cue. As the

combination of primary, secondary and conflicting cues is different for each utterance, the confusion

patterns are also different. Thus, the variation of the confusion patterns across HI listeners for a

specific consonant seems to be a result of the HI listeners making errors on different utterances

promoting different confusions.

§ This chapter is based on Christiansen et al. (2012).
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68 5. Variation of consonant confusions in HI listeners

5.1 Introduction

Compared to NH listeners, HI listeners often experience great difficulties in understanding speech

in complex acoustic environments and different types of background noise. Although compensating

for reduced sensitivity largely improves the ability of HI listeners to understand speech in quiet

(e.g., Duquesnoy and Plomp, 1983), they still experience difficulties in the presence of noise (e.g.,

Duquesnoy and Plomp, 1983; Gustafsson and Arlinger, 1994; Shanks et al., 2002; Hällgren et al.,

2005; Metselaar et al., 2008). In particular, HI listeners have problems with fluctuating noise or

interfering talkers (e.g., Festen and Plomp, 1990; Gustafsson and Arlinger, 1994; Peters et al., 1998;

George et al., 2006; Lorenzi et al., 2006; Bernstein and Grant, 2009; Strelcyk and Dau, 2009).

When speech is masked by noise or other interferers such as competing speakers, the recognition

of a target message roughly relies on a three-step process. First, the listener must be able to detect

the acoustic energy of the target speech. Second, the listener needs to be able to separate the

spectro-temporal energy pattern of the target speech from the masker. Third, the listener must

be able to decode the meaning of the spectro-temporal energy pattern. Speech perception in the

presence of steady-state noise is mainly considered to be limited by the amount of speech rendered

inaudible by the noise, i.e., the ability to detect the target speech (e.g., French and Steinberg, 1947;

Steeneken and Houtgast, 1980; ANSI S3.5, 1997). In contrast, speech perception in the presence of

fluctuating noise and competing speech is mainly considered to be limited by the ability to segregate

the target speech from the masker (e.g., Qin and Oxenham, 2003; Hopkins et al., 2008; Brungart

et al., 2006, 2009). While several studies have investigated how the hearing loss in individual

HI listeners affects their ability to detect and segregate speech by measuring speech reception

thresholds (SRTs) in different types of noise, only a few studies have examined how the hearing

loss of individual listeners effects their ability to decode the available speech information.

The purpose of the present study was, therefore, to investigate the decoding errors of HI listeners

by measuring consonant confusions in individual listeners. Consonant recognition studies have

shown that HI listeners make significantly more errors than NH listeners in quiet (Walden and

Montgomery, 1975; Bilger and Wang, 1976) and in the presence of a noise (Dubno et al., 1982;

Gordon-Salant, 1985). However, these studies have only analyzed the average confusions made

by a group of HI listeners and have not investigated the large variability across HI listeners often

found when measuring SRTs.

Perceptual confusions of consonants were first investigated by Miller and Nicely (1955), who

found a very systematic pattern in the confusions of the different consonants. They measured

the confusions of 16 different consonants masked by white noise or exposed to low-pass filtering.

Analyzing the confusions in terms of articulatory features showed that place of articulation was

strongly affected by low-pass filtering, while voicing and nasality were only weakly affected.

Furthermore they found that: "When a perceptually relevant acoustic feature of a speech sound

is masked by noise, that sound becomes confused with related speech sounds. Such confusions

provide vital information about the human speech code, i.e., the perceptual feature representation

of speech sounds in the auditory system."
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Many of the studies investigating the perceptual cues of speech have used synthetic speech

stimuli, where the different cues are easily controlled. However, a major limitation of synthetic

speech is that it requires a priori knowledge about the speech cues and that it is only possible to

find the cues that have been hypothesized.

As part of a larger study, Phatak and Allen (2007) and Phatak et al. (2008) repeated the classical

confusion matrix experiment of Miller and Nicely (1955) with white noise and speech-weighted

noise, respectively. The overall aim was to combine the measured confusions with a spectro-

temporal analysis of the presented stimuli in order to identify the acoustic features, extracted by the

human auditory system, which form the basis for perception of different speech sounds. In order

to capture the natural variability in speech production, the consonant confusions were measured

with 18 different talkers. For some consonants, the confusion patterns varied significantly from

utterance to utterance, while other consonants showed a large variability in the number of errors

across the different utterances.

Régnier and Allen (2008) combined the consonant confusions from Phatak and Allen (2007)

and Phatak et al. (2008) with a 4-step spectro-temporal analysis of the stimuli used to produce

the consonant confusions. The analysis was performed on all the utterances of the consonant

/t/ and reliably identified the primary feature of the /t/ as a synchronous 2-8 kHz temporal burst

occurring approximately 50 ms before the onset of the following vowel. Li et al. (2010) combined

the spectro-temporal analysis of Régnier and Allen (2008) with consonant confusions obtained

using time-truncated as well as high-pass and low-pass filtered stimuli. This was done as part of

the development of a general psychoacoustic method to find the perceptual cues of all the stop

consonants in natural speech. Besides identifying the perceptual cues of the stop consonants, they

also found that many of the natural speech sounds contained perceptually conflicting cues triggering

the recognition of another consonant than the presented one. Kapoor and Allen (2012) investigated

the relative importance of the burst and formant transition for the recognition of the stop consonants

/t,k,d,g/ using consonant-vowel stimuli. By amplifying or attenuating the burst feature, they found

a strong relation between the change in the strength of the burst feature and the change in the

SNR needed to obtain a score of 90% correct, indicating that the bursts are the primary perceptual

cues. The results also showed that when the bursts were attenuated the presented consonants were

often confused with a specific other consonant due to conflicting cues, supporting the results of

Li et al. (2010). Furthermore, in some cases, when the primary feature was removed, the listeners

were still able to correctly identify the presented consonant due to a formant-onset cue that was

stronger than the conflicting cues and acted as a secondary cue. Thus, the large differences in the

consonant confusions obtained with different utterances of the same consonant (Phatak and Allen,

2007; Phatak et al., 2008) indicate that different utterances have different conflicting cues.

Recent studies investigating consonant confusion of HI listeners have shown that there is not only

a large variation in the number of errors across HI listeners, but also between the left and right ear

of the same listener (Phatak et al., 2009; Han, 2011; Allen and Han, 2011). Similarly, differences

in the pattern of confusions were observed across the HI listeners (Phatak et al., 2009) as well as

between the ears of the same listener (Han, 2011; Allen and Han, 2011). Based on these findings,
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it appears that combining the knowledge about the acoustic features (that form the basis for the

perception of the different consonants) with measures of consonant confusions made by individual

HI ears (on an utterance-by-utterance basis) can provide valuable information about the effect of

hearing loss on speech decoding. In this framework, the present study exclusively investigated the

consonant confusions made by individual HI ears on an utterance-by-utterance basis.

5.2 Method

5.2.1 Listeners

Eight HI listeners between 65 and 84 years of age (mean age of 74) participated in the experiment.

All listeners were native American English speakers with sensorineural hearing loss indicated by

type A tympanogram. The individual audiometric thresholds are listed in table 5.1.

5.2.2 Stimuli

The speech stimuli was consonant-vowel (CV) sounds consisting of 14 different consonants

(/b/,/d/,/g/,/p/,/t/,/k/,/S/,/s/,/Z/,/z/,/f/,/v/,/m/,/n/) followed by the vowel sound /A/, from

the LDC2205S222 database (Fousek et al., 2004), recorded at the Linguistic Data Consortium

(University of Pennsylvania). Phatak and Allen (2007) measured consonant confusions in NH

listeners for a subset of the CV sounds in the LDC2205S222 database consisting of 18 different

speakers and found that for each of the CV sounds, the utterances of specific speakers were very

robust to noise. The utterances of each CV sound used in the present study were chosen from these

noise robust utterances, in a way, such that each CV sound was represented by a male and a female

utterance.

5.2.3 Procedure

The experiment was conducted in a sound insulated booth, where the digital signals that had been

sampled at 16 kHz were converted to analog signals by a 16 bit soundcard (Soundblaster Live). The

stimuli were presented monaurally through an Etymotic ER-2 insert earphone. The target speech

was presented at a fixed sound pressure level (SPL) adjusted to the most comfortable level for

each listener using an external TDT PA5 attenuator, while the level of the noise masker was varied

according to the SNR for each presentation. The listeners were seated in front of computer monitor

where they responded by choosing the the perceived CV from a graphical user interface showing

all the possible responses. The listeners were able to play each CV as many times as they liked

before responding. The presentation of the different consonants, talkers and SNRs were performed

in a random order for each listener. Consonant confusions were measured independently for the

left and right ear of the 8 HI listeners at four different signal-to-noise ratios (SNRs), Quiet, 12 dB,

6 dB and 0 dB. Each utterance was presented several times following a semi-adaptive procedure. In
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Table 5.1: Audiometric thresholds for the eight HI listeners.

Audiometric thresholds (dB HL)

ID Age Ear 125 250 500 1000 1500 2000 3000 4000 6000 8000 PTA (dB HL)

HI1 82 L 40 40 45 45 45 45 45 45 65 75 52.0
R 45 45 45 50 45 45 55 65 80 110 60.6

HI2 66 L 30 30 25 30 25 35 55 65 70 80 44.5
R 25 25 25 25 25 30 55 60 90 80 44.0

HI3 74 L 30 30 30 30 30 45 40 45 55 55 39.0
R 30 30 30 20 25 30 45 50 55 60 37.5

HI4 84 L 40 35 35 25 30 35 35 60 95 95 48.5
R 30 25 20 25 30 40 45 65 75 90 44.5

HI5 72 L 20 10 15 30 30 35 35 35 20 45 27.5
R 25 25 25 25 30 35 45 50 40 55 35.5

HI6 79 L 20 15 25 20 30 20 35 50 45 65 32.5
R 20 10 25 15 30 30 40 35 45 50 30.0

HI7 65 L 15 10 5 5 20 20 35 55 20 25 21.0
R 15 10 10 15 15 20 15 45 25 30 20.0

HI8 67 L 15 15 10 5 10 10 40 55 35 60 25.5
R 20 25 25 20 15 5 15 40 35 60 26.0

the first round of the experiment, each utterance was presented four times. If all four presentations

were correctly identified, the utterance was only presented once in the second round, resulting in 5

presentations in total. If there was an error in the first round the utterance was presented six times

in the second round, resulting in 10 presentations in total.

All the consonant confusions were measured by Woojae Han at the Speech and Hearing Science

Department of the University of Illinois at Urbana-Champaign (Han, 2011).

5.3 Results

The consonant recognition scores in terms of the percentage of correctly identified consonants are

described first, followed by a more detailed investigation of the confusions made by the individual

listeners for different utterances.

5.3.1 Consonant recognition scores

The left panel of Fig. 5.1 shows the percentage of correctly identified consonants as a function of

the SNR for each of the HI listeners, averaged across all the presented consonants. For comparison,

the grand average of all the listeners is also included. As expected, there was a large variation

in the performance across listeners. Listener HI1 showed the lowest overall recognition, with

scores of less than 60% correct in quiet conditions, while listeners HI6 and HI8 showed the highest

overall recognition with scores close to 100% in quiet and close to 90% at the lowest SNR. This

corresponds well to the audiograms showing very mild hearing losses for listener HI6 and HI8
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Figure 5.1: Percentage of correctly identified presentations as function of SNR for each HI listener, averaged across all
the different consonants (left panel) and and for each consonant, averaged across all the different listeners (right panel).
The different listeners and consonants are indicated in the two panels.

and the most severe hearing loss for listener HI1. However, the results also show that listener HI7,

who has the mildest hearing loss of the group, performed very similarly to listeners HI3 and HI4

even though these two listeners have much higher audiometric thresholds. Another interesting

observation is that, although listeners HI5 through HI8 have relatively similar audiograms and

achieve close to a 100% correct perfomance in quiet, listener HI5 is much more adversly affected by

an increase in the amount of masking noise. Indeed, only listener HI1 exhibited lower recognition

performance at the lowest SNR than listener HI5. Also listener HI7, who has the lowest audiometric

thresholds, is considerably more affected by noise than either listener HI6 and HI8. These results

clearly show that the recognition performance of individual HI listeners cannot be accounted for

solely by their individual audiometric thresholds. Furthermore, the results show that some listeners

exhibit very high performance in the presence of noise, while other listeners have problems even in

quiet conditions. Finally, some listeners exhibit a high performance in quiet but were very sensitive

to background noise.

The right panel of Fig. 5.1 shows the percentage of correctly identified presentations for each of

the presented consonants, averaged across all HI listeners. Similar to the results for the individual

listeners, there is a large variation of the recognition scores across the consonants. The consonants

/ta/, /da/ and /Sa/ form a group of easily recognized consonants with close to 100% correct responses

for all but the lowest SNR. At the other end of the range, two groups emerge. The first group consits

of /Za/, /za/ and /fa/. The recognition performance for this group is poor across all SNRs, including

the quiet condition. The recognition performance for this group decreases rapidly with increasing

noise. Thus, based on these results, some consonants are more easily recognized than others and

the recognition some consonants is more robust to background noise. However, as illustrated in the

left panel, this pattern might differ dramatically across the HI listeners.

In order to further analyze the data, the consonant recognition needs to be considered for each

listener individually. Figure 5.2 shows such an analysis performed on the results from listener HI6.
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Figure 5.2: The panels in the figure show the consonant recognition for each of the consonants presented in the experiment
obtained for the left ear of listener HI6. Each panel shows the percentage of correct responses as a function of SNR for
the male utterance (blue line), for the female utterance (red line) as well as the average of both the utterances (black line).
The consonant corresponding to each panel is indicated in panels.

The figure shows the recognition scores for all the presented consonants in separate panels. In each

panel, the average score (black line) is shown together with the scores for the female (red line) and

male (blue line) utterances. Although listener HI6 shows the highest average scores, with only

about 10% errors at the lowest SNR, the errors are not evenly distributed across all the different

consonants as might be expected. In contrast, listener HI6 has difficulty identifying several specific

consonants (/ba/, /ga/, /ma/, /na/, /va/). Based on the overall average, one would not expect listener

HI6 to have major communication difficulties. However, depending on the nature and consequences

of the confusions, this listener could potentialy have much larger communication difficulties. In

particular, Fig. 5.2 also shows that, for the /ga/, /va/ and /ma/, listener HI6 responds correctly

to almost all the presentations of one of the utterances across all SNRs, while the scores of the

other utterances approach 0% at low SNRs. Thus, listener HI6 does not generally have a problem

recognizing /ga/, /va/ and /ma/, but difficulties with specific utterances. Similar observations can

be made for most of the other HI listeners. Combined with a spectro-temporal analysis of the

utterances of such consonants, these results may provide valuable information about the hearing

loss of the listeners.



i
i

“phd_thesis_A4” — 2012/7/12 — 12:42 — page 74 — #96 i
i

i
i

i
i

74 5. Variation of consonant confusions in HI listeners

5.3.2 Consonant confusions

Figure 5.3 shows the major confusions for the utterances produced by the female (top panel) and

male (bottom panel) talkers. In each panel, the bars show the proportion of each of the confusions

relative to the total error. Only confusions contributing more than 15% are included. Thus, the

difference between a value of 1 and the top of the bars represents one or more confusions each

contributing less than 15%. Surprisingly, there is a large variation in the confusions between the

female and male talkers. For many of the presented consonants, the listeners make, on average,

different confusions for the female talkers compared to the male talkers. In general, for the female

talkers, there is a tendency of utterances to be confused with two other consonants, while for the

male talkers, the utterances are more consistently confused with only one other consonant.

The following describes some of the major differences in the confusion patterns between

utterances of the female and male talkers. (i) /sa/ is mainly confused with /fa/ for the female

talker, while it is confused with /za/ for the male. (ii) /Sa/ is mainly confused with /sa/ with the

female talker, while it is confused with /za/ for the male. (iii) /ba/ is mainly confused with /da/ in

the case of the female talker, while it is confused with /va/ in the case of the male. (iv) /ma/ and

/na/ are strongly confused with each other, but they are not confused with any other in case of the

male talker, while they are also considerably confused with /va/ in case of the female talker. Thus,

overall, the results clearly show that the confusions of a particular consonant strongly depend on

the talker that produced the utterance. However, it is unclear whether all the HI listeners make

similar confusions.

In order to investigate this, the left panels of the figures 5.4 through 5.7 show the major confusions

of the individual listeners for the utterances f103ka, f103ma, f105Za and m120sa, respectively. The

rows show the confusions of the different listeners while the columns indicate the SNR at which

the confusions were obtained. For each SNR, the dotted lines indicate 0% and 100% error and the

bars show the proportion of the error constituted by each of the major confusions, where minor

confusions (<30%) are indicated by black bars. The right panel of the figures show the audiogram

of the listeners making considerable confusions, where the gray-shades of the audiograms indicate

which confusion group they correspond to.
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Figure 5.3: Major consonant confusions for each of the female (top panel) and male (bottom panel) utterances shown
as the proportion of the total error for each utterance. For each of the presented utterances the different shades of gray
indicate the proportion of, the error, that the corresponding labeled confusions constitute. Only the major confusions,
those contributing more than 15% to the total error, are shown in the figure. The white space between the top of the bars
and a proportion of 1 represents one or more minor confusions each contributing less than 15% to the total error.

Utterance /ka/ (female)

For the female /ka/ utterance (Fig. 5.4), listeners HI1, HI4 and HI8 consistently confuse /ka/

with /ta/, while listeners HI2 and HI3 consistently confuse /ka/ with /pa/. Thus, interestingly, the

confusion with /ta/ and /pa/, found when the results were averaged across listeners, does not imply

that all listeners confuse /ka/ with both /ta/ and /pa/. Instead, each listener consistently confuses

/ka/ with only one other consonant. Thus, the overall confusion group shown in figure 5.3 arises

because the HI listeners form two groups each making one specific confusion. Most of the errors

occur at the lowest SNR, except for listener HI1 who makes almost 100% errors across all four

SNRs. Interestingly, for this listener, the confusions are very consistent for all SNRs, except for the

lowest SNR where they are randomly distributed indicating that, for listener HI1, the speech in this

condition probably was masked by noise. Comparing the confusions shown in the left panel to the

audiograms in the right panel, there is no clear difference between the pattern of the the audiograms

of HI listeners that confuse /ka/ with /ta/ versus those that confuse /ka/ with /pa/. Thus, the specific

pattern of confusions appears to be unrelated to the audiogram.
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Figure 5.4: The left panel shows the the major confusions obtained with each of the HI listeners for the female /ka/
utterance. The rows show the confusions for the eight HI listeners, where the columns show the confusions for the four
different SNR. In each column the left dotted line indicates 0% error while the right dotted line indicates 100% errors. For
each vertical bar the different shades of gray indicate the proportion of error constituted by the confusions corresponding
to the different labels, while black unlabelled bars indicates one or more minor confusions each contributing less than
30% to the total error. The right panel show the audiograms of all the HI listeners demonstrating a major confusion with
/ta/ (black) and the audiograms of all the HI listeners demonstrating a major confusion with /pa/ (gray).

Utterance /ma/ (female)

The confusions averaged across listeners showed a confusion group consisting of /na/ and /va/ with

the /na/ confusion being slightly larger. However, in contrast to the expectation that /ma/ is equally

confused with /na/ and /va/, the individual results (Fig. 5.5) show that most listeners confuse /ma/

with /va/ and that the major /na/ confusion is dominated by listener HI1 making a large amount of

errors. Again, the confusions are consistent across all the four SNRs. Thus, while noise increases

the rate at which confusions occur, the pattern of confusions remain the same. Comparing the

confusions shown in the left panel to the audiograms in the right panel reveals that the audiograms

of the ears making /na/ confusions (listener HI1 only) show somewhat higher thresholds in the

frequency range below 2 kHz than the audiograms of the ears making /va/ confusions. Thus,

the confusion with /na/ instead of /va/ could be explained by /na/ having perceptually important

information above 2 kHz while /va/ has perceptual important information below 2 kHz which is not

audible for listener HI1 due to higher thresholds in the low frequencies.
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Figure 5.5: The left panel shows the the major confusions obtained with each of the HI listeners for the female /ma/
utterance. The rows show the confusions for the eight HI listeners, where the columns show the confusions for the four
different SNR. In each column the left dotted line indicates 0% error while the right dotted line indicates 100% errors. For
each vertical bar the different shades of gray indicate the proportion of error constituted by the confusions corresponding
to the different labels, while black unlabelled bars indicates one or more minor confusions each contributing less than
30% to the total error. The right panel show the audiograms of all the HI listeners demonstrating a major confusion with
/na/ (black) and the audiograms of all the HI listeners demonstrating a major confusion with /va/ (gray).

Utterance /Za/ (female)

The female /Za/ utterance (Fig. 5.6) is a very interesting example that shows that listeners HI1

and HI2 consistently confused /Za/ with /za/. However, while listener HI8 in a similarly way

confused /Za/ with /za/ when presented to the right ear, /Za/ was consistently confused with /ga/

when presented to the left ear. For this utterance, all three listeners (HI1, HI2 and HI8) showed

a high percentage of errors across all SNRs (including quiet). This is particular interesting as

listener HI8 has a relatively mild hearing loss and highest overall percentage of correctly identified

consonants when averaged across all consonants. While the percentage of error is high for three of

the listeners, the confusions are, once again, consistent across all SNRs. Again, the overall groups

of confusion observed in figure 5.3 does not emerge because each listener confuses the presented

consonant with several other consonants. The /ga/ confusion that appeared in the overall average is

due to the confusions of a single listener for stimuli presented to one particular ear. This is similar

to the results from /ma/ utterance produced by the female talker. In the right panel, the left ear

of listener HI8 (gray line) shows somewhat lower thresholds up to 1 kHz than all the other ears.

Thus, the /ga/ confusion of the left ear of listener HI8 might be explained in terms of the audiogram.

This would mean that /ga/ is triggered by energy in the low frequencies and that this energy is just

audible for the left ear of listener HI8, but not audible in the right ear or in the ears of the two other

listeners.
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Figure 5.6: The left panel shows the the major confusions obtained with each of the HI listeners for the female /Za/
utterance. The rows show the confusions for the eight HI listeners, where the columns show the confusions for the four
different SNR. In each column the left dotted line indicates 0% error while the right dotted line indicates 100% errors. For
each vertical bar the different shades of gray indicate the proportion of error constituted by the confusions corresponding
to the different labels, while black unlabelled bars indicates one or more minor confusions each contributing less than
30% to the total error. The right panel show the audiograms of all the HI listeners demonstrating a major confusion with
/za/ (black) and the audiograms of all the HI listeners demonstrating a major confusion with /ga/ (gray).

Utterance /sa/ (male)

The final example is the /sa/ utterance produced by the male talker (Fig. 5.7). Here, listeners

HI1 and HI3 consistently confused /sa/ with /za/, while listener HI2 mostly confused /sa/ with

/Za/. Once again, the main confusions are consistent across the different SNRs and the overall

confusion group shown in figure 5.3 arises because the listeners form two groups each making one

specific confusion and not because each listener confuses the presented consonant with several

other consonants. Thus, overall, the results from figures 5.4 to 5.7 demonstrate that although some

HI listeners make many errors they are very consistent in their responses. The right panel reveals

that the audiograms of the ears making /za/ and /Za/ confusions overlap each other. Thus, again,

the specific pattern of confusions across the HI listeners seem to be unrelated to the audiograms.
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Figure 5.7: The left panel shows the the major confusions obtained with each of the HI listeners for the female /sa/
utterance. The rows show the confusions for the eight HI listeners, where the columns show the confusions for the four
different SNR. In each column the left dotted line indicates 0% error while the right dotted line indicates 100% errors. For
each vertical bar the different shades of gray indicate the proportion of error constituted by the confusions corresponding
to the different labels, while black unlabelled bars indicates one or more minor confusions each contributing less than
30% to the total error. The right panel show the audiograms of all the HI listeners demonstrating a major confusion with
/za/ (black) and the audiograms of all the HI listeners demonstrating a major confusion with /Za/ (gray).

5.4 Discussion

5.4.1 Summary of main results

The results from the present study support the observations from Phatak and Allen (2007) that,

based on the average score across listeners, the consonants can be divided into roughly three groups.

A high scoring group, a low scoring group and a noise-sensitive group, where the score is high in

quiet conditions but drops rapidly with an increasing amount of noise. Furthermore, the results

showed a large variation in the number of errors across HI listeners and indicated that some listeners

are more sensitive to noise than others.

An interesting observation of the present study was that HI listeners rarely show an evenly

distributed number of errors across the different consonants. Instead, they often show large

errors with a few specific consonants and, even more interesting, they frequently have problems

with utterances from one talker and not the other. A spectro-temporal analysis of these specific

consonants, and especially the differences between the utterances, might provide valuable

information about the hearing loss of the listeners.

The presented consonants were, on average, confused mainly with one or two other consonants.

However, there was a large difference in the confusions obtained from the female and male talker,

consistent with Phatak et al. (2008).

An important result is that for many of the presented consonants the confusion groups that emerge

from data averaged across listeners are not present in the individual results. Instead, the results show
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that each listener consistently confuses the presented consonant with one specific other consonant

and that the confusion groups emerge because the individual listeners make different confusions.

Compared to previous studies that showed very different confusion patterns across HI listeners,

the present study demonstrated that, when analyzed on an utterance-by-utterance basis, most of the

HI listeners make the same confusions. However, the confusions depend strongly on the individual

utterances. Thus, the reason why earlier studies with HI listeners have shown large variation

is probably due to averaging across utterances. It is also likely that investigating confusions of

individual NH listeners would show the same large variation of confusions across listeners, since

the main source of variation seems to be the different utterances.

Another important observation is that for individual HI listeners the rate of errors varies across

SNR while the pattern of errors are consistent across SNRs. Finally, there seems to be very little

correlation between the consonant confusions and the audiogram of the individual HI listeners.

5.4.2 A possible explanation for different consonant confusions

Based on the results of Phatak and Allen (2007), Phatak et al. (2008), Li et al. (2010) and Kapoor and

Allen (2012), the perception of consonants seems to be governed by primary cues, secondary cues

and conflicting cues and the difference in the consonant confusions between different utterances of

the same consonant seems to be caused by the utterances having different conflicting cues. It is

also possible be that the utterances contain the same conflicting cues but that their strengths are

different.

The reason why individual HI listeners in many cases show different confusions for the same

utterance might be explained by most utterances having more than one conflicting cue. Impaired

hearing can render certain cues inaudible due to reduced sensitivity or noise masking and different

hearing losses could make different cues inaudible. Thus, if a given consonant contains two

conflicting cues, one type of hearing loss might render the first conflicting cue inaudible, while

another type of hearing loss might render the second conflicting cue inaudible. Even if both

conflicting cues are still audible, different types of hearing loss could change the relative strength

of the different conflicting cues and thereby promote different confusions. Thus, knowing exactly

which spectro-temporal energy patterns promote the perception of which consonants for a given

utterance can be very valuable in explaining the confusions of the HI listeners.

5.4.3 Consonant confusions and auditory functions

Consonant confusion patterns in individual HI listeners obtained from individual utterances showed

very little correlation with the audiograms, which is in agreement with previous studies. This

indicates that auditory functions apart from sensitivity play an important role for the recognition of

consonants.

One of the known consequences of impaired hearing is cochlear dead regions (Moore and



i
i

“phd_thesis_A4” — 2012/7/12 — 12:42 — page 81 — #103 i
i

i
i

i
i

5.5 Summary and conclusions 81

Glasberg, 1997). For many HI listeners, the audiogram indicates reduced sensitivity at high

frequencies. However, reduced sensitivity may conceal one contiguous or several smaller dead

region (e.g., Moore, 2001; Halpin and Rauch, 2009a; Halpin, 2011). Halpin and Rauch (2009b)

demonstrated how patients with gradually sloping high-frequency hearing losses, examined post-

mortem, showed a sharp transition from a normal population of inner and outer hair cells to

completely dead regions above a certain frequency. In these cases, the gradually sloping audiograms

are caused by cells at lower frequencies responding to high frequency basilar membrane vibration.

Li et al. (2010) identified the perceptually relevant cues for /p/, /k/ and /t/ as low-, mid-, and

high-frequency bursts occurring approximately 50 ms before the onset of the vowel and /b/, /g/

and /d/ as low-, mid-, and high-frequency bursts occurring roughly at the same time as the vowel.

Furthermore, they also found that the burst of energy for each consonant was relatively narrowband

and varied across talkers producing the same consonant. Thus, relatively small dead regions at

very specific frequencies may explain why some listeners only have problems in recognizing one

specific utterance of a given consonant. Thus, knowing exactly which spectro-temporal energy

segments are important for correct recognition of each utterance can, combined with consonant

recognition measurements, potentially be used to precisely identify dead regions. Furthermore,

assuming that many utterances contain more than one conflicting cue, dead regions corresponding

to specific frequency bands could lead to very specific confusions for the individual listeners which

would not be captured by the audiogram.

Frequency selectivity has been shown to be correlated with speech intelligibility in noise (e.g.,

Festen and Plomp, 1983; Dreschler and Plomp, 1985; Horst, 1987). Broader auditory filters are

considered to lead to increased noise masking. Thus, differences in frequency selectivity could

probably explain why some HI listeners were more sensitive to noise than others. It might also

explain why some had problems recognizing specific consonants, such as the noise-sensitive ones.

Tests of temporal fine structure (TFS) processing, such as frequency discrimination and frequency

modulation detection, have been shown to correlate with reduced recognition of speech in stationary

noise (Horst, 1987; Glasberg and Moore, 1989; Noordhoek et al., 2001; Buss et al., 2004).

Furthermore, Lorenzi et al. (2006) showed that HI listeners performed very poorly compared

to NH listeners, in understanding so-called TFS speech. The TFS is considered to be important for

the extraction of F0 information, which is important for estimating the voice-onset-time between

consonant burst and vowel-onset in a CV task. Thus, differences in TFS processing could probably

explain differences in the confusion patterns between individual listeners.

5.5 Summary and conclusions

Consonant confusion experiments with NH listeners have shown that different utterances of the

same consonant often lead to different confusions (Phatak and Allen, 2007; Phatak et al., 2008).

Thus, in order to get a better understanding of the confusions made by HI listeners, the present

study investigated the consonant confusions of individual HI listeners on an utterance-by-utterance
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basis, with a relatively large number of trials (5-10) for each utterance and SNR.

The main results of the study were as follows.

(1) Apart from a variation in the general performance of the listeners, some listeners were found

to be much more affected by noise than others. However, none of these results were related to the

audiograms.

(2) A small number of errors, averaged across consonants does not imply a small number of

errors evenly distributed across all consonants, but often implies a large number of errors with a

few very specific consonants. Interestingly, in several cases, the errors do not even correspond

to a general problem with a specific consonant, but to a problem with a specific utterance of the

consonant.

(3) The HI listeners are often consistent in their response behaviour and often confuse the

presented consonants with only one other consonant, independent of the SNR.

(4) For each utterance, the HI listeners are typically divided into two groups, where the listeners

in each group make the exact same confusion. The confusion groups for each utterance seem to

emerge because the HI listener constitute one or two confusion groups and not because each listener

makes several confusions for the same utterance.

(5) The large variation of confusions between individual listeners seems to be caused by the

individual listener’s problems with a specific utterance and that each of these utterances gives rise

to different confusions. Thus, the variation across HI listeners is more a variation across utterances

than an actual difference in the confusions between the listeners.

(6) Even at an utterance-by-utterance basis, there is very little or no correlation between the

audiograms and the consonant confusions made by the individual listeners.

Overall, the present study shows that speech decoding is a very complicated process and that

the perception of consonants is affected by other auditory processing deficits than just reduced

audibility. An important result was that most utterances are only confused with one or two other

consonants across all HI listeners and that the large variability in the confusions is due to individual

listeners making errors with different utterances. This indicates that, instead of investigating the

confusions made by individual listeners, investigating which specific utterances cause confusions

for each listener might provide more information about the impairments of the individual listeners.

This should be combined with measures of different auditory functions, since the results in the

present study were unrelated to the audiometric thresholds.
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Summary and final thoughts

The work presented in this thesis was motivated by the great difficulties of HI listeners to

comprehend speech in adverse listening conditions. The overall objective was to obtain a better

understanding of speech perception in different types of interferers and how this is affected by

hearing loss. This was done through modeling of speech intelligibility, measurements of MR in NH

and HI listeners and an investigation of consonant confusions of HI listeners.

The modeling framework established in chapter 2 revealed that, by using a psychoacoustically

validated auditory preprocessing model, it was possible to predict speech intelligibility in various

adverse conditions with a very simple central processing stage. A model analysis showed that

the individual stages of the auditory preprocessing were essential to achieve accurate predictions

throughout the tested conditions. This suggested that the internal representation generated by

the auditory model might represent similar information as that available to the listeners in the

experiments. The model provided the best results when the predicted speech intelligibility was

solely based on the high-energy segments of the speech. This indicated a large redundancy of

the speech signal and suggested that NH listeners can understand speech based on information

stemming only from these high-energy segments. An advantage of the proposed model is that it can

be used as a framework to study speech intelligibility of HI listeners by modifying the preprocessing

of the model according to a given hearing impairment.

Focusing on one of the major problems experienced by HI listeners, chapter 3 investigated the

reduced MR of HI listeners. When measuring speech intelligibility in stationary noise, HI listeners

often exhibit higher SRTs. It has been suggested that this increase of the stationary-noise SRT

causes the reduction of MR observed for HI listeners. In the study presented in chapter 3, using

different types of processing, the stationary-noise SRTs of NH listeners were increased to the

same level as found in HI listeners. In these processed conditions, NH listeners still showed a

considerably larger MR than HI listeners, indicating that the stationary-noise SRT only partly

accounts for the difference between NH and HI listeners. In modulated noise, audibility seemed

to be an important factor for the MR of HI listeners. Interestingly, strongly reducing TFS and F0

information by noise-vocoding reduced the MR of NH listeners in the presence of a competing

talker to the same level as that obtained with the HI listeners, suggesting that HI listeners might

have difficulties utilizing F0 information.

Based on these results, chapter 4 investigated the importance of F0 information for MR of

NH listeners in more detail. In particular, the study focused on the contribution of high-rate

envelope fluctuations that are related to F0. HP filtering the overall stimuli at 500 Hz had no

83
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effect on MR. However, LP filtering the high-rate envelope fluctuations at 30 Hz reduced MR

by approximately 1.5 dB. Importantly, when both processing schemes were applied, MR was

strongly reduced (approximately 6.5 dB). This suggests that F0 information obtained from high-rate

envelope fluctuations are important for MR, in particular when the F0 information that is available

from resolved harmonics has been reduced. Given the importance of F0 information for the large

MR exhibited by NH, it is likely that HI listeners, who often exhibit a strong reduction in the MR,

might have deficits in the processing of F0 information. In particular, instead of a general deficit in

extracting F0 information from a single talker in quiet conditions, HI listeners may have deficits in

the processing of F0 information from simultaneous sources (e.g., through an interaction of source

carriers within an auditory filter) and thereby have difficulties separating the target speech from an

interfering talker.

Chapter 5 investigated the effect of hearing impairment on the ability to decode speech

information via consonant confusions. As expected, this chapter demonstrated a large variability in

the consonant recognition scores across the HI listeners. However, an analysis of the consonant

confusions on an utterance-by-utterance basis showed that each listener very consistently confused

the target with only one specific consonant. Furthermore, for each utterance, listeners were clustered

into one or two groups in which each listener produced the same consonant confusion. The results

in this chapter suggest that the variability in the consonant confusions for a specific consonant

observed for HI listeners in previous studies emerged because HI listeners only have problems with

a specific utterance of a given consonant and that each utterance promotes different confusions.

The results presented in this thesis provide constraints for future models of auditory signal

processing and speech perception. The finding in chapter 4, that NH listeners are able to obtain

a large MR mainly based on the F0-related information represented in the high-rate envelope

fluctuations indicates that the auditory system may utilize envelope frequencies up to 300 Hz. Most

speech perception models only consider frequency modulations up to 32 or 64 Hz (e.g., Steeneken

and Houtgast, 1980; Elhilali et al., 2003; Kim, 2005; Jørgensen and Dau, 2011). The results also

have implications for the characterization of individual hearing loss. The finding that HI listeners

are reasonably consistent in their confusions for a specific utterance of a given consonant, but

have problems with different utterances, suggests that studying which specific utterances cause

confusions in a given listener might provide more information about his/her impairment than

investigating consonant confusions. Dead regions at specific frequencies may explain why some

listeners only have problems with recognizing one specific utterance of a given consonant. Thus,

information about which spectro-temporal energy segments are important for correct recognition of

each utterance, combined with consonant recognition results, may be useful for the identification

of dead regions. The large contribution of F0 information to MR, suggests that measures of F0

processing could play an important role in characterizing individual hearing loss. This could be

done by traditional measures of F0 detection or discrimination. However, the ability to separate

two simultaneous complex tones with different F0 might be a more critical measure in relation to

speech perception. Finally, if the reduced MR of HI listeners is related to reduced deficits in the

ability process F0 information, this could have important implications for hearing-aid processing.



i
i

“phd_thesis_A4” — 2012/7/12 — 12:42 — page 85 — #107 i
i

i
i

i
i

85

Although it might be impossible to restore F0 processing with a hearing aid, it may be possible

to process the signals in such a way that they impose smaller demands on the processing of F0

information in the impaired auditory system. This could be done by enhancing the modulation

depth of the high-rate envelope fluctuations; at least the results presented here indicate that high-rate

fluctuations should be preserved as much as possible. Another solution could be to modify the

F0 of the sources in such a way that the difference in F0 between them becomes larger. A more

elaborate approach would be to separate the target talker from the interferer directly in the hearing

aid. However, even if it was possible to develop such an algorithm that works in real-life scenarios,

it would be a complex and computationally demanding task that, most importantly, must be able to

determine which source represents the target.

Overall, this work provides insights into the mechanisms underlying speech perception with

various interferers and MR in NH and HI listeners as well as insights into the effect of hearing

loss on consonant confusions. The results may have implications for future auditory models, an

advanced clinical characterization of individual hearing loss as well as novel hearing-aid strategies

compensating for reduced ability to understand speech in the presence of competing sounds.
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The hearing system is very important for development of speech and enables 
us to communicate with other people in a time where this is more important 
than ever. Speech communication often takes place in the presence of 
concurrent talkers, background noise or in a reverberant environment. In 
such adverse listening conditions, speech intelligibility generally remains high 
for normal-hearing listeners, whereas hearing-impaired listeners often 
experience major difficulties. Speech perception is a complex process 
involving the ability to hear the speech, selectively focus on a specific person 
talking in the presence of interfering sound sources and the ability to extract 
meaning from the perceived speech. This volume of “Contributions to hearing 
research” deals with the different processes of speech perception. The 
underlying mechanisms enabling normal hearing listeners to understand 
speech in the presence of interfering sounds and why this ability is more or 
less reduced in hearing-impaired listeners were studied. Especially the use 
pitch information in focusing on one out of two talkers was investigated. 
Finally, the effect of hearing loss on the ability to extract meaning from the 
perceived speech was also studied. This work provides insights into the 
auditory mechanisms underlying speech perception in the presence of 
interfering sound sources, and how this and the decoding of speech are 
affected by hearing loss. The work presented in this volume, may have 
implications for future auditory models, clinical characterization of individual 
hearing loss as well as hearing-aid strategies compensating for reduced 
ability to understand speech with interfering sounds.    
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