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Slow-motion replays are content full segments of broadcast soccer videos. In this paper, we propose an efficient method for
detection of slow-motion shots produced by high-speed cameras in soccer broadcasts. A rich set of color, motion, and cinematic
features are extracted from compressed video by partial decoding of the MPEG-1 bitstream. Then, slow-motion shots are modeled
by SVM classifiers for each shot class. A set of six full-match soccer games is used for training and evaluation of the proposed
method. Our algorithm presents satisfactory results along with high speed for slow-motion detection in soccer videos.

1. Introduction

Replays in soccer broadcasts cover most important contents
of the video. Quick development of video compression tech-
niques led to huge compressed video archives. Compressed
domain video analysis on these archived videos can result
in efficient video processing frameworks. However, noisy
features are main challenge in compressed video analysis.
Nowadays, most sports broadcasters use logo transitions
before and after replay shots [1-3]; however, detection of
replay shots by slow-motion detection can bring robustness
and generality to prevailing systems. Slow-motion replays
could be produced by standard or high-speed cameras.
Several approaches are proposed for slow-motion detection
based on each production style. A slow-motion replay from
a standard camera can be generated by repeating some
normal frames or inserting morphed frames between two
consecutive frames [4, 5]. Repeated or inserted frames result
in special patterns in frame difference feature and could be
detected easily in spatial [4-6] or compressed domain [7-9].
Recently, majority of broadcasters are using high-speed
cameras for slow-motion generation to achieve finer pre-
sentation of fast movements. When high-speed cameras are
used with recording frame rate higher than desired slow-
motion frame rate, some frames must be dropped. Dropped
frames could be detected by plentiful fluctuations in frame

difference feature [10]. In addition, slow-motion replays gen-
erated by dropped frames has higher mean of absolute frame
difference than slow-motion replays generated by normal
cameras [4]. With a high-speed camera, the slow-motion
effect can also be generated by simply playing out the video
at the normal speed. We call these slow-motion replays gen-
erated by high-speed cameras HISM replays. Detection of
HISMs is very challenging because they do not result in any
special pattern in visual features. Han et al. in [11] tried to
detect HISMs by exploiting camera motion patterns and
achieved to 72% precision and 66% recall rates. Wang in [12]
used color and motion features to model HISMs with SVM
classifiers and obtained 75% precision and 61% recall rates
on sports videos. Yang and others in [13] improved the work
of Wang et al. in [12] and used HMM models. They achieved
83% precision and 81% recall rates on soccer videos. In con-
trast, scene transition structures are used in [14] as a general
method for replay detection and resulted in 74% precision
and 86% recall rates on three soccer games. All prior works
on detection of HISMs are proposed for spatial domain
analysis and have low speed.

In this paper, we propose an efficient framework for slow-
motion detection in compressed MPEG-1 soccer videos.
Several color, motion, and cinematic features are used in
our framework to achieve satisfactory results despite intrinsic



noise in compressed domain. The rest of the paper is orga-
nized as follows. Section 2 presents an overview of the pro-
posed framework for slow-motion detection. In Section 3,
the proposed frame work is evaluated by precision and recall
rates on soccer videos. Finally, Section 4 presents conclusion
and future work.

2. Proposed Framework

Humans can discriminate between slow-motion and live
shots by noticing the speed of players or ball motion in
the scene [12]. However, robust detection and tracking of
moving objects in soccer videos is a challenging task. On
the other hand, color difference and motion features are
correlated with object and camera motion in the scene. We
try to use color, motion, and cinematic features for slow-
motion modeling.

Shots in soccer video can be categorized into four classes:
long, medium, close up, and out of field [6]. Close-up and
out-of-field shots do not exhibit important events of the
game. Thus, we do not consider close-up and out-of-field
shots in our framework. In addition, motion-related visual
features of long and medium shots are fully different. There-
fore, we try to model slow-motion shots for each shot class
independently.

Shot boundary detection and shot classification are two
preliminary tasks in soccer domain and studied in several
works [6, 15-18]. Any error in these modules can result in
high error rates in slow-motion detection. For an unbiased
evaluation of slow-motion detection module, in our frame-
work shot boundary detection and shot classification are
done by human. First, low-level color and motion features
are extracted efficiently from compressed domain. Then, a
GMM is used to model grass color adaptively in each video
stream. Color, motion and cinematic features are extracted in
the next step. Thereafter, a SVM classifier is trained for slow-
motion detection in each shot class based on training data.
Finally, trained SVM classifiers are used for classification of
slow-motion shots in test videos.

2.1. Low-Level Information Extraction

In this step, low-level color and motion information are
extracted from MPEG bitstream. A MEPG-1 video decoder
in Java language modified to extract this information from
compressed video by partial decoding of the bit-stream.

2.1.1. DC Sequence Extraction. MPEG-1 is a block-based
video compression technique which exploits discrete cosine
transform (DCT) and motion compensation error to reduce
spatiotemporal redundancy in image sequence [19, 20]. In
MPEG-1 standard, each picture is divided to 16*16 subim-
ages called macroblocks (MBs). Each macroblock constitutes
from four luminance and two chrominance blocks. For each
block in MPEG sequence, the first DCT coefficient is called
DC coefficient and contains mean intensity of the block
[21]. Therefore, a down-sampled version of each picture
could be constructed by approximating DC coefficients of
picture blocks. We utilized method proposed in [22, 23] for
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DC image extraction. The DC image of each picture in the
sequence has a luminance plane Y and two chrominance
planes: Cb and Cr. Color and object feature could be extract-
ed from approximated DC image.

2.1.2. Motion Vector Extraction. We use only I-Pictures or P-
Pictures of MPEG stream. In an I-Picture, all MBs are coded
independently from other pictures and named intracoded
MB. In a P-Picture, MBs can code as an intracoded MB
or a forward-coded MB. A forward-coded MB is similar
to previous reference picture (I-Picture or P-Picture) and
is coded by its displacement to similar area in previous
reference frame and its compensation error in DCT domain.
We consider displacement of each forward-coded MB as its
motion vector as follows:

x'(myn,t —1) = x(m,n,t) + MV, (m,n, t), (1)

)/,(m) n,t— 1) = }/(m, n, t) +MV},(H’1, n, t)) (2)

where x(m,n,t) and y(m,n,t) are center point locations of
MB(m, n) in current picture, x'(m, n,t—1) and y’ (m, n,t—1)
are center point locations of most similar area in previous
picture, and MV, (m,n,t) and MV, (m,n,t) are horizontal
and vertical components of MB(m,n) motion vector in
current picture.

2.1.3. Grass Modeling. To model grass color, a temporal
subsampling technique is used. In this manner, grass color is
extracted adaptively from each video sequence by processing
I-Pictures only. After processing each I-Picture, the next 20
I-Pictures are skipped and not processed. For each processed
I-Picture, all pixels with color in the following range are
considered as green:

90< Y < 140
110 < Cb < 130 (3)
90 < Cr < 120.

Then, green pixels are grouped into disjoint connected
components, and all connected components smaller than
one-tenth of picture size are removed. Remaining pixels are
candidate grass pixels.

After that, a Gaussian mixture model (GMM) is used to
model grass color by using candidate grass pixels in the video.
Several GMMs with one, two, three, and four Gaussians are
used to model grass color, and optimal model with minimum
error is used as final grass color model.

2.2. Feature Extraction. In this section, several color, motion,
and cinematic features are extracted from compressed soccer
videos to model slow-motion shots among long and medium
shots.

2.2.1. Cinematic Features. Cinematic features are extremely
exploited in soccer video analysis because they are light-
weight and effective features. Similarly, we try to exploit
cinematic knowledge of soccer videos for slow-motion
detection.
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(1) Shot Length. Considering long shots, most live scenes
last more than 16 seconds. On the other hand, slow-motion
medium shots are often longer than live medium shots [12].
So, shot length can be a promising feature for discriminating
live shots from slow-motion shots. Therefore, the length of
each shot is computed and denoted by Length (i) for ’th shot
of the sequence.

(2) Shot Type. During a break, director may use several
special consecutive shots to view a replay of last occurred
event. This leads to common shot type patterns for replay
scenes. Therefore, we use shot type of two prior and two next
shots of the current shot as next features: respectively Spy (i),
Sp2(i), Sn1(i), and Sna (7).

(3) Repeated Frame. In some slow-motion long shots,
director freezes the scene for a short time during critical
moments. As a result, detecting repeated frames in a short
duration could be informative for slow-motion detection.
Repeated frames can cause a low picture difference in DC
image sequence. Therefore, we define repeated frame feature
for t’th picture in the sequence as:

11 Dy(t) < ThDY
Repeated(t) = (4)

0 otherwise,

where Thpy is image difference threshold and Dy is DC
image difference. We define Dy as:

2M 2N
Dy(t) = 4*M*N Z DY (myn,t) = Y(mnt = 1)I. (5)
m=1n=1

The Y is luminance plane of DC image; M and N are number
of rows and columns of MB grid (each macroblock contains
four luminance blocks).Then, existence of frozen pictures in
a shot can distinguished as

( Z teShot; Rep eated( t) ) > ThRepetition-

0 otherwise.

Repetition(i) =

(6)

We used Thpy = 0.05 and Thgepetiion = 3 in our experi-

ments.

2.2.2. Color Features. Color features can indicate similarity
of consecutive pictures in the sequence. On the other hand,
some object features could also approximated by color
features. Several color features are introduced in this section
for slow-motion detection.

(1) Grass Ratio Difference. Grass ratio difference of consecu-
tive pictures in each medium shot is correlated with camera
and object motion in the scene. To compute grass ratio of
each picture, constructed GMM grass model is applied on
each pixel of DC image. Then, all blocks with probability
higher than Thg.s are considered as grass pixels. Value of
Thgrass is determined empirically for whole video dataset.
Finally, the ratio of grass pixels in £’th picture of the sequence

is called G(t) and computed by dividing number of grass
blocks by number of all blocks in the DC image.
We define mean of grass ratio difference in the shot as

> G -

Marass (i) = 7o
G (l) length(l) teShot;

Gt-Dl, (7

where G(t) is ratio of grass-colored pixels in DC image of £'th
picture in the sequence.

(2) Difference of Luminance Standard Deviation. Camera and
object motion in the scene can cause changes in luminance
contrast of the picture. Variance is a measure for contract of
image luminance [24, 25]. So, changes in standard deviation
of luminance correlate with motion patterns in the scene.
Therefore, mean of luminance contrast difference in each
shot is defined as the next descriptor of the shot:

Msay (i) = > Istdy(t) -

teShot;

1
lengT(i) StdY(r—1)|, (8)

where StdY (¢) is standard deviation of pixels intensities in Y
plane of 'th DC image of the sequence.

(3) Object Ratio. For each shot type, size of biggest object
in the picture can be related with distance from camera to
objects. A small movement causes high motion magnitude
in the picture when camera is close to objects and vice versa.
The biggest object size in the picture can be approximated
by biggest connected component’s size in DC image. Conse-
quently, we define next shot descriptor as

> Rolt), (9)

teShot;

RObject(l) length(z)

where R, (¢) is ratio of biggest connected component in the
DC image of #’th picture with respect to DC image size.

2.2.3. Motion Features. Due to slower motion of objects in
slow-motion scenes, the most promising features for slow-
motion detection are motion-related features. In this step,
we introduce several motion features for slow-motion shot
modeling.

In [26], we proposed a method for motion vector
reliability measurement and global motion estimation in
compressed MPEG-1 sequences. For each motion vector, a
reliability value between zero and one is extracted and called
MV reiability (71, 11, ). In addition, global motion parameters,
namely, GMp(t), GMr(t), and GMz(t) are computed for
each frame which denote pan, tilt, and zoom factor in £'th
picture of the sequence. Figure 1 shows reliable motion infor-
mation extraction from a sample picture by the mentioned
method. In Figure 1(b), intensity of each motion vector
indicates its reliability.

(1) Skipped Macroblocks Ratio. In MPEG compression stan-
dard, MBs which are very similar to reference picture have no
prediction error. These MBs are not coded in the MEPG bit-
stream and called skipped MBs. Thus, ratio of skipped MBs
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(b)
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(d)

FIGURE 1: Reliable motion information extraction. (a) all motion vectors; (b) motion vectors reliability; (c) reliable motion vectors; (d)

estimated camera motion.

in each picture shows picture similarity to reference picture.
In slow-motion shots, we expect higher similarity between
consecutive pictures; which results in higher skipped MB
ratio in each picture. Therefore, we define ratio of skipped
MBs in each picture as:

M M

z Z Skipped MB(m, n, t), (10)

m=1n=1

Rs(t) =

M*N

where ¢ is index of current picture in the sequence, and
Skipped MB for block MB(m, n) of t’th picture is defined as

1 skipped macro block
Skipped MB(m, n,t) = (11)
0 otherwise.

Then, we define mean of skipped MBs ratio in the shot as

. 1
MSkipped(l) = 17

ength(i) 2. Rs(d). (12)

teShot;

(2) Reliable MV Magnitude. Motion magnitude in each
picture can indicate fast or slow movements of camera and
objects in the scene [12]. However, in MPEG compressed
sequences some motion vectors (MVs) are noisy and unre-
liable. Therefore, we try to discriminate reliable MVs from
unreliable MVs and compute mean magnitude of reliable
MVs.
The reliable MVs are distinguished by

Reliable MV (m, n, t)

1 MVReliability (11, 1, 1) > Thirvrel (£) (13)
0 otherwise,

where Thyygel(t) denotes adaptive threshold for reliable
MVs detection which is computed as

Thuvrel(t) = max(1.2 * Myvre(t), 0.3). (14)

The Mmvrel(t) denotes mean reliability of motion vectors in
£'th picture of the sequence and is defined as

M N
1
Myvrel(t) = N > > MVpeiabitiy(m,m,1), — (15)

m=1n=1
where M and N denote number of rows and columns of
MB grid respectively. Then we define mean reliable motion
magnitude of each picture as:
1
SM_ M Reliable MV (m, n,t)

<Y

m,n € reliableMV

MRMag(t) =

\/MVx(m, nt): + MV, (m, n, t)%.
(16)

Then, mean motion magnitude of the shot is defined as

1

MReliableMag (1) = length(?) > Mpumag(t). (17)

teShot;

(3) Motion Magnitude Fluctuations. When slow-motion shot
is produced by frame-dropping technique, numerous fluc-
tuations appear in mean motion magnitude feature. On the
other hand, recently some directors play only critical seconds
of a replay shot as slow-motion; while play other moments
of the shot with live speed. The same pattern of numerous
fluctuations can appear in these replay shots on slow motion
moments. Local variance of values is an indicative measure
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for magnitude fluctuations. Therefore, we moved a time
window with length 10 on the mean motion magnitude
feature and computed variance of values in each location as
Magvar(1). Then, motion magnitude fluctuations feature is
defined for each shot as follows:

1

ngth() > Mmgar(®) (18)

teShot;

Myibration ( l) =

(4) Camera Motion. Camera movement in slow-motion shot
is slower than similar live shots [11]. Hence, we compute
mean of each camera motion coefficient as in next features:

. 1

Mamp (i) = length(7) te%ot-|GMP(t)|’
. 1

Mawmr (i) = lengT(i) t€§0t.|GMT(l‘)|> (19)
A S _

Mgwmz (i) = length() teémlGMz(t) 1].

The Mgmp (i), Mamr (i), and Mgwmz (i) indicate mean pan, tilt,
and zoom factor in the shot, respectively.

(5) Camera Motion Difference. Speed of camera motion
changes could also be slower in slow-motion shots with
respect to similar live shots [11]. Therefore, the mean change
of motion parameters for each shot is computed as

N 1 _ _

Dawe(d) = [ n ) tethOtJGMp(t) GMp(t - 1)1,
. 1

Demr (i) = lengT(i) te%m»lGMT(t) - GMr(t - 1)l, (20)
. 1

Domz (i) = lengT(i) tggothMZ(t) - GMz(t = 1)I.

2.2.4. Semantic Features. Soccer domain features which have
special meanings for viewers are called semantic features.
These features could also used for slow-motion modeling in
soccer videos.

(1) Field-Side View. Most slow-motion long shots contain
shoot and offside events occurred near goal area. So,
detection of field-side views can be helpful for detecting
slow-motion long shots. Kolekar in [27], used a simple rule
and grass ratio in three regions of the picture for field-view
detection. Similarly, we divide each picture into three regions
as shown in Figure 2. Then, we use following rule for view
classification of each frame during long shots.

IF |Grur(t) — Grur(#)| > Thgielasice THEN FieldSide(t) =
1 ELSE FieldSide(t) = 0.

The Grur and Grur denote grass ratio in left and right
region of the picture, respectively. We used Thgielgsize = 0.7
in our experiments.

FIGURE 2: Partitioning of picture into three regions for field-side
view detection.

TaBLE 1: FUM-BSVD 2011 soccer video dataset.

Number Game Length

1 Germany versus England 01:33:22
2 Greece versus Argentina 01:34:34
3 Slovakia versus Italy 01:40:07
4 Germany versus Argentina 01:32:17
5 Germany versus Spain 01:34:31
6 Germany versus Uruguay 01:35:17

TasLE 2: FFMPEG encoder settings for soccer videos.

Parameter Value
GOP Size 16 (fix)
B-picture count 0
Frame rate 25
Bit-rate 10240 kbps
Frame size 720 x 480
Maximum motion vector range 100 pixel

Then, we examine existence of field-side view in each
long shot as

SideView(i)

1 ( > FieldView(t)) >0 (21)
= telast 50 pictures of Shot;

0 otherwise.

For medium and close-up shots, the SideView (i) is equal to
zero.

2.3. Slow-Motion Detection. In this section, we model slow-
motion shots for each shot class separately. A set of features is
selected for each shot class based on aforementioned intuitive
motivations. Since close-up and out-of-field shots do not
show an important event in the game, we do not consider
them in our framework. Figure 3 shows diagram of proposed
classification algorithm.

During training phase, following features of long shots
are given to an SVM model: shot-type features, repeated
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FIGURE 3: Diagram of the proposed classification method for slow-motion detection.
TaBLE 3: Experimental results using tagged shot classes.
. Medium shots Long shots Medium and long shots
Data Video Precisi Recall Precisi Recall Precisi Recall
recision  Reca recision Reca recision Reca
TP FP FN % % TP FP FN % % TP FP FN % %
1 83 1 1 99 99 9 3 75 50
Train 47 4 0 92 100 1 0 100 10 229 11 24 95 91
3 75 3 0 96 100 14 0 5 100 74
Total 205 8 1 96 100 24 3 23 89 51
4 61 20 26 75 70 3 6 67 50
Test 5 42 4 8 91 84 0 3 100 67 167 35 70 83 70
6 46 8 21 85 69 0 6 100 50
Total 149 32 55 82 73 18 3 15 86 54

frame feature, camera motion features, camera motion dif-
ference features, and field-side view feature. In the test phase,
long shots which last more than 16 seconds are considered
as live shots. Shorter long shots are given to the SVM model
for classification. RBF kernel function is used in this SVM
model.

For medium shots, in the training phase the following
features are given to another SVM model: shot length feature,
shot type features, grass ratio difference feature, difference
of luminance standard deviation feature, object ratio feature,
skipped macro-block ratio feature, reliable MV magnitude
feature, and motion magnitude fluctuations feature. In the
test phase, all medium shots are given to the trained SVM
model for classification. RBF kernel function is used in this
SVM model.

3. Experimental Results

In this section, we evaluate performance of the proposed
method on our soccer video dataset (FUM-BSVD 2011) of
six soccer games captured from World Cup 2010. Table 1
shows six soccer games used in our experiments. The first
three games are used as training set, and remaining games
are used as test set. All slow-motion shots in these videos
are produced by high-speed cameras. Each video sequence
is encoded to MPEG-1 video format using FEMPEG video

library. Important encoding parameters are summarized in
Table 2.

Table 3 shows experimental results of the proposed
method on training and test data, respectively. Our algorithm
achieved high accuracy of 95% precision and 91% recall
on training data. Errors in training data are mainly in long
shots. The proposed method achieved satisfactory results of
70% precision and 83% recall rates on test data. Comparing
to [11, 12], our algorithm achieved higher accuracy by
exploiting more features in slow-motion modeling.

The recall rate for long shots is low. Our experiments
indicate that discriminating between slow-motion and live
among long shots is a difficult task due to following reasons:

(1) movement of camera and objects in some live shots is
slow,

(2) slow-motion shots of high-motion scenes contain
intensive objects and camera movements,

(3) areplay shot may also played in live speed.

In order to show robustness of the proposed method against
errors in preprocessing stages, a hierarchical shot classifica-
tion module with overall accuracy of 92% is designed. Shot
classes detected by this module are fed into the slow-motion
detection module demonstrated in Figure 3. As shown in
Table 4, our algorithm achieved accuracy of 90% precision
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TABLE 4: Experimental results using automatic shot classification.

. Medium shots Long shots Medium and long shots
Data Video Precision Recall Precision Recall Precision Recall
recision eca recision eca recision eca
TP FP EN % % TP FP EN % % TP FP FN % %
1 64 6 5 91 93 13 2 15 87 46
Train 44 5 3 90 94 1 0 10 100 09 189 20 43 90 81
3 53 7 3 88 95 14 0 7 100 67
Total 161 18 11 90 94 28 2 32 93 47
4 60 26 26 70 70 4 12 60 33
Test - 0 6 02 86 88 ! 83 X 154 44 73 78 68
6 40 7 17 85 70 0 100 36
Total 138 39 48 78 74 16 5 25 76 41
TaBLE 5: Speed of proposed method. set of color, motion and cinematic features led to high ac-
- curacy of the proposed method. In addition, direct extraction
Module Time per frame . . s
. of low-level information from compressed domain sig-
T1 Grass modeling 1.4ms nificantly improved efficiency of our method. Our frame-
T2 Color features extraction 19.6 ms work achieved 83% precision and 70% recall rates on test
T3 Motion features extraction 16.7 ms data. This framework could be used in soccer video summa-
Total = MAX(T1 + T2, T3) 21 ms rization and retrieval tasks as a semantic feature extractor.

and 81% recall on training data by using automatically
detected shot classes. In this experiment, the proposed
approach achieved accuracy of 78% precision and 68% recall
rates on test data. Although such a small loss of accuracy is
affordable, it could be reduced by exploiting more accurate
shot classification methods.

Our proposed approach is more efficient than previous
works due to compressed video analysis. Extraction of color
and motion features from compressed video constitutes
majority of proposed framework processing time; while
training and classification by SVM classifiers is very fast.
Table 5 shows processing time of time-consuming modules
in proposed framework. Color features extraction and
motion features extraction tasks could be done in parallel via
multithreading. Using multithreading total processing time
of the proposed method is 21 ms per frame or 47 fps which
is nearly two times faster than realtime. When these modules
run in sequence, the total processing time of the proposed
method is 37.7 ms per frame or 26 fps which is faster than
real-time. All video sequences in FUM-BSVD dataset are
played at 25 fps.

Performance of proposed method on long shots can be
improved by extracting better features from video. On the
other hand, segmentation and tracking of moving objects
in soccer scenes is an alternative way for improving this
method. However, this process is problematic in broadcast
soccer scenes due to moving camera and moving players.

4. Conclusion and Future Work

In this paper, we proposed an efficient method for slow-mo-
tion detection in compressed soccer videos. Exploiting a rich
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