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ABSTRACT: 
A two-step vehicle recognition method from an aerial Lidar point cloud is proposed in this paper. First, the Lidar point cloud is 
segmented using the region-growing algorithm with vehicle size limitation. Then the vehicle is recognized according to the profile 
shape based on dynamic time warping. The proposed method can detect vehicles parking under trees in an urban scene, and classifies 
the vehicles into different classes. The vehicle location, orientation, parking direction and size can also be determined. The 
experimental result based on a real urban Lidar point cloud shows that the proposed method can correctly recognize 95.1% of 
vehicles. 

1. INTRODUCTION

Vehicle recognition from an aerial Lidar point cloud is a 
fundamental task for many Lidar applications, such as digital 
elevation model generation (Chen et al. 2017, Yang et al. 2016), 
urban parking management (Liu et al. 2016), traffic 
management and smart city modeling (Lafarge et al. 2012, Xiao 
et al. 2016). 

To meet the requirements of these various applications and 
more potential further applications, the requirement of vehicle 
recognition can be divided into the two following aspects: 1) 
complete vehicle detection, which requires a high vehicle 
detection rate; 2) correct vehicle attributes, which include the 
vehicle class, location and size. 

As to the first aspect, the current research cannot detect 
vehicles parked under or partially under trees (Börcs et al. 2015, 
Zhang et al. 2014), or detect vehicles parked too close to each 
other. However, the former is very common in the urban scene, 
especially with vehicles parked in side-streets. This is also the 
most important affecting factor. As to the second aspect, much 
research on vehicle classification has been performed based on 
the mobile Lidar point cloud (Xiao et al. 2016). Classifying a 
vehicle detected from ALS usually uses the spatial threshold, 
connection analysis (Rakusz et al. 2004), the profile shape 
buffer (Lovas et al. 2004), binary classification using object-
based features (Yao et al. 2011) and the marked point process 
(Börcs et al. 2015). These methods focus on certain attributes of 
vehicles.  

In this paper, a two-step method for vehicle extraction is 
proposed, including vehicle detection and recognition. It tries to 
collect as many vehicle segments as possible in the first step, 
and to remove the non-vehicle segments in the second step by 
vehicle recognition. In the first step, a vehicle size limitation is 
introduced to the procedure of non-ground points segmenting. 
The modification provides an opportunity to detect vehicles that 
are entirely or partially covered by trees. In the second step, the 
vehicle class is recognized by the similarity between the profile 
shape of the potential vehicle segment and a directed real 
vehicle profile based on dynamic time warping (Iglesias et al. 
2013, Keogh et al. 2005). Other aspects, such as location and 
size, can also be estimated from the vehicle segment. 

2. METHOD

Supporting the ground point in the Lidar point cloud has been 
labelled. Vehicle detection and classification in this research 
contains two main steps. The first is to find as many potential 
vehicle segments as possible. The second is to identify whether 
a potential vehicle segment is a vehicle or not. By defining a 
vehicle profile, dynamic time warping is employed to measure 
the similarity between the profile derived from the potential 
vehicle segment and the standard vehicle profile. According to 
this index, the vehicle segment can be easily judged. The overall 
procedure of the proposed method is given in Fig. 1. 

Fig. 1 Overview of the vehicle detection and classification 
method 

Building points extraction is not compulsory in the method, 
but building points extracted in advance will be of benefit in 
enhancing the performance efficiency. 
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2.1 Extracting potential vehicle segment with vehicle size 
limitation 

The non-ground points are separated into different segments 
according to their spatial distribution. A segment is expected to 
either contain one vehicle or not contain a vehicle. During the 
separation, the size range of a real vehicle in terms of its width, 
length, and height direction is considered. The main steps of the 
potential vehicle segment extraction are given below. 
 
Algorithm 1: Potential vehicle segment extraction 
1. If point 𝑃𝑃𝑃𝑃 is not a ground point or building point (if the 

building classification is available), 
a) If 𝑃𝑃𝑃𝑃 is the first point of the current segment, find the 

ground point in its neighboring range, and take the 
lowest ground point’s height as the ground height 
(𝐺𝐺𝐺𝐺); 

b) Create a segment using the region-growing algorithm 
taking 𝑃𝑃𝑃𝑃  as a seed point. During the growing, the 
next point 𝑃𝑃𝑃𝑃 should satisfy the following conditions: 

0.3𝑚𝑚 < 𝐺𝐺𝑃𝑃𝑃𝑃 − 𝐺𝐺𝐺𝐺 < max (𝐺𝐺𝑣𝑣) 
𝐷𝐷(𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃) < 𝑑𝑑 

where 𝐺𝐺𝑃𝑃𝑃𝑃 is the height of point 𝑃𝑃𝑃𝑃, 𝐺𝐺𝑣𝑣 is the height of the 
vehicle, 𝐷𝐷(𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃) is the horizontal distance between points 
(𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃), and 𝑑𝑑 is a given threshold. 

2. Estimate the width and length of the derived segment 
through its minimal boundary rectangle in the XOY plane. If 
both width and length satisfy the following condition, it will 
be judged as a potential vehicle segment 

min (𝑊𝑊𝑣𝑣) < 𝑊𝑊𝑃𝑃𝑑𝑑𝑊𝑊ℎ < max (𝑊𝑊𝑣𝑣) 
min (𝐿𝐿𝑣𝑣) < 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑊𝑊ℎ < max (𝐿𝐿𝑣𝑣) 

where 𝑊𝑊𝑣𝑣and 𝐿𝐿𝑣𝑣  are the width and length of the vehicle, 
respectively.  

3. Add the potential vehicle segment into the segment list. 
4. Repeat Steps 1 to 3, until all points are processed. 

 
Step 1b) requires that the height of a point is no less than 0.3 

m, to remove possible existing gross points around a vehicle, 
because the height of a vehicle’s top surface is not usually lower 
than 0.3 m. 

Also, the tree points in the Lidar point cloud are mainly 
located on its top leaves and/or branches, which are usually 
higher than a vehicle. The maximal height in this condition is 
used to separate the tree points with the same plane position as a 
vehicle. This makes it possible to detect a vehicle entirely or 
partially parked under a tree.  

To remove the segments which cannot possibly contain a 
vehicle, the limitation of the width and length of the segment is 
applied in Step 2.  

To ensure that one segment only contains one vehicle, a 
threshold is set to separate vehicles according to the horizontal 
interval between two adjacent vehicles. 

Using this method, each vehicle is expected in one segment. 
By setting slightly larger values for max (𝐺𝐺𝑣𝑣),  max (𝑊𝑊𝑣𝑣)  and  
max (𝐿𝐿𝑣𝑣), and slightly lower values for min (𝑊𝑊𝑣𝑣) and max (𝐿𝐿𝑣𝑣), 
we can collect as many potential vehicle segments as possible 
for the next vehicle recognition step. Some of them may contain 
only a non-vehicle object.  
 
2.2 Vehicle recognition using profile based on dynamic 
time warping  

In this research, vehicle recognition refers to recognizing a 
vehicle by class, and not by type. A class level recognition is 
enough for vehicle modeling in the application of 3D urban 
modeling. That is to say, we only try to recognize a vehicle as a 
sedan, hatchback, SUV, or other class. 

To recognize the vehicle, the profile of the potential vehicle 
segment is generated, and then compared with the real vehicle 
profile according to the similarity measurement derived by 
dynamic time warping (DTW). 
2.2.1 Vehicle profile generation: During acquisition of the 
Lidar point cloud, in most cases the laser point from the laser 
scanner mounted on the aircraft is not projected from a vertical 
direction, so the Lidar point cloud contains not only the points 
in its roof but also those on one or two sides. Of course, whether 
one or two sides are included is uncertain without additional 
data. And this depends upon the spatial position relationship 
between the vehicle and the laser scanner. Furthermore, for the 
top of the vehicle, its boundary is slightly uncertain owing to 
random sampling. Therefore, if the vehicle recognition is 
performed in 3D space, these uncertainties will create much 
trouble and difficulty.  

To solve this problem, a vehicle profile is introduced. This is 
a curve of the middle part of the vehicle top side (Fig. 2). The 
curve reflects the vehicle shape, which provides enough 
information for further recognition. According to the position 
and character of the vehicle profile, it is obvious that the above 
two uncertainty factors are greatly reduced. 

 
Fig. 2 The spatial relationship between the vehicle and 

profile 
 

The detailed vehicle profile generation of one potential 
vehicle segment can be described as follows. 
1. Determine the minimal boundary rectangle (MBR) in the 

XOY plane of one vehicle segment. 
2. The central line of the profile is determined by the central 

point of the two shorter sides of the MBR. One is called the 
Begin point and the other is the End point (Fig. 3a).  

3. Considering the points as randomly distributed, a buffer 
along the central line is set. The width of the buffer depends 
upon the point density, and is 0.8 m in this paper. 

4. Project all points {P(i)} in the buffer to the vertical plane 
through the central line along the horizontal direction.  

5. Sort all projected points {P(i)}  in ascending order of the 
horizontal distance to the Begin point. The ordered 
array{P(i)} is called the vehicle profile (see Fig. 3b for an 
example), and it can also be considered as a directed curve. 

 {P(i)} = ��𝐺𝐺𝐷𝐷(𝑃𝑃),𝑑𝑑𝐺𝐺(𝑃𝑃)�� (1) 

where 𝐺𝐺𝐷𝐷(𝑃𝑃)  is the horizontal distance between the i-th 
projected points and the Begin point; 𝑑𝑑𝐺𝐺(𝑃𝑃)  is the height 
difference between the i-th projected points and the ground 
height of the current segment. 
 

 
(a) Vehicle profile definition 
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(b) Vehicle profile. The horizontal axis is 𝐺𝐺𝐷𝐷 and the 

vertical axis is 𝑑𝑑𝐺𝐺. 
Fig. 3 Vehicle profile definition 

 
2.2.2 Vehicle profile recognition based on dynamic time 
warping: By introducing the vehicle profile, the question of 
vehicle recognition in 3-D space is simplified to curve 
recognition in 2-D space.  
The profile provides information on the following three aspects: 
1) the shape, 2) the height, 3) the length. The shape and height 
of the vehicle profiles of the same class look very similar, but 
differ greatly from other classes. But the length varies greatly 
with different types, even in the same class. For example, an 
economy sedan is usually shorter than a luxury one. 

To achieve class-level vehicle recognition, the former two 
aspects should be considered, and third aspect should be 
neglected. Therefore, dynamic time warping (DTW) is 
employed to measure the similarity of two shapes with different 
lengths. If the profile is similar enough to the real profile of 
some class of vehicle, the vehicle can be recognized as the 
corresponding class. 

In pattern recognition, dynamic time warping (DTW) is used 
for measuring the similarity between two time-series X, Y with 
different lengths. A well-known application is automatic speech 
recognition, to cope with different speaking speeds. Assume 
that 𝑿𝑿 = [𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑚𝑚] , 𝒀𝒀 = [𝑦𝑦1,𝑦𝑦2,⋯ ,𝑦𝑦𝑛𝑛],  a 𝑚𝑚×𝐿𝐿  cost 
matrix 𝑪𝑪  will be established with the distances between two 
points  𝑥𝑥𝑖𝑖  and 𝑦𝑦𝑃𝑃 , a warping path 𝑾𝑾 = 𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝐾𝐾 
(max(𝑚𝑚,𝐿𝐿) ≤ 𝐾𝐾 ≤ 𝑚𝑚 + 𝐿𝐿 − 1)  is formed by a set of matrix 
components, subject to the following boundary condition 𝑤𝑤1 =
𝑪𝑪(1,1),  𝑤𝑤𝐾𝐾 = 𝑪𝑪(𝑚𝑚,𝐿𝐿), monotonicity and a step size condition 
of 𝑤𝑤𝐾𝐾 . The minimized warping cost 𝑫𝑫 is considered as the 
similarity measurement (Iglesias et al. 2013, Keogh et al. 2005). 

 𝑫𝑫 = 𝑚𝑚𝑃𝑃𝐿𝐿�∑ 𝑊𝑊𝑘𝑘
𝐾𝐾
𝑘𝑘=1   (2) 

If two time-series are of the same shapes, 𝑫𝑫 equals 0, even 
with different lengths; it will be greater than 0 when they are of 
different shapes. The more similar, the lower the value of 𝑫𝑫, 
and vice versa. 

The vehicle profile {P(i)} is a point series sorted in ascending 
order of its distance (see Eq. (1)). {P(i)} can be regarded as a 
pseudo time-series, taking the distance as the “time”, and the 
height as the signal. Then dynamic time warping (DTW) can be 
employed to measure the similarity to a real vehicle profile. 

Because dynamic time warping (DTW) aligns two time-series 
in time order, two identical time-series in reverse order will be 
recognized as different. Considering that it is difficult to judge 
the vehicle’s direction in a Lidar point cloud, two directed 
profiles are prepared for one type of vehicle in reverse order. 
See Fig. 4 for an example. According to this characteristic, the 
Begin point of the vehicle profile corresponding to the vehicle’s 
head or tail can be determined. That is, additional information, 
namely the parking direction, can also be obtained. 

 

     
(a) From head to rear  

 
(b) From rear to head 

Fig. 4 Example of a standard hatchback profile. 
(The horizontal axis is 𝐺𝐺𝐷𝐷 and the vertical axis is 𝑑𝑑𝐺𝐺.) 

 
Algorithm 2: Vehicle recognition using dynamic time warping 
(DTW) 
1. Create vehicle profile set {𝑆𝑆𝑊𝑊𝑆𝑆𝐿𝐿𝑑𝑑𝑆𝑆𝑆𝑆𝑑𝑑_𝑉𝑉𝐿𝐿ℎ𝑃𝑃𝑖𝑖𝑖𝑖𝐿𝐿_𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑃𝑃)}  

(0 < 𝑃𝑃 ≤ 2𝐿𝐿) for different vehicle classifications. n is the 
number of vehicle classifications considered.  

2. Derive the vehicle profile  {𝐷𝐷𝐿𝐿𝑆𝑆𝑃𝑃𝐷𝐷𝐿𝐿𝑑𝑑_𝑉𝑉𝐿𝐿ℎ𝑃𝑃𝑖𝑖𝑖𝑖𝐿𝐿_𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑃𝑃)} 
of the i-th potential vehicle segment. 

3. Calculate the similarity measurement D(𝑃𝑃, 𝑃𝑃)  between 
 {𝐷𝐷𝐿𝐿𝑆𝑆𝑃𝑃𝐷𝐷𝐿𝐿𝑑𝑑_𝑉𝑉𝐿𝐿ℎ𝑃𝑃𝑖𝑖𝑖𝑖𝐿𝐿_𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑃𝑃)} and each vehicle profile in 
{𝑆𝑆𝑊𝑊𝑆𝑆𝐿𝐿𝑑𝑑𝑆𝑆𝑆𝑆𝑑𝑑_𝑉𝑉𝐿𝐿ℎ𝑃𝑃𝑖𝑖𝑖𝑖𝐿𝐿_𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑃𝑃)}  

 ∃𝑚𝑚 ∈ [0,𝐿𝐿],   D(𝑃𝑃,𝑚𝑚) = 𝑚𝑚𝑃𝑃𝐿𝐿 (3) 

4. If D(𝑃𝑃,𝑚𝑚) is no larger than the threshold, the i-th potential 
vehicle segment is recognized as a vehicle, and its class is 
the same as that corresponding to the m-th standard vehicle 
profile; if D(𝑃𝑃,𝑚𝑚)  is larger than the threshold, it is 
recognized as a non-vehicle object. 

5. Repeat Steps 2 to 4, until all derived vehicle profiles are 
recognized. 
 

3. EXPERIMENT 

3.1 Experimental dataset  

3.1.1 Lidar point cloud: The test area is a common block 
located in Enschede, the Netherlands. The Lidar point cloud is 
extract from the AHN2 dataset, which was obtained in 2008 
with a point density of 20–30 pts/m2 (Fig. 5). The average 
distance between two arbitrary neighboring points is about 0.2 
to 0.3 m. The area is about 200m by 120m. 

There are buildings, streets, trees, vehicles, and other objects. 
There are 82 vehicles, some parked along the street, and others 
in a small parking lot. Some of them are parked entirely or 
partially under trees. 
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Fig. 5 Lidar point cloud of test area 

 
A manual visual inspection will be employed to check the 

result of our method.  
 

3.1.2 Standard vehicle profiles: Considering that most 
vehicles are small- or middle-sized in the urban area, five 
vehicle classes are considered: sedan, hatchback, sedan wagon, 
compact and middle-sized van, and SUV (Table 1). 

Buses and coaches are not considered because they usually 
park in special parking lots. Trucks are also not considered as 
they are rarer in urban areas. 

Table 1 Vehicle classes and their profiles 
Vehicle 

class Vehicle profile Picture 

Sedan 

 
 

Hatchback 

 
 

Sedan 
Wagon 

 
 

Compact 
and middle-

sized van 

 

 

SUV  

 
 

 
These five profiles (Fig. 6) and five corresponding reverse 

order profiles are used in the experiments.  

 
Fig. 6 Standard vehicle profiles 

 
3.2 Potential vehicle segment detection  

The potential vehicle segments are first extracted. This step is 
very important. A vehicle not detected in this step will be 
missed in the result. The parameters for the Lidar segment are 
determined by investigating the sizes of different vehicles, and 
the range of vehicle widths and lengths is set as  

𝑊𝑊𝑣𝑣 ∈ (1.4𝑚𝑚, 1.9𝑚𝑚), 𝐿𝐿𝑣𝑣 ∈ (2.7𝑚𝑚, 6.5𝑚𝑚) 
and vehicle heights 𝐺𝐺𝑣𝑣 < 3.1𝑚𝑚.  

The threshold (𝑑𝑑) for separating segments is set to 0.5 m. 
The detected vehicle segments are shown in Fig. 7. 

   

 
 

 
Fig. 7 The detected potential vehicle segments 

 
From Fig. 7, 92 potential vehicle segments are obtained, 

denoted by blank rectangles, where 13 vehicles are entirely or 
partially parked under trees. 14 of the segments are non-vehicles, 
and 4 vehicles are not detected (denoted by solid ellipses). 

Three vehicles, located in areas 1 and 2 in Fig. 7, are parked 
under a tree. The vertical profile of the two areas is shown in 
Fig. 8.  
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Fig. 8 Vehicles parked under a tree 

 
Vehicle #1 is partially covered by a tree, and vehicles #2 and 

#3 are entirely covered by a tree. They are all detected correctly. 
This is because the height range is set to 0.3–3.1m (denoted by 
the solid white lines in Fig. 8), so most tree points are excluded 
during the potential vehicle segmentation. 

 
3.3 Vehicle recognition 

Therefore, the profile of each vehicle segment is produced first, 
and is then recognized using dynamic time warping (DTW). 
The threshold of similarity measurement is set to 7. The vehicle 
recognition results are given in Fig. 9. 
  

 

 
Fig. 9 The derived vehicle classification 

 
After manually checking the results, all the vehicles are 

identified correctly, and the 13 non-vehicle segments are also 
identified correctly. No non-vehicle segments are recognized as 
vehicles. 

 
3.4 Vehicle detection accuracy 

To quantitatively evaluate the accuracy of the proposed method, 
three indexes, correctness, completeness and accuracy, are used. 
Correctness is 𝑇𝑇𝑃𝑃/(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃), completeness is 𝑇𝑇𝑃𝑃/(𝑇𝑇𝑃𝑃 +
 𝐹𝐹𝐹𝐹) and quality is 𝑇𝑇𝑃𝑃/(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹); where TP is the sum 
of true positives, FP is the sum of false positives and FN is the 
sum of false negatives (Powers 2011, Tuermer et al. 2013).  

The statistics of vehicle recognition are listed in Table 2.  
 

Table 2 The vehicle detection count 
 Vehicle Non-vehicle 

Detected vehicle TP=78 FP=0 
Detected non-vehicle FN=4 TN=14 

 
The 4 undetected vehicles are also counted in Table 2.  
Correctness of vehicle detection: 

𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 =

78
78 + 0 = 100% 

 
Completeness of vehicle detection: 

𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹

=
78

78 + 4 = 95.1% 
 
Quality of vehicle detection: 

𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹 =

78
78 + 0 + 4 = 95.1% 

 
This means that all the detected vehicles are real vehicles, 

about 95.1% of vehicles are extracted, and the quality of the 
proposed method is 95.1% overall. 

 
4. CONCLUSION 

The vehicle recognition method first separates the Lidar point 
cloud into segments with the vehicles’ size limits. Then the 
segment can be further recognized by the similarity 
measurement between its profile and standard vehicle profiles. 
Dynamic time warping (DTW) is employed to estimate the 
similarity of the profiles. 

The similarity measurement can be calculated by dynamic 
time warping (DTW). The experimental results show that the 
accuracy of the proposed method is 95.1%. 

During the Lidar point cloud segmentation, the vehicle’s size, 
i.e., width, length, and height, is considered. This makes it 
possible to extract a vehicle that is covered or partially covered 
by trees, which is very common in urban areas. 

Vehicles in the same class have similar shapes, but vary in 
length according to the different types. The similarity 
measurement derived by DTW is less affected by the vehicle 
length, and it provides a good solution for identifying the class 
of vehicle.  
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