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ABSTRACT:

In this paper we propose an approach to multi-class semantic segmentation of urban areas in high-resolution aerial images with class-
specific object priors for buildings and roads. What makes model design challenging are highly heterogeneous object appearances and
shapes that call for priors beyond standard smoothness or co-occurrence assumptions. The data term of our energy function consists
of a pixel-wise classifier that learns local co-occurrence patterns in urban environments. To specifically model the structure of roads
and buildings, we add high-level shape representations for both classes by sampling large sets of putative object candidates. Buildings
are represented by sets of compact polygons, while roads are modeled as a collection of long, narrow segments. To obtain the final
pixel-wise labeling, we use a CRF with higher-order potentials that balances the data term with the object candidates. We achieve
overall labeling accuracies of > 80%.

1. INTRODUCTION

The automatic interpretation of aerial (and satellite) images has
been a classic problem of remote sensing and machine vision. Se-
mantically interpreted images, i.e. thematic raster maps, of urban
areas are important for many applications, for example mapping
and navigation, urban planning and environmental monitoring, to
name just a few.

Automatic segmentation into semantically defined classes (also
referred to as “image classification” or “semantic labeling”) has
been an active area of research over the last 40 years. In spite
of great progress, the task is far from solved. This is especially
true for urban areas, and at high spatial resolutions (on the oder
of 0.1 - 1 m). Urban areas exhibit a large variety of reflectance
patterns, with large intra-class variations and often also low inter-
class variation. The situation gets even more challenging at high
spatial resolution. Urban land-cover classes like “road” or “build-
ing” are a mixture of many different structures and materials. As
small objects such as individual cars, street furniture, roof struc-
tures, and even things like traffic signs or road markings become
visible, the intra-class variability increases.

In this work, we deal with semantic segmentation of aerial images
into broad classes. We put particular emphasis on two classes,
roads and buildings. These two object classes are on one hand
of particular importance, as they make up a large portion of the
urban fabric and account for most of the man-made environment.
On the other hand, they also exhibit a significant amount of struc-
ture which can be exploited to improve their labeling in the pres-
ence of noisy data. Roads consist of long, thin segments of slowly
varying width, which should form a connected network. Build-
ings are relatively compact blobs with simple (mostly polygonal)
boundaries.

We aim to include this a-priori knowledge about object layout in
a probabilistic manner, in the form of soft constraints in a Condi-
tional Random Field (CRF) model. Our proposed pipeline starts
from a conventional pixelwise prediction of the class likelihoods.

However, in order to better account for the rich context and co-
occurrence patterns in urban environments we include appear-
ance features sampled from a large spatial neighborhood around
each pixel, using ideas from (L’ubor Ladický et al., 2010). On
top of the independent class likelihoods of individual pixels, we
add a higher-level representation at the level of (putative) objects
or pieces of objects, which are derived from object-specific prior
assumptions. More specifically, we generate hypotheses for pos-
sible road segments and for possible segments of buildings in a
data-driven manner: from the raw class likelihoods we sample
long, narrow segments that have high cumulative road likelihood,
as well as compact blobs with simple boundaries that have high
cumulative building likelihood. To guarantee high recall, the set
of such object hypotheses is tuned to cover, as far as possible, all
roads and buildings, at the cost of being over-complete and redun-
dant. The final labeling step then consists in classifying the im-
age pixels in such a way that the object hypotheses are respected,
meaning that (almost) all pixels that belong to a given hypoth-
esis get assigned the same label. Formally, this process can be
modeled as a CRF with sparse higher-order cliques, a so-called
PN -Potts model (Kohli et al., 2009). A higher-order prior for
roads has already been described in our previous work (Montoya-
Zegarra et al., 2014). Here, we first propose a simple a-priori
model for buildings. Like earlier work our prior favours simple
and smooth (bot not necessarily convex) outlines, but imposes
this expectation as a probabilistic soft constraint, rather than as a
post-processing heuristic. Second, our framework allows one to
handle different, class-specific higher-order correlations in one
unified framework. Prior expectations about object layout are
taken into account by sampling higher-order cliques in a class-
specific fashion; whereas all cliques, independent of how they
were generated, are used together in a single CRF inference step
to determine the pixel labels. In experiments on the rather chal-
lenging Vaihingen dataset we obtain > 80% overall labeling ac-
curacy. We show that powerful context features are vital for good
urban classification and outperform standard multi-scale texture
filters by a large margin, and that the proposed higher-order priors
further reduce the classification error.
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Figure 1. Given an input image, our method first classifies pixels into multiple labels (Sec. 3.1). Next, an over-complete set of building
and road candidates is generated (Sec. 3.3 & 3.2). Finally, the candidates are pruned to an optimal subset (Sec. 3.4).

2. RELATED WORK

There is an enormous literature about pixelwise classification of
remote sensing imagery, although a large part of it deals with low-
resolution images, e.g. from satellites or from hyper-spectral sen-
sors. For an overview, please refer to textbooks such as (Richards,
2013). More recently, there has also been an increasing interest
in urban object detection in high-resolution urban scenarios, see
for example (Rottensteiner et al., 2014) for an overview.

One possible solution for the interpretation of high-resolution ur-
ban data are rule-based approaches (production systems, seman-
tic nets). These methods design custom rules to encode the a-
priori knowledge for specific classes. Building detection and
extraction has often been approached in 3D, based on multiple
views (Herman and Kanade, 1984, Weidner, 1997, Fischer et al.,
1998). Building knowledge in 2D has typically been used in a
rule-based manner, by assembling edges or image segments to
building regions with Gestalt-like grouping rules, e.g. (Fua and
Hanson, 1987, Mohan and Nevatia, 1989). In early road detec-
tion work, e.g. (Fischler et al., 1981, Stilla, 1995, Steger et al.,
1995), roads of specific width, direction, and contrast are ex-
tracted by linking responses to gradient or line filters, in the man-
ner of multi-scale line detectors. Such putative road segments
have also been combined with locally detected quadrilateral road
pieces (Hinz et al., 1999). Some of these works propose to repair
gaps in the road network by a minimum-cost path search between
high-confidence pieces, somewhat similar to our hypothesis gen-
erator (see below). Rule-based methods set hard thresholds at
intermediate steps, i.e. evidence that is lost at an early stage can
hardly be recovered later on in the process.

To be more robust against noise and missing evidence, proba-
bilistic models aim to avoid hard thresholds. Object knowledge
is modeled as a prior distribution over the pixel labels, which
is combined with the data likelihood generated by a per-pixel
classifier. Probabilistic inference then balances data-driven ev-
idence and the priors. One probabilistic formulation that com-
bines data and topological object knowledge are Marked Point
Processes (MPP), used for instance to extract road networks (Sto-
ica et al., 2004, Chai et al., 2013) and building outlines (Ortner et
al., 2007). MPPs lead to hard optimization problems (even if ob-
ject hypotheses are sampled in a data-driven manner (Verdié and
Lafarge, 2014)), which can only be solved approximately, and
with high computational cost.

Another possibility to model contextual relations are graphical
models, especially conditional random fields (CRFs). As op-
posed to MPPs they are amenable to efficient inference methods
such as message passing or graph cuts. (Zhong and Wang, 2007)
design a classification framework consisting of multiple CRFs to
detect settlement areas in optical satellite images. (Roscher et al.,
2010) use Import Vector Machines with CRFs to classify regions
of Landsat TM images into multiple land cover classes. (Hoberg

et al., 2010) adapt CRFs to multi-temporal multi-class land cover
classification by adding temporal interactions to the standard unary
and spatial potentials. Only few works exist that apply CRFs to
semantic segmentation in urban scenes. (Kluckner et al., 2009)
propose an efficient method for multi-label segmentation of aerial
images. Covariance descriptors are fed into a Random Forest
classifier and contextual information is modeled with a Condi-
tional Random Field. The same labeling method has also been
applied at the level of super-pixels (Kluckner and Bischof, 2010).

In our previous work, higher-order PN -Potts potentials (Kohli et
al., 2008) are introduced to represent roads in a CRF energy for
road network extraction. Putative roads are either straight line
segments and triple junctions (Wegner et al., 2013), or minimum-
cost paths (Montoya-Zegarra et al., 2014). In this paper we ex-
tend the latter to also include building extraction.

3. MODEL

An overview of our proposed framework is depicted in Figure 1.
Given an input aerial image, we run a multi-label classifier that
is trained over rich appearance features extracted over large spa-
tial neighborhoods (cf. Subsec. 3.1). The large spatial neighbor-
hoods allow to learn expressive local co-occurrences of feature
patterns directly from the data. Consider, for example, the case
of roads which are usually surrounded by buildings or trees. Due
to the large contextual window of the classifier, building bound-
aries may be slightly blurred or two closely located buildings can
be merged to one. Roads tend to have short gaps that disconnect
single road segments. With the next steps we aim at (i) recovering
polygonal building shapes and (ii) at fully linking all road pieces
to the network while retaining high pixel-wise accuracies.

We follow a recover-and-select strategy. During the recover step
we generate an over-complete representation that covers as much
as possible of roads and buildings with suitable candidates. Be-
cause some candidates may partially cover other objects (e.g.,
trees, grass), we select the subset that best explains the road and
building evidences by energy minimization in a CRF.

We begin with sampling sets of relevant road and building candi-
dates in a data-driven fashion. To extract suitable building can-
didates, we threshold building likelihoods and seek connected
components. The shape of each connected component is approx-
imated with α-shapes (Edelsbrunner et al., 1983) at multiple gen-
eralization levels. We obtain multiple overlapping building can-
didates per connected component at different levels of detail (cf.
Subsec. 3.2). Road candidates (paths and blobs) are generated as
in (Montoya-Zegarra et al., 2014) (cf. Subsec. 3.3).

In the select step global energy minimization balances unaries
and prior term, such that those road and building candidates that
have most supporting evidence from the data are boosted (cf.
Subsec. 3.4). Each sampled road and building candidate is mapped
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(a) (b) (c)

Figure 2. Example of building candidate generation with α-shapes based on (a) the nDSM and (b,c) unary classifier scores (the more
red, the higher the building likelihood) with α = 1 at (b) and α =∞ at (c).

to a higher-order clique with a robust PN -Potts potential (Kohli
et al., 2008) that encourages clique members to take on the dom-
inant label of the clique. This labeling problem can be solved
approximately with α-expansion.

3.1 Local context-aware multi-class scores

We adopt the multi-feature extension (L’ubor Ladický et al., 2009)
of the Textonboost classifier (Shotton et al., 2006) to obtain multi-
class scores. To do so, a set of dense appearance features are ex-
tracted (SIFT (Lowe, 2004), Local Ternary Patterns (Hussain and
Triggs, 2012), Textons (Malik et al., 2001), and Self-similarity
(Shechtman and Irani, 2007)) and softly quantized into corre-
sponding dictionaries of 512 visual words. To encode local con-
text, a large spatial neighborhood of 160× 160 pixels is centered
over each pixel and a fixed set of random-generated rectangles is
sampled (4 × 4 to 80 × 80 pixels). Over each of the 200 sam-
pled rectangles, a histogram of visual words is extracted. The
concatenation of the histograms extracted from the random set
of rectangles form a feature vector for a single pixel. All ex-
tracted histograms are fed to a Boosting Classifier and the raw
class scores are mapped to probabilities with a sigmoid function.

3.2 Generation of building candidates

Our goal is to generate a set of building candidates with plausi-
ble geometry. Pixel-wise building scores from the unary classi-
fier (Sec. 3.1) well localize buildings, but most pixels on building
boundaries have rather uncertain scores. Transition between ob-
jects tend to be irregular, due to fluctuations in the pixel-wise
likelihoods. Consequently, buildings tend to have jaggy bound-
aries rather than regular outlines consisting mostly of straight line
segments. The building prior shall favour candidates with simple
polygonal shapes. First, we seek promising building candidates
based on the unary classifier scores. Second, each candidate acts
a seed for a set of building shape candidates that are computed ex-
ploiting edge information of the normalized digital surface model
(nDSM). This models the assumption that abrupt jumps at build-
ing boundaries optimally describe sharp building edges.

We start with thresholding the building likelihoods, colored blue
(low building likelihood) and red (high building likelihood) in
Fig. 2. As a result we obtain a binary mask of connected com-
ponents that have high building likelihood. Due to the smooth
output of the classifier adjacent buildings are sometimes merged.
To separate erroneously merged buildings we apply the Water-
shed algorithm (Meyer and Beucher, 1990) per connected com-
ponent. For each connected component we extract local maxima
and initialize the watershed segmentation at these points. In or-
der to avoid over-segmentation (i.e., multiple closely located lo-
cal maxima) we smooth the original building likelihoods prior to

applying the segmentation. We flood regions based on the gradi-
ents of the nDSM, that is watershed lines correspond to distinct
height jumps. The generated building segments are then approxi-
mated with α-shapes (Edelsbrunner et al., 1983) to generate a set
of concave to convex building candidates per segment. By using
different values for α we generate multiple generalizations per
building segment that will each act as a clique of the CRF energy
function of Eq. 1.

3.3 Generation of road candidates

Road candidates are generated as in our previous work (Montoya-
Zegarra et al., 2014). First, given a set of road likelihoods ob-
tained from the per-pixel classifier, we compute Laplacian-of-
Gaussian (LoG) responses at multiple consecutive scales (Lin-
deberg, 1994) that well cover the expected range of road widths.
We then train a Random Forest classifier (on ground truth) that
takes mean, median, and standard deviation of the pixel-wise
LoG responses within the LoG filter radius as input. This multi-
scale classifier generates a (x, y, width)-volume of 3D road like-
lihoods in which the expected road widths are discretized across
scales. Second, minimum cost paths through the volume are com-
puted with the 3D Fast Marching algorithm (Deschamps and Co-
hen, 2001) to connect road likelihoods to elongated paths. Ad-
ditionally, big blobs are sampled from the volume to cover large
junctions or squares that cannot be modeled with elongated paths
alone. All paths and blobs together constitute the set of road can-
didates.

3.4 Maximum a-posteriori labeling

The final step is to infer class labels for all pixels, given their
individual class likelihoods from Sec. 3.1 as well as the set of
road and building hypotheses. We formulate this as inference in a
higher-order CRF which fulfills the robustPN -Potts model (Kohli
et al., 2008), i.e. the higher-order cliques encourage their member
pixels to all have the same label, and penalize deviations from the
majority label.

Alternatively, this can be thought of as selecting a subset of object
candidates that best explain the image evidence, while at the same
time correcting the membership of individual pixels in those can-
didates, but only if the correction is supported by strong enough
evidence.

Maximum a-posteriori (MAP) inference in the CRF is equivalent
to minimizing the corresponding Gibbs energy, which in our case

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W4, 2015 
PIA15+HRIGI15 – Joint ISPRS conference 2015, 25–27 March 2015, Munich, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-II-3-W4-127-2015

 
129



is composed of four terms:

E =
∑
i

Eu(xi) +
∑
i

∑
j∈N (i)

Ep(xi, xj)+

+
∑
m

ER(Qm) +
∑
n

EB(Qn) .
(1)

In this expression, Eu = − logP (lk|xi) denotes the unary term,
i.e. the cost of assigning label lk to pixel xi. A pairwise term
Ep = [li 6= lj ]f(∇Iij ,∇Hij) encourages local smoothness of
the classification through a conventional contrast-sensitive Potts
penalty. Here [·] is the Iverson bracket, which returns 1 of the en-
closed expression is true and 0 otherwise, and∇Iij and∇Hij are
the gradients of the image (respectively of the normalized DSM)
between pixels xi and xj ; and f(·) is a linear truncated function
that maps the gradient magnitude to a cost.

Furthermore, each of the sampled building and road candidates
forms a large clique Qb, respectively Qr , over the candidates’
member pixels. The clique costsER andEB are robust PN -Potts
potentials. The effect of those cliques is as follows: if within a
clique there exists enough evidence for the road or building class,
then also the dissenting member pixels are drawn to that class.
Hence, false negatives covered by a clique are corrected. On the
contrary, if in a clique there are too few pixels with a preference
for road or building, then also those pixels are drawn to the com-
peting majority label, thereby correcting false positives.

The mapping from the number of deviating pixels to the cost is
again linear truncated function,E(Q) = min(u,Nk·u−vw +v) with
{u, v, w} the parameters that define the amount of truncation, and
Nk the number of pixels that take on label lk. In our experiments,
we fix the {u, v, w}-parameters to the same values {10, 7, 0.45}
for both road cliques EB and buildings ER.

The PN -Potts model (Eq. 1) is amenable to graph cuts. For two
labels exact MAP inference is possible efficiently with the min-
cut algorithm. For our multi-label problem, a strong local mini-
mum of the energy can be found with α-expansion.

4. EXPERIMENTAL RESULTS

We evaluate our experiments on 1000 × 1000 pixels tiles of a
true orthophoto mosaic (0.25 m pixel size on ground) generated
via dense matching from the Vaihingen data set1. What makes
this scene challenging are (i) many small buildings which are of-
ten densely clustered, and that vary strongly in shape and (ii) road
networks are irregular, mainly narrow and partially occluded by
cast shadows or trees (examples of tiles and nDSM are shown in
Fig. 3, ground truth and classification results in Fig. 4). Four tiles
are used for training the unary classifier (Sec. 3.1), another four
tiles for training the classifier that predicts road-widths (Sec. 3.3),
and eight images for testing. For quantitative evaluation we re-
port pixel-wise classification accuracy (Tab. 4.) in terms of preci-
sion, recall, and F1 scores for all six classes Asphalt (grey), Back-
ground (red), Roads (white), Trees (green), Grass (turquoise), and
Buildings (blue).

For building candidate generation we vary the α parameter in an
(approximately) exponential sequence (α={1,3,5,7,11,15,25,50,
100,∞}). Note that smaller α values generate concave polygons
whereas a higher α leads to more convex candidate shapes. As
α → ∞ the shape becomes the convex hull of the object. On

1Vaihingen is part of the ISPRS benchmark
http://www.itc.nl/ISPRS_WGIII4/tests_datasets.html which comprises
aerial images covering a semi-urban region in southern Germany

Figure 3. False-color image tiles (left column) and corresponding
normalized DSMs (right column).

average, 250×nα ≈ 2500 (with nα the number of α-shapes per
connected component) candidates are generated per 1000×1000
tile.

We use a k-shortest path variation of Fast Marching for path road
candidate computation. For each pair of seed points we sample
k-mutually exclusive paths. This allows us to cover as much as
possible of the roads. In our experiments we compute 2000 paths
(two paths connect each of 1000 node pairs) and 650 blobs per
tile.

As baseline (Winn) we train and predict multi-class labels using
a multi-label Random Forest with 20 trees based on pixel-wise
responses to the filterbank of (Winn et al., 2005).

The (unary) classifier (Context) alone already achieves per-pixel
recall and precision above 80% for buildings and roads (Tab. 4.).
It clearly outperforms the Winn baseline for all classes.

We note that > 80% recall at > 80% precision is sometimes
quoted as the necessary performance to make automatic methods
practically useful (Mayer et al., 2006).

Class-specific prior construction further improves the F1-scores
for roads and buildings. The slightly lower performance of the
other classes is due to the asymmetric nature of our potentials. It
should be noted that visually significant improvements of build-
ing shapes (Fig.5 and road network topology (Fig. 6) result in
only marginal improvements of pixel-wise scores, due to the small
number of affected pixels (relative to the image size). In Fig. 5,
right frame, false negatives are significantly reduced and building
shapes resemble ground truth more closely. However, in the left
frame we can also observe that, although false positives are sig-
nificantly reduced, very small buildings can be lost completely if
their unaries are weak, because the prior then votes for a different
class which has more support in the clique. Roads extraction is
improved, too (Fig. 6). False positives (e.g., left frame) and false
negatives (three right frames) are both reduced. In the three right
frames, where road is confused with building, the class-specific
building and road priors fruitfully cooperate. On the one hand,
the path cliques close road network gaps, while on the other hand
α-shape cliques repair building shapes.
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Figure 4. Multi-class semantic segmentation results for the two tiles shown in Fig. 3: ground truths (left column), predictions from
the unary classifier of Sec. 3.1 (center column), and final results after CRF inference with class-specific priors for buildings and roads
(right column).

Buildings Roads Asphalt Grass Trees Background
Method F1 Rec. Prec. F1 Rec. Prec. F1 Rec. Prec F1 Rec. Prec. F1 Rec. Prec. F1 Rec. Prec.

Winn 74 72 77 76 73 80 3 14 2 59 63 57 79 77 81 38 55 33
Context 84 83 86 85 82 89 13 23 11 69 76 64 84 82 86 46 47 45

CRF 86 87 85 86 83 89 14 21 12 68 71 65 83 81 86 45 46 45

Table 1. Pixelwise performance for multi-label classification on the Vaihingen dataset. The overall accuracy for Winn, Context, and
CRF are respectively: 73.69, 82.35, and 82.42. All numbers are percentages.

5. CONCLUSIONS AND FUTURE WORK

We have proposed a multi-label classification with class-specific
priors for buildings and roads. In addition to the road network
prior of (Montoya-Zegarra et al., 2014), we have added a sec-
ond higher-order potential for cliques custom-tailored to build-
ings. Experiments show that the road and building layers can
be jointly improved with these class-specific priors within a CRF
framework.
At present, clique sampling is done in a data-driven, rather heuris-
tic way. Moreover, object candidate generation (a large set of
alpha-shapes per building and the LoG scale-space volume for
road widths) is cast as a (discrete) classification task. However,
shape parameters for buildings and road widths are continuous
variables and it seems more intuitive to directly formulate pa-
rameter estimation as regression. A future idea would thus be to
perform classification of object categories and regression of their
shape parameters jointly within a unified framework. A natural
starting point are structured prediction methods such as for in-
stance Hough Forests (Gall et al., 2011).
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Figure 5. Example of extracted buildings. True positives are dis-
played green, false positives blue, and false negatives red. White
frames highlight significant differences/improvements.
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Figure 6. Example of extracted roads. True positives are dis-
played green, false positives blue, and false negatives red. White
frames highlight significant differences/improvements.
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