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Abstract—Many emerging context-aware mobile applications
involve the execution of continuous queries over sensor data
streams generated by a variety of on-board sensors on multiple
personal mobile devices (aka smartphones). To reduce the energy-
overheads of such large-scale, continuous mobile sensing and
query processing, this paper introduces CQP, a collaborative
query processing framework that exploits the overlap (in both the
sensor sources and the query predicates) across multiple smart-
phones. The framework automatically identifies the shareable
parts of multiple executing queries, and then reduces the over-
heads of repetitive execution and data transmissions, by having
a set of ‘leader’ mobile nodes execute and disseminate these
shareable partial results. To further reduce energy, CQP utilizes
lower-energy short-range wireless links (such as Bluetooth) to
disseminate such results directly among proximate smartphones.
We describe algorithms to support our server-assisted distributed
query sharing and optimization strategy. Simulation experiments
indicate that this approach can result in 60% reduction in the
energy overhead of continuous query processing; when ‘leader’
selection is dynamically rotated to equitably share the burden,
we observe an increase of up to 65% in operational lifetime.

I. INTRODUCTION

An increasing number of context-aware mobile computing
applications involves the processing of continuous queries
over data streams generated by a variety of smartphone-
embedded sensors (such as GPS, accelerometer, microphone
and gyroscope). A majority of the initial applications, in
areas such as activity recognition [1], health monitoring [2]
or indoor location tracking, apply such query processing on
an individualized basis, using data solely from an individual’s
personal smartphone-embedded or wearable sensors. Recently
a more sophisticated mobile computing paradigm is emerging
that revolves around collaborative sensing of shared context.

In this pervasive mobile sensing paradigm, a potentially
large number of physically-proximate smartphones (e.g., a
group of mobile devices associated with customers in a food
court or attendees in a lecture theater) simultaneously execute
multiple continuous queries, each operating on a collection
of individual, shared and remote (cloud-based) sensor data
sources. In particular, a single complex query, executing on a
smartphone, can involve three distinct types of sensor sources:

a) Mobile and Personal: Here, the data streams are asso-
ciated with sensors embedded on the local smartphone

‡ This author is supported in part by the Singapore Ministry of Education
Academic Research Fund Tier 2 under the research grant MOE2011-T2-1-
001. Any opinions, findings, conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views
of the granting agency or Singapore Management University.

and represent context that is unique to each specific
individual-e.g., accelerometer data used to infer an in-
dividual’s locomotive state.

b) Mobile and Non-Personal: While the data streams are still
associated with smartphone-embedded sensors, unlike a),
the context represented is now non-personal and can thus
be inferred by utilizing sensor data from one or more
alternate mobile devices–e.g., microphone sensors used
to infer the ambient sound levels.

c) Cloud-based, Remote: Here, the data sources are asso-
ciated with infrastructure-based “sensors”, and must first
be retrieved from the ’backend’ infrastructure–e.g., a Web
service that provides up-to-date temperature and pollutant
concentrations in different urban areas.

Unfortunately, energy overheads continue to be the major
bottleneck in the large-scale deployment of such continuous
mobile sensing-based applications (e.g., continuous use of
GPS data streams is known [3] to drain a smartphone’s battery
in 4-5 hours or less). In this paper, we propose and investigate
a new form of hybrid collaborative query processing frame-
work (called CQP) for energy-efficient concurrent execution
of such mobile sensing applications on multiple smartphones,
that lies in between the two extremes of a) cloud-based cen-
tralized processing, where each mobile device merely forwards
its relevant data to a centralized, infrastructure-based query
processing engine and then merely receives the end result, and
b) completely decentralized processing, where a centralized,
infrastructure-based data collector collects and forwards all
non-local data to each individual mobile device, allowing each
smartphone to execute its complex queries completely locally
and independently. Our hybrid framework is based on the
fundamental observations that:

1) The energy overheads of wireless communication typ-
ically dominate the energy costs of on-board sensing
(with GPS being a notable exception)–as reported in
[4], wireless data transmission and reception typically
consumes more than 21.5% of the energy budget on
current smartphones (with displays being the other dom-
inant energy consumer).

2) Smartphones today are equipped with multiple wire-
less communication interfaces (e.g., 3G, Wi-Fi and
Bluetooth). Moreover, short-range radio interfaces (e.g.,
Bluetooth) consume significantly lower energy (per bit
transmitted) than long-range 3G/4G interfaces.

To achieve energy efficiency, our hybrid framework thus
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aims to both reduce the total volume of sensor data streams
transmitted and preferentially employ shorter-range (e.g.,
Bluetooth-based) links for disseminating the sensor data and
query states. To reduce the total volume of sensor data,
we opportunistically identify and execute the shareable parts
of multiple continuous queries on a single “leader” mobile
device, which then distributes the intermediate query execution
results to the other devices executing their queries, rather than
have each smartphone retrieve its data streams independently.
In practice, there are multiple mobile devices selected for
executing different shareable portions of the queries, and the
role of the “leader” is rotated among the group members
for fairness. Moreover, CQP also transfers the intermediate
query state directly between mobile devices using shorter-
range links, thereby significantly reducing the intensity of
3G/4G-based data transfers between individual mobile devices
and a cloud-based server.

Research Questions: To develop a viable cooperative and
semi-distributed query sharing framework, we need to address
several research questions:

∙ How do we identify the common (shareable) parts of
multiple complex queries? We tackle this problem, in
Section V, by proposing query matching and clustering
algorithms.

∙ What parts (shareable or non-shareable) parts of multiple
queries and remote data should be executed/retrieved
on a single mobile device vs. locally executed/retrieved
by individual smartphones? We explore this problem, in
Section IV and propose 3 variants of the CQP framework.

∙ How do multiple phones coordinate to establish a shared
and distributed query plan? We describe, in Section IV,
how CQP uses a central server-assisted to derive and dis-
seminate a consistent, shared query plan across multiple
participating smartphones.

Key Contributions: We believe the following to be our key
contributions in this paper:

∙ We propose the CQP collaborative query processing
framework, where the continuous queries of multiple
smartphones are processed in a semi-distributed fashion
among the phones, and which relies on the use of more
energy-efficient short-range wireless links to transfer data
& intermediate query state among mobile devices. This
framework is more energy efficient than the current model
of independent query execution by individual smart-
phones and is more practicable than purely distributed,
P2P query processing alternatives.

∙ We study 3 different variants of CQP (that differ in
what parts of the data and intermediate query results
are transmitted over short-range wireless interfaces) and
establish the cases for which each of these variants
outperforms the others.

∙ We perform simulation-based studies to quantify the
energy savings achieved by CQP for realistic application
scenarios, taking special care to incorporate the detailed
energy consumption characteristics of different wireless
technologies. Our results demonstrate significant (≈ 60%
in our studies) reduction in energy overheads.

The rest of the paper is organized as follows. Section
II provides a brief survey of the related and prior work.
Section III then uses a couple of representative applications
to explain the key concepts and insights behind the design
of CQP. Section IV describes the component-level functional
architecture of the CQP framework and describes the three
models of semi-distributed, collaborative query processing.
Subsequently, Section V presents algorithms for automatically
identifying the common overlapping sub-queries that may be
executed on a common node. Section VI presents simulation-
based performance studies. Finally, Section VII concludes the
paper with a discussion of open issues that we are working to
address.

II. RELATED WORK

There has recently been a wave of research on “people-
sensing”, centered on the use of sensor data collected from
individual smartphones for applications such as traffic man-
agement, automated reminders and dynamic activity status
updates [5], [6], [7]. To enable continuous energy-efficient
execution of such mobile sensing applications, the Jigsaw plat-
form [1] uses a pipelined stream processing architecture that
adaptively triggers different sensors at different sampling rates
while meeting the application’s context accuracy requirements,
while the SociableSense framework [8] adaptively shifts the
individual components of the query processing functionality
between a mobile device and the cloud. Our work is also
motivated by the ACQUA framework [9] which performs
query optimization for a single mobile device (retrieving data
from multiple on-body sensors) and saves transmission energy
by preferentially executing predicates with higher selectivity
and lower acquisition cost. All of these approaches, however,
target the optimization of streaming queries for a single smart-
phone in isolation, and do not consider the overlap between
multiple queries executing on multiple mobile devices. The
theoretical foundation of our use of low-power short-range
wireless links for inter-smartphone communication is provided
by [10], which empirically studied the energy consumption
in mobile phones and analyzed the implications for network
applications.

There has been relatively scant research on the collaborative
processing paradigm, where multiple mobile devices share or
coordinate their sensing activity. The Darwin mobile sensing
framework [11] focuses on harnessing the sensing capability
of multiple proximate phones to improve the accuracy of a
single common query, by building and exploiting distributed
classifiers that overcome the limitations of a single device. The
ErDos framework [12] exploits collaboration among multiple
nearby devices to loadshare the sensing burden (e.g., round-
robin sharing of GPS sensors) of shared ambient context.
Similarly, the use of GPS-based location sharing, via the use
of low-cost Bluetooth communication among multiple nearby
phones, for energy-efficient location tracking has been demon-
strated in [13], [14]. However, these approaches focus either
exclusively on sharing the raw sensor data (using direct short-
range communication among the peer devices) or on sharing
only location context. These approaches do not consider the
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problem of sharing (either wholly or partially) the execution
of arbitrarily complex streaming queries; we believe that our
work is among the first to suggest a distributed framework for
energy-efficient sharing of query execution among multiple
proximate mobile devices.

Our techniques of query sharing are inspired by recent
work on multiple query optimization on data streams (albeit
done without focusing on the specific challenges of mobile
sensing). Recent work [15] employs pattern matching queries,
state merging and indexing techniques in sharing work among
queries reading the same input streams, while [16] focuses on
sharing work among queries reading different streams. These
techniques lay the foundation of our distributed query process-
ing approach, where the common (shareable) part is executed
on a single node and the device-specific residual portion of
individual queries is executed on each individual smartphone.
However, unlike such past work, which did not consider the
specific challenges of mobile sensing, our work explicitly
considers the different energy overheads associated with the
transmission of data & query results between smartphones,
and seeks to optimize the overall energy consumption. Our
proposed CQP framework also considers the joint processing
of both mobile sensor-generated data streams and cloud-
resident structured data sets.

To identify a group of smartphones that may benefit from
sharing their query processing tasks, our CQP framework also
borrows from recent work on grouping techniques and location
management for mobile phones. For example, to group phones
based on their physical distance or proximity, we can utilize
windowing and clustering [17] techniques. Alternatively, we
can group based on the shared interest in specific contexts.
Recent work (e.g.,[18][19]) provides solutions at both the
network layer and application-level middleware support to
achieve such context-dependent grouping. These solutions are
efficient for the grouping requirement of our framework, thus
we adopt these techniques by using the similarity among
queries as the context information to form groups. While
alternative forms of explicit or implicit grouping may be
possible (e.g., in femtocellular architectures, where each cell
size is ≈ 20meter in diameter, all phones associated with a
single access point may be part of a common group), further
research on grouping strategies for mobile phones is outside
the scope of this paper.

III. MOTIVATING EXAMPLES AND HIGH-LEVEL VISION

CQP is motivated by our belief that many emerging mo-
bile computing applications, both in consumer and enterprise
domains, require not just an individual’s sensor data, but
collective context obtained by processing sensor streams from
a group of mobile devices, as well as cloud-based data sources.
We first describe two such representative use cases, extracting
relevant insight that informs our design of the CQP frame-
work. We then illustrate the alternative centralized or fully
distributed alternatives for query processing, and explain the
key principles by which the CQP framework can lower the
energy overheads of continuous mobile query processing.

Example 1: Meeting Status Indicator: In enterprises, par-
ticipants in a meeting may be running an application on their

phones that continually tracks the meeting’s progress and
automatically detects when the meeting has ended (vs. when
a single participant steps out briefly to take a phone call). The
’meeting ended’ query may need to monitor: a) the location
and current physical activity (sitting, standing) (using Wi-Fi
and accelerometer data) of all the participants,b) the light and
sound levels of the room and c) the status of the projector
and conferencing phone in the room, and combine multiple
predicates into a single complex query, such as:

“ALERT when‘ majority of participants stand up’ AND
(‘room lights go on’ OR ‘room sound levels decrase’) AND
‘projector is switched off’ ”.

In this case, we can identify the following characteristics:
a) each phone needs access to the ‘activity’ state of the other
participants (obtained from their phone’s accelerometer sen-
sor), b) the light and sound levels are ambient environmental
state that may be sensed by one smartphone and shared with
the other smartphones, and c) the projector/phone status may
need to be obtained from an infrastructure-based source (e.g.,
an enterprise Presence Server).

Example 2: Emergency Triage Management: As a much
more data-intensive application, consider an emergency man-
agement scenario of the future where individual victims in a
disaster area (e.g., a building) have their location and other
medical parameters, such as Sp02 (Blood Oxygen Saturation)
and heart rate, being monitored by their individual smart-
phones (which may be locally connected to body-worn sensor
devices). As rescue professionals move through the disaster
area, each of them may choose to execute slightly different
continuous queries, corresponding to their specific field of
expertise. For example, we simply consider two rescuers,
located near each other, who have the following two queries:

Q1 (Rescuer 1): “Track the nearest 3 victims’ locations,
such that each victim’s SpO2 < 95% AND heart rate
> 120/𝑚𝑖𝑛”

Q2 (Rescuer 2): “Track the nearest 3 victims’ locations,
such that heart rate> 95/𝑚𝑖𝑛 and blood pressure
> 150𝑚𝑚𝐻𝑔. ”

Given the rescuers’ proximity to each other, it is easy to
identify the following characteristics: a) Each phone may
need to monitor data from a non-identical, but overlapping
set of victims’ smartphones; b) If a particular victim is
relevant to both Q1 and Q2, then, while the query predicates
related to ‘heart rate’ values are not identical, they may be
effectively combined within a common processing logic–i.e.,
if the heart rate is < 95/𝑚𝑖𝑛, it is automatically < 120/𝑚𝑖𝑛
as well. Thus, unlike the case of ‘ambient sound/light levels’
in Example 1 (where the predicate is identical across multi-
ple smartphones), Example 2 demonstrates the possibility of
having a query predicate be partially evaluated on a mobile
device, while the residual predicate evaluation is performed
on another smartphone.

Motivation for CQP. Having identified the salient char-
acteristics of shared mobile sensing applications, we first
present the two relatively straightforward (or naive) frame-
works for implementing these queries. To quantify their rel-
ative energy impact, we focus on the ‘Emergency Triage
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Management’ scenario described above, and assume an un-
derlying set of 1000 vicitims, with each victim’s sensor
data consisting of five attributes: {𝐺𝑃𝑆 − 𝑙𝑎𝑡,𝐺𝑃𝑆 −
𝑙𝑜𝑛𝑔, 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦,𝐻𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒, 𝑆𝑃𝑂2}. Each sensor data tuple
is 20 bytes long; thus, the total sensor data volume is 20KB
during each sampling interval of 20 seconds. We can identify
two obvious alternatives for query processing:

∙ Independent Query Processing: In this framework, we
assume the existence of a cloud-based centralized Relay
Server, such that each of the 1000 hypothetical victims
transmit their relevant sensor data to the Relay Server,
which then transmits the entire set of such sensor data
(using a wide-area 3G cellular interface) to each of the
2 rescuer phones separately. In this case, based on the
energy characteristics of 3G radios, we calculate the
energy consumed (for each 20 second interval) by the
2 receiver phones to be ≈ 23.4Joules.

∙ Centralized Server Processing: In this approach, the
2 rescuers upload their queries and the 1000 victims
upload their relevant sensor data to a cloud-based Query
Server using a wide-area 3G cellular interface. The Query
Server executes the queries centrally and returns the query
results to the mobile devices of the 2 rescuers. This
approach is particularly inefficient when queries involve
mostly local sensor streams, as the smartphones then
waste energy unnecessarily in transmitting all of their
sensor data to a cloud server.

To understand the motivation behind the CQP framework,
we now explore possible optimizations that may lower the
energy overheads. As a possible alternative to the Independent
Query Processing framework, we could have one of the 2
rescuer phones receive the sensor data streams of the 1000
victims from the Relay Server over the 3G interface, and
then relay this data in turn to the other rescuer’s mobile
device using the cheaper shorter-range Bluetooth interface,
effectively replacing the 3G data reception by the 2nd phone
with a lower energy Bluetooth-based transmission. Using the
operating assumptions mentioned before, we compute that this
approach will reduce the total enery consumed (for each 20
second interval) by the 2 rescuer phones to ≈ 10.54Joules.

As a further optimization, the 2 rescuer phones may now
perform an additional step of query sharing. In this approach,
the phone receiving the data streams from the Relay Server
could then evaluate the common portions of the queries (e.g.,
the predicate related to ‘HR >95/min’) first, and then relay
only the intermediate query result (instead of the raw data
streams) to the second phone. Depending on the selectivity
properties of the predicates, this should further reduce the
transmission energy overheads.

The three variants of our proposed CQP framework imple-
ment various combinations of the above-proposed optimiza-
tions. At a high-level, CQP envisages that, given a group
of mobile devices simultaneously executing multiple queries,
energy savings will be achieved by having a single node
(a designated ‘leader’ mobile device) compute the common,
shareable sub-queries and return the intermediate results to the
individual group members (for final query processing).

IV. THE CQP FRAMEWORK

A. Overview

Our collaborative query processing (CQP) framework con-
ceptualizes the eco-system of mobile devices, base stations,
cloud computing servers as a massive distributed database sys-
tem where the data sources can be either sensor data streams
from individual mobile devices or relational tables residing
in cloud-based database servers. Mobile applications on each
mobile device are viewed as client applications that pose
(possibly continuous) queries on this conceptual distributed
database system. This view of mobile applications enables
us to collaboratively process queries among groups of mobile
devices, so as to to reduce the total energy consumption across
all mobile devices and increase their operational lifetime.

Roles. The CQP framework groups mobile devices into
location-based groups and query-based groups. Intuitively,
mobile devices within the same location-based group are phys-
ically close together, and thus experience the same ‘ambient
context’ and can communicate over lower-powered links, such
as Bluetooth or Wi-Fi. Query-based groups are a further
clustering of phones within a location-based group, such
that the queries of the phones within a query-based group
are “overlapping” and thus able to share data sources and
processing. The CQP framework abstracts the function that
each device and/or system performs into three distinct roles.

∙ A group leader receives data, sends data, or process data
on behalf of the member devices or phones in the group.

∙ A member device/phone belongs to a group and poses
a set of queries on local sensor data or remote data on a
server.

∙ A server manages a collection of groups, optimizes and
co-ordinates the collaborative processing of each member
device’s queries. Without loss of generality, we assume
that the server is also a proxy to any relational data that
the queries may require.

We envision that in most cases, one mobile device within
a query-based group will take on the role of group leader
(besides being a member device). The group leader role can
be suitably rotated among the member devices in the group to
balance the energy-consumption. The edge server at or near
the base station will play the role of the server. However,
the CQP framework is quite general and will support other
cases as well. For example, in femtocellular networks, all
mobile devices connected to a single access point (AP) can
be implicitly part of the same location-based group, and the
server and group leader role may be performed by the AP
itself.

Query Model. We assume that the queries posed by member
phones operate over both relational data and sensor streaming
data. Query languages for the specification of such queries
are beyond the scope of this paper, although streamSQL can
certainly be used. We assume that a query is modeled by a
tree of standard relational algebra operators and the continuous
execution semantics are implemented as periodic execution
(with period 𝑇 ) of the query tree. Sensor data streams are
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incorporated into this model by considering finite windows
(𝑤𝑖𝑛) of the data streams at each periodic execution time;
i.e., the evaluation at time instant 𝑡 utilizes sensor data within
the time interval (𝑡 − 𝑤𝑖𝑛, 𝑡). In the most general form, a
query tree would operate on both local sensor data and remote
(relational) data.

Grouping by Location and Queries. To collaboratively share
resources for query processing, mobile devices or smartphones
need to be clustered into groups. The CQP framework uses
a two-level grouping of phones. The first level of grouping
clusters phones using the GPS location of the phones. The
resultant groups are called location-based groups. The exact
distance threshold depends on the type of applications to
be supported and on the communication link used–e.g., for
Bluetooth-based intra-group communications, all members of
a group can be no more than 10 meters apart. The second level
of grouping clusters the phones within each location-based
group using the amount of commonality of the queries in the
group. The resultant groups are called query-based groups. A
location-based group can contain multiple, overlapping query-
based groups.

Both location-based and query-based groups are managed
by the server. All phones periodically send their location data
to the server, which clusters the phones into location-based
groups and manages the group membership when phones
leave or new phones join the system. Similarly, all phones
periodically send their queries to the server and the server
will cluster the phone-query pairs into groups and manage the
group membership.

Query Processing Strategies. To illustrate how queries are
processed using the CQP framework, we first consider how
queries would be executed in the absence of CQP. The
queries are still assumed to be executed periodically, but there
is no concept of groups and group leaders. Two possible
strategies are possible depending on whether most of the query
processing is performed at the phone or at the server.

∙ Naive-P Fig. 1(a). At each query execution, each phone
sends requests for remote data to server. The server
transmits the required remote data to each phone. Each
phone acquires the local sensor data (e.g. accelerometer).
After all required data have been received, the phone
executes the query and obtains the result.

∙ Naive-S Fig. 1(b). At each query execution, each phone
acquires the local sensor data (e.g. GPS) and sends
the local sensor data and the query to the server. The
server receives the sensor data and query from the phone,
executes the queries using both local sensor data and
remote data, and sends the results back to the phone.

Now consider query processing using the CQP framework.
We outline three possible strategies of collaborative query
processing, CQ-S, CQ-L and CQ-LS, that differ mainly in
the amount of processing handled by the group leader. In all
three strategies, groups are formed and managed by the server
as described previously. Using the query-based grouping in-
formation, the server then co-ordinates the collaborative query

execution via collaborative query execution plans (CQEP). A
query-based group must be contained within a location-based
group. A phone-query pair is grouped into a query-based group
if the query can share resources (such as local sensor data or
common query fragments) with the other phone-query pairs in
the query-based group. A collaborative query execution plan
consists of group membership information, as well as query
plan fragments for each device/system, including the group
leader and the server. We outline how the collaborative query
processing is performed for the three strategies within a query-
based group of phones.

∙ CQ-S Fig. 1(c). Each member phone receives from the
server a fragment of the CQEP for execution. The group
leader also receives from the server a fragment of the
CQEP called the shared query plan. The results of the
shared query plan needs to be sent to the member phones
in order for the member phones to complete execution
of their CQEP fragment. In this strategy, each member
phone acquires the remote data required by their CQEP
fragment from the server independently. The leader phone
and each member phone also acquires local sensor data
from their own sensors. The group leader then executes
the shared query plan and sends the results to the member
phones, which then individually execute their residual
CQEP fragments.

∙ CQ-L Fig. 1(d). The CQ-L strategy is exemplified by the
group leader performing most of the query processing
for the member phones. Each member phone sends its
query and local sensor data to the leader. The leader
acquires all the required remote data from the server.
Upon receiving the required sensor data and remote data,
the leader executes all the queries for each member phone
and sends the results to each member phone.

∙ CQ-LS Fig. 1(e). The CQ-LS strategy differs from the
CQ-S strategy by having the group leader act as a proxy
for all member phones and acquire all required remote
data from the server, instead of the CQ-S approach where
each member phone acquires the remote data indepen-
dently from the server. CQ-LS aims to exploit the low-
powered Bluetooth link among group members for data
dissemination. The group leader and each member phone
also acquire local sensor data from their own sensors.
The group leader then executes the shared query plan
and sends the results and the required remote data to
each individual member phone, which then individually
executes its residual CQEP fragment.

B. The CQP Architecture

Fiigure 2 shows the functional architecture of the CQP
framework. To enable query sharing, some key components
of the framework should either be implemented on the server
(either embedded at the wireless base stations or implemented
as cloud services). These key components coordinate the
sharing of processing among different mobile phones that are
within Bluetooth-based communication range. On the mobile
device side, the framework is implemented as middleware
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Fig. 2. System architecture for the CQP framework.

that interconnects the applications which generate the queries,
the query execution engine and the communication control
components. The Location Group Manager (LGM) determines
the location-based groups for the phones and manages the
group membership. The Query Group Manager (QGM) builds
the query-based groups on top of the location-based groups
and manages the query-based group membership. The Query
Planner (QP) optimizes and produces a collaborative query
execution plan (CQEP) that orchestrates the entire collabora-
tive query execution among member phones, group leaders
and server. The Query Execution Runtime (QER) receives
a CQEP or fragments thereof and executes the CQEP. The
CQEP contains group membership information and the job
specification for each device including where to acquire data,
what queries to execute, and where to send the results.

Location Group Manager (LGM). The LGM clusters mobile
devices using their location or GPS data and maintains the
group membership information as devices move into range
and out of range. This is a well studied problem in mobile
communication systems and we rely on current state-of-the-
art techniques (e.g. [20]) to find and manage location-based
groups. Whenever changes in smartphone locations causes a
change in location-based groups, the Query Planner may have
to potentially regenerated a new CQEP.

Query Group Manager (QGM). The QGM builds on the
location-based group information to determine and manage
query-based groups. For a single location-based group, each

member phone periodically sends their queries to the QGM.
The QGM clusters the set of phone-query pairs according
to the similarity or degree of commonality of the queries.
Details on the clustering algorithm is discussed in Section V.
The output of the clustering algorithm consists of query-based
groups (of the phone-query pairs) and the maximal common
sub-query associated with each group. The QGM periodically
recomputes the query-based groups, due to dynamics in both
node mobility and changes in specified queries.

Collaborative Query Planner (QP). The QP is responsible
for constructing a collaborative query execution plan (CQEP),
using query optimization in to find the best CQEP that
achieves objectives, such as reducing the SUM of energy
consumption or maximizing the system lifetime of all the
mobile phones in the group. The CQEP is a distributed query
execution plan that consists of jobs for each member phone,
group leader and server. The jobs are specified by relational
algebra operator trees augmented with operators that acquire
local sensor data and remote data and with operators that send
the results of the job to other devices or servers. Note that
the QP is stateful in the sense that each invocation is not
independent of the CQEP produced in the previous invocation.
The statefulness allows the QP to generate CQEPs that rotate
the role of the group leader among phones in a group or assign
resource-intensive jobs to phones with the longest battery life.

Query Execution Runtime (QER). The QER coordinates
the collaborative query execution among different devices to
generate coherent query results for each query. The QER
resides on all devices and servers including member phones,
group leaders and servers. Conceptually, it receives a CQEP
and executes the jobs (query trees) in the CQEP that are
assigned to the device. The server QER and group leader QER
may also forward jobs to other member phones and co-ordinate
the forwarding of relevant results.

Handling Change. To avoid incurring a prohibitive cost
due to frequent replanning, the LGM may restrict location-
membership to relatively stable nodes, borrowing from re-
cent mobile computing techniques that use phone-usage and
activity patterns (e.g., whether a user is actively using an
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email App on their phone or is currently seated) to predict
the likely movement pattern of individual devices. Moreover,
the QP may choose stability over optimality, leaving query
plans unmodified if the performance gains are predicted to
be incremental. In general, if the “leader” node assigned to a
location based group moves outside the Bluetooth communi-
cation range, the LGM triggers a re-plan procedure to generate
new location based group information, which is then used to
generate the modified CQEP. Developing practically effective
strategies for managing group dynamics is an open problem
that we defer to our future work. In this paper we focus on
the algorithms for collaborative query processing.

V. FINDING QUERY-BASED GROUPS

To automatically generate a CQEP, a central challenge is to
identify the membership of a query-based group, i.e., identify
the shareable, common parts of multiple queries. We now
describe the algorithm to address this challenge. The input
of the algorithm is a collection of queries posed by the
collection of phones in a given location-based group. The 𝑗-
th query posed by phone 𝑖 is denoted by 𝑞𝑖,𝑗 . The output
of the algorithm is a collection of query-based groups and
the common sub-queries associated with each of the query-
based group. Note that, to avoid redundant query execution and
energy overheads, the query-based groups form a partitioning
over the set of queries {𝑞𝑖,𝑗}, i.e., each query should not be
in more than one query-based group.

Query Tree. A query 𝑞𝑖,𝑗 is a tree of relational operators.
More formally, a query is a tree (𝑉,𝐸) where 𝑉 is a set of
nodes and 𝐸 is a set of edges. A leaf node represents a data
source and a non-leaf node represents a relational operator.
A directed edge between two nodes indicates the direction of
data transfer. Each node 𝑣 ∈ 𝑉 is associated with a name and a
parameter: 𝑛𝑎𝑚𝑒(𝑣) denotes the name of the operator or the
name of the data source, and 𝑝𝑎𝑟𝑎𝑚(𝑣) the parameter that
the operator requires. For data source nodes, the 𝑝𝑎𝑟𝑎𝑚(𝑣)
consists of the information required to retrieve data from
that data source. For the relational selection operator 𝜎, the
𝑝𝑎𝑟𝑎𝑚(𝑣) would be the selection predicate. For the projection
operator 𝜋, the parameter would be the set of columns to
project. Some relational operators such as ×,∪,∩ do not take
any additional parameters and hence their 𝑝𝑎𝑟𝑎𝑚(𝑣) would
be empty.

Two nodes 𝑢, 𝑣 are name matching if 𝑛𝑎𝑚𝑒(𝑢)=𝑛𝑎𝑚𝑒(𝑣).
Two query subtrees rooted at 𝑢 and 𝑣 are name matching
if the two trees are isomorphic (there exists a bijection
between the two trees) and each pair of corresponding nodes
are name matching. Two nodes 𝑢, 𝑣 are exact matching if
𝑛𝑎𝑚𝑒(𝑢)=𝑛𝑎𝑚𝑒(𝑣) and 𝑝𝑎𝑟𝑎𝑚(𝑢)=𝑝𝑎𝑟𝑎𝑚(𝑣). Two query
subtrees rooted at 𝑢 and 𝑣 are exact matching if the two
trees are isomorphic and each pair of corresponding nodes
are exact matching. The reason for distinguishing the weaker
name matching is that it is often possible to obtain a common
subquery that contains nodes that are only name matching
with a relaxation on the parameter associated with the node.
An example of such relaxation would be two queries 𝑝 and 𝑞

Algorithm 1 Strategy 1 for Finding Query-based Groups
Input: A set of queries 𝑄 = {𝑞𝑖,𝑗 : 𝑗-th query of phone 𝑖}
Output: A set of query-based groups and the associated shared
subqueries

1: Find collection of shared subqueries using [21]
2: Find query-based groups using a greedy set cover algorithm
3: Remove overlaps between groups

Algorithm 2 Strategy 2 for Finding Query-based Groups
Input: A set of queries 𝑄 = {𝑞𝑖,𝑗 : 𝑗-th query of phone 𝑖}
Output: A set of query-based groups and the associated shared
subqueries

1: Find query-based groups using a hierarchical agglomerative
clustering algorithm

2: for all query-based groups do
3: Find the shared subquery forest

containing a selection operator on the same data source. The
selection parameter in 𝑝 is 𝐻𝑅>95 and in 𝑞 is 𝐻𝑅>120. A
common subquery would contain the selection operator with
parameter 𝐻𝑅>95.

We propose two strategies for finding query-based groups.
The first strategy is outlined in Algorithm 1. We first find
a collection of shared subquery trees given all the queries
in the location-based group. Those shared subqueries are
maximal subquery trees or forests that are shared by two or
more queries. The grouping of queries induced by the shared
subqueries may not cover all queries, and may overlap. Since
the query-based groups need to cover all the given queries,
we find a minimal set cover using a greedy algorithm. Since a
set cover yields query-based groups that may still overlap, we
remove overlaps to ensure that the query-based groups forms
a partition.

Finding a collection of shared subquery trees is done using
a bottom-up algorithm similar to [21]. An inverted index is
constructed that maps leaf nodes (name and parameter) to a list
of queries. Starting from the largest list, each pair of queries
in the list is examined to find the shared subquery tree. If
that particular shared subquery tree has been found before,
the pair of queries is merged with the existing list for that
shared subquery tree.

The second strategy is outlined in Algorithm 2. We first
apply a hierarchical agglomerative clustering algorithm to
cluster the queries using a distance function based on the
number of shared data sources (exact matching on leaf nodes)
between two queries. The stopping criterion can be based
on the number of clusters or the size of clusters (more
sophisticated conditions can be used too). Those clusters yield
the query-based groups; a tree isomorphism based algorithm
is then used to find the shared subquery tree or forest for each
query-based group.

VI. EXPERIMENTAL EVALUATION

This section describes our simulation-based experiments to
quantify the performance gains (in terms of the reduction
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in energy overheads) of the proposed CQP framework. Our
experiments are conducted using a Python-based simulator
which accepts as input groups of phones, phones’ queries
and the data streams required by the queries. Each query
may require some amount of remote data from the server and
some amount of data from the local sensors characterized by
a parameter called the local-remote ratio of local data size
to remote data size. The queries at each phone is evaluated
periodically every 20 seconds. The total duration of simulation
is 3600 seconds (one hour). We perform simulations for the
five query processing strategies introduced in Section IV-B:
Naive-P, Naive-S, CQ-S, CQ-L and CQ-LS. The results are
averaged over all the 20-second execution intervals within the
3600 second simulation time.

Data. We generate synthetic relational data of varying sizes.
For the remote server data required by a given query at each
evaluation interval, we vary the size uniformly randomly from
10KB to 100KB in steps of 10KB. For the streaming local
sensor data required by the query at each evaluation interval,
we generated the value of each attribute in the streams using
the normal distribution 𝑁(𝜇, 𝜎) (with appropriate truncation
to avoid underflow below 0 or overflow above 100%). The
data size of the streaming local sensor data for a given query
is determined using the local-remote ratio for that query.
Unless otherwise specified the local-remote ratio for a query
is uniformly randomly selected between 0.25 and 4.

Performance metrics. We use three metrics in our experi-
ments. Energy consumption is the energy consumed spent on
data transmission on each phone and is calculated according to
the models in Fig. 3. Data transmission size is the sum of the
quantity of data transmitted between phones (using Bluetooth)
as well as between server and phones(using 3G). System
operational lifetime is the duration between the beginning of
the simulation to the first device running out of energy.

A. Energy Consumption

Our first experiment answers the question: To what extent
can CQP help reduce energy consumption in the system? The
experimental setting consists of 18 smart phones in one group
sending out queries to be answered. The queries are evaluated
every 20 seconds (we will call this a query-reply round). The
amount of server data required by each query is fixed at 10KB
and the ratio of local data is randomly generated as described
previously. We measure the energy consumed by each phone
in the system as they process the queries using each of the
five query processing methods. For the CQP methods (CQ-S,
CQ-L and CQ-LS), without loss of generality since the groups
are independent, the 18 phones are grouped into one location-
based group and one query-based group.

Fig. 4 shows the total energy consumed (over the 18 phones)
for each of the five methods averaged over the query-reply
rounds. Observe that the CQP methods have a significant
advantage in energy efficiency. In each query-reply interval,
Naive-P and Naive-S consumed over 215 Joules to answer the
queries. CQ-L and CQ-LS both prevent their member phones

from acquiring remote data using 3G, effectively halving their
energy consumption (cf. naive methods).

To better understand the data transmission characteristics of
each method, we measured the average total data transmitted
in one query-reply round and these are plotted in Fig. 5.
Naive-S uses the centralized server to process all the queries
and thus does not require the server data to be transmitted
to each phone. Naive-P requires each phone to download
the data required by the query from the server resulting
from more data transmission than Naive-S. CQ-S adopts a
distributed processing strategy and thus its data transmission
characteristics is inbetween Naive-P and Naive-S. CQ-L and
CQ-LS both requires large amount of data to be transmitted
between the leader and the group members albeit using short
range communication technology that is more energy efficient.
One important lesson here is that minimizing data transmission
may not necessarily minimize energy consumption. Fig. 4 and
Fig. 5 show that exploiting more energy-efficient communi-
cation channels can result in dramatic energy savings even at
the cost of data transmission.

We have looked at the sum of energy consumption over
all 18 phones. Another important question is: What is the
energy consumption for each of the 18 phones? Fig. 8 plots the
profile of the energy consumption for each of the 18 phones
for the five methods. In general, the CQP methods decrease
the energy consumption on each member phone at the cost of
an increase in energy consumption on the leader phone. The
additionl energy burden on the leader motivates the need to
dynamically rotate the leader role among the phones in the
group in order to maximize the system operational lifetime.

B. System Lifetime

In this experiment we address the question: how long can
the system operate using the CQP framework before one
phone runs out of energy? If the system’s lifetime is reduced
compared to the naive methods, smartphone users would have
no motivation to adopt the CQP framework. The simulation
setting is similar to the previous experiment and begins with
each phone having a battery level that is uniformly randomly
generated between 10K to 20K Joules. In the fixed leader
simulation, one phone is randomly chosen as the leader for the
entire simulation. In the dynamic leader simulation, the leader
is chosen from the group according to the phones’ current
battery level every 20 seconds. We measure the lifetime of the
system as the time for the first phone to run out of battery. The
results are plotted in Fig. 6 and Fig. 7. As expected, the CQP
methods with the fixed leader approach have shorter system
lifetime than the naive methods. However, the CQP methods
using the dynamic leader approach significantly outperform
the naive methods with CQ-L achieving a system lifetime 57%
longer than Naive-S.

C. Influence of Group Sizes

The previous experiments have assumed a single location-
based group and a single query-based group. In this section,
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Wi-Fi

𝐸𝑡 =

⎧⎨
⎩

𝑃𝑖 ∗ (𝑁
𝑓 − 𝑁∗𝑆

𝐵 )

+𝑃𝑎 ∗ 𝑁∗𝑆
𝐵 + 𝐸𝑠𝑤𝑖𝑡𝑐ℎ if 𝑁𝑓 − 𝑁∗𝑆

𝐵 > 𝑇ℎ𝑖𝑑𝑙𝑒

𝑃𝑎 ∗ 𝑁
𝑓 otherwise

Bluetooth

𝐸𝑡 = 𝑃𝑖 ∗ (
𝑁

𝑓
− 𝑁 ∗ 𝑆

𝐵
− 𝑇𝑠𝑤𝑖𝑡𝑐ℎ) + 𝑃𝑎 ∗ (

𝑁 ∗ 𝑆
𝐵

+ 𝑇𝑠𝑤𝑖𝑡𝑐ℎ)

3G

𝐸𝑡 = 𝐸𝑏𝑖𝑡 ∗ (𝑁 ∗ 𝑆) + 𝐸𝑠𝑤𝑖𝑡𝑐ℎ + 𝑃𝑡𝑎𝑖𝑙 ∗ 𝑇𝑡𝑎𝑖𝑙 + 𝑀 ∗ 𝑁

𝑓
,

IEEE 802.11 Bluetooth 2.0+EDR 3G

𝑃𝑎 947 mW 60mW –
𝑃𝑖 231 mW 5 mW –

𝑃𝑡𝑎𝑖𝑙 – – 620 mW
𝐵 54 Mbps 1 Mbps 1 Mbps
𝑀 – – 20 mW
𝐸𝑏𝑖𝑡 – – 25 mJoule/bit

𝐸𝑠𝑤𝑖𝑡𝑐ℎ 14 𝜇Joule – 3.5Joule
𝑇ℎ𝑖𝑑𝑙𝑒 100 ms – –
𝑇𝑠𝑤𝑖𝑡𝑐ℎ – 6 msec –
𝑇𝑡𝑎𝑖𝑙 – – 12.5 sec

Fig. 3. Analytical energy overhead models of Wi-Fi, Bluetooth, and 3G wireless links.

Fig. 4. Total energy cost.
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Fig. 8. Distribution of energy consumption over all the phones.

we study the effect of the sizes of these two grouping on the
total energy consumption of the CQP methods.

To study the effect of the size of location-based groups,
we fixed the total number of phones to 36 and performed
simulations for 4 (location-based) groups of 9 phones each,
2 groups of 18 phones each, and one group of 36 phones. In
each location-based group, the number of query-based group
is set so that each query-based group has size 4. The ratio of
local to remote data is set at 2:8 and the size of the server
data required by each query is set randomly as described in
the beginning of Sec. VI. Fig. 9 shows the simulation results.
Observe that the larger the location-based group the greater the
energy savings for the CQP methods which is consistent with
our understanding that a larger group leads to more sharing of

resources within the group.

To study the effect of the size of query-based groups, we
used one location-based group with 16 phones and performed
for each method three simulations with query group sizes 2,4,
& 8 respectively. The number of query-based groups is set
according to the query group size. Our results as plotted in
Fig. 10 fit our intuition that bigger groups lead to greater
savings.

D. Local Data vs Remote Data

In this section we investigate the effect of the sizes of
the remote server data and the sizes of the local sensor data
required by the query on the energy consumption. For each
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Fig. 9. Number of Group Size Fig. 10. Number of Query Group Size Fig. 11. Ratio of Local Data vs. Remote Data

of the naive and CQP methods, we performed 4 simulations
varying the ratio of local to remote data according to the
set {2:8, 4:6, 6:4, 8:2}. The setting consists of one location-
based group with 16 phones partitioned into 4 query-based
groups of size 4 each. Fig. 11 plots the results. Observe that
Naive-P favors queries that require mostly local data, Naive-
S favors queries that require mostly remote data. The CQP
methods tend to favor queries that require mostly local data,
even though CQ-L and CQ-LS performs comparably to Naive-
S for queries that require mostly remote data. For queries that
require mostly local data, the CQP methods still outperform
the naive-P method. An important implication of our result is
that the ratio between local and remote data required by the
queries is one of the key factors to the selection the query
processing strategy.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced the CQP framework for
energy-efficient continuous evaluation of multiple complex
queries over mobile sensing data streams. The CQP framework
uses two innovations for sharing query execution and sensor
data streams among multiple mobile nodes. The key to the
query optimization framework is the automated identification
of the similarity of the queries among different mobile users,
and the execution of shareable fragments of multiple queries
on a common ’master’ mobile node. CQP further reduces
energy overheads by using low-energy wireless interfaces
(such as Bluetooth) to exchange data and query state directly
between nearby smartphones. We described the algorithms to
detect sharable part of queries and analyzed three different
optimization variants of CQP. Our results on synthetic traces
indicate that, compared to existing purely centralized or de-
centralized solutions, the hybrid CQP framework can result
in 60% reduction in the energy overheads, and 40% to 65%
increase in system operational life time (if the ‘leadership’ role
is rotated dynamically).

Our ongoing work encompasses two orthogonal threads. At
a systems level, we are implementing CQP on an Android-
based smartphone platform, and will then quantify CQP’s
energy savings via user studies with real-life sensor traces,
instead of currently-used synthetically generated data. On an
algorithmic level, we are refining the algorithms to include
additional query semantics, such as the support of sliding
window queries and to develop more robust query plans (that

remain close-to-optimal even under dynamic node movement
and query changes).
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