
A ROBUST ESTIMATION METHOD OF LOCATION AND SCALE WITH 

APPLICATION IN MONITORING PROCESS VARIABILITY  

 

 

 

 

 

ROHAYU BT MOHD SALLEH 

 

 

 

 

 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of  

Doctor of Philosophy (Mathematics) 

 

 

 

 

Faculty of Science 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

AUGUST 2013 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTHM Institutional Repository

https://core.ac.uk/display/19100516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


v 
 

ABSTRACT 

 
 
 
 

This thesis consists of two parts; theoretical and application. The first part 

proposes the development of a new method for robust estimation of location and 

scale, in data concentration step (C-step), of the most widely used method known as 

fast minimum covariance determinant (FMCD). This new method is as effective as 

FMCD and minimum vector variance (MVV) but with lower computational 

complexity. In FMCD, the optimality criterion of C-step is still quite cumbersome if 

the number of variables p is large because of the computation of sample generalized 

variance.  This is the reason why MVV has been introduced. The computational 

complexity of the C-step in FMCD is of order ( )3O p  while MVV is ( )2O p . This is a 

significant improvement especially for the case when p is large. In this case, although 

MVV is faster than FMCD, it is still time consuming. Thus, this is the principal 

motivation of this thesis, that is, to find another optimal criterion which is of far 

higher computational efficiency. In this study, two other different optimal criteria 

which will be able to reduce the running time of C-step is proposed. These criteria 

are (i) the covariance matrix equality and (ii) index set equality. Both criteria do not 

require any statistical computations, including the generalized variance in FMCD and 

vector variance in MVV. Since only a logical test is needed, the computational 

complexities of the C-step are of order ( ) ln O p p .  The second part is the 

application of the proposed criteria in robust Phase I operation of multivariate 

process variability based on individual observations. Besides that, to construct a 

more sensitive Phase II operation, both Wilks’ W statistic and Djauhari’s F statistic 

are used.  Both statistics have different distributions and is used to measure the effect 

of an additional observation on covariance structure. 
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ABSTRAK 
 
 

 
 

Tesis ini mengandungi dua bahagian; teori dan aplikasi. Bahagian pertama  

mencadangkan pembangunan kaedah baru untuk penganggaran teguh lokasi dan 

skala, dalam langkah penumpuan data (C-langkah), dari kaedah yang paling 

digunakan secara meluas dikenali sebagai penentu kovarians minimum cepat 

(FMCD). Kaedah baru ini efektif seperti FMCD dan varians vektor minimum 

(MVV) tetapi kerumitan pengiraannya adalah rendah. Dalam FMCD, secara 

optimum kriteria bagi C-langkah masih agak rumit jika bilangan pembolehubah p 

adalah besar disebabkan pengiraan sampel varians teritlak. Inilah alasan mengapa 

MVV diperkenalkan. Kerumitan pengiraan C-langkah dalam FMCD adalah 

peringkat ( )3O p  manakala MVV adalah ( )2O p . Ini adalah satu peningkatan yang 

bererti terutamanya untuk kes bila  p besar. Dalam kes ini, walaupun MVV lebih 

cepat daripada FMCD, pengiraannya masih mengambil masa. Oleh itu, motivasi 

utama tesis ini ialah untuk mencari kriteria optimum yang lain dimana pengiraannya 

jauh lebih efisien. Dalam kajian ini, dua kriteria optimum yang berbeza yang boleh 

mengurangkan masa pengiraan di dalam C-langkah dicadangkan. Kriteria tersebut 

adalah (i) kesaksamaan kovarians matrik dan (ii) kesaksamaan set indeks. Kedua-dua 

kriteria ini tidak memerlukan sebarang pengiraan statistik, termasuklah varians 

teritlak dalam FMCD dan varians vektor dalam MVV. Disebabkan hanya ujian logik 

diperlukan, kerumitan pengiraan bagi C-langkah adalah peringkat ( ) ln O p p . 

Bahagian kedua adalah pengunaan kriteria yang dicadangkan dalam Fasa I dalam 

pemantauan kepelbagaian proses multivariat secara teguh berdasarkan sampel 

individu. Selain itu, untuk membina operasi Fasa II yang lebih sensitif, kedua-dua 

statistik W daripada Wilks dan statistik F daripada Djauhari digunakan. Kedua–dua 

statistik mempunyai taburan yang berbeza dan digunakan untuk mengukur kesan 

penambahan data pada struktur kovarians. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
 The aim of this chapter is to introduce the importance of this research. In 

Section 1.1, the background of the problem will be discussed followed by the 

statement of problem in Section 1.2. In the section which follows, the research 

objective and problem formulation will be presented. The scope of the study, thesis 

organization and the contribution of the study will be presented in Section 1.4, 

Section 1.5 and Section 1.6, respectively.  

 
 
 
 
1.1       Background of the Problem  

 
 

There is a quantum leap in modern manufacturing industries when ‘surpass 

customer expectation’ becomes a philosophy of quality since late 1990s. Industries 

believe that the importance to stay competitive is by producing not only high quality 

of process and products but also a creative, innovative and useful with pleasing 

unexpected features (Djauhari, 2011a). However, those criteria are not likely to be 

static, and will certainly be changed based on time and demands.  

 
 
In practice, a fundamental idea to improve the quality of process and products 

is realized by reducing the process variability. Philosophically, process quality is the 

reciprocal of process variability. If the process variability is small then the quality 

will be high and the larger the process variability the lower the quality. Alt and Smith 

(1988) and Montgomery (2005) mentioned that monitoring process variability is as 
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important as monitoring the process mean. However, the effort to manage the 

process variability is far harder than managing the process mean or, equivalently, 

process level.  

 
 
Since the customer demands become more and more complex, the term 

quality must be considered as a complex system. Statistically, this means that quality 

is a multivariate entity. Consequently, process quality monitoring must be in 

multivariate setting. Practically, the quality of the production process is determined 

by several quality characteristics, of which some or all are correlated. Therefore, 

since the correlations among characteristics must be taken into consideration, it is not 

allowed to control each characteristic individually.   

 
 
In multivariate setting, one of the most widely used control methods and 

procedures to monitor the process level is based on Hotelling’s T2-statistic. The 

advantages of this method are (i) this statistic is powerful tool useful in detecting 

subtle system changes (Mason and Young, 2001), (ii) relatively easy to use 

(Djauhari, 2005), (iii) appealing to practitioners because of its similarity to Shewhart 

type charts (Prins and Mader, 1997), (iv) reasonable approach (Sullivan and 

Woodall, 1996) and, (v) T2 is an optimal test statistic for detecting a general shift in 

the process mean vector (Mason et al., 1995).  

 
 
However, as T2-statistic is a multivariate generalization of student t-statistic, 

that multivariate control charting method is only focusing on detecting the shift in the 

mean vector. Nevertheless, it has received considerable attention. See for example, 

Tracy et al. (1992), Wierda (1994), Sullivan and Woodall (1996), Woodall and 

Montgomery (1999), Mason and Young (2001, 2002), and Mason et al. (1995, 1996, 

1997, 2003, 2011). In contrast, multivariate process variability monitoring had 

received far less attention in literature especially for individual observations 

compared to the case where monitoring is based on subgroup observations. The 

general idea of the former monitoring process can be seen, for example, in Sullivan 

and Woodall (1996), Khoo and Quah (2003), Huwang et al. (2007), Mason et al. 

(2009, 2010) and Djauhari (2010, 2011b). This is the reason why our focus in this 

thesis is on monitoring process variability based on individual observations.  
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In univariate setting, as can be found in any standard book of statistical 

process control, when only one quality characteristic is involved, process variability 

is monitored by using MR, R, S or S2 control charts. But, when the number of quality 

characteristics, p, is more than one and the correlations among them are to be 

considered, then a multivariate chart is required. There is a great potential for 

misleading results if univariate chart is used for each characteristics especially of 

receiving a false alarm or not receiving a signal when the multivariate process is out-

of-control. This is illustrated in Figure 1.1, where two quality characteristics that are 

positively correlated are monitored individually. In that figure, iLCL  and iUCL  are 

the lower control limit and upper control limit for the i-th characteristics; 1, 2.i =  

Horizontal axis is for the first characteristic while the vertical axis is for the second.  

 
 

 
Figure 1.1  Elliptical control region versus rectangular control region 

 
 

A few points inside the ellipse are in the state of in-control even though they 

are detected as out-of-control by using univariate chart for each characteristic.  There 

are also three points A, B and C outside the rectangular control region and ellipse 

control region, representing significant out-of-control.  However, univariate charts 

can easily fail to detect the potential signal. See the points P, Q and R. This is the 

danger of monitoring multiple correlated quality characteristics in univariate way. 

 

Q 

C 

A 

R 

P 

B LCL1 UCL1 

  LCL2 

    UCL2 
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Controlling all characteristics one by one is not allowed because of their correlations. 

Therefore, the requirement to monitor all characteristics simultaneously is demanded 

in current manufacturing industries.  See also Montgomery (2005), Mason and 

Young (2002) and Ryan (2011) for further discussions.  

 
 

Construction of control chart generally carried out in two phases; Phase I and 

Phase II.  Phase I is a cleaning process of historical data set (HDS); abnormal or 

outlier data points examined and remove from the HDS to obtain the reference 

sample (RS). The existence of those data points may be caused by tools, machines, or 

human errors.  Based on classical method as explained in Tracy et al. (1992), Wierda 

(1994), and Mason and Young (2001), any data points that lies beyond the control 

limits is removed after investigation for cause; otherwise they are retained. The 

process is continued until a homogeneous data set is obtained. This data set becomes 

the RS and provides the estimates of location and scale to be used for monitoring 

future observations in Phase II.   

 
 
In practice, there is a certain situation in Phase I operation where outliers are 

undetected. It is because the use of classical method, i.e., Hotelling’s T2 statistic, is 

powerful when there is only one outlier exist (Hadi, 1992) but as explained by 

Sullivan and Woodall (1996, 1998), Vargas (2003) and Yanez et al., (2010),  it will 

performs poorly when multiple outliers are present.  This latter situation as explained 

by Rousseeuw and van Zomeren (1990, 1991), Hadi (1992), Vargas (2003), Hubert 

et al. (2008) and Hadi et al. (2009) is usually due to masking and or swamping 

problems. In masking problem, outliers are considered as clean data points. 

Conversely, in swamping problem, clean data points are declared as outliers.  

 
 
Chenouri et al. (2009) mentioned that the assumption that the Phase I data 

come from an in-control process is not always valid whereas Phase I is critical for the 

success of the actual monitoring phase. Therefore, successful Phase II depends 

absolutely on the availability of RS, to estimate location and scale parameters, 

obtained from HDS in Phase I operation. Since classical estimates of location and 

scale can be very badly influenced by outliers even by a single one, effort to address 

this problem is focused on estimators that are robust. Robust estimators are resistant 
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against the presence of outliers. Robustness of estimators is often measured by the 

breakdown point (BP) introduced by Donoho and Huber (1983). Maronna et al. 

(2006) defined the BP of an estimate θ̂  of the parameter θ  is the largest amount of 

contamination such that the data still give information about θ . The higher the BP of 

an estimator, the more robust it is against outliers. The BP of the classical estimates 

is 1
n

 which means that even one outlier will ruin the estimates.  

 
 

There are many different robust estimation methods for location and scale. 

The most popular and widely used high breakdown robust parameter estimation 

method is the so-called Fast Minimum Covariance Determinant (FMCD). It has the 

properties that the estimates are of high degree of robustness, has bounded influence 

function which ensures that the presence of outliers can only have a small effect on 

an estimator, and affine equivariant which ensures that any affine transformation 

does not affect the degree of its robustness.  

 
 
As mentioned by Neykov et al. (2012), a recent development known as 

Minimum Vector Variance (MVV) has been introduced by Herwindiati et al. (2007). 

It is a refinement of data concentration step in FMCD developed for computational 

need. Meanwhile, Wilcox (2012) described MVV as a variation of the MCD 

estimator that searches for the subset of the data that minimizes the trace of the 

corresponding covariance matrix rather than determinant. However, it should be 

written as follows ‘minimizes the trace of squared of the covariance matrix’. Both 

FMCD and MVV consists of two steps; (i) to order p dimensional data points, p > 1, 

in the sense of centre-outward ordering, and (ii) to find the most concentrated data 

subset, called MCD set in the literature.   

 
 

If FMCD uses “minimizing covariance determinant” as the optimal criterion 

in the second step, MVV uses “minimizing vector variance”. Interestingly, both 

FMCD and MVV produce the same robust Mahalanobis squared distance, i.e., the 

same MCD set, but with different computational complexity. The computational 

complexity of covariance determinant in FMCD is ( )3O p  while that of vector 
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variance is only ( )2O p . Although MVV gives a significant improvement in terms of 

computational efficiency (Herwindiati et al, 2007), the optimal criterion is still 

superfluous because covariance matrix is symmetric, each upper (or lower) diagonal 

element is computed twice. Furthermore, our simulation experiments show that the 

minimum of vector variance could be attained long before the convergence is 

reached. Therefore, specifically, in terms of computational efficiency, there is a need 

to find another criterion which ensures the faster running time. This is the first 

challenging problem that concerns Phase I operation.  

 
 
On the other hand, concerning Phase II operation, most researchers are 

focused on monitoring process variability without passing through Phase I operation. 

This means that the initial covariance matrix 0Σ  is known which is not always the 

case in practice. There are very limited studies that concern on the case where 0Σ  is 

unknown which means that Phase I operation is a must to determine RS and estimate 

0Σ . Those who are working in this case are Mason et al. (2009) who used Wilks’ W 

statistic and Djauhari (2010, 2011b) who proposed squared of Frobenius norm F 

statistic to monitor process variability in Phase II. Since, these statistics are defined 

to measure the effect of an additional observation on covariance structure based on 

different tools, they cannot be used individually. This is the second challenging 

problem that concerns Phase II operation to construct more sensitive monitoring 

procedure.  

 
 
 
 

1.2 Problem Statement  

 
 

 Research background presented in the previous section leads us to the 

following research problems in robust monitoring process variability based on 

individual observations: 
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In Phase I operation: 

i. Develop a high breakdown point robust estimation method of location 

and scale giving the same robust Mahalanobis distance as FMCD and 

MVV but with lower computational complexity. 

ii. Construct a tool for multivariate normality testing. 

In Phase II operation: 

i. Construct a more sensitive Phase II operation by using both Wilks’ W 

statistic and Djauhari’s F statistic separately.  

ii. Construct a tool to identify the root causes of an out-of-control signal, i.e., 

to identify which quality characteristics that contribute in that signal.  

 

 
 
 
1.3     Research Objective and Problem Formulation 

 
 

This thesis consists of two parts: theoretical and application. The principal 

objective of the first part is to find a better optimal criterion with lower 

computational complexity and giving the same result as FMCD and MVV.  

 
 
The second part is the application of the proposed criterion in monitoring 

multivariate process variability based on individual observations. To achieve that, the 

main objective is to construct a control procedure that combine  

i. the high breakdown point robust location and scale estimates in the Phase 

I operation based on the proposed criterion 

ii. a more sensitive Phase II operation.  

 
 

More specifically, in Phase II operation, both Wilks’ W statistic and 

Djauhari’s F statistic will be used separately in two control charts. These statistics 

measure the effect of an additional observation on covariance structure. The last 

problem is to identify the quality characteristics that contributed to an out of control 

signal.  
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1.4 Scope of the Study 

 
 
The scope of study can be divided into 3 aspects. 

1. Theoretical aspect 

This aspect covers: 

i. Multivariate data ordering in the sense of centre-outward ordering based 

on Mahalanobis distance and multivariate data concentration in FMCD 

and MVV algorithms. 

ii. Two new optimal criteria in order to reduce the computational 

complexity of data concentration process. 

iii. A simulation study to show that the new algorithm produces the same 

robust Mahalanobis squared distance as FMCD and MVV algorithms. 

iv. Mathematical derivations of the exact distribution of 2T in Phase I and 

Wilks’ W statistic in Phase II. 

v. A study of the sensitivity analysis of Phase II operation.  

2. Computational aspect 

From computational point of view, the scope covers: 

i. Simulation experiments to show that proposed method produces the same 

MCD set compared to FMCD and MVV but with higher computational 

efficiency. 

ii. Simulation experiments to study the sensitivity analysis of Phase II 

operation.  

3. Practical aspects 

Application in real industrial problem to show the advantages of the method 

developed in this thesis.  

 
 
 
 
1.5  Thesis Organization 

 
 
The organization of the thesis is as follows. Chapter 1 briefly overviews the 

monitoring process in multivariate setting and the needs of robust estimates in Phase 

I operation. The most widely used methods are mentioned and the objective of the 
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research is defined. The scope of study is presented. The contribution of the research 

is stated at the end of Chapter 1. Chapter 2 covers the literature review. The existing 

theory of robust estimation methods and the evolution of ideas in high breakdown 

point robust estimation methods are presented.  

 
 

Later on in Chapter 3, critiques to data concentration process in FMCD will 

be delivered. Furthermore, in Chapter 4, a new robust method with lower 

computational complexity will be proposed. A new algorithm of robust estimation 

method is developed. An application of the proposed high breakdown robust 

estimation method in Phase I of monitoring process variability based on individual 

observations will be discussed in Chapter 5. The procedure of control charting by 

using W statistic and F statistic in Phase II will be presented and the relationship 

between Hotelling’s T2 statistic and W statistic will be showed.  

 
 
In order to show the performance of both statistics, in Chapter 6 a sensitivity 

analysis in terms of the percentage of outlier detection and the percentage of false 

positive and false negative will be presented and discussed. The root causes analysis 

in order to identify the variables that contribute to an out-of-control signal will be 

conducted. By using real industrial data, the sensitivity to the change of covariance 

structure of both W and F control chart will be demonstrated in Chapter 7. Chapter 8 

concludes the research results followed by a discussion and recommendations for 

further improvements.     

 
 
 
 
1.6 Contribution of the study 

 
 

The contributions of this research can be classified into two parts as follows: 

 

Contribution to the country: 

This thesis explains in details a procedure of robust monitoring process variability 

based on individual observations in multivariate setting.  Therefore, we optimist that 
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the results and findings from this thesis will be useful for the practitioners in 

Malaysia manufacturing industries to control and monitor their product and process.   

 

Contribution to the field: 

The contribution to the fields of robust statistics and statistical process control can be 

described into two aspects:  

1. Theoretical impact: The novelty of this thesis can be described as follows.  

i. Since MVV is computationally simpler than FMCD (Wilcox, 2012) and 

MVV is refinement version of FMCD (Neykov et al., 2012), in this 

thesis the process of C-step will be refined.  Then, a new optimality 

criterion is developed.  

ii. Simulation experiments show that the result of the proposed method in 

terms of running time is far better than FMCD and even better than 

MVV. 

iii. Pedagogically, the proof given by Wilks (1962, 1963) for the distribution 

of W is still difficult to digest. In this thesis, that distribution will be 

derived by using MANOVA point of view.  

iv. The relationship between W and T2 statistics is derived.  

v. A new test for multivariate normality is introduced. 

vi. Simulation experiment show that Djauhari’s F statistic is more sensitive 

than Wilks’ W statistic to the change of covariance structure in terms of 

false positive and false negative. 

vii. A root cause analysis of an out-of-control signal for F chart is proposed. 

The root causes analysis of W chart can be found in Mason et al. (2010).  

2. Manufacturing industrial aspect. 

A user friendly coding by using Matlab software and Microsoft Excel is 

developed.  

 

 



CHAPTER 2 
 
 
 
 

LITERATURE STUDY 

 
 
 
 
 If the previous chapter explained about the idea behind this research, in this 

chapter the literature study of some previous developments and contributions by 

other researchers is presented.  This chapter will cover two main ideas, namely the 

development of robust estimation method and the development of monitoring 

process variability.  Since both ideas are closely related with outlier issues, then in 

Section 2.1 the discussion is started with multivariate outlier identification. In 

Section 2.2, the evolution of robust estimation in high breakdown point will be 

presented, followed with high breakdown point robust estimation methods and its 

current development in Section 2.3. Then, Section 2.4 will focus on the discussion of 

the current scenarios in monitoring process variability.  At the end, the state of the art 

in this thesis will be stated clearly.  

 
 
 
 
2.1 Multivariate Outlier Identification 

  
 

Data collected in a broad range of applications especially on large and high 

dimension data sets such as in DNA studies (Kennedy et al., 2003), 

telecommunications (Koutsofios et al., 1999), and computer intrusion detection 

(Erbacher et al., 2002) frequently contain more than one outliers. It is so with data 

collected for Phase I operation in multivariate process control, as example in, Mason 

et al. (2002), Vargas (2003), Montgomery (2005), Jensen et al. (2007), and 

Chakraborti et al. (2008).  Identifying multiple outliers especially in multivariate 
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setting is a very important topic in statistical research. In practice, the inconsistency 

(Barnett and Lewis, 1984) and abnormality (Gladwell, 2008) of outliers compared to 

the bulk of data, are not easy to be formulated in general situation because outliers 

cannot be showed up by using simple visual inspection (Hubert et al., 2008).  

 
 
Various procedures in identifying outliers both in the univariate case and 

multivariate case are being introduced from time to time.  For instance, in the 

univariate case, Thomson (1935) proposed a measuring tool to see the ratio between 

the deviations from its mean and sample standard deviation. Based on the philosophy 

of Thomson’s statistic, Grubbs (1950), Tietjen and Moore (1972) and Rosner (1975) 

developed the measure to detect outliers. Grubbs (1950) proposed a statistic to test 

the largest or smallest data that is suspected as outliers. Tietjen and Moore (1972) 

developed Grubbs’s research to test ( )1k k ≥  extreme data that deviated away from 

the group of the other ( )n k−  data simultaneously through the gap. Then, Rosner 

(1975) introduced generalized extreme studentized deviation (ESD) which is 

developed from the idea of Tietjen and Moore (1972) to test several outliers 

simultaneously. Tukey method (1977) considered the data outside a fence as 

‘unclean data’ is usually used to label outlier suspects. Then, a development of ESD 

can be seen in Iglewicz and Hoaglin (1993) and an exact procedure is proposed by 

Djauhari (1999).  The exact critical points of ESD were given by Djauhari (2003) 

through an inverse beta function.  

 
 
However, in multivariate case, Wilk’s criteria is one of the early methods for 

identifying outliers. Wilks (1963) introduced a method for testing multiple outliers 

based on the ratio of volume of parallelotope. Gnanadesikan and Kettentering (1972) 

detected several outliers consecutively through an analysis of principal components. 

They proposed a statistical test which is based on Mahalanobis distance. Nowadays, 

Mahalanobis distance becomes the most popular approach and many researchers use 

Mahalanobis distance as the tool for outlier detection. See, for example, Barnett and 

Lewis (1984), Pena and Preito (2001), Djauhari (2002), Werner (2003), and 

Filzmoser (2004) for in-depth presentation.  
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However, Mahalanobis distance is very sensitive to the masking and 

swamping effects (Hubert et al. (2005, 2008) and Hadi et al. (2009)). To handle this 

problem, the method of robust estimator introduced by Huber (1964) can be used as a 

theoretical foundation for the construction of robust Mahalanobis distance.  

 
 
 
 
2.2 Evolution of Robust Estimation in High Breakdown Point 

 
 

Currently, only a few studies can be found in the implementation of high 

breakdown robust estimates to monitor multivariate process variability based on 

individual observations. All previous studies are concerned on process monitoring by 

using Hotelling’s 2T - statistic. Since this statistic is powerful if there is only one 

single outlier (Mason and Young, 2001), robust method is needed to increase its 

power when several outliers are present.  The early development of high breakdown 

point robust estimates in Phase I is given by Vargas (2003) by using robust approach 

of minimum volume ellipsoid (MVE), minimum covariance determinant (MCD) and 

trimmed type estimator. These three approaches have proven very effective in the 

identification of outlying points. His study concluded that by using simulation 

results, 2T control chart using MVE estimators is effective in detecting any 

reasonable number of outliers.  

 
 
Few years later, Jensen et al. (2007) remarked that MVE and MCD are 

difficult to implement in practice due to the extensive computation required to obtain 

the estimates.  Chenouri et al. (2009) proposed a multivariate robust Hotelling’s 2T

chart based on reweighted MCD estimates as an alternative to classical multivariate 
2T control charts for Phase II. The control chart is obtained by replacing the classical 

mean vector and covariance matrix of the data in the Hotelling’s 2T  by the 

reweighted MCD estimators. They remarked that the estimators are affine 

equivariant and highly robust with better efficiency than the ordinary MCD 

estimators used in Vargas (2003), Hardin and Rocke (2005) and Jensen et al. (2007) 

for outlier detection in Phase I. Their research concluded that the proposed robust 

control chart are similar to standard 2T chart in performance when the process is in 
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control and are more efficient than standard 2T chart (with and without outlier 

removal in Phase I) when there are outliers in the process during Phase I.  The papers 

by Midi et al. (2009) and Mohammadi et al. (2011) showed that the use of robust 

approaches of MCD, MVE and reweighted MCD in monitoring process is very 

significant for detecting changes, compared to the standard approach. Since MVV 

give the same robust Mahalanobis distance as FMCD, but with lower computational 

complexity, the performance of MVV is better than FMCD.  

 
 
 
 
2.3 High Breakdown Point Robust Estimation Methods 

 
 

The area of robust statistics has been intensively developed since the sixties. 

It is appeared due to the pioneer works of Turkey (1960), Huber (1964), and 

Hampel’s idea in 1968 for his PhD research. The term ‘robust’ (strong, sturdy) as 

applied to statistical procedures was proposed by Box (1953). The major goal of 

robust statistics is to develop methods that are robust against the possibility that one 

or several unannounced outliers may occur anywhere in the data. This is the principal 

motivation that encourages researchers to develop better methods of robust 

estimation of location and scale.  

 
 

Outlier identification and robust location and scale estimation are closely 

related (Werner, 2003). To strengthen this claim, there are a lot of researches in this 

area. See, for example, Rousseeuw (1985), Rousseeuw and Zomeran (1990), Hadi 

(1992), Becker and Gather (1999), Pena and Prieto (2001), Herwindiati et al. (2007) 

and Djauhari et al. (2008).  

 
 
An application of robust estimates is widely used in industry. See, for 

example, in asset allocation (Welsch and Zhou, 2007). In chemical process (Egan 

and Morgan, (1998), Wu et al., (2011)), geochemistry exploration (Filzmoser et al., 

2005), wind analysis (Ratto et al., 2012), digital image processing (Vijaykumar et 

al., 2009), content based image retrieval (Herwindiati and Isa, 2009), gene intensities 

from DNA microarrays (Gottardo et al., 2006), daily mortality and air pollutant 
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concentrations (Wang and Pham, 2011), instrument behaviour study of geothermal 

polluted porcelain insulators (Waluyo et al., 2009), manufacturing industry, for 

example, Vargas (2003), Chenouri et al. (2009) and Pan and Chen (2010). In this 

thesis, the details of the application of robust methods in manufacturing industry will 

be presented in Chapter 5.   

 
 

In the current development of robust location and scale estimation method, 

minimum covariance determinant (MCD) is as the basic principle. It is because, as 

have mentioned earlier, MCD possesses some commendable properties such as high 

breakdown point, bounded influence function, and affine equivariant. The first two 

properties ensure that the presence of outliers can only have a small effect on the 

estimators. The last property guarantees that the estimators are not affected by any 

affine transformation (Hubert et al. 2008). Due to these properties, nowadays FMCD 

becomes one of the most widely used robust estimation methods that have received 

considerable attention in literature. This method is originally introduced by 

Rousseeuw (1985) together with another method called minimum volume ellipsoid 

(MVE). However, in recent development, the popularity of MCD dominates that of 

MVE. One reason is that, as mentioned in Hadi (1992), MCD is more effective and 

efficient than MVE. Moreover, MCD has more attractive geometric interpretation 

than MVE.  

 
 
Since the work of Hadi (1992) who modified MCD to ensure the non 

singularity of covariance matrix during iteration process, many papers appeared to 

develop MCD. For example, Hawkins (1994) proposed the feasible solution 

algorithm (FSA) to satisfy the necessary condition for MCD to be optimum, Hawkins 

and Olive (1999) presented a new version of FSA, Croux and Haesbroeck (1999), 

studied the influence function of MCD and use it to evaluate the MCD scale 

estimator efficiency, Rousseeuw and van Driessen (1999) introduced the so-called 

Fast MCD (FMCD) to improve the running time of MCD by introducing the C-step 

(data concentration step), Pagnotta (2003) proposed an improvement of FMCD 

algorithm by using the agglomerative hierarchical clustering (AHC) to choose the 

number of elemental sets, Werner (2003) claimed that FMCD is not apt for high 
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dimension data, and Hubert et al. (2005) improved the performance of FMCD to get 

the closer solution to the global optimum.  

 
One of the most recent literature is Hubert and Debruyne (2010) who 

mentioned that FMCD procedure is very fast for small sample sizes n , but it works 

slower and slower when n  gets larger for large p . This statement justified that 

Werner’s claim (2003) is true. Those papers focused on covariance determinant or 

also known as generalized variance as the stopping rule in C-step.  However, in this 

step, the optimality criterion of this method is still quite cumbersome if the number 

of variables p is large (Djauhari et al., 2008).  

 
 
To improve the running time of FMCD, Djauhari et al. (2008) introduced 

minimum vector variance (MVV) as a new stopping rule in C- step. As mentioned by 

Neykov et al. (2011), this method is the refinement step of FMCD constructed for 

computational efficiency. It has significantly lower computational complexity. More 

specifically, it gives the same robust Mahalanobis distance as FMCD and its 

computational complexity is of order ( )2O p  while the former is ( )3O p . This is a far 

significant improvement in terms of computational complexity for p > 2. 

Furthermore, MVV is simple to compute (Wilcox, 2012).  However, as will be 

discussed in Chapter 4, other criteria of the stopping rule which give the same robust 

Mahalanobis distance with lower running time will be developed. For that purpose, 

the theoretical foundation of FMCD and MVV will be highlighted in order to show 

the advantages of both methods.  

 
 
 
 
2.4 Scenarios in Monitoring Process Variability 

 
 

In general, monitoring process variability in multivariate setting can be 

classified into 3 scenarios.  The most common scenario is based on sub-group 

observations where the subgroup size, m, is greater than the number of quality 

characteristics, p.  The details can be found in Alt and Smith (1988), Tang and 

Barnett (1996), Yeh et al. (2004), Djauhari (2005), Djauhari et al. (2008), Yeh et al. 
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(2006) and Djauhari and Mohamad (2010). The second scenario is based on 

individual observations, i.e. the subgroup size, m is equal one. The main problem of 

this scenario is to test the effect of an additional observation on a covariance 

structure. The idea of this effect can be seen, for example, in Sullivan and Woodall 

(1996), Khoo and Quah (2003), Huwang et al. (2007), Mason et al. (2009, 2010) and 

Djauhari (2010, 2011b). The last and the most recent scenario is introduced by 

Mason et al. (2009) based on sub-group observations where1 m p< < . As mentioned 

earlier, only the second scenario is discussed in this thesis.  

 
 
 
 
2.4.1 Individual Observations-Based Monitoring 

 
 
In this scenario, we can see many different contributions given by the 

authors. For example, Sullivan and Woodall (1996) proposed to use the successive 

different on a covariance matrix estimator which is originally introduced by Holmes 

and Mergen (1993). Then, Sullivan and Woodall (1996) modified the Hotelling’s T2 

statistic by implementing that estimator. They showed that the modified T2 control 

chart is more effective than the usual one.  Later on, Khoo and Quah (2003) proposed 

a simple way for monitoring shifts in the covariance matrix of a p -dimensional 

multivariate normal process distribution. In their research, it is assumed that the 

process covariance matrix is known. In this case, Phase I operation is not needed.  

 
 
Huwang et al. (2007) proposed two new control charts, namely the 

multivariate exponentially weighted mean squared deviation (MEWMS) and 

multivariate exponentially weighted moving variance (MEWMV). Both charts are 

constructed based on the trace of the estimated covariance matrices derived from the 

individual observations.  

 
 

Djauhari (2010) proposed another multivariate dispersion measure to monitor 

process variability based on individual observations. It is constructed based on the 

matrix D defined as the scatter matrix issued from augmented data set (ADS) 

subtracted by that from HDS. Specifically, Djauhari’s F statistic, defined as the 
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Frobenius norm of D , represents the effect of additional observations on the 

covariance structure.  Furthermore, Djauhari (2011b) described that Wilks’ W 

statistic is important in the area of industrial application because it has direct, simple 

geometrical interpretation and easy to implement in practise especially when p  is 

not too large. Still, Wilks’ W statistic alone might not be sufficient to describe the 

effect of an additional observation on covariance structure.  This statistic has serious 

limitations as mentioned in Alt and Smith (1988), Montgomery (2005) and Djauhari 

(2005, 2010). Djauhari’s F statistic is used to handle the limitations of Wilks’ W 

statistic.  

 
 
 
 
2.4.2 Opportunity for Improvement 

 
 
 Actually, W statistic and F statistic are two different measures to quantify the 

effect of an additional observation to the covariance structure. Therefore, they have 

different properties. In Chapter 5, a monitoring procedure by using both W chart and 

F chart separately to construct a more sensitive Phase II operation will be developed.  

 
 
 
 
2.5 Summary 

 
 
 This chapter discussed on the literature study of previous developments and 

contributions by other researchers in the development of robust estimation method 

and the development of monitoring process variability especially in the scenario of 

individual observation based monitoring.  The evolution of robust estimation in high 

breakdown point and its current development was discussed and it motivates us to 

propose a new idea that will be presented in Chapter 4. Then, in order to have a 

better understanding of existing measures of process variability of GV and VV, 

Chapter 3 will discuss about it in details.   

 



CHAPTER 3 

 
 
 
 

UNDERSTANDING PROCESS VARIABILITY  
 
 

 
 

There is no single measure that can be used to understand process variability 

either in univariate setting or multivariate setting because of its complexity 

(Djauhari, 2011c). In univariate setting, there are several tools to measure process 

variability. For example, range, inter-quartile range, mean absolute deviation, 

variance and standard deviation. The covariance matrix Σ  is a multivariate 

generalization of the univariate concept of variance, 2σ . To measure the multivariate 

variability, it is convenient to have a single number rather than a matrix (Mardia et 

al., 1979). The most popular and widely used measure is the generalized variance 

(GV) or also called covariance determinant, total variance (Chatterjee and Hadi, 

1998; Mardia et al., 1979), effective variance (Serfling, 1980; Pena and Rodriguez, 

2005), the square root of generalized variance (Alt and Smith, 1988; Djauhari, 2005) 

and the relative generalized variance (Tang and Barnett, 1996), and the new 

alternative measure called vector variance (VV) (Djauhari, 2007). It should be noted 

here that effective variance, square root of generalized variance, and the relative 

generalized variance are a function of GV. Since total variance does not involve the 

covariance structure, in what follows we concentrate only on GV and VV. However, 

these two measures are unable to represent the whole structure of covariance matrix 

because they are only a scalar representation of complex structure of covariance 

matrix. This shows how difficult to measure and thus to understand multivariate 

variability. Although it is difficult to measure the multivariate variability, these 

measures are still commonly used to test the equality of two covariance matrices 

(Anderson, 1984), to monitor the stability of covariance structure by using GV 

(Montgomery, 2005) and by using VV (Djauhari et al., 2008). In Section 3.1, the 
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interpretation of the structure of covariance matrix will be explored in details. The 

limitations of GV will be discussed in Section 3.2 as well as the limitations of VV in 

Section 3.3. Then, in the last section a way to handle those obstacles in C-step in 

FMCD and MVV is highlighted.  

 
 
 
 
3.1 Structure of Covariance Matrix 
 

 
The structure of multivariate data is hidden in a two dimensional array that 

can be presented in n p×  matrix X where p is the number of variables and n is the 

number of observations on p variables.  The following X matrix contains the 

information of n observations on p variables; ijX  is the measurement of the i-th 

individual observation on j-th variable. 

 

X = 

11 12 1 1

21 22 2 2

1 2

1 2

j p

j p

i i ij ip

n n nj np

X X X X
X X X X

X X X X

X X X X

 
 
 
 
 
 
 
 
  

 

 

     

 

     

 

. 

 

This data matrix can be considered from two points of view. First, each row 

is a vector of individual observation in a space of p  dimension pR . Second, each 

column is a vector of individual variable in nR .  If  X  is the sample mean vector,  

                                                       X = 
1

1 n

i
i

X
n =
∑                       

then ( )( )'

1

n

i i
i

A X X X X
=

= − −∑  is the scatter matrix and 1
1

S A
n

=
−

 is the sample 

covariance matrix which is an unbiased estimate of the population covariance matrix  
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11 12 1

21 22 2

1 2
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σ σ σ 
 σ σ σ ∑ =
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.  

 

Let us write  

11 12 1

21 22 2

1 2

  

p

p

p p pp

s s s
s s s

S

s s s

 
 
 =
 
 
  





   



. 

 

The element iis  is the sample variance of the i-th variable. It can be 

considered as the squared norm of the centred i-th variable divided by ( )1n − . 

Furthermore, the sample covariance of the i-th and j-th variables, ijs , is the scalar 

product of the centred i-th and j-th variables divided by the same scalar. Therefore, 

from Linear Algebra, we know that the sample correlation 

ij
ij

ii jj

s
r

s s
=  

is nothing more than the cosine of the angle between the centred i-th and  j-th point 

variables in nR .  

 
 

The above point of view guides us that the covariance matrix S  represents 

the configuration of p variables in that space defined by the norm (length) of each 

variable and the angle between two different point variables.  

 

If we write the sample correlation matrix  

R = 

11 12 1

221 22

1 2

 
 

         
 

p

p

p p pp

r r r
rr r

r r r

 
 
 
 
 
 
 





   



, 

then R  is the estimated of population correlation matrix 
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1 2
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 ρ ρ ρ
 

ρρ ρ Ω =  
 
 ρ ρ ρ 





   



. 

 
 
 
 
3.2 Understanding the Role of GV 
 
 

A major role of total variance (TV) generally can be found easily in the 

problem of data dimension reduction such as, for example, in the principal 

component analysis, (Anderson (1984) and Johnson and Wichern (2007)), and 

canonical correlation analysis (Anderson (1984)). This limitation of the role of TV in 

application is understandable because it involves the variance only without involving 

the whole structure of covariance. In other words, it is simply involving the diagonal 

elements of covariance matrix.  

 
 
Meanwhile, the role of GV can be found in every literature on multivariate 

analysis particularly in testing hypothesis of two or more covariance structures 

equality and multivariate dispersion monitoring. See, for example, Kotz and Johnson 

(1985), Alt and Smith (1988), Montgomery (2005) and Djauhari (2005). The role of 

GV also can be found in FMCD and minimum volume ellipsoid (MVE); the two 

robust estimation methods of location and scatter (Rousseeuw, 1985).  

 
 

The GV provides a way of writing, in the form of scalar representation, the 

information about covariance structure. Since it is only a scalar representation then it 

could happen that two different covariance matrices have the same GV. As an 

illustration, consider the three covariance matrices: 

 

1

4 0
0 4
 

Σ =  
 

, 2

5 3
3 5
 

Σ =  
 

, 3

5 3
3 5

− 
Σ =  − 

. 
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The value of GV of those covariance matrices is the same, i.e.,

1 2 3 16Σ = Σ = Σ = . The three matrices convey considerably different information 

about covariance structure. The variables represented in 1Σ  are independent of each 

other, but they are positively and negatively correlated according to 2Σ  and 3Σ , 

respectively. Therefore, those different correlation structures cannot be distinguished 

by GV. See Johnson and Wichern (2007), Mason et al. (2009), and Djauhari and 

Mohamad (2010) for further discussion.  

 

A geometrical representation of bivariate normal probability density function 

(PDF) with zero mean vector and those three covariance matrices will help us to 

understand what covariance structure is. In order to show the difference of 

covariance structure among 1Σ , 2Σ  and 3Σ , the 3-d image of that PDF is plotted. 

 
 

 

Figure 3.1  Bivariate normal PDF with 1

4 0
0 4
 

Σ =  
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Figure 3.2  Bivariate normal PDF with 2

5 3
3 5
 

Σ =  
 

. 

 

 

Figure 3.3  Bivariate normal PDF with 3

5 3
3 5

− 
Σ =  − 

. 

 

On the other hand, if the graph is sliced horizontally, the confidence ellipse 

will be obtained. The view from the surface will be like Figure 3.4 to Figure 3.6.  
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