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Abstract 

Background: Walking impairment has a major influence on the quality-of-life of people 

with multiple sclerosis (MS). The Multiple Sclerosis Walking Scale (MSWS-12) 

assesses the impact of MS on walking ability from the patient’s perspective, but in its 

current form, is not amenable for use in many policy decision-making settings. 

Objectives: Statistical ‘mapping’ methods were used to convert MSWS-12 scores to EQ-

5D health state values.  

Methods: The relationship between the measures was estimated using cohort data from 

people with MS in South West England. Regression analyses were conducted, 

estimation errors assessed, and predictive performance of the best models tested using 

longitudinal data.  

Results: Model performance was in line with that of other mapping studies, with the best 

performing models being an ordinary least squares (OLS) model using MSWS-12 item 

scores, and an OLS model using the total MSWS-12 score and its squared term.  

Conclusions: A process has been described whereby data from a patient-reported 

outcome measure (MSWS-12) can be converted to (EQ-5D) health state values. These 

values may be used to consider the health-related quality-of-life of people with MS, to 

estimate quality-adjusted life-years for use in effectiveness and cost-effectiveness 

analyses, and to inform health policy decisions. 
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Introduction 

Walking impairment is the most visible sign of multiple sclerosis (MS) [1] [2], with 

walking performance contributing greatly to the impact of MS on the health-related 

quality-of-life of people with the condition [3] [4]. Clinical measures commonly used to 

assess the progression of MS, such as the Expanded Disability Status Scale (EDSS) [5] 

and timed walk tests [6], do not directly inform on the impact of walking impairment on 

individuals’ daily living [7]. Against this backdrop, and the wider move to the use of 

patient-reported outcome measures (PROMs) [8] [9], the Multiple Sclerosis Walking 

Scale (MSWS-12) has been developed to assess the impact of MS on walking ability 

from the patient’s perspective [7]. The MSWS-12 is increasingly used in clinical trials, 

specifically where interventions are targeted at alleviating walking impairment (e.g. 

fampridine [10]; nerispirdine [11]; core stability training [12]; dynamic foot orthoses [13]). 

However, in its current form, it does not provide a preference-based measure of health 

status. This means it is not able to be used in many policy settings where decisions are 

informed by information on the cost-effectiveness of treatments. 

Most measures of health status are non-preference-based [14]. They describe or 

assess the health state that an individual is in, but assign no value (or preference) to the 

state. These measures may give a summative or detailed picture of an individual’s 

health, but give no indication of the relative value that would be given to this health state 

compared to other possible health states. However, decision-makers assessing value 

for money using comparative effectiveness or cost-effectiveness analyses [15] [16], 

generally require summary preference-based measures of health status. Such 
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measures use preference data, elicited from appropriate populations, to assign values 

to health state descriptions.  

 

Preference-based measures have two components: i) a means of describing health 

status and; ii) a mechanism for assigning health state values to each of the possible 

health states [14]. The health state values, estimated from, most frequently, preferences 

of the general population, can be derived by a variety of methods, and typically give 

values on a scale where 1 is equivalent to full health and 0 is equivalent to death. Data 

from preference-based measures are more amenable for use in decision-making 

regarding the cost-effectiveness of interventions, as preferences for the health states, or 

the outcomes associated with interventions, can be compared across conditions [17]. In 

addition, preference-based measures are used to estimate quality-adjusted life-years 

(QALYs), increasingly the outcome of choice in policy settings involving the use of 

economic evaluations [18] [19] [20].  

 

QALYs combine quantity and quality of life in a single measure of health outcome, by 

adjusting life years survived using a quality of life weight, with the weights usually being 

health state values derived from preference data [21]. For example, a year in full health 

would equate to 1 QALY and two years in ‘half health’ (0.5 health state value) would 

also equate to 1 QALY. 

 

Preference-based measures, one of the most commonly used being the EQ-5D index 

[22], are now widely used in health policy settings. In contrast, the MSWS-12 is a non-

 4 



 

preference-based measure, meaning QALYs cannot be calculated from it and it is not 

directly applicable for use in cost-effectiveness analyses.  

 

Historically, clinical trials have typically favoured condition-specific measures (such as 

the MSWS-12) as their outcome of choice, arguing that they are more likely to be 

sensitive to change than generic health status measures, such as the EQ-5D [14]. This 

has resulted in studies that provide data that can be used for assessing effectiveness, 

but not for assessing cost-effectiveness. This is the case with the MSWS-12. 

 

There is an argument for the use of both a PROM and a preference-based measure in 

trials. The PROM will be particularly relevant to people with MS, more specific to the 

condition and, potentially, more sensitive to change, whilst the preference-based 

measure can be used for estimating QALYs and in cost-effectiveness analyses. 

However, in practice, a preference-based measure, such as the EQ-5D is often not 

included, resulting in limitations to the economic evaluation that can be conducted. This 

paper used statistical techniques to ‘map’ from the MSWS-12 to preference-based 

scores on the EQ-5D. The aim was to derive conversion algorithms that could be used 

in practice to convert MSWS-12 scores to EQ-5D scores for use in cost-effectiveness 

analyses.  

 

Methods 

The data 
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Data from the UK South West Impact of Multiple Sclerosis (SWIMS) project were used 

for analysis. SWIMS is a longitudinal, prospective, cohort study of people with MS in 

Devon and Cornwall (South West England), with individuals followed-up six-monthly 

[23]. Data are collected on demographics and clinical features, and across a range of 

patient-reported outcomes, including the MSWS-12 and the EQ-5D. SWIMS 

commenced recruitment in August 2004, and all participants who had completed 

baseline questionnaires including complete MSWS-12v1, EQ-5D and demographic (age 

and gender) data at February 2010 were included in this analysis.  

 

The SWIMS study was approved in the UK by the Cornwall and Plymouth and South 

Devon Research Ethics Committees, and written informed consent obtained from all 

participants. 

 

Measures 

MSWS-12 [7] – The MSWS-12 is a patient-based measure assessing the extent to 

which an individual’s MS impacts on their walking ability. It is a condition-specific 

measure, developed from people’s experiences of MS [7], and has been validated using 

comprehensive psychometric techniques [24] [25]. The scale comprises 12 items rated 

on a five point scale (1, ‘not limited’ to 5, ‘extremely’). Total scores are calculated and 

can range from 12 to 60. These scores are transformed to a scale of 0 to 100 to aid 

interpretation. Higher scores reflect greater impact on walking ability. 
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EuroQol EQ-5D [22] – The EQ-5D is a generic health status measure, comprising five 

sub-scales (mobility, self-care, usual activities, pain/discomfort and anxiety/depression), 

with each sub-scale having three response levels (1, ’no problems’; 2, ‘moderate 

problems’; 3, ‘severe problems’). This classification of health status results in 243 

possible health state descriptions.  

 

Participant responses to the EQ-5D can be converted to the EQ-5D derived single 

index, a generic preference-based measure, using preference-weights for the health 

states. For example, in the UK, a tariff is commonly used [26] which has been derived 

from the preferences of a general population sample for each of the 243 possible health 

states. This gives values for each of the EQ-5D health states on an index ranging from 

1.00 for the best health state to -0.594 for the worst health state. The EQ-5D is 

frequently used in clinical studies and cost-effectiveness analyses, and is currently the 

measure preferred by the UK National Institute of Health and Clinical Excellence in its 

health technology appraisals process [27]. 

 

Mapping 

Over the last 10 years, statistical procedures have been developed for mapping (or 

‘cross-walking’) from condition-specific measures, such as the MSWS-12, to generic 

preference-based measures, such as the EQ-5D index. Mapping is possible where data 

exist on the two measures from the same sample, and involves estimating the 

relationship between the measures using statistical association. Regression analyses 

are used to derive algorithms that can be used to convert non-preference-based scores 
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to preference-based scores (QALY weights). A wide range of studies have been 

published reporting on mapping from, for example, cancer [28], osteoarthritis [29], oral 

health [30], and Crohn’s disease [31] condition-specific instruments, to preference-

based measures such as the EQ-5D. However, little has been done in the field of 

neurology, with only one paper mapping from the Parkinson’s Disease Questionnaire 

(PDQ-8) to the EQ-5D [32], and no work identified mapping from MS instruments to 

health state values. 

 

Statistical analyses 

Statistical conventions in the mapping literature [33] were followed to examine the 

relationship between the MSWS-12 and the EQ-5D index.  

 

Baseline data from SWIMS were used as the estimation sample, to develop the most 

appropriate statistical models and to test within-sample performance. The accuracy of 

the best performing models in estimating EQ-5D scores was then assessed using 

longitudinal data from SWIMS. 

 

Five regression models were initially estimated using SWIMS baseline data.  

The EQ-5D index was regressed on the: 

Total score for the MSWS-12 (Model A); 

Total score for the MSWS-12 and the total score squared1 (Model B); 

Total score for the MSWS-12 and participant age and gender (Model C); 

1The squared terms were added to pick up non-linearities in the relationship between MSWS-12 and health state 
value scores. 
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MSWS-12 item scores2 (Model D);  

MSWS-12 item scores and participant age and gender (Model E). 

As described above, ratings on each of the MSWS-12 items are on a 5-point response 

scale. Mapping studies have mostly assumed that such response scales represent 

interval scale data, and have used linear regression analyses ([32], [29], [30], [34]. 

Whilst this approach is also adopted here, in recognition that the response options are 

ordered categories, the item responses were also re-categorised to a simple binary 

response scale, with categorical data as 0 ‘not at all’ and 1 ‘a little’/’moderately’/’quite a 

bit’/’extremely’ (in line with others e.g. [32], [30]), and the following models were also 

run: 

Dichotomised MSWS-12 item scores (Model F) 

Dichotomised MSWS-12 item scores and participant age and gender (Model G). 

 

Ordinary least squares (OLS) regression models were used for estimation, together with 

Tobit [35] and Censored Least Adjusted Deviation (CLAD) [36]. These latter approaches 

were applied to address common concerns over OLS methods, and to test their value in 

further reducing estimation errors. Tobit models use an upper censoring limit of 1, as is 

the case with the EQ-5D, but are sensitive to violations of hetereoscedasticity or non-

normality; in such instances, CLAD may be more appropriate as it is robust to these 

violations. 

 

2Backward stepwise approach: The least statistically significant of the12 items were removed one by one until t he 
estimation errors increased. 
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When mapping, the principal aim is not to produce a model that explains the most 

variance in the data (adjusted R2), but to derive an algorithm that as accurately as 

possible estimates health state values at a group level [37]. Therefore, for each of the 

regression models (21 in total), estimation errors [33], in the form of mean absolute 

error (MAE) and root mean square error (RMSE) were assessed.3  

 

There are currently no guidelines as to when estimation errors are and are not 

acceptable [38], but a systematic review of mapping studies [33] has reported MAEs 

from 0.0011 to 0.19, and RMSEs from 0.084 to 0.2. (Adjusted R2 values of 0.17 to 0.51 

have been reported). Also assessed were the proportions of estimates that fell within 

0.10 and 0.25 of the actual EQ-5D value.  

 

The performance of the statistical models with the lowest estimation errors was then 

assessed with the SWIMS longitudinal data. Estimation errors were explored with the 

follow-up data and assessed according to the severity of the EQ-5D health state, and 

the actual EQ-5D health state values were compared with estimated values. 

  

Data analysis was conducted in STATA 10.  

 

Results 

Participants 

3MAE is the mean of the absolute estimation errors across individuals (the estimation error is the difference between 
the actual EQ-5D score for a particular individual and their estimated EQ-5D score based on the mapping model). 
RMSE is the positive square root of the mean squared estimation error. 
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560 SWIMS participants provided MS diagnosis, age, gender and MSWS-12v1 and EQ-

5D data at baseline (Table 1), with the demographics of the sample being similar to 

published data for the UK [23]. The correlation between MSWS-12 total scores and EQ-

5D health state values was r=-0.581 (p<0.001).  

 

Table 1: Demographic and clinical characteristics of the SWIMS sample at baseline 

Characteristic N = 560 

 
MS diagnosis, n (%): 
 Relapsing-remitting 
 Primary progressive 
 Secondary progressive 
 Benign 
 Not known 

 

 
227 (40.5) 
104 (18.6) 
103 (18.4) 

17 (3.1) 
109 (19.5) 

  
Gender, n (%): 
 Male 
 Female 

 
148 (26.4) 
412 (73.6) 

  
Age (years), mean (sd)  
  (range) 
 

50.2 (11.0) 
(18 to 79) 

MSWS-12 total score, mean (sd)  
  (range) 
 

60.1 (32.4) 
(0 to 100) 

EQ-5D index score, mean (sd) 
  (range) 

0.614 (0.248) 
(-0.239 to 1) 

 

Predictive performance (estimation sample) 
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In total 21 models were considered, with Models A to G each estimated using the three 

regression types.  

 

Multi-collinearity of the MSWS-12 items was assessed using the ‘collin’ command in 

STATA. As a result, item 11 (‘Affected how smoothly you walk’) was removed from the 

items analyses. Models A through E showed evidence of hetereoscedasticity according 

to White’s test, so the ‘robust’ command was used for the OLS and Tobit analyses 

(CLAD is known to be resistant to violations of hetereoscedasticity).  

 

The OLS and CLAD approaches resulted in smaller estimation errors than the Tobit 

models, but the CLAD method of estimation substantially over-estimated EQ-5D scores 

for people in poorer health states. As such, only the OLS models were considered 

further. 

 

The best performing model, Model D (MAE 0.148, RMSE 0.198), used MSWS-12 item 

scores. However, a practical concern is that a mapping algorithm based on item scores 

cannot be used when only summary data is available, so the best performing model that 

used aggregate data i.e. total scores (Model B) (MAE 0.150, RMSE 0.20) was also 

tested with the longitudinal data. In addition, the best performing model using 

dichotomised item scores (Model G) (MAE 0.150, RMSE 0.21) was tested with the 

follow-up data, as this model did not assume interval properties of the item responses. 

Details of these models are given in Table 2. The estimation errors were very similar 

across the three models (based on MAE, RMSE, percentage of estimates within 0.1 and 
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0.25 of the true EQ-5D value, and adjusted R2), and were judged reasonable and in 

keeping with those found in other mapping studies. 

 

 Model B – 
MSWS-12 total & 

total score squared 

Model D – 
MSWS-12 item 

scores† 

Model G – 
 Dichotomised items 

& demographics† 
Estimation sample (n=560)    

Regression coefficients:     

MSWS-12 total score -0.0047809*** -  

MSWS-12 total score squared 0.00000325 -  

MSWS-12 item 1 - -0.0004282 -0.0491527 

MSWS-12 item 2 - -0.0029117 0.0739361 

MSWS-12 item 3 - -0.0213846* -0.087689* 

MSWS-12 item 4 - -0.0410001*** -0.0707119 

MSWS-12 item 5 - 0.0086472 -0.0226769 

MSWS-12 item 6 - -0.0340533** -0.0237278 

MSWS-12 item 7 - -0.0154952 -0.0378606 

MSWS-12 item 8 - -0.0180406 -0.0769457* 

MSWS-12 item 9 - 0.0004532 -0.0658229 

MSWS-12 item 10 - 0.0148398 -0.0281462 

MSWS-12 item 11 - - - 

MSWS-12 item 12 - -0.004274 0.0073948 

Age - - -0.0007418 

Gender - - 0.005747 

Constant 0.8863602 0.9843433 0.9418807 

Predictive performance:    

Adjusted R2 0.338 0.361 0.291 

MAE (95% CI) 0.150 (0.139, 0.161) 0.148 (0.138, 0.159) 0.150 (0.138, 0.162) 

RMSE  0.201 0.198 0.206 

Estimates within +0.1 of true value (%) 44.82 46.79 50.54 

Estimates within +0.25 of true value (%) 81.07 84.11 80.71 

Longitudinal data (n responses=317)    
Predictive performance:    

MAE (95% CI) 0.163 (0.146, 0.181) 0.165 (0.148, 0.186) 0.172 (0.153, 0.191) 

RMSE  0.227 0.229 0.241 

Table 2: Predictive performance of best performing (OLS) mapping models 
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Estimates within +0.10 of true value (%) 47.95 47.32 50.47 

Estimates within +0.25 of true value (%) 77.60 78.55 76.03 

*p<0.05, **p<0.01, ***p<0.001.  †Removing the least statistically significant items did not improve the MAEs or RMSEs, so all 
items were retained (except item 11 due to multi-collinearity). 
 

Figure 1 shows actual and estimated (from OLS items model D) EQ-5D scores for study 

participants, ranked by increasing EQ-5D score. This illustrates the problem of 

accurately estimating EQ-5D scores at, particularly the poor health end of the health 

severity spectrum. EQ-5D scores were over-estimated for the 14.8% of the sample who 

had scores less than 0.390. Scores were under-estimated for the 7.9% who scored 

greater than 0.895. (Over-estimation of EQ-5D scores for those in poor health was 

illustrated by the OLS dichotomised items Model G. This had a slightly higher 

percentage of EQ-5D estimates within 0.1 of the true value than Models B and D, but a 

slightly lower percentage of EQ-5D estimates within 0.25 of the true value than the other 

two models, as an apparent result of estimating marginally less accurately for the poorer 

health states).   

 

Figure 1: Pattern of actual and estimated EQ-5D scores in the estimation sample for the OLS 

items model (D) 
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Predictive performance (longitudinal data) 

Across six, 12 and 18 month follow-ups, 317 paired responses on the MSWS-12 and 

the EQ-5D were available. This data was used to assess estimation errors, according to 

the algorithms from the best performing models (given in Table 3). 

 

Table 3: Algorithms of best performing models from estimation sample 
 

Model Estimated EQ-5D score 

 
OLS items model 

(D) 

 

= 0.9843433 - 0.0004282*MSWS-12 item 1 - 0.0029117*item 2 - 

0.0213846*item 3 - 0.0410001*item 4 + 0.0086472*item 5 - 0.0340533*item 6 

- 0.0154952*item 7 - 0.0180406*item 8 + 0.0004532* item 9 + 

0.0148398*item 10 - 0.004274*item 12 
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OLS total score & 

total score squared 

model (B) 

= 0.8863602 - 0.0047809*MSWS-12 total score + 0.00000325*MSWS-12 

total score*MSWS-12 total score 

 
OLS dichotomised 

items & 

demographics 

model (G)‡ 

 

= 0.9418807 - 0.0491527*MSWS-12 dichotomised item 1 + 

0.0739361*dichotomised (d)item 2 - 0.087689*(d)item 3 - 0.0707119*(d)item 

4 - 0.0226769*(d)item 5 - 0.0237278*(d)item 6 - 0.0378606*(d)item 7 - 

0.0769457*(d)item 8 - 0.0658229*(d)item 9 - 0.0281462*(d)item 10 + 

0.0073948*(d)item 12 - 0.0007418*age at baseline + 0.005747*gender 

‡The dichotomised items were scored ‘not at all’ = 0 and ‘a little’/’moderately’/’quite a bit’/’extremely’ = 1. 
Gender was coded ‘male’ = 0, ‘female’ = 1 
 

The actual mean (sd) EQ-5D score in the follow-up sample was 0.571 (0.278), and the 

estimated scores from the mapping models B, D and G were 0.611 (0.140), 0.608 

(0.147) and 0.607 (0.133), respectively. Estimation errors were slightly increased as 

compared to errors in the estimation sample (as would be expected) (Table 2), but were 

still in line with those found in other studies. 

 

The analysis of estimation errors by health state severity showed a clear pattern. Figure 

2 shows estimation errors (MAEs) for ‘poor’ (EQ-5D<0.5) and ‘good’ (EQ-5D>0.5) 

health states by model, and indicates that all the models performed less well at 

estimating EQ-5D scores for those in poorer health states.  

 

Figure 2: Mean absolute errors by EQ-5D health state severity in the longitudinal sample 
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Additional modelling (2-part and 3-part models) and further data exploration 

As a result of the reduced performance when estimating EQ-5D scores for the poorer 

health states, a range of additional models were run to explore whether optimal 

thresholds, or cut-offs, could be found, above and below which more accurate mapping 

algorithms could be determined.  

 

The estimation sample was divided into two groups by MSWS-12 total score, and each 

of the model specifications (A to G) run on both groups. Multiple splits on the MSWS-12 

total score (e.g. 90, 85, 80, 75 etc) were tested. A theoretically driven cut-off point on 

the MSWS-12 total score was also tested, following the approach of Versteegh [38]. 

The EQ-5D has a bi-modal distribution, with a ‘gap’ in the distribution at approximately 

0.5. The median MSWS-12 total score of those with an EQ-5D score closest to 0.5 was 
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determined, and used as the cut-point for testing all model specifications. In addition, 

data were divided into two groups by EQ-5D score, and all model specifications tested 

on both groups. This was conducted for multiple cut-offs on the EQ-5D. Three-part 

models were also considered by dividing the data into three groups according to the 

EQ-5D scores for which the best performing model did and did not estimate (i.e. EQ-5D 

scores: <0.390; >0.390 and <0.895; >0.895).  

 

The findings were the same for all of the two-part and three-part models; the errors 

could not be improved when estimating EQ-5D scores for those with poorer walking 

ability or those in poorer health states.  

 

The MSWS-12 and EQ-5D profiles of those for whom the best performing model did 

and did not over-estimate EQ-5D scores (EQ-5D<0.390, EQ-5D>0.390, respectively) 

were explored, by comparing the MSWS-12 total scores, item scores and EQ-5D 

dimension scores of these two groups. There were no apparent differences in MSWS-

12 total or item scores, and the model estimated EQ-5D scores for individuals across 

the full spectrum of Walking Scale scores. When comparing the EQ-5D dimension 

profiles of the two groups, it was notable that a higher proportion of those for whom the 

algorithm over-estimated were unable to perform usual activities and had extreme 

pain/discomfort as compared to the other EQ-5D dimensions. 

 

Discussion   

 18 



 

Whilst the availability of new treatments for MS is welcome, the associated cost of new 

drugs creates tension between funding agencies, clinicians, patients and 

pharmaceutical companies over decision-making regarding cost-effectiveness [39], with 

the need to demonstrate ‘value for money’ of these treatments [16, 18]. 

 

To date, the reporting of health state values (such as those given by the EQ-5D) for 

people with MS has been linked only to clinical measures, particularly the EDSS [40]. 

Psychometrically-sophisticated patient-reported outcome measures (PROMs), which 

assess the impact of conditions on people’s daily lives, are increasingly being 

developed in the field of neurology [9] [41], and are being used in clinical trials to assess 

the effectiveness of treatments [15]. However, there is a paucity of information 

regarding the relationships between PROMs and health state values [40] and, in their 

current form, condition-specific PROMs, such as the MSWS-12, are not amenable for 

use in policy decisions regarding cost-effectiveness, as they are not preference-based. 

 

The work described here demonstrates a way in which PROMs can be linked to health 

state values which, in turn, may be used in considering the effectiveness and cost-

effectiveness of new and existing treatments for MS. Data collected using a MS-specific 

measure (the MSWS-12) can be ‘converted’ to (EQ-5D) health state values, allowing 

estimation of QALYs and consideration of outcomes more broadly in a policy setting.  

 

Limitations and strengths 
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The approach of using a statistically-derived algorithm to estimate health state values 

from a condition-specific measure is recognised as having limitations [33]. Mapping can 

only ever encompass the overlap between the descriptive systems of the two measures 

(e.g. the MSWS-12 and the EQ-5D). Information will be lost in the conversion process, 

leading to uncertainty about the preference for health that is actually included in health 

state value scores. Yet, approaches to considering uncertainty in mapping have focused 

entirely on empirical uncertainty (how good the model is at predicting scores), rather 

than theoretical uncertainty (what degree of information loss occurs in the mapping 

process) [42]. As Parker and colleagues [43] highlight, theoretical guidance to steer 

such analyses is limited, and this remains an area of health economics in which 

empiricism largely rules. This is particularly relevant when a domain-condition-specific 

measure, such as the MSWS-12, which is also only applicable to people who have 

some walking ability, is mapped to health state values, as there is likely to be less 

information overlap than between, for example, a generic measure of health status, and 

health state values. In addition, the sound psychometric properties of the MSWS-12 are 

weakened when mapped to EQ-5D scores. This said, theoretical uncertainty and 

psychometric sophistication may have limited relevance in the practical context of 

decision making where mapping algorithms can provide useful information. If health 

state values can be estimated from condition-specific measures (as is the case with the 

MSWS-12 and the EQ-5D), the theoretical uncertainty of what is lost in the mapping 

algorithm, whilst important to acknowledge, may become less relevant. 
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In addition, where preference-based data are not available to inform decisions, current 

alternatives to the use of statistical mapping methods are time consuming or 

impractical, and also open to criticism. For example, converting scores from PROMs to 

preference-based scores has also been conducted using the judgment of ‘experts’. 

However, this approach has been criticised for its arbitrariness, and because no attempt 

is made to estimate the uncertainty around the conversion [33]. A further alternative to 

mapping is to elicit health state values from general population samples for each of the 

MSWS-12 health states. This would be a resource intensive process, with some 

methodological concerns, meaning that the expediency of mapping is increasingly used.  

 

Implications 

Until preferred alternatives are developed to enable the use of MSWS-12 and, more 

generally, MS-specific outcome measure, data in cost-effectiveness analyses and 

decision-making, we have shown that OLS regression statistical mapping, can provide 

algorithms that can be applied to MSWS-12 data for estimating EQ-5D scores. 

Algorithms have been generated that can convert MSWS-12 total scores, MSWS-12 

item scores, and MSWS-12 dichotomised scores to EQ-5D health state values, each of 

which estimate EQ-5D scores with similar degrees of accuracy and give  estimation 

errors (and R2 values) in keeping with those found in other mapping studies [33]. 

Although, we acknowledge that there is currently no clear criteria as to when mapping is 

and is not acceptable [38]. 
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The SWIMS sample is heterogeneous, as evidenced by the breadth of ages, mix of 

diagnoses, and wide range of EQ-5D scores. The demographics and clinical 

characteristics of the sample are similar to published data for the UK [23], and this 

supports the generalisability of the mapping algorithms described here to other 

populations of people with MS. 

 

The statistical algorithms were more prone to error when estimating EQ-5D scores over 

time and for the more severe health states, a common finding in other mapping studies 

[37]. Additional work exploring two-part models did not ameliorate this over-estimation 

(in line with what has been found in other studies e.g. [44]) and, the newer approach of 

using 3-part models also did not improve the fit of scores. However, in the context of 

economic evaluations, comparisons are primarily made across groups and individual 

estimates are less important than the effect of estimation errors at the group level [37]. 

In the data used here,14.8% of the sample had scores below 0.390 (the minimum score 

predicted by the best performing models), meaning these errors may have little impact 

on the comparison of group level data [37], especially in specific evaluation settings 

where the target group are in the mild-to-moderate spectrum of disease severity. 

 

Future directions 

Further work is required to explore how EQ-5D scores estimated from MSWS-12 scores 

(using the algorithms provided) function as compared to actual EQ-5D scores, when 

calculating QALYs and the cost-effectiveness of interventions for people with MS. This 

research will investigate whether using estimated, rather than actual scores, is likely to 
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make a difference in practical policy contexts regarding decisions as to whether to fund 

treatments, or not. 

 

Conclusions 

A process has been described whereby data from a condition-specific outcome 

measure, particularly relevant to people with MS, can be converted to health state 

values. These health state value estimates have the potential for use in cost-

effectiveness analyses of treatments for people with MS and can inform the ongoing 

health policy debate regarding such interventions [45], and their value for money [16]. 
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