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Abstract. Gene regulatory network is a model of a network that describes the 
relationships among genes In a given condition. However, constructing gene 
regulatory network is a complicated task as high-throughput technologies 
generate large-scale of data compared to number of sample. In addition, the 
data involves a substantial amount of noise and false positive results that hinder 
the downstream analysis performance. To address these problems Bayesian 
network model has attracted the most attention. However, the key challenge in 
using Bayesian network to mode1 GRN is related to its learning structure. _ Bayesian network structure learning is NP-hard and computationally complex. 
Therefore. this research aims to address the issue related to Bayesian network 
structure learning by proposing a low-order conditional independence method. 
In addition we revised the gene regulatory relationships by integrating 
bioIogical heterogeneous dataset to extract transcription factors for regulator 

. and target genes. The empirical results indicate that proposed method works 
better with biological knowledge processing with a precision of 83.3% in 
comparison to a network that rely on microarray only, which achieved 
correctness ol' 80.85%). 
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1 Introduction 

DNA microarray is one of the most fascinating and latest breakthrough technologies 
In molecular biology. This technology has been used to facilitate the quantitative 
studies of thousand of genes in order to answer various research questions. T o  date, 
this technology is widely employed to construct gene regulatory network (GRN). The 
construction o f  GRN using rnicroarray data has enabled the measurement of global 
response of biological system to examine specific inventions. For example, scientists 
Can look into large number of gene interactions that are perturbed during cancer 
Progressi,on. 

GRN also known as  cellular network is a set of molecular components that 
Includes genes, proteins and other molecules. which collectively accomplish cellular 
functions as  these molecules interact with each other [ I ] .  However, in this study we 
only used microarray data to model gene network. The fundamental idea behind GRN 
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analysis is to discover regulator penes by examining gene expression patterns, 
Notably. some genes regulate other genes. which mean that the amount of a gene 
expressed at a certain time could activate or inhibit the expression of another gene, 
Thus, the regulation of gene expression has an important role in cellular func\ions. 
Changes in the expression levels of particular genes across a whole process, such as 
the cell cycle or response to certain treatments, have provided information that allows 
reconstruction of cellular network using reverse engineering technique. 

A large number ot'works have reported that GRN can possibly assist researchers i n  
suggesting and evaluating innovative hypotheses in the tontext of genetic regulatory 
processes [2-31. Such data-driven regulatory networks analysis ultimately would 
provide clearer understanding of the genetic regulatory processes, which are normally 
complex and intricate. Furthermore. it would bring significant implications in the 
biomedical fields and many other pharmaceutical industries. Thus, identifying GRNs 
and understanding regulatory processes at the genetic level has become an imperative 
goal in computational biology. 

Various mathematical and computational methods have been used to model GRN 
from microarray data. including Boolean network, pair-wise comparison, differential 
equations estimation, Bayesian network (4-51 and other techniques. Amongst these, 
the Bayesian network model attracts the most attention and has become the prominent 
technique because ~t can capture linear, nonlinear. combinatorial, stochastic and 
casual relationships between variables. Compared to other methods, Bayesian 
network model establishes considerable relationships between all genes in the system. 
In addition. due to rich probabilistic semantics. this model is also capable of working 
with noisy data that is a common problem in microarray data. Furthermore, this 
technique allows for different implicit variable information to be added lo the 
networks, which possibly enhances the interpretation of' the gene regulation p'rocess. 
Thus, Bayesian network is used in this study to analyze gene regulatory processes and 
to model gene relationships for breas~ cancer metastasis. 

The key challenge i n  using Bayesian network to model GRN is related to it's 
structure learning. Bayesian network structure learning is NP-hard and 
computationally complex, as the number of possible graphs increases super- 
exponentially with the number of genes and an exhaustive search is untraceable. This 
difficulty is a common problern in gene regulatory analysis because network is 
usually learnt from a relatively small number of mequrements. The high 
dimensionalities of' microarray data, which usually contain insufficrent sanlple 
measurement plus large number of genes to examine, are the main causes of this 
problem. 

The basic idea is to develop GRN by measuring  he dependencies among nodes of 
the given data. Low-order conditional independence is used tqexamine the 
relationships between genes. Although the proposed method has increased the 
accuracy of inferrcd network as reported in (6) .  such gene network is solely based on 
the microarray data and is often insufficient for rigorous analysis. In many cases, 
microarray data is often daunted by noisy, inconiplete data and misleading outliers, 
which can produce high number of false positive edges. Accordingly, an inferred 
GRN may contain some incorrect gene regulations that are unreliable from the 
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biological point of view. Thus. integration of biological knowledge into gene network 
has become necessary to overcome the problem. 

This study has used heterogeneous biological data to improve the structure learning 
of Bayesian network. The remainder of this paper is organized as follows. Section 2 
describes some previous works, whose have utilized biological data to achieve better 
construction of GRN. Section 3 on the other hand. presents the proposed method. 
Section 4 meanwhile presents experimental results and discussion. Finally, Section 5 
offers concluding and future direction remarks. 

2 Previous Works 

Recent years have yitnessed [he increasing amount of genomic data such as gene 
expression, single-nucleotide polymorphism (SNP) and proteomic which are available 
in public databases. This trend has triggered a new research direction whereby 
researchers now are motivatcd to combine various kinds of genomic data to 
reconstruct GRN. However, the integration of different data source is not simple as 
these data varies i n  term of sizes, formats and types. Furthermore, most of these data 
is partly independent and provide complementary information on the whole genome. 
Since, there is no complete GRN that are available for any species, the best option in 
hand is to integrate diverse biological data that presents fragmented information and 
seek Sbetter explanation for the development at a system level. 

Data integration has been defined as a data fusion process that not only includes 
various data sources but also provides biological meaning with the use of 
bioinformatics and computational tools. The overreaching goal of data integration is 
to obtain more accurate, precise and broader view of network than any of single 
dataset. Based on this concept several works have been done to seek for better 
explanation of GRN (as explained in Section 2.1. and Section 2.2). Generally there 
are two types of data integration in the field of GRN, namely homologous data 
integration and heterogeneous data integration. Homologous data integration mainly 
uses of similar data type for example combination of multiple microarray datasets 
from different studies to answer question raised by researchers. Meanwhile, 
heterogeneous data integration make used of different data types across or within 
studies to seek for better clarify of information provided by a single data type. 

The main idea for homologous data integration is to increase the number of 
samples to address the issue o f  high-dimensional data. Most studies i n  homologous 
data integration have focused on comparing two or more related datasets to identify 
significant genes that can distinguish different group of samples (e.g. disease and 
normal samples). For an '>xample. Rhodes et a/. [7] have combined multiple 
microarray datasets to classify common transcription profiles that are universally 
activated in most cancer types. 

Unlike homologous data integration. where it used similar data types, 
heterogeneous data integration mainly focuses on applying various data sources to 
ensure the reliability of results obtained. Among the popular data integration is gene 
expression and proteomic data. Protein is the end product of translation process and is 
also used as a trigger to initiate the expression of other genes. Therefore, the 
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combination of these data type is reasonable to most of researchers. Thus, many 
previous works have estimated co-expressed relationship as a gene regulatory instead 
of Iuoking at protein-protein interactions 18-91. Besides that, large number of 
researchers also utilized transcription factor binding sites (TFBS) to verify the GRN. 
Like protein, TFBS is another complementary data to measure cellular state. Hence, 
more recent works have explored data integration of external knowledge to identify 
transcription factors and their target genes 1 10- 1 I]. Transcription factors are very 
essential in regulating gcnc expression. Motivated by this fundamental concept, 
transcription factors have been used in this research to discover significant biological 
inSormation from high-throughput data. 

3 Methods 

The Bayesian network is a graphical model that, was introduced by Pearl and Wright 
in 1980s (121. To  deal w~th  a large number of genes in microarray data, this research 

defines the Bayesian network. BN as: BN = (G, P) where G = (x. E(G))  is a 

DAG with a set of variahics X representing {xi ; i t v } ,  and E (G) X i  * X 
(set of pairs that represents the dependent arlrong variables). The elemen1 I!? is an 
edge from node X i  to X j ,  indicating X i  is a parent to X,. On the othcr hand, P 

corresponds to joint distribution on the variables i n  the network. The PU(V) 
represents the parent for a set of vertex V and can be defined as: 

where P ~ ( X ; .  G )  is the parent o l  X i  in the graph. C and having nude X  

pointing toward X i .  Mathematically, theJoint distribution of all node values in DAG 

can be decomposed as the product of' the local distribution of each node and its' 
parcnts: 

N 

P ( X I .  XZ ,.... X,, ) = n P(X, I ,?orents;xi )) (2) 

i = l  

The Markov Blanket is another important characteristic of the Bayesian network. 
The Markov Blanket of a variable is the set of variables that completely shield off this 
variable from the other variables. To  such an importance aim and for the purpose of 
classification, this study Socuses on the Markov Blanket to identify minimal set of 
variables that are required to predict the metastasis nutcorne 
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3.1 Structure Learning of Bayesian Network 

There are generally two main approaches to construct the Bayesian network from 
data: ( I )  the score and searching approach and (2) the dependency analysis approach. 
The first approach involves measuring fitness of structure and searching for the best 
structure that describes the data. Several scoring methods have been applied, 
including thy Bayesian scoring, entropy based and minimum description length. Once 
the scores are obtained, the next step is to use search methods, such as the heuristic 
search, lo build the best-fit network structure. Although this approach have been used 
by many researcher in reconstructing GRN, i t  mainly suffered from computational 
complex search and disability to provide posterior distributions over all the 
parameters of thc model that are needed to quantify uncertainty in the gene regulators. 

The dependeniy analysis approach or constrainl-based learning on the other hands, 
aims to identify from the data the dependencies to construct the network structure. In 
this study, we proposed to low-order conditional independence and its variants, full- 
order conditional independence. to construct a cellular network. 

Full-order conditional independence is the exact set of edges between the 

successive variables X and X ;  given the remaining variables X y j .  V i  = V \ { j }  

and Xvj = { x ~  ; k E V j }  It can be defined as: 

- 
DAG G is the smallest sub graph to which the probability distribution P has 

- 
allows for a Bayesian network representation. Reverse discovery 01' DAG G to 

model a cellular network requires determining each variable Xi  and the set of 

variables X  on which variable Xi is conditionally independent given the remaining 

variables X V  Hence, by using the Equation 3. this approach has extended the 
J '  

principles of concentration graph that employed conditional independence to the 
Bayesian network case. However. by applying this approach. the curse of 
dimensionality is still a problem because the number of genes v is much greater than 
tht: number of measurements in n samples ( v  >> n )  and conditional independence for 

o c h  variables X i  given others remaining variable X v j  is yet to be computed. 

To reduce the high dimension of gene expression data, q'h order conditional 
- 

independence, DAGs G ( ~ )  (whereby y < v )  is estimated from D A G G  . By doing so. 
the Bayesian network is extended based on the consideration of low-order conditional 
independence, and this is similar to the work of Wille and Buhlmann (131 for the 

GCM. DAGs G('I) is defined as below: 
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v,<v, dq)=[x. {[x , ,x i ) ;  ~ Q ~ v , , I Q C ~ , ~ ~ ~ ~ I ~ ~ } ~ , . ~ ~ V ]  (4) 

v y < 1.. G i G ( ~ )  

DACs G(') is different from G but it provides an alternative way of producing 
dependence relationship between variables, which is particularly suited for sparse 

network such as gene networks. However, DACs G ( ~ )  is no longer associated with 
global relationship in the Bayesian network representation. Nevertheless, DAGs 

G('I) circumvents heavy statistical tasks and compulation costly search in large 
number of variables. For additional technical details on this proposed method please 
refer to Ahmad et al. 161. 

3.2 Revising Gene Regulatory Relationship with Integration of Transcription 
Factors 

In a nutshell, two genes are regulating if transcription factor of regulator gene can 
bound at promoter region of target genes. Using such intrinsic biological feature, the 
regulatory relationships obtain by using the proposed Bayesian network model are 
verified. A number of necessary bioinformatics toolkits are wrapped to identify 
significant regulatory relationships. Three bioinformatics toolkits; (1) Ensembl, (2) 
TFSearch and (3) TRANSFAC. and their corresponding website are used in this 
study. r 

The name of dependent gene, Th is entered in Ensembl and 1000 base pair 
upstream DNA sequence is then selected as a promoter region of target gene. This 
sequence is then copied and used as an input in TFSearch tool to find all possible 
transcription factors that can bind to a given promoter region. The regulator gene, T, 
is examined using TRANFAC. This tool presents a list of transcription factors that are 
associated with regulator genes and DNA binding motif. If the transcription factor for 
both dependent gene and regulator gene match, then there is a dependency between 

Xi  and X ,  wherex ;  -+ X,, . 
\ ', 

3.3 Dataset Description ! 
We tested this proposed method using a data set o f 9 7  breast cancer microarray from 
van't Veer et al [14]. These cohorts of breast cancer patients are<,% years old or 
younger. We obtained this data from the Integrated Tumor ~ranscribtome Array and 
Clinical data Analysis database ( I n A C A ,  2006). Among the remaining 97 samples, 
46 developed distant metastasis within 5 years and 5 1 remained metastasis free for at 
least 5 years. DNA microarray analysis was used by van't Veer to determine the 
expression levels of approximately 25,000 genes for each patient. 
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4 Experimental Results and Discussion 

T~ obtain insights into the mechanism of gene regulation and how gene mutations act 
to turn on tumor development and me~as~asis progression in  a ccllular network 
context, the proposed method is executed on the breast cancer dataset producing a 
GRN as shown in Fig. 1. 

1 

Fig. 1. The G R N  for breast cancer metast:i$is using the low-order conditional independence 
method 

This learned network revealed a group of genes which are primarily associated with 
causing metastasis. M. The larger nodes in the graph specify the genes when expressed 
at different .levels lead to a major effect on the status of other genes (e.g., on or oft). 
Meanwhile, the light-shaded nodes denote the highly regulated genes. Four genes that 
are found to regulate the .expression levels of other genes are: BBC3: GNAZ, TSPY- 
like5 (TSPYS), and DCK. Two gencs arc highly regulated: FLJ11354 and CCNE2. This 
GRN involved 50 genes associated with metastasis, M, and 39 of them are annotated. 
Additionally, the y -value of the conditional independence test between the 

transcription regulatory genes and their co-expressed genes is given in [6]. 
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Based on the experiment that has been carried out by using the proposed method, 
the relation between genes i n  the GRN is required to be verified. With the 
transcription factors of regulator gene and list of DNA binding sites of target gene at 
hand, as explained in Section 3.2, the regulatory relationship between G and H, canbe ' ,  

examined. If the transcription factor of regulator gene TFg can bind to promoter site 
of target gene H. whereby TFh = TFg, then gene G and gene H could possibly ha a 5 
relation. Together with this intrinsic biological features that play important role in the 2; 

e; 
underlying regulatory mechanisms. 258 interactions are found to be biologicallv 3: 
related. These lnteractlons have fulfilled the blolog~cal test and hypothesis that are 
earl~er. Therefore. results as shown In Table 1 have been Bbta~ned. The results show 
that the proposed method works better w~th b~olog~cal knowledge processing 
comparlson to network that rely on microarray only. In add~tlon, Table 2 shows the p- 
values ot some gene pars  (regulator and target genes) that Involved In network 
Inference model 

Table 1. Preclslon results tor cellular network w~thoutlw~th b~olog~cal knowledge processing. 

Both networks are constructed w~th 5000 genes. 

In this experiment, transcription t'actors such as spl ,  MyoD. GATA-1, GATA-2, 
GATA-3, CRE-BP; CREB. Ets. AP-I or YY 1 have been identified in nearly all of the 
interactions. Most of these transcription factors are discovered to be related to breast 
cancer metastasis. for instance. MyoD. AP-I and spl have been identified by Mi et al. 

Method 

Low-order conditional 
independence 
without biological knowledge 
Low-order conditional 
independence @tJ 
biological knowledge 

[IS] to play important role in tumor progression, while Ets family of transcription 
factors are reported to be involved in cellular proliferation and apoptosis [16]. GATA 
transcription factor. particularly GATA-3 on the other hand has recently been 
identified as the key in controlling genes that involved in differentiation and 
proliferation of breast cancer [ 171. Similar to the rest of transcription factors, CREB 
also has shown involvement in tumor initiation: progression and metastasis. It has 
heen identified as proto-oncogene by Xiao et a[. [ I X I  and is found active in breast 
cancer, prostate cancer. lung cancer and leukemia cells. In addition, YY1 is 
discovered to play an essential role in tumorigenesis and is generally related to poor 
breast cancer prognosis [ 191. 

Total 
Edges 

303 

258 

FP 
edges 
5 8 

43 

TP edges 

245 

215 

1 

Precision 
% 

80.85 

83.33 
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5 Conclusion and Future Remarks 

This paper described the need to integrate diverse data integration for better 
interpretation of GRN model. Two types of data integration approaches have been 
comprehensively explained; ( I )  homologous data integration and (2) heterogeneous 
data integration. Since most GRN models are mainly implemented based on 
microarray data. issues like reliability and quality concern are also debated by many 
researchers. The  best available alternative is to integrate different data to address this 
problem and obtain a better understanding of the underlying gene regulatory 
mechanisms. Furthermore, with the currently available and enormous public 
databases. this effort appears to be the most promising since it utilizes the 
independent and complementary information to answer research questions. 

The  use of transcription factors to identify relevant regulatory interactions is the 
key idea in this research. In achieving this. three main bioinformatics toolkits for 
instance Ensembl, TFSearch and TRANFAC have been used. Each of these tools is 
used to apprehend the concept of biological intrinsic features of transcription factor 
and promoter. Based on the experiments that were conducted. 258 out of 303 
interactions are identified to be biologically relevant. Furthermore, the p-value of 
regulated genes are computed to pain significant and efficient statistical results. The 
empirical results indicated several transcription factors such as  s p l ,  MyoD, GATA-1, 
GATA-2, GATA-3. CRE-BP: CREB. Ets, AP-I or  YY 1 play essential role in breast 
cancer metastasis. In the future. many more different data types will be integrated to 
obtain more insightful view of GRN and further facilitate our  understanding of cancer 
growth. 
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