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Abstract Anonymous nuclear markers were developed

for Seychelles caecilian amphibians. Using a previously

published bioinformatics pipeline (developed for Roche

454 data), 36 candidate anonymous nuclear loci (ANL) of

at least 180 bp length were identified from Illumina MiSeq

next generation sequencing data for five Seychelles spe-

cies. We designed primer pairs for the 36 candidate ANL

and tested these by PCR and Sanger sequencing. Seven

ANL amplified and sequenced well for at least five of the

six nominal Seychelles caecilian species (in three genera),

and represent potentially useful markers for systematics

and conservation.
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Anonymous nuclear loci (ANL) are markers in non-coding

regions of the nuclear genome that are unlikely to be under

selection and which have many potential applications in

molecular systematics, especially at lower taxonomic lev-

els (Karl and Avise 1993). Traditionally, ANL discovery

involved time-consuming lab-work to generate a small

number of usable markers, but recently Bertozzi et al.

(2012) described a bioinformatics pipeline to develop

candidate ANL from next generation sequencing (NGS)

data.

Caecilians (Gymnophiona) are limbless, mostly soil-

dwelling amphibians largely restricted to the moist tropics,

and the approximately 200 extant species comprise one of

the most poorly known major vertebrate groups (Gower

and Wilkinson 2008; Wilkinson 2012). Anonymous

nuclear markers have not previously been developed for

caecilians, microsatellites have been developed for only

two species (Li et al. 2010; Barratt et al. 2012), and pub-

lished coding nuclear data are not very variable at lower

taxonomic levels.

A radiation of six nominal caecilian species in three

genera (Grandisonia, Hypogeophis, Praslinia) occurs in

the Seychelles (Nussbaum 1984; Wilkinson and Nussbaum

2006; Wilkinson et al. 2011). Although clearly monophy-

letic (Nussbaum and Ducey 1988; Hedges et al. 1993;

Gower et al. 2011), analyses of (mostly mtDNA) sequence

data have been unable to robustly resolve all relationships

among the radiation (Hedges et al. 1993; Wilkinson et al.

2002, 2003; Loader et al. 2007; Gower et al. 2008, 2011).

ANL could provide a useful tool for Seychelles caecilian

systematics and conservation genetics, especially given the

increased levels of threat faced, in general, by island biotas

(e.g., Frankham 2008). Two Seychelles caecilians (P.

cooperi and H. brevis) are classified as Endangered on the

IUCN Red List.
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Six samples from five Seychelles caecilian species (all

Seychelles species except P. cooperi; two samples of G.

alternans) were selected for marker development using

NGS. Genomic DNA was extracted from liver using Qia-

gen DNeasy Blood and Tissue kits. Samples were prepared

using a standard Illumina Nextera DNA kit and paired-end

reads (B251 bp long) sequenced using a 500 cycle v.2

reagent kit on the Illumina MiSeq platform. Paired-end

data were combined and cleaned using default settings in

Geneious v.6.1.4. Cleaned files were run through Bertozzi

et al.’s (2012) Perl bioinformatics pipeline, with our cus-

tomised BLAST database comprising the Xenopus tropi-

calis and Danio rerio genomes plus all caecilian entries in

GenBank. Each sample was run through the pipeline

individually (see supplementary material). Candidate

anonymous nuclear markers were selected at random from

paired reads C245 bp, and 36 primer pairs (6 per sample)

were designed using Primer3 v.0.4.0 (Koressaar and Remm

2007; Untergrasser et al. 2012). Primer sequences were

selected on the basis of being closest to the beginning of

the 50–30 end of each read (to maximise length), and having

low self-complementarity and annealing temperatures of

60 �C (±1 �C); all other settings were default. Primer

sequences were subjected to an additional BLAST search

to check locus anonymity.

The 36 primer pairs were tested using the polymerase

chain reaction (PCR) for five genomic DNA samples, one

for each of the non-P. cooperi Seychelles species (see

supplementary material). Reaction volume was 25 ll: 1 ll

template, 1 ll for each primer, 9.5 ll of dd H2O, 12.5 ll of

MyTaq Mix 92. Cycling conditions for all primer pairs

were: 95 �C-3 min; 359 [95 �C-15 s, 60 �C-15 s,

72 �C-20 s]; 72 �C-10 min. Fifteen of the 36 primer pairs

successfully amplified DNA in all five species, and ampli-

cons for these were subjected to Sanger sequencing.

Assembled and edited sequences were aligned using default

settings for consensus alignments in Geneious. Eight of the

15 loci were considered suitable for further testing; the seven

loci rejected at this stage generally yielded poor sequences,

perhaps indicative of suboptimal primer/template combina-

tions and/or PCR settings. Sequences were subjected to a

BLAST search to check anonymity.

The eight surviving candidate ANL were tested further

by attempting PCR amplification of genomic DNA from 12

additional individuals of the five species for which they had

already worked plus two individuals of their Seychelles

sister species P. cooperi (see supplementary material).

Descriptive statistics were generated using DnaSP v.5.10

(Librado and Rozas 2009) for seven ANL (see Table 1); all

were variable across the Seychelles species. One locus was

excluded from DnaSP analysis because it failed to

sequence well in any specimen of H. rostratus or G.

larvata.

Our NGS data initially produced approximately 5,000

candidate ANL with a potential length of C245 bp.

Approximately 20 % of the 36 candidate ANL that we

subsequently randomly selected were found to generally

amplify and sequence well and showed variability in the

Table 1 The seven anonymous nuclear markers developed successfully in this study

Locus Primer sequences

50–30
Length (range) SA (SS) Spp. PS Indels (range) VS %

Alt15 F: GCCTTGCATCCCCTAATACA

R: GCACACACTGTCGGCTTAAA

283 (137–283) 17 (11) 6 24 6 (1–24) 8.5

Alt23 F: TCCATAGGAAGGGAGCAAGA

R: CTGCCCGCTTTCTTTGTAAC

299 (277–298) 16 (10) 5 24 4 (1–14) 8.4

Brev2 F: TAGAAGCCGAGGGTTATTGG

R: GAAGAGAAGGTGGGACAGGA

199 (187–199) 19 (9) 5 21 1 (8) 11.1

Brev5 F: CATCAGGTCATTGGCGTTTA

R: GAGTGCAGGGACCAAATACC

324 (273–323) 17 (10) 6 35 3 (1) 11.1

Rost1 F: TCTGGAATTGGCCTTGTGTT

R: CCCACATTCTTCCTCCCTCT

291 (288–291) 15 (7) 5 22 3 (1–2) 8.6

Rost5 F: TGTCAACTGCCCTCTGTGTC

R: AAATTCACAGGCCAAACAGG

326 (319–325) 14 (11) 6 24 5 (1–2) 8.3

Sech5 F: GCAGCTCTTTCTGTGCCTTT

R: GTCTGCCATTGCTGTATGGA

180 16 (10) 6 25 0 13.9

For each locus we report (columns, from left to right) locus name; primers; length in base pairs of aligned sequences; the number of genomic

DNA samples out of 19 for which PCR amplification worked (SA) and for which sequence data were successfully obtained (SS); the number of

species out of six for which amplificiations were achieved and for which amplicons were sequenced successfully (Spp.); the number of

polymorphic sites (PS); the number of indels across the alignment (and per sequence, in parentheses); the percentage of variable sites excluding

indels (VS %). See online resources for additional details
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Seychelles caecilians. Our successful approach differed

from Bertozzi et al.’s (2012) in that we developed ANL

from Illumina NGS data rather than from the more

expensive Roche 454 platform, albeit at the expense of

sequence length.
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