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Representative Discovery of Structure Cues
for Weakly-Supervised Image Segmentation

Luming Zhang, Yue Gao, Yingjie Xia, Ke Lu, Jialie Shen, and Rongrong Ji

Abstract—Weakly-supervised image segmentation is a chal-
lenging problemwith multidisciplinary applications in multimedia
content analysis and beyond. It aims to segment an image by lever-
aging its image-level semantics (i.e., tags). This paper presents a
weakly-supervised image segmentation algorithm that learns the
distribution of spatially structural superpixel sets from image-level
labels. More specifically, we first extract graphlets from a given
image, which are small-sized graphs consisting of superpixels
and encapsulating their spatial structure. Then, an efficient man-
ifold embedding algorithm is proposed to transfer labels from
training images into graphlets. It is further observed that there
are numerous redundant graphlets that are not discriminative to
semantic categories, which are abandoned by a graphlet selection
scheme as they make no contribution to the subsequent segmen-
tation. Thereafter, we use a Gaussian mixture model (GMM) to
learn the distribution of the selected post-embedding graphlets
(i.e., vectors output from the graphlet embedding). Finally, we
propose an image segmentation algorithm, termed representative
graphlet cut, which leverages the learned GMM prior to measure
the structure homogeneity of a test image. Experimental results
show that the proposed approach outperforms state-of-the-art
weakly-supervised image segmentation methods, on five popular
segmentation data sets. Besides, our approach performs competi-
tively to the fully-supervised segmentation models.

Index Terms—Structure cues, graphlet, weakly supervised, seg-
mentation, active learning.

I. INTRODUCTION

A S a preliminary step, image segmentation has been widely
used in many multimedia applications, e.g., image crop-

ping [30], photo aesthetics ranking [2], [15], and scene parsing
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[9]. Typically, these applications require the images to be ideally
segmented, i.e., each segmented region corresponds to a com-
pleted semantic component. Nevertheless, targeting at an op-
timal segmentation needs extensive human supervision, as au-
tomatic approaches are far from satisfactory. However, most ex-
isting applications are built upon unsupervised image segmen-
tation methods, whose performance is unsatisfactory due to the
lack of high-level cues. For example, many segmented regions
partially cover one or multiple semantic objects, which largely
degenerate the segmentation quality to conduct the subsequent
application scenarios.
Inspired by the idea of supervised image retrieval [12],

[25], [26], image-level labels are cheaply available, i.e., can be
efficiently and accurately acquired. While such supervision is
not specific to any regions, is it possible to make use of such
“weak supervision” to facilitate image segmentation, that is,
image-level labels, to improve image segmentation. In this
paper, weakly-supervised image segmentation is defined as: in
the training stage, semantic labels are only at the image level,
without regard to their specific object/scene location within the
image. Given a test image, the goal is to predict the semantic
labels to every pixel. However, weakly-supervised image
segmentation is a challenging problem due to two factors:
• The intrinsic ambiguity of image-level labels: compared
with the pixel-level labels used in fully-supervised seg-
mentation models, image-level labels are much coarser
cues which are difficult to be incorporated into the segmen-
tation model.

• The spatial structure is neglected in measuring the homo-
geneity of superpixels1: beyond the appearance features,
the spatial structure of superpixels is also important for
measuring their homogeneity, which is however not taken
into consideration in the existing segmentation models [7],
[8]. As shown in Fig. 1, the yellow pyramid and the sand
have similar superpixel appearances. However, compared
to the sand region, the pyramid superpixels feature in their
unique triangular patterns, thus they should be assigned
with strong homogeneity and encouraged to merge.

To address the above two problems, we propose to learn the dis-
tribution of graphlets from image-level labels, which are then
used to guide the image segmentation process. To capture the
spatial structure of superpixels, we extract graphlets by con-
necting spatially neighboring superpixels. Herein, graphlets are
small-sized graphs that capture the neighboring structures of su-
perpixels. Considering that graphlets of different sizes are in-

1In the image segmentation community, the homogeneity of superpixels is
a basic and fundamental concept which reflects the probability of pairwise or
multiple superpixels sharing a common semantic label.
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Fig. 1. The superpixel mosaic of an example image.

comparable in the Euclidean space, we project graphlets onto
the Grassmannmanifold, based on which a manifold embedding
incorporates image-level labels into graphlets. Through the em-
bedding, different-sized graphlets are transformed into equal-
lengthed feature vectors. Noticeably, there are a large number of
graphlets in an image given the graphlet size is moderate. And
not all graphlets are representative for the semantic category,
i.e., many of them are redundant for segmentation. Therefore, a
selection algorithm is developed to discover a few semantically
representative graphlets from an image, which are further used
to learn the distribution of graphlets. Given the learned graphlet
distribution as a hint for the spatial structure of superpixels,
we propose a new segmentation algorithm, called representative
graphlet cut, that leverages the learned graphlet distribution.
A preliminary conference version of this work has been ac-

cepted by CVPR 2013 [31]. Our new improvement comparing
to the conference version paper lies in the following aspects.
First, all graphlets are employed as the homogeneity measure
in [31]. As we stated, those graphlets that are not representa-
tive to a semantic category will affect the segmentation process.
Inspired by the selectively viewing mechanism in human vi-
sion [32], we design a selection algorithm to acquire a few se-
mantically representative graphlets from an image as the homo-
geneity measure. Thereby, a more efficient and effective seg-
mentation framework is achieved, which has been demonstrated
by the experimental results. Second, in the experiment, com-
pared with the conference paper, more extensive experiments
are conducted on additional data sets: MSRC-21 [18], VOC
2008–2010 [4]. More importantly, we observe that by intro-
ducing the representative graphlet selection strategy, an increase
of 6%–8% segmentation accuracy is achieved on each of the five
experimental data sets.

II. RELATED WORK

Recently, several weakly-supervised image segmentation
methods [20]–[24] have been proposed, focusing on developing
statistical models to transfer image-level labels into superpixels
unary or pairwise potentials2. Verbeek et al. [20] proposed an
aspect model to estimate pixel-level labels for each image,
which is modeled as a mixture of latent topics. Vezhnevets

2In the image segmentation community, the homogeneity of superpixels is
a basic and fundamental concept which reflects the probability of pairwise or
multiple superpixels sharing a common semantic label.

et al. [21] formulated weakly-supervised image segmentation
as a multiple instances learning problem. However, the unary
potential used in [20] and [21] fail to model the interactions
between superpixels, which are important for smoothing su-
perpixel labels. To model the relationships among superpixels,
Verzhnevets et al. [22] proposed a graphical model, termed
multi-image model (MIM), that integrates image appearance
features, image-level labels and superpixel labels into one
single network. To refine the MIM-based segmentation, Verzh-
nevets et al. [23] designed an active learning scheme [29] to
select superpixels that are semantically most uncertain within
an image. The selected superpixels are accurately labeled by
querying an oracle database, and they guide the label inference
for the remaining superpixels. Moreover, Verzhnevets et al.
[24] developed a parametric family of structured models,
where multi-channel visual features were employed to form the
pairwise potential, and the weights of each channel is computed
by minimizing the discrepancy between superpixels labeled by
differently-trained models.
One weakness of these weakly-supervised segmentation

methods is the low descriptive unary/pairwise potentials, re-
sulting in many ambiguous segment boundaries. To alleviate
this problem, high-order potentials are exploited that measures
the probability of multiple superpixels belonging to a semnatic
label. Kohli et al. [8] proposed a high-order conditional random
field for image segmentation, where the high-order potentials
are defined over pixel sets. In [17], Rital et al. generalized the
conventional normalized cut into hypergraph cut, where each
hyperedge connects multiple spatially neighboring superpixels.
However, hypergraph cut has two limitations: 1) supervision
incorporation is difficult, and 2) label inference is computation-
ally inefficient. To overcome these limitations, Kim et al. [7]
developed a supervised high-order correlation clustering tech-
nique for image segmentation. Based on the structured support
vector machine and the linear programming relaxation, both the
parameter learning and segmentation process are carried out
efficiently. Notably, these approaches are either unsupervised
or fully-supervised, and it is difficult to transform them into a
weakly-supervised version. Moreover, the spatial structure of
superpixels is neglected.

III. THE PROPOSED APPROACH

A. Graphlet Extraction and Representation

Superpixel is a commonsense practice in efficient image seg-
mentation to deal with the gigantic amount of pixels. In our
implementation, the superpixels are generated based on simple
linear iterative clustering (SLIC) [1]. After that, graph based
approach such as Region Adjacency Graph (RAG) is typically
leveraged to model the spatial adjacency among superpixles,
i.e.,

(1)

where is a set of vertices, each representing a superpixel;
is a set of edges, each connecting pairwise spatially adjacent
superpixels.
An image usually contains multiple semantic components,

each spanning several superpixels. Given a superpixel set,
two observations can be made. First, the appearance and
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Fig. 2. Different types of superpixel homogeneity.

spatial structure of superpixels collaboratively contribute to
their homogeneity. Second, the more their appearance and
spatial structure correlate with a particular semantic object, the
stronger their homogeneity. For instance as shown in Fig. 1,
the superpixel set in the sky region and the superpixel set in
the sand region have similar spatial structure but different
superpixel appearance, thus they should be assigned with
different homogeneities. Compared with the stripe-distributed
yellow superpixels, the stripe-distributed blue superpixels (in
Fig. 1) appear more common in semantic classes, such as
lake and river, which indicates they are low correlated with
a particular semantic object, thus should be assigned with a
weaker homogeneity. On the other hand, the superpixel sets
covering pyramid and sand have similar superpixel appearance
but different spatial structure, thus should also be assigned with
different homogeneities. Compared with the stripe-distributed
yellow superpixels, the triangularly-distributed yellow super-
pixels are unique for the Egyptian pyramid, thus they should
be assigned with a stronger homogeneity.
We propose graphlets to capture the appearance and spa-

tial structure of superpixels. The graphlets are obtained by
extracting connected subgraphs from an RAG. The size of a
graphlet is defined as the number of its constituent superpixels.
In this work, we restrict to study small-size graphlets because:
1) the number of all the possible graphlets is exponentially
increasing with grpahlet sizes; 2) the graphlet embedding
implicitly extends the homogeneity beyond single small-sized
graphlets. (as shown in Section III-B); 3) empirical results
show that segmentation accuracy stops increasing when the
graphlet size increases from 5 to 10. That means small-sized
graphlets are descriptive enough. Let denote the maximum
graphlet size, we extract graphlets of all sizes ranging from 2 to
. The graphlet extraction is based on depth-first search, which
is computationally efficient. Besides, our approach is also
memory-light. Given 50 superpixels in an image, and assuming
the average superpixel degree is 5 and the maximum graphlet
size is also 5, there are
graphlets, which, after embedding, are transformed into 4300
low-dimensional feature vectors. Thus, the required storage
space is very small.
It is worth emphasizing that, as a spatially structured super-

pixel set, graphlet-based homogeneity is a natural extension
of the non-structural superpixel set homogeneity [7], [8]. As
shown in Fig. 2, both the pairwise and high-order potentials
represent the homogeneity of orderless superpixels, whereas
the graphlet represents the homogeneity of spatially structured
superpixels. If we ignore the topology encoded in graphlets, the
proposed graphlet-based homogeneity reduces to the high-order
superpixel homogeneity.

A quantitative description of graphlets is necessary for a com-
putational segmentation model. Given a -sized graphlet, we
characterize the appearance of its superpixels by a matrix .
Each row of is a 137-dimensional feature vector extracted
from a superpixel, i.e., a 128-dimensional histogram of gradient
(HOG) [3] combined with a 9-dimenional color moment [19].
And, for the spatial structure of superpixels within a -sized
graphlet, we use a -sized matrix to represent it as:

if and are spatially adjacent
otherwise,

(2)
where is the angle between the positive horizontal
direction and the vector from the center of superpixel to
the center of superpixel . Based on and , a -sized
graphlet can be represented by a matrix, i.e.,

(3)

It can be observed that spatially neighboring graphlets in a
photo are partially overlapping. This brings the property of lo-
cality of graphlets, which indicates that a graphlet and its spa-
tially neighbors are highly correlated. Therefore, it is beneficial
to exploit the local structure among graphlets when projecting
them onto the semantic space. Mathematically speaking, each
matrix can be deemed as a point on manifold [28], [14] and the
Golub-Werman distance [27] between identical-sized matrices
is:

(4)

where and denote the orthonormal basis of and
respectively.

B. Manifold Graphlet Embedding

As mentioned in Section III-A, the appearance and spatial
structures of semantically-consistent superpixels reflect strong
homogeneity. Thus, it is necessary to integrate category infor-
mation into graphlets in measuring the homogeneity of super-
pixels. To this end, a manifold embedding algorithm is proposed
to encode image-level labels into graphlets. Besides image-level
labels, two supplementary cues: image global spatial layout and
geometric context, are also incorporated.
To incorporate the global spatial layout information, we en-

force our embedding scheme to maximally preserve the relative
distances between the graphlets. This is helpful to expand the
homogeneity of superpixels across individual graphlets. Such
preservation implicitly extends the homogeneity beyond the in-
dividual small-sized graphlets.
As demonstrated by Vezhnevets et al. [21], rough geometric

context [6] effectively complements image-level labels for
image segmentation. Here, rough geometric context means
categorizing each pixel in an image into ground, differently
oriented vertical surfaces, non-planar solid, or porous. This
motivates us to integrate geometric context information into
the embedding process. Intuitively, a graphlet with consistent
geometric context should reflect stronger homogeneity. As
shown in the right of Fig. 3, graphlet has more consistent
geometric context than graphlet , thus superpixels within
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Fig. 3. Left: example of preserving global spatial layout; Right: adding rough
geometric context into graphlets, ground(green), sky(blue), different oriented
vertical regions(red), non-planar solid(‘x’).

should be assigned with stronger homogeneity than those
within .
To capture the above three cues, namely, image-level

labels, global spatial layout, and geometric context, we
propose a manifold embedding algorithm with the ob-
jective function defined as (5), shown at the bottom of
the page, where is the row vector
containing the post-embedding graphlets. The first term

describes the discrepancy
between pairwise graphlet distances on the Grassmann mani-
fold and those in the Euclidean space. The minimization of this
term will maximally preserve the global spatial arrangement of
the graphlets. The second term enforces the geometric
context constraint on graphlets. That is, graphlets with more
consistent geometric context are assigned with larger weights.
The third term
encodes image-level labels into pairwise graphlets. That is, the
proximity of two graphlets in feature space should be consistent
with their image-level labels.
The variables in (5) are defined as follows. and

denote two identical-sized graphlets; and are their
low-dimensional representations; is a function that mea-
sures the similarity between graphlets; is a function that
measures the difference between two graphlets. Let
denote the -dimensional row vector containing the class
label of the image corresponding to graphlets . Denote

a -dimensional vector con-
taining the number of images associated with each label,
where is the number of images for category , then

and .

reflects the geometric context consistency of the -th
graphlet, which is implemented as the -th graphlet entropy,
i.e., , where is percentage of
the -th geometric context corresponding to graphlet .
is the geometric context obtained from the -th graphlet in the
-th training image.
We denote as the matrix whose

entry is the Golub-Werman distance between
the -th and -th identical-sized graphlets extracted from the
-th image. Its inner product matrix is obtained by:

(6)

where , and
which is the centralization matrix. is an identity
matrix, is the number of all
training graphlets, and the number of graphlets from the -th
training image.
Thus the first part of (5) can be rewritten as:

(7)

where is an matrix; and is a block
diagonal matrix, the -th diagonal block is .
The second part in (5) can be rewritten into

(8), shown at the bottom of the page, where

, and is an
diagonal matrix whose -th diagonal element is

.
Based on above formulation, we can reorganize the objective

function as:

(9)

(5)

(8)
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Fig. 4. An example of one highly semantics-correlated (green) and three low
semantics-correlated graphlets (red).

where is an matrix, and
is a term to uniquely determine . Note that the embedding

in (9) can only handle identical-sized graphlets. Assuming the
maximum graphlet size is , the embedding is repeated times.

C. Representative Graphlet Selection

As shown in Fig. 4, given an image, there are a large number
of graphlets that are non-representative to one semantic cate-
gory. Thus, homogeneity of superpixels within each of these
graphlets is weak because these superpixels span different
objects. These graphlets contribute little to image segmenta-
tion. Toward an efficient and effective segmentation model,
it is essential to select a few representative graphlets from an
image, which is achieved by a feature selection algorithm in
this subsection.
An effective learning algorithm should reveal the underlying

data structure. Based on the locality of graphlets in a photo, each
graphlet can be linearly reconstructed by its spatial neighboring
ones, where the optimal reconstruction coefficients are calcu-
lated by:

(10)

where is the post-embedding graphlets,
denotes the contribution of the -th graphlet to construct the
-th graphlet, is the total number of graphlets in a photo, and

contains the spatial neighbors of the -th graphlets.3

To evaluate the representativeness of the selected graphlets,
we develop a graphlet reconstruction approach. The recon-
struction error reflects the quality of the selected graphlets.
Let be the constructed graphlets, they are
determined by minimizing the following cost function:

(11)

3Since a graphlet and its post-embedding vector are one-to-one, we do not
discriminate them for ease of expression.

where is the regularization parameter, denotes the number
of selected graphlets, contains the selected
graphlets, and is the set of indices of the se-
lected graphlets. The first term is the cost function to fix the
coordinates of the selected graphlets. The second term requires
the reconstructed graphlets share the same local structure with
the original ones.
Let , and be

an diagonal matrix whose diagonal entry is 1 if
and 0 otherwise. Then, the above cost

function can be reorganized into a matrix form as:

(12)

where . To minimize (12), we set the
gradient of to zero and obtain:

(13)

Thus, the reconstructed graphlets are given by:

(14)

Based on the derived reconstructed graphlets, the reconstruc-
tion error is measured by:

(15)

where is the matrix Frobenius norm.
Due to the combinatorial nature, minimizing (15) is com-

putationally heavy on certain computational platforms. To ac-
celerate the learning process, a sequential graphlet discovering
scenario is developed. Denote a set of selected graphlets in an
image as . Let be the corresponding
diagonal matrix whose diagonal entry if is selected
and 0 otherwise, and an matrix whose -th entry
is 1 and all the others 0. The -th graphlet is determined
by solving:

(16)

Since matrix in (16) is sparse, to accelerate the com-
putation of matrix inversion, based on the Sherman-Mor-
rison-Woodbury formula [5], we obtain:

(17)

where and are the -th column and the -th row of
respectively, and the objective function in (16) can be reorga-
nized as follows:

(18)
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Denote , the optimization problem in (16)
can be rewritten as (19) at the bottom of the page.

D. Representative Graphlet Cut

The selected representative graphlets effectively capture
the homogeneity among superpixels, which are subsequently
incorporated in the normalized cut framework for segmentation.
Our proposed approach improves the conventional normalized
cut in that: the conventional normalized cut measures the
similarity between superpixels using the distance between their
appearance feature vectors, whereas our approach measures
their similarity by taking into consideration of their spatial
structures. Particularly, we train a standard GMM to model
their distribution. Given a post-embedding graphlet
from the test image, the homogeneity of its superpixels is
computed via:

(20)

where are the GMM parameters learned by
using expectation maximization from the training post-embed-
ding graphlets, and we set GMM component number in
our approach.
On the basis of the above homogeneity measure, the objec-

tive function of the proposed graphlet-guided normalized cut is
given below:

(21)

where and are two disjoint sets of superpixels. The three
terms , and are defined
in the following.
The numerator in (21) measures the cost of removing all

edges spanning superpixel sets and , i.e.,

(22)

where is the relationship of superpixel and . The
term collects the parent graphlets of superpixel pair

, and functions as a normalization factor.
The two denominators in (21) respectively accumulate con-

nections from superpixels in set and to the entire super-
pixels, i.e.,

(23)

TABLE I
AVERAGE PER-CLASS MEASURE FROM THE FIVE COMPARED METHODS

(24)

By minimizing the objective function in (21), each test image
can be decomposed into several segmented regions. To annotate
the semantics of each region, we first learn a multi-label SVM
based on the selected -dimensional post-embedding graphlets
and the category labels of the images from which the graphlets
are extracted. Given a test graphlet , based on the prob-
abilistic output of SVM [16], we obtain its probability of be-
longing to semantic class : , and the semantic
label of segmented region is computed by maximummajority
voting of all its spatially overlapping graphlets:

(25)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section validates the effectiveness of the proposed
approach for weakly-supervised segmentation based on four
sets of experiments. The first set of experiments compares our
approach with representative segmentation algorithms. The
second set of experiments evaluates the individual components
of our approach. Discussion of parameter setting is given in the
third part.

A. Description of Data Sets

To compare our approach with the existing weakly-super-
vised segmentation methods, we experiment on the SIFT-flow
[11] and the MSRC-21 [18]. In addition, it is important to com-
pare our approach with fully-supervised segmentation, as the
comparative results show how effectively the image-level labels
enhance segmentation performance. To this end, we also experi-
ment on the PASCALVOC 2008 [4], 2009, and 2010. Note that,
only the foreground objects are annotated in images from the
VOC series, and we use them as foreground image-level labels.
To obtain the background image-level labels, we manually label
the background of each image as one of ,
and further combine the foreground image-level labels and the
background ones.

(19)



476 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 2, FEBRUARY 2014

TABLE II
AVERAGE PER-CATEGORY ACCURACY ON PASCAL VOC 2008, 2009, AND 2010

B. Comparison With the State of the Art

In this experiment, we compare our approach with four seg-
mentation methods, including two weakly-supervised segmen-
tation methods: multi-image model (MIM) [22] and its variant
(GMIM) [24], as well as two fully-supervised segmentation al-
gorithms: TextonBoost (TB) [18] and hierarchical conditional
random field (HCRF) [13].
The experimental settings of the proposed method and its

competitors are as follows: For our algorithm, the maximum
graphlet size is set to 5, because we experimentally find that
segmentation accuracy improves very limited when .
The upper bound of the number of selected graphlets is 1000,
making the segmentation carried out quickly. For the four com-
paredmethods,MIM, HCRF, and TB are with publicly available
codes. For MIM, we use the Matlab toolbox.4 For HCRF, there
are publicly available C++ code.5 For textonboost, the codes
are also publicly downloadable.6 For all the three algorithms,
we kept the parameters in the codes unchanged. For GMIM,
we re-implement it based on the publicly available code MIM,
because MIM can be deemed as a reduced version GMIM. To-
ward a fair comparison, the superpxiel generation and the cor-
responding parameter is the same as the implementation of our
algorithm; besides, the features we extracted from each super-
pixel are also color moment combined with HOG. For the GP
optimization, in our implementation, we found that parameter
used in the publication [24] is not effective. Actually, we set

, while the squared exponential is the same
as that in the publication.
The segmentation performance is evaluated by average-per-

class measure, which averages the correctly classified pixels
per-class over all classes (per-category segmentation accuracies
of the PASCALVOC series are given in Table II). In Table I, we
report the performance of the five compared methods and two
observations are made.
• On both data sets, our approach significantly outperforms
the other two weakly-supervised segmentation methods:
MIM and GMIM, demonstrating that image-level labels
are more effectively encoded by our model.

• Our approach outperforms TextonBoost on both data
sets, and performs competitively to HCRF on the
PASCAL VOC series. This demonstrates that, even
though image-level labels are much coarser cues com-
pared with pixel-level labels, if exploited effectively they
can boost segmentation performance to the same extent as
pixel-level labels.

4http://www.inf.ethz.ch/personal/vezhneva/#code
5http://www.inf.ethz.ch/personal/ladickyl/
6http://jamie.shotton.org/work/code.html

Fig. 5. Example of segmentation results under functionally reduced compo-
nent (The first column: the original photo, the second column: the ground truth,
the third column: superpixel graphlet, the fourth column: non-structural
graphlets, the fifth column: remove image-level labels in the embedding, the
sixth column: graphlet embedding kernel PCA, the seventh column: remove
representative graphlet selection, the eighth column: graphlet cut 2-sized
graphlets, and the last column: the proposed method).

C. Step-by-Step Model Justification

This experiment evaluates the effectiveness of the four main
components in our approach: graphlet extraction, manifold
graphlet embedding, representative graphlet selection, and the
probabilistic segmentation model.
To justify the effectiveness of graphlets for weakly-super-

vised segmentation, two experimental settings are adopted
to weaken the descriptiveness of graphlets. First, we reduce
graphlets to superpixels (“Superpixel as graphlet” in Table III),
that is, 1-sized graphlet that captures no spatial structure of
superpixels. Second, we remove the structure term from (3)
(“Non-structural graphlet” in Table III). In Fig. 5, we present
the segmentation results under the two experimental settings.
As shown, segmentation using superpixels or non-struc-
tural graphlets results in numerous ambiguous segmentation
boundaries.
To justify the effectiveness of manifold graphlet embedding,

three experimental settings are used. In the first setting, we
remove the geometric context term and from the
objective function (5) (“Remove geometric context term” in
Table III). In the second setting, we transform our approach
into an unsupervised version by abandoning the image-level
label encoding term from (5) (“Remove image-level label
term” in Table III). In the third setting we transform our ap-
proach into an unsupervised version by replacing the manifold
embedding with kernel PCA, where the kernel is defined as

(“Replace graphlet embedding with
kernel PCA” in Table III). We present the segmentation results
under the three experimental settings in Fig. 5. By comparing
with the ground truth, we can see that removing the geometric
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TABLE III
PERFORMANCE DECREASE OF COMPONENT REPLACEMENT

context term results in large number of incorrectly labeled re-
gions. This demonstrates the importance of geometric context
into the segmentation process. Besides, segmentation without
image-level label supervision performs less satisfactorily,
reflecting image-level labels contribute positively to image
segmentation. Furthermore, very poor segmentation results are
observed when kernel PCA is adopted because both geometric
context and image-level labels are abandoned.
To justify the effectiveness of the representative graphlet

selection, we abandon this function in the proposed framework
and use all the post-embedding graphlets for probabilistic
graphlet cut (“Non repres. graphlet selection” in Table III).
As seen from Fig. 5, segmentation without the selected
graphlets produces several mistakenly annotated regions,
which demonstrates the necessity of removing graphlets that
are non-representative to a semantic category.
To justify the effectiveness of the probabilistic segmentation

model, we restrict the graphlet size to two and thus only binary
relationships of superpixels are exploited in the normalized cut
based segmentation (“Normalized cut with 2-sized graphlets”
in Table III). As shown in Fig. 5, segmentation with 2-sized
graphlets results in numerous over-segmented patches, because
of the limited superpixel label smoothing capability of 2-sized
graphlets. Beyond the analysis of the sample segmentation
results, the statistics in Table III shows the performance degra-
dation caused by the above component replacements, again
demonstrating the indispensability and inseparability of the
four components in our approach.

D. Effects of Different Parameters

The maximum graphlet size significantly influences the
segmentation results. In Fig. 6, we present segmentation accu-
racy, time consumption corresponding to ranging from 1 to
10, on the PASCAL VOC 2008 [4]. We do not experiment with
larger than 10 because the segmentation accuracy becomes

stable, and the segmentation takes too long, for example, longer
than one hour to segment an 1024 768 image. From Fig. 6, we
have two observations. First, segmentation accuracy increases
moderately as goes up from 1 to 6, and remains stable as
goes up further from 7 to 10. This implies that 6-sized graphlets
are adequately descriptive to capture the homogeneity of super-
pixels. Second, segmentation time increases exponentially as
the graphlet size goes up. Therefore it is better to keep small.
Next, we present in Fig. 7 the average segmentation accuracy

with the dimensionality of post-embedding graphlets ranging
from 10 to 130, with a step of 10, again on the SIFT-flow [11].
The maximum dimensionality is set to 130 because the graphlet
embedding combines color and texture channel descriptors,

Fig. 6. Segmentation accuracy and time consumption per image under different
maximum graphlet size .

Fig. 7. Average segmentation accuracy with different values of the dimension-
ality of post-embedding graphlets.

leading to a 137-dimensional vector. As shown in Fig. 7, the
best segmentation results are achieved when is between 40
and 60, and we therefore set on this data set.
Finally, we present the segmentation performance under

different number of those selected graphlets in Fig. 8.
Particularly, we set the maximum graphlet size respectively
to , and obtain
graphlets correspondingly. In each case, we selected



478 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 2, FEBRUARY 2014

Fig. 8. Segmentation accuracy on SIFT-flow under different number of those
selected graphlets.

% % % % % % % % % % % %
graphlets and reported the segmentation accuracy. As
seen, the best segmentation performance is consistently
observed when 15% graphlets are selected, which is in line
with our opinion that there are numerous graphlets not
beneficial to the segmentation task. At the same time,
when very few graphlets are selected, the segmentation
performance is also sub-optimal. This is because the selected
graphlets cannot cover all superpixels.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a weakly-supervised segmentation
method by learning the distribution of spatially structured su-
perpixel sets. We introduce the notion of graphlet that captures
the spatial structures of superpixels. To integrate image-level
labels, a manifold embedding technique is proposed to trans-
form different-sized graphlets into equal-lengthed feature
vectors. Based on the embedding, we propose an feature
selection algorithm to select a few highly semantics corre-
lated post-embedding graphlets. The selected post-embedding
graphlets allow us to use GMM to learn their distribution. The
distribution is further used to measure the homogeneity of
superpixels for segmenting test images.
In the future, we will investigate a semi-supervised [10]

segmentation framework that simultaneously decomposes an
image into regions and derives their semantics. In addition,
we plan to generalize the proposed method into a multi-level
spatial pyramid framework, in order to capture differently-sized
objects.
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