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ABSTRACT 

 
We use highly a focused laser beam incident on a carbon coated coverslip to create microcavitation. Full 
optical control of the radii of the bubbles is attained. Multiple bubbles can also be created and their size 
changed independently. The dynamics of such multi-bubble systems are studied. These bubble systems 
generate strong flows such as Marangoni convection and also large thermal gradients. Since the size of the 
micro-bubbles is highly dependent on the temperature, we anticipate that these systems can be used for 
precise temperature control of samples. These methods are of use when the knowledge of exact and local 
temperature profiles are of importance.  Furthermore, since bubble expansion can generate orders of 
magnitude more force than conventional optical tweezers, systems have application in manipulation of 
particles where large forces are required. We present methods based on optical tweezers for using the 
generated bubbles as thermal sensors and as opto-mechanical transducers. 
 
Keywords: Microcavitation, cavitation, optical tweezers, PID control, micromachines, in situ temperature 
measurement 
 

1. INTRODUCTION 
 
The manipulation of induced cavitation presents the possibility for novel actuation mechanisms for 
optomechanical devices. Cavitation is readily induced via chemical reactions, electrolysis and heating. Of 
particular interest here is laser induced cavitation, due to the relative ease of initiation and capacity for power 
modulation.  
Though several examples of micro cavitation devices exist, a prominent commercial example being the ink-
jet printer [1]  where the rapid growth of vapour bubbles accelerate liquid though a nozzle forming a droplet 
for deposition onto paper. Precise control over laser induced bubbles has not yet been demonstrated. 
 
Recent developments in the field have further demonstrated the applications of cavitation in microfluidic 
devices. Laser induced microcavitation has been demonstrated as a pump, through the exploitation of 
asymmetric currents surrounding bubbles pulsed in a cavity of appropriate geometry [2]. Similarly, on 
demand droplet fusion within microfluidic channels has been facilitated through the generation of 
explosively expanding cavitation [3]. Cavitation has successfully actuated rapid, consistent picolitre droplet 
generation in microfluidic channels [4]. Tuneable static and pulsatile chemical gradients have been achieved 
using acoustically activated bubbles arranged in a ladder like array [5]. The effects of Marangoni currents in 
optical tweezers generated microcavitation has been examined and identified to attract particles over greater 
distances, with greater forces than provided by optical trapping [6]. 
 
Microcavitation has also been demonstrated as a novel tool in the biological sciences. The generation of 
microcavitation from the absorption of laser radiation by located microparticles and nanoparticles has been 
demonstrated as a method for highly localised cell destruction [7], and this has been proposed as a dynamic 
mode for selective cancer treatment involving the overlapping of bubbles inside the cell volume [8]. 
Sonoporation, or sonically enhanced permeability of cell membranes, has been demonstrated using both laser 
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and acoustically induced microcavitation [9]. Single cell lysis via shock waves caused by laser induced 
microcavitation, has facilitated single cell proteomics [10]. 
 
Developments in optical tweezers control also demonstrate the suitability of these setups as a tool for 
microcavitation generation and control. Closed loop control has been implemented to optical trapping, with 
SLM facilitated holographic feedback moving the trap in accordance with the trapped particles motion, 
resulting in a considerable increase in trap stiffness [11]. Holographic optical tweezers systems have 
provided accurate, multispot, x,y,z control, using intuitive interfaces such as the Apple iPad [12]. 
Furthermore, demonstrated advances in stereoscopic optical tracking of particles, with accuracies on the 
order of nanometres, provides an avenue for precision tracking of both probing particles and microcavitation 
radii [13]. Based on using 2D tracking of particles in each stereo image to provide 3D tracking of particles, 
this level of tracking accuracy allows for the correction of perturbations due to Brownian motion, via 
hologram feedback displayed on an Spatial Light Modulator (SLM) [13]. These control approaches can be 
readily applied and refined for microcavitation control in an optical tweezers setup. 
 
While numerous applications of microcavitation have been presented, precise, sub-micron, variable control 
of microcavitation has remained a relatively undeveloped area of investigation. A flexible control, responsive 
to variations in power absorption and hence cavitation radius would be of benefit  to many of the applications 
previously selected. The following work details the development of a Proportional Integral Derivative (PID) 
control system regulating laser induced microcavitation radii from 4-10 microns, with a standard deviation in 
the radius on the order of 20nm. Multiple bubble array control is demonstrated, and preliminary temperature 
measurements are estimated in the vicinity of the controlled cavitation.  
  

2. EXPERIMENTAL SET-UP 
 

2.1. Details of Induced Cavitation and Detection Systems 
 
A custom optical tweezers microscope setup was constructed, to provide optical trapping and cavitation 
generation simultaneously.  The setup consisted of an inverted microscope using a 100X objective, with LED 
illumination. Two near infrared (NIR) lasers were employed to enable the trapping of a probe particle for 
temperature measurement and cavitation generation and control respectively. A Ti-Sapphire Laser (Coherent 
Mira 900 ) at 780nmwas used to trap a probe particle during temperature measurement. A fiber laser at 
1064nm (IPG Photonics YLD-5) provided the beam incident on the Holoeye HEO 1080p SLM, for cavitation 
generation and modulation. The Setup was imaged using a Prosilica GE680 camera. The setup is depicted in 
Fig.  1.  
.  
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2.2. Cover Slip Preparation 
 
Glass cover slides (24mm × 50mm) with a thickness of 100 µm were cleaned in piranha solution (3:1, H2SO4 
: H2O2 by volume) for 20 minutes. This process caused vigorous oxidation. This was followed by two rinse 
cycles in deionized water (18MΩcm-1). The coverslips were then dried using compressed air. The clean cover 
slips were coated with a 20nm layer of carbon using a Quoromtech QT150-TES Coater. The slides were then 
gradually heated in an oven to 3000C. The slides were held at 3000C for five minutes and then gradually 
cooled by reducing the temperature to 2000C followed 1500C, maintaining the temperature for five minutes in 
each case.  
 
The deposited carbon layer provided a uniform heat absorption surface, to permit rapid local attainment of 
cavitation nucleation temperature. The cover slips were adhered to a glass cover slide with a film of 
deionized water in between as the cavitating medium. Parafilm was used as a spacer. 
 

2.3. Temperature Measurement Setup 
 
To enable estimation of the temperature at different distances from the bubble, a probe particle was trapped 
using the Ti:Sapphire laser while the fibre laser was used to produce a controlled bubble. Through the 
measurement of the probe particle position variance and knowledge of the size of the trapped particle and the 
trap stiffness, an estimation of the temperature at various distances from the bubble was acquired. 
 

 
 
Fig.  2: Illustration of temperature measurement configuration. The half carbon coated coverslip that permits the 
simultaneous trapping of the probe particle (2.32µm silica) and the generation of controlled cavitation. Observed 
convection currents are illustrated. 

 .  
In order to take this measurement a half carbon coated coverslip was required (Fig.  2), to prevent the 
generation of cavitation from the trapping laser, which would dislodge the particle from the trap. The half 
coated coverslips were fabricated in the same manner as described above, with a mask secured across half of 
the coverslip to prevent coating. A 2.32µm silica bead is used as the probe particle. 
 

3. CONTROL SYSTEM  
 
The control system implementation is based around the modulation of incident laser intensity using an SLM. 
Though use of other optical modulation techniques such as acousto-optic modulators or galvo mirrors would 
have increased the open loop bandwidth of the system the potential for simultaneous control of multiple 
bubbles offered through the modulation of multiple kinoforms was desirable for future investigations into 
microcavitation arrays and micromachinery actuation. 
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range between 0 and 1. This noise signal was multiplied by an array of randomly generated numbers, which 
was subsequently added to the phase of the hologram generating the respective spot. The control system is 
summarised in Fig.  4. 
 

 
 
Fig.  4: The schematically representation of the Proportional Integral Derivative (PID) action developed for the 
microcavitation control. The difference between the specified desired radius, ࡾ(࢚), and the current measured radius, ࢊࢋ࢛࢙࢘ࢇࢋ࢓ࡾ(࢚), is used to generate an error signal, ࢋ(࢚). This error signal is subsequently used to determine relevant 
proportional, integral and derivative feedback terms added to the noise signal, ࢔(࢚),	varying the kinoform phase noise and 
hence scattered light power for and individual laser spot. 
 

4. PRECISE CONTROL OF LASER INDUCED CAVITATION 
 
We aim here to demonstrate to what degree the cavitation process can be controlled and how the parameters 
of the system were varied to provide this type of control.  
 
Successful independent control of individual microcavitation is evident in the step response output, as seen in 
Fig.  5 (a). 
The results of the step response demonstrate the full control of cavitation radius between 5 and 8 microns. 
The output radius displays slightly underdamped dynamics, with a response that is akin to a second order 
oscillatory system. 
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54.9µm from the bubble is considered an outlier and is likely a result of insufficient lock in particle tracking or optical
table disturbance, increasing the variance of this observation. 

Temperature can be estimated in a simplified case of Marangoni convection, in which there is a linear
temperature gradient at large distances, temperature distributions are unaffected by the flow and quadratic
terms of the Navier-Stokes equation and can be neglected. In accordance with the work of Berry et al [6] , the
temperature at a distance r from a bubble is approximated as: 

3

0 1 2 cos
2
RT T T r
r

θ
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

 ( 4 ) 

Where T is the temperature at some distance, r, from the bubble, T0 is the ambient temperature, T1 is the
temperature gradient at large distances from the bubble, and R is the radius of the bubble. The equation is
expressed in spherical coordinates, accounting for the cosθ term. 

A limitation of this experiment is the estimation of the calibration temperature. The assumption of the slide
temperature being equivalent to ambient within close proximity to the trapping laser is inaccurate due to the 
associated heat flux. Hence the absolute temperature values evaluated in Fig.  8 do not necessarily represent 
the actual temperatures encountered. Nevertheless the results demonstrate linearity between temperature, 
variance and distance from a controlled microbubble, at distances on the order of 50 μm.  

Due to the considerable convection currents encountered, temperature measurements at distances less than 50
microns are problematic as the probe particle tends to dislodge from the trap before sufficient position data
can be collected. While the trapping laser power can be increased, unintentional generation of 
microcavitation and attraction of surrounding particles places limits on trapping laser power in practice. 
Better slide manufacturing will enable measurements closer to the microcavitation site.

6. CONCLUSION

The cavitation control methods presented demonstrate the viability of optical tweezers setups in the study of 
microbubble systems. The precision control established over both individual microbubbles and microbubble
arrays permits both systematic study of cavitation and applications in microfluidics and optofluidically driven 
micromachines. The capacity for microcavitation to be used as a microscale temperature probe or regulator
has also been demonstrated, with preliminary results on the temperature at various distances from controlled
microcavitation site.

Future areas of investigation include experimental studies of Marangoni currents, perhaps involving the
imaging of suitable tracer particles to categorise flow fields induced around cavitation in a controlled and
repeatable manner. Such studies could be broadened to encompass the visualisation of flow fields generated
by controlled microcavitation arrays facilitated through SLM control developed in this work. These systems
will have potential microfluidic applications. Further streamlining of the control algorithm, hologram display
and imaging techniques would facilitate the generation of more extensive microcavitation arrays. Due to the 
high precision of control, cavitation is an ideal candidate actuator for micromachinery or microfluidic devices 
requiring relatively large forces, in excess of those which conventionally are provided in optical trapping.  
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