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The problem of stability analysis for a class of networked control systems (NCSs) with network-induced delay and packet dropout is
investigated in this paper. Based on the workingmechanism of zero-order holder, the closed-loop NCS is modeled as a continuous-
time linear system with input delay. By introducing a novel Lyapunov-Krasovskii functional which splits both the lower and upper
bounds of the delay into two subintervals, respectively, and utilizes reciprocally convex combination technique, a new stability
criterion is derived in terms of linear matrix inequalities. Compared with previous results in the literature, the obtained stability
criterion is less conservative. Numerical examples demonstrate the validity and feasibility of the proposed method.

1. Introduction

Network control systems (NCSs) are the feedback control
systems in which the control loops are closed via real-time
networks [1]. NCSs have great advantages compared to the
traditional point-to-point control systems, including high
reliability, ease of installation andmaintenance, and low cost,
and they have been applied in many areas, such as computer
integrated manufacturing systems, intelligent traffic systems,
aircraft control, and teleoperation. However, due to the inser-
tion of communication network in feedback control loops,
time delay caused by data transmission and packet dropout
in NCSs is always inevitable, which may degrade system
performance or even lead to the potential system instability.
Thus it is of significance to copewith the adverse influences of
induced delay and packet dropout. Recently, the problem of
robust stability analysis for NCSs has attained considerable
attention, and a great number of research results have been
reported [1–9]. In order to reduce the conservatism, Yu
et al. [5] obtained the sufficient condition on the stabilization
of NCSs; the admissible upper bounds of induced delay
and packet dropout can be computed by using Lyapunov-
Razumikhi function techniques and the quasiconvex opti-
mization algorithm. The free weighting matrices method
was proposed in [3] to solve the problem of network-based

control. However, using too many free weighting matrices
makes the system analysis complex; what is more, some
terms were neglected directly, which brings the conservative.
Peng et al. [9] indicated that if more information of induced
delays in NCSs were utilized, conservatism in system analysis
could be reduced. Moreover, it can build a bridge to connect
quality of control (QoC). In [4], a stability criterion based on
maximum allowable network-induced delay rate is proposed
for choosing a reasonable sampling period.

Inspired by the above research results, in the present
paper, the robust stabilization problem for a class of NCSs
with network-induced delay and packet dropout is addressed.
The NCSs are modeled as continuous-time linear systems
on the basis of the input delay approach. By exploiting the
information of lower and upper bounds of the delay, a new
Lyapunov-Krasovskii functional is constructed. Moreover,
reciprocally convex combination technique is introduced
such that less conservative results are obtained. Two numeri-
cal examples are given to illustrate the validity and feasibility
of the proposed results.

2. System Description

In this paper, the sensor module is assumed to act in a clock-
driven fashion with transmission period h; the controller
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and actuator modules are assumed to act in an event-driven
fashion. A new packet will be used by the controller immedi-
ately after its arrival. Single packet transmission is considered,
where all the data sent or received over the network are
sampled at the same sampling instant and assembled together
into one network packet.

The plant is described by the following linear plant model
proposed in [7]:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) , (1)

where 𝑥(𝑡) ∈ 𝑅

𝑛, 𝑢(𝑡) ∈ 𝑅

𝑚 are the plant’s state and input
vectors, respectively. 𝐴 and 𝐵 are known to be real constant
matrices with proper dimensions.This control signal is based
on the plant’s state at the instant 𝑖

𝑘
ℎ. So, the control law can

be described as

𝑢 (𝑡

+

) = 𝐾𝑥 (𝑖

𝑘
ℎ) , 𝑡

+

∈ [ 𝑖

𝑘
ℎ + 𝜏

𝑘
, 𝑖

𝑘+1
ℎ + 𝜏

𝑘+1
) ,

𝑘 = 0, 1, 2, 3, . . . ,

(2)

where 𝐾 is the state feedback gain matrix, 𝜏
𝑘
denotes

the network-induced delay, and ℎ is the sampling period,
{𝑖

1
, 𝑖

2
, 𝑖

3
, . . .} ⊂ {1, 2, 3, . . .}; due to the introduction of logical

zero-order holder, the actuator will use the latest available
control input, so 𝑖

𝑘+1
> 𝑖

𝑘
. If {𝑖
1
, 𝑖

2
, 𝑖

3
, . . .} = {0, 1, 2, 3, . . .},

then no packet dropout occurred in the transmission. And
the numbers of consecutive packet dropouts during the time
interval (𝑖

𝑘
ℎ, 𝑖

𝑘+1
ℎ) can be described as follows:

𝑖

𝑘+1
− 𝑖

𝑘
= 1, 0 packet is lost,

𝑖

𝑘+1
− 𝑖

𝑘
= 2, 1 packet is lost,

...

𝑖

𝑘+1
− 𝑖

𝑘
= 𝑝, 𝑝 − 1 packets are lost.

(3)

Assume the existence of constants 𝜏
𝑚
> 0, 𝜏

𝑀
> 0. One

has

𝜏

𝑚
≤ 𝜏

𝑘
,

(𝑖

𝑘+1
− 𝑖

𝑘
) ℎ + 𝜏

𝑘+1
≤ 𝜏

𝑀
, 𝑘 = 0, 1, 2, 3, . . . ,

(4)

where 𝜏
𝑚
and 𝜏
𝑀
indicate the lower and the upper bounds of

the total delay involving both transmission delays and packet
dropouts, respectively.

From a straightforward combination of (1)–(4), the sys-
tem can be rewritten as follows:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐴

𝑑
𝑥 (𝑡 − 𝑑 (𝑡)) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ (−𝜏

𝑀
, 0) ,

(5)

where 𝐴
𝑑
= 𝐵𝐾, the function 𝑑(𝑡) = 𝑡 − 𝑖

𝑘
ℎ which satisfies

𝜏

𝑚
≤ 𝑑(𝑡) ≤ 𝜏

𝑀
denotes the time-varying delay in the control

signal, and 𝜑(𝑡) is the state’s initial function.
The following technical lemmas are introduced, which are

indispensable for the proof of the main result.

Lemma 1 (see [13]). For any positive matrix 𝑀 > 0, scalar
𝑟 > 0, and a vector function 𝑤 : [0, 𝑟] → 𝑅

𝑛 such that the
integration ∫𝑟

0

𝑤(𝑠)

𝑇

𝑀𝑤(𝑠)𝑑𝑠 is well defined,

𝑟 (∫

𝑟

0

𝑤(𝑠)

𝑇

𝑀𝑤(𝑠) 𝑑𝑠) ≥ (∫

𝑟

0

𝑤 (𝑠) 𝑑𝑠)

𝑇

𝑀(∫

𝑟

0

𝑤 (𝑠) 𝑑𝑠) .

(6)

Lemma 2 (see [14]). For any positive matrix 𝑅, scalars 𝑎 and
𝑏 satisfying 𝑎 > 𝑏, and 𝑎 vector function 𝑥, the following
inequality holds:

(𝑎 − 𝑏)

2

2

∫

𝑎

𝑏

∫

𝑎

𝑠

𝑥

𝑇

(𝑢) 𝑅𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

≥ (∫

𝑎

𝑏

∫

𝑎

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠)

𝑇

𝑅(∫

𝑎

𝑏

∫

𝑎

𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠) .

(7)

Lemma 3 (see [15]). Let 𝐹
1
, 𝐹

2
, 𝐹

3
, . . . 𝐹

𝑁
: 𝑅

𝑚

→ 𝑅 have
positive values for arbitrary value of independent variable in
an open subset𝑊 of 𝑅𝑚. The reciprocally convex combination
of 𝐹
𝑖
(𝑖 = 1, 2, . . . , 𝑁) in𝑊 satisfies

min
𝑁

∑

𝑖=1

1

𝜂

𝑖

𝐹

𝑖
(𝑡) =

𝑁

∑

𝑖=1

𝐹

𝑖
(𝑡) +max

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1, 𝑗 ̸= 𝑖

𝑊

𝑖,𝑗
(𝑡) (8)

subject to

{𝜂

𝑖
> 0,

𝑁

∑

𝑖=1

𝜂

𝑖
= 1, 𝑊

𝑖,𝑗
(𝑡) : 𝑅

𝑚

→ 𝑅,

𝑊

𝑗,𝑖
(𝑡) = 𝑊

𝑖,𝑗
(𝑡) , [

𝐹

𝑖
(𝑡) 𝑊

𝑖,𝑗
(𝑡)

𝑊

𝑖,𝑗
(𝑡) 𝐹

𝑗
(𝑡)

] ≥ 0} .

(9)

3. Main Results

Theorem 4. For a given scalar 𝜏
𝑀

> 𝜏

𝑚
≥ 0, NCS (5) is

asymptotically stable if there exist symmetric matrices 𝑃 =

[𝑃

𝑖𝑗
]

4×4

> 0, 𝑄 = [

𝑄
11
𝑄
12

∗ 𝑄
22

] > 0,𝑅 = [

𝑅
11
𝑅
12

∗ 𝑅
22

] > 0,
𝑍

𝑖
(𝑖 = 1, 2, 3) > 0, 𝑅

𝑖
(𝑖 = 1, 2, 3) > 0, and proper dimensions

matrice 𝑆
12
such that

[

𝑍

2
𝑆

12

∗ 𝑍

2

] > 0,

Θ = [

Θ

11
Θ

12

∗ Θ

22

] < 0,

(10)
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where

Θ

12
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝜏

2

𝑚

8

Ψ𝑅

1

(𝜏

𝑀
− 𝜏

𝑚
)

2

2

Ψ𝑅

2

𝜏

2

𝑀

8

Ψ𝑅

3

𝜏

𝑚

2

Ψ𝑍

1

(𝜏

𝑀
− 𝜏

𝑚
) Ψ𝑍

2

𝜏

𝑀

2

Ψ𝑍

3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Θ

11
= diag {−𝑅

1
−𝑅

2
−𝑅

3
−𝑍

1
−𝑍

2
−𝑍

3
} ,

Θ

22
=

[

[

[

[

[

[

[

[

[

[

[

[

[

Ω
11
𝑃
11
𝐴
𝑑
𝑃
12
−𝑃
12
Ω
15
Ω
16
Ω
17
Ω
18
Ω
19

∗ Ω
22
Ω
23
Ω
24
0 0 𝐴

𝑇

𝑑
𝑃
12
𝐴
𝑇

𝑑
𝑃
13
𝐴
𝑇

𝑑
𝑃
14

∗ ∗ Ω
33
𝑆
12
−𝑄
𝑇

12
0 𝑃

22
𝑃
23
𝑃
24

∗ ∗ ∗ Ω
44
0 −𝑅

𝑇

12
−𝑃
22
−𝑃
23
−𝑃
24

∗ ∗ ∗ ∗ Ω
55
0 −𝑃

𝑇

23
−𝑃
33
−𝑃
34

∗ ∗ ∗ ∗ ∗ Ω
66
−𝑃
𝑇

24
−𝑃
𝑇

34
−𝑃
44

∗ ∗ ∗ ∗ ∗ ∗ −𝑅
2
0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
1
0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
3

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Ψ = [𝐴 𝐴

𝑑
0 0 0 0 0 0 0]

(11)
with

Ω

11
= 𝐴

𝑇

𝑃

11
+ 𝑃

11
𝐴 + 𝑃

13
+ 𝑃

𝑇

13
+ 𝑃

14
+ 𝑃

𝑇

14

+ 𝑅

11
+ 𝑄

11
− 𝑍

1
− 𝑍

3
−

𝜏

2

𝑚

4

𝑅

1

− (𝜏

𝑀
− 𝜏

𝑚
)

2

𝑅

2
−

𝜏

2

𝑀

4

𝑅

3
,

Ω

15
= − 𝑃

13
+ 𝑍

1
+ 𝑄

12
,

Ω

16
= 𝑅

12
+ 𝑍

3
− 𝑃

14
,

Ω

17
= 𝐴

𝑇

𝑃

12
+ 𝑃

𝑇

23
+ 𝑃

𝑇

24
+ (𝜏

𝑀
− 𝜏

𝑚
) 𝑅

2
,

Ω

18
= 𝐴

𝑇

𝑃

13
+ 𝑃

33
+ 𝑃

𝑇

34
+

𝜏

𝑚

2

𝑅

1
,

Ω

19
= 𝐴

𝑇

𝑃

14
+ 𝑃

34
+ 𝑃

44
+

𝜏

𝑀

2

𝑅

3
,

Ω

22
= − 2𝑍

2
+ 𝑆

12
+ 𝑆

𝑇

12
,

Ω

23
= 𝑍

2
− 𝑆

12
,

Ω

24
= 𝑍

2
− 𝑆

𝑇

12
,

Ω

33
= − 𝑄

22
− 𝑍

2
,

Ω

44
= − 𝑅

22
− 𝑍

2
,

Ω

55
= − 𝑍

1
− 𝑄

11
+ 𝑄

22
,

Ω

66
= − 𝑍

3
− 𝑅

11
+ 𝑅

22
.

(12)

Proof. Let us choose a Lyapunov-Krasovskii functional can-
didate as

𝑉 (𝑥

𝑡
) =

4

∑

𝑖=1

𝑉

𝑖
(𝑥

𝑡
) , (13)

where

𝑉

1
(𝑥

𝑡
) =

[

[

[

[

[

[

[

[

[

[

𝑥 (𝑡)

∫

𝑡−𝜏
𝑚

𝑡−𝜏
𝑀

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−(𝜏
𝑚
/2)

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−(𝜏
𝑀
/2)

𝑥 (𝑠) 𝑑𝑠

]

]

]

]

]

]

]

]

]

]

𝑇

𝑃

[

[

[

[

[

[

[

[

[

[

𝑥 (𝑡)

∫

𝑡−𝜏
𝑚

𝑡−𝜏
𝑀

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−(𝜏
𝑚
/2)

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−(𝜏
𝑀
/2)

𝑥 (𝑠) 𝑑𝑠

]

]

]

]

]

]

]

]

]

]

,

𝑉

2
(𝑥

𝑡
)

= ∫

𝑡

𝑡−(𝜏
𝑚
/2)

[

𝑥 (𝑠)

𝑥 (𝑠 −

𝜏

𝑚

2

)

]

𝑇

[

𝑄

11
𝑄

12

∗ 𝑄

22

][

𝑥 (𝑠)

𝑥 (𝑠 −

𝜏

𝑚

2

)

]𝑑𝑠

+ ∫

𝑡

𝑡−(𝜏
𝑀
/2)

[

𝑥 (𝑠)

𝑥 (𝑠 −

𝜏

𝑀

2

)

]

𝑇

[

𝑅

11
𝑅

12

∗ 𝑅

22

][

𝑥 (𝑠)

𝑥 (𝑠 −

𝜏

𝑀

2

)

]𝑑𝑠,

𝑉

3
(𝑥

𝑡
) =

𝜏

𝑚

2

∫

0

−𝜏
𝑚
/2

∫

𝑡

𝑡+𝑠

�̇�

𝑇

(𝑢) 𝑍

1
�̇� (𝑢) 𝑑𝑢 𝑑𝑠

+ (𝜏

𝑀
− 𝜏

𝑚
) ∫

−𝜏
𝑚

−𝜏
𝑀

∫

𝑡

𝑡+𝑠

�̇�

𝑇

(𝑢) 𝑍

2
�̇� (𝑢) 𝑑𝑢 𝑑𝑠

+

𝜏

𝑀

2

∫

0

−𝜏
𝑀
/2

∫

𝑡

𝑡+𝑠

�̇�

𝑇

(𝑢) 𝑍

3
�̇� (𝑢) 𝑑𝑢 𝑑𝑠,

𝑉

4
(𝑥

𝑡
) =

𝜏

2

𝑚

8

∫

𝑡

𝑡−(𝜏
𝑚
/2)

∫

𝑡

𝑠

∫

𝑡

𝑢

�̇�

𝑇

(V) 𝑅
1
�̇� (V) 𝑑V 𝑑𝑢 𝑑𝑠

+

(𝜏

𝑀
− 𝜏

𝑚
)

2

2

∫

𝑡−𝜏
𝑚

𝑡−𝜏
𝑀

∫

𝑡

𝑠

∫

𝑡

𝑢

�̇�

𝑇

(V) 𝑅
2
�̇� (V) 𝑑V 𝑑𝑢 𝑑𝑠

+

𝜏

2

𝑀

8

∫

𝑡

𝑡−(𝜏
𝑀
/2)

∫

𝑡

𝑠

∫

𝑡

𝑢

�̇�

𝑇

(V) 𝑅
3
�̇� (V) 𝑑V 𝑑𝑢 𝑑𝑠.

(14)

Define an extended-state vector as
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𝜉

𝑇

(𝑥

𝑡
)

Δ

= [𝑥

𝑇
(𝑡) 𝑥

𝑇
(𝑡 − 𝑑 (𝑡)) 𝑥

𝑇
(𝑡 − 𝜏

𝑚
) 𝑥

𝑇
(𝑡 − 𝜏

𝑀
) 𝑥

𝑇
(𝑡 −

𝜏m
2

) 𝑥

𝑇
(𝑡 −

𝜏

𝑀

2

) ∫

𝑡−𝜏𝑚

𝑡−𝜏𝑀

𝑥

𝑇
(𝑠) 𝑑𝑠 ∫

𝑡

𝑡−(𝜏m/2)
𝑥

𝑇
(𝑠) 𝑑𝑠 ∫

𝑡

𝑡−(𝜏𝑀/2)

𝑥

T
(𝑠) 𝑑𝑠] ,

(15)

and then NCS (5) is simplified as

�̇� (𝑥

𝑡
) = 𝜓𝜉 (𝑥

𝑡
) . (16)

Calculating the derivative of 𝑉
1
(𝑥

𝑡
) along the trajectory of

NCS (5) yields

̇

𝑉

1
(𝑥

𝑡
) = 2

[

[

[

[

[

[

[

[

[

[

𝑥 (𝑡)

∫

𝑡−𝜏
𝑚

𝑡−𝜏
𝑀

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−(𝜏
𝑚
/2)

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−(𝜏
𝑀
/2)

𝑥 (𝑠) 𝑑𝑠

]

]

]

]

]

]

]

]

]

]

𝑇

𝑃

[

[

[

[

[

[

[

[

[

𝜓𝜉 (𝑡)

𝑥 (𝑡−𝜏

𝑚
) − 𝑥 (𝑡−𝜏

𝑀
)

𝑥 (𝑡)−𝑥 (𝑡−

𝜏

𝑚

2

)

𝑥 (𝑡)−𝑥 (𝑡−

𝜏

𝑀

2

)

]

]

]

]

]

]

]

]

]

.

(17)

It is easy to get

̇

𝑉

2
(𝑥

𝑡
) =

[

[

𝑥 (𝑡)

𝑥 (𝑡 −

𝜏

𝑚

2

)

]

]

𝑇

[

𝑄

11
𝑄

12

∗ 𝑄

22

]

[

[

𝑥 (𝑡)

𝑥 (𝑡 −

𝜏

𝑚

2

)

]

]

−

[

[

𝑥(𝑡 −

𝜏

𝑚

2

)

𝑥 (𝑡 − 𝜏

𝑚
)

]

]

𝑇

[

𝑄

11
𝑄

12

∗ 𝑄

22

]

[

[

𝑥(𝑡 −

𝜏

𝑚

2

)

𝑥 (𝑡 − 𝜏

𝑚
)

]

]

+ [

𝑥 (𝑡)

𝑥 (𝑡 −

𝜏

𝑀

2

)

]

𝑇

[

𝑅

11
𝑅

12

∗ 𝑅

22

][

𝑥 (𝑡)

𝑥 (𝑡 −

𝜏

𝑀

2

)

]

−

[

[

𝑥(𝑡 −

𝜏

𝑀

2

)

𝑥 (𝑡 − 𝜏

𝑀
)

]

]

𝑇

[

𝑅

11
𝑅

12

∗ 𝑅

22

]

[

[

𝑥(𝑡 −

𝜏

𝑀

2

)

𝑥 (𝑡 − 𝜏

𝑀
)

]

]

.

(18)

The time derivative of 𝑉
3
(𝑥

𝑡
) can be represented as

̇

𝑉

3
(𝑥

𝑡
) = �̇�

𝑇

(𝑡) ((

𝜏

2

𝑚

4

)𝑍

1
+ (𝜏

𝑀
− 𝜏

𝑚
)

2

𝑍

2
+ (

𝜏

2

𝑀

4

)𝑍

3
)

× �̇� (𝑡) −

𝜏

𝑚

2

∫

0

−𝜏
𝑚
/2

�̇�

𝑇

(𝑠) 𝑍

1
�̇� (𝑠) 𝑑𝑠 − (𝜏

𝑀
− 𝜏

𝑚
)

× ∫

−𝜏
𝑚

−𝜏
𝑀

�̇�

𝑇

(𝑠) 𝑍

2
�̇� (𝑠) 𝑑𝑠

−

𝜏

𝑀

2

∫

0

−𝜏
𝑀
/2

�̇�

𝑇

(s) 𝑍
3
�̇� (𝑠) 𝑑𝑠.

(19)

By utilizing Lemma 1, we obtain

−

𝜏

𝑚

2

∫

𝑡

𝑡−(𝜏
𝑚
/2)

�̇�

𝑇

(𝑠) 𝑍

1
�̇� (𝑠) 𝑑𝑠

≤

[

[

𝑥 (𝑡)

𝑥 (𝑡 −

𝜏

𝑚

2

)

]

]

𝑇

[

−𝑍

1
𝑍

1

∗ −𝑍

1

]

[

[

𝑥 (𝑡)

𝑥 (𝑡 −

𝜏

𝑚

2

)

]

]

,

−

𝜏

𝑀

2

∫

𝑡

𝑡−(𝜏
𝑀
/2)

�̇�

𝑇

(𝑠) 𝑍

3
�̇� (𝑠) 𝑑𝑠

≤ [

𝑥 (𝑡)

𝑥 (𝑡 −

𝜏

𝑀

2

)

]

𝑇

[

−𝑍

3
𝑍

3

∗ −𝑍

3

][

𝑥 (𝑡)

𝑥 (𝑡 −

𝜏

𝑀

2

)

] .

(20)

Define 𝛼 = (𝑑(𝑡) − 𝜏

𝑚
)/(𝜏

𝑀
− 𝜏

𝑚
), 𝛽 = (𝜏

𝑀
− 𝑑(𝑡))/(𝜏

𝑀
−

𝜏

𝑚
); by the reciprocally convex combination in Lemma 3, the

following inequality holds:

−

[

[

[

[

[

√

𝛽

𝛼

(𝑥 (𝑡 − 𝜏

𝑚
) − 𝑥 (𝑡 − 𝑑 (𝑡)))

−
√

𝛼

𝛽

(𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝜏

𝑀
))

]

]

]

]

]

𝑇

[

𝑍

2
𝑆

12

∗ 𝑍

2

]

×

[

[

[

[

[

√

𝛽

𝛼

(𝑥 (𝑡 − 𝜏

𝑚
) − 𝑥 (𝑡 − 𝑑 (𝑡)))

−
√

𝛼

𝛽

(𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝜏

𝑀
))

]

]

]

]

]

< 0.

(21)

Due to 𝜏

𝑚
≤ 𝑑(𝑡) ≤ 𝜏

𝑀
, according to Lemma 1 and ine-

qualities (21), we have

− (𝜏

𝑀
− 𝜏

𝑚
) ∫

𝑡−𝜏
𝑚

𝑡−𝜏
𝑀

�̇�

𝑇

(𝑠) 𝑍

2
�̇� (𝑠) 𝑑𝑠

= − (𝜏

𝑀
− 𝜏

𝑚
) ∫

𝑡−𝜏
𝑚

𝑡−𝑑(𝑡)

�̇�

𝑇

(𝑠) 𝑍

2
�̇� (𝑠) 𝑑𝑠

− (𝜏

𝑀
− 𝜏

𝑚
) ∫

𝑡−𝑑(𝑡)

𝑡−𝜏
𝑀

�̇�

𝑇

(𝑠) 𝑍

2
�̇� (𝑠) 𝑑𝑠

≤ −

𝜏

𝑀
− 𝜏

𝑚

𝑑 (𝑡) − 𝜏

𝑚

[

𝑥 (𝑡 − 𝜏

𝑚
)

𝑥 (𝑡 − 𝑑 (𝑡))

]

𝑇

[

𝑍

2
−𝑍

2

∗ 𝑍

2

] [

𝑥 (𝑡 − 𝜏

𝑚
)

𝑥 (𝑡 − 𝑑 (𝑡))

]

−

𝜏

𝑀
− 𝜏

𝑚

𝜏

𝑀
− 𝑑 (𝑡)

[

𝑥 (𝑡 − 𝑑 (𝑡))

𝑥 (𝑡 − 𝜏

𝑀
)

]

𝑇

[

𝑍

2
−𝑍

2

∗ 𝑍

2

] [

𝑥 (𝑡 − 𝑑 (𝑡))

𝑥 (𝑡 − 𝜏

𝑀
)

]
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≤ −[

𝑥 (𝑡 − 𝜏

𝑚
) − 𝑥 (𝑡 − 𝑑 (𝑡))

𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝜏

𝑀
)

]

𝑇

[

𝑍

2
𝑆

12

∗ 𝑍

2

]

× [

𝑥 (𝑡 − 𝜏

𝑚
) − 𝑥 (𝑡 − 𝑑 (𝑡))

𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝜏

𝑀
)

]

=𝜁

𝑇

(𝑥

𝑡
)

[

[

−2𝑍

2
+ 𝑆

12
+ 𝑆

𝑇

12
𝑍

2
− 𝑆

12
𝑍

2
− 𝑆

12

∗ −𝑍

2
𝑆

12

∗ ∗ −𝑍

2

]

]

𝜁 (𝑥

𝑡
) ,

(22)

where

𝜁

𝑇

(𝑥

𝑡
) = [𝑥

𝑇

(𝑡 − 𝑑 (𝑡)) 𝑥

𝑇

(𝑡 − 𝜏

𝑚
) 𝑥

𝑇

(𝑡 − 𝜏

𝑀
)] . (23)

Based on Lemma 2, an upper bound of ̇

𝑉

4
(𝑥

𝑡
) can be

estimated as

̇

𝑉

4
(𝑥

𝑡
) =

𝜏

4

𝑚

64

�̇�

𝑇

(𝑡) 𝑅

1
�̇� (𝑡) −

𝜏

2

𝑚

8

× ∫

𝑡

𝑡−(𝜏
𝑚
/2)

∫

𝑡

𝑠

�̇�

𝑇

(𝑢) 𝑅

1
�̇� (𝑢) 𝑑𝑢 𝑑𝑠

+

𝜏

4

𝑀

64

�̇�

𝑇

(𝑡) 𝑅

3
�̇� (𝑡) −

𝜏

2

𝑀

8

× ∫

𝑡

𝑡−(𝜏
𝑀
/2)

∫

𝑡

𝑠

�̇�

𝑇

(𝑢) 𝑅

3
�̇� (𝑢) 𝑑𝑢 𝑑𝑠

+

(𝜏M − 𝜏

𝑚
)

4

4

�̇�

𝑇

(𝑡) 𝑅

2
�̇� (𝑡) −

(𝜏

𝑀
− 𝜏

𝑚
)

2

2

× ∫

𝑡−𝜏
𝑚

𝑡−𝜏
𝑀

∫

𝑡

𝑠

�̇�

𝑇

(𝑢) 𝑅

2
�̇� (𝑢) 𝑑𝑢 𝑑𝑠

≤

𝜏

4

𝑚

64

�̇�

𝑇

(𝑡) 𝑅

1
�̇� (𝑡) +

𝜏

4

𝑀

64

�̇�

𝑇

(𝑡) 𝑅

3
�̇� (𝑡)

− (

𝜏

𝑚

2

𝑥 (𝑡) − ∫

𝑡

𝑡−(𝜏
𝑚
/2)

𝑥 (𝑠) 𝑑𝑠)

𝑇

× 𝑅

1
(

𝜏

𝑚

2

𝑥 (𝑡) − ∫

𝑡

𝑡−(𝜏
𝑚
/2)

𝑥 (𝑠) 𝑑𝑠)

− (

𝜏

𝑀

2

𝑥 (𝑡) − ∫

𝑡

𝑡−(𝜏
𝑀
/2)

𝑥 (𝑠) 𝑑𝑠)

𝑇

× 𝑅

3
(

𝜏

𝑀

2

𝑥 (𝑡) − ∫

𝑡

𝑡−(𝜏
𝑀
/2)

𝑥 (𝑠) 𝑑𝑠)

+

(𝜏

𝑀
− 𝜏

𝑚
)

4

4

�̇�

𝑇

(𝑡) 𝑅

2
�̇� (𝑡)

− ((𝜏

𝑀
− 𝜏

𝑚
) 𝑥 (𝑡) − ∫

𝑡−𝜏
𝑚

𝑡−𝜏
𝑀

𝑥 (𝑠) 𝑑𝑠)

𝑇

× 𝑅

2
((𝜏

𝑀
− 𝜏

𝑚
) 𝑥 (𝑡) − ∫

𝑡−𝜏
𝑚

𝑡−𝜏
𝑀

𝑥 (𝑠) 𝑑𝑠) .

(24)

From (16)–(24), we have

̇

𝑉 (𝑥

𝑡
) ≤ 𝜉

𝑇

(𝑥

𝑡
)(

𝜏

4

𝑚

64

Ψ

𝑇

𝑅

1
Ψ +

(𝜏

𝑀
− 𝜏

𝑚
)

4

4

Ψ

𝑇

𝑅

2
Ψ

+

𝜏

4

𝑀

64

Ψ

𝑇

𝑅

3
Ψ +

𝜏

2

𝑚

4

Ψ

𝑇

𝑍

1
Ψ

+ (𝜏

𝑀
− 𝜏

𝑚
)

2

Ψ

𝑇

𝑍

2
Ψ

+

𝜏

2

𝑀

4

Ψ

𝑇

𝑍

3
Ψ + Θ

22
)𝜉 (𝑥

𝑡
) .

(25)

If Θ < 0, then ̇

𝑉(𝑥

𝑡
) is negatively defined, based on

the Lyapunov theory, we can conclude that NCS (5) is
asymptotically stable.

Remark 5. The robust stability criteria presented in
Theorem 4 are for the nominal system. However, it is
easy to further extend Theorem 4 to uncertain systems,
where the systems matrices 𝐴 and 𝐴

𝑑
contain parameter

uncertainties.

Remark 6. To reduce the conservatism of stability cri-
teria, the Lyapunov-Krasovskii functional contains some
triple-integral terms in [12]. However, the new Lyapunov-
Krasovskii functional in our paper which not only contains
some triple-integral terms but also divides the lower and
upper bounds of the delay into two equal segments, respec-
tively, is proposed. The results will be less conservative.

Remark 7. Unlike [2], −(𝜏

𝑀
− 𝜏

𝑚
) ∫

𝑡−𝜏

𝑡−𝜏
𝑀

�̇�

𝑇

(𝑠)𝑍

2
�̇�(𝑠)𝑑𝑠 is

enlarged as −(𝜏
𝑀
− 𝜏) ∫

𝑡−𝜏

𝑡−𝜏
𝑀

�̇�

𝑇

(𝑠)𝑍

2
�̇�(𝑠)𝑑𝑠 which may lead to

conservation. In this paper, −(𝜏 − 𝜏
𝑚
) ∫

𝑡−𝜏

𝑡−𝜏
𝑀

�̇�

𝑇

(𝑠)𝑍

2
�̇�(𝑠)𝑑𝑠 is

retained as well. Meanwhile, we deal with the integral terms
of quadratic quantities by virtue of the reciprocally convex
combination in Lemma 3; the obtained results are improved.

Remark 8. The relationship between the time-varying delay
and its lower bound and upper bound is taken into account.
As a result, fewer useful information is ignored in the
derivative of the Lyapunov-Krasovskii functional.

Remark 9. The delay-departioning method in this paper
reduces the conservativeness considerably, which arises from
the LMI analysis of the interval [𝜏

𝑚
, 𝜏

𝑀
]. But when the

interval [𝜏
𝑚
, 𝜏

𝑀
] is reduced, that is, when 𝜏

𝑚
→ 𝜏

𝑀
, the

benefits of analysis method are shortened. The new strategy
is to further make use of the information of the delay lower
bound through departioning of the delay interval [0, 𝜏

𝑚
] into

𝑁 equidistant subintervals.

4. Numerical Example

Example 10. Consider the following NCS [10]:

�̇� (𝑡) = [

0 1

0 −0.1

] 𝑥 (𝑡) + [

0

0.1

] 𝑢 (𝑡) . (26)
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Table 1: Admissible upper bound 𝜏
𝑀
for various 𝜏

𝑚
.

𝜏

𝑚
0.00 0.01 0.05 0.10

Jiang and Han [10] 0.941 0.942 0.948 0.952
Zhang et al. [8] 1.003 1.024 1.026 1.027
Theorem 4 1.113 1.114 1.116 1.119

Table 2: Admissible upper bound 𝜏
𝑀
for various 𝜏

𝑚
.

𝜏

𝑚
1 2 3 4

Shao [11] 1.617 2.480 3.389 4.325
Sun et al. [12] 1.620 2.488 3.403 4.342
Theorem 4 1.765 2.606 3.502 4.429

Assume that the state feedback gain matrix
𝐾 = [−3.75 − 11.5] when we do not consider the lower
bound of the delay, that is, 𝜏

𝑚
= 0.00, by applyingTheorem 4,

the maximum upper bound of delay obtained is 𝜏
𝑀
= 1.113,

while in [10], 𝜏
𝑀

= 0.941, and the maximum allowable
value is 𝜏

𝑀
= 1.003 in [8]. A more detailed comparison for

different values of 𝜏
𝑚
is provided in Table 1. As shown in the

table, it can be seen that our results are less conservative than
the ones in [8, 10].

Example 11. Consider the NCS (5) with the following param-
eters [11]:

𝐴 = [

0 1

−1 −2

] , 𝐴

𝑑
= 𝐵𝐾 = [

0 0

−1 1

] . (27)

Table 2 lists the maximum allowable upper bound of 𝜏
𝑀
with

respect to different conditions of 𝜏
𝑚
along with some existing

results from the literature. FromTable 2, we can conclude that
the criterion derived in this paper presents superior results.

5. Conclusion

The problem of robust stability is addressed for a class
of NCSs with network-induced delay and packet dropout.
Improved and simplified stability criterion is established
without involving any model transformation or free weight-
ingmatrices.The simulation results indicate that the criterion
derived in this paper can exhibit better performance com-
pared to that in the existing literature.
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