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ABSTRACT:

Marine gas seeps, such as in the Panarea area near Sicily (McGinnis et al., 2011), emit large amounts of methane and carbon-dioxide,
greenhouse gases. Better understanding their impact on the climate and the marine environment requires precise measurements of
the gas flux. Camera based bubble measurement systems suffer from defocus blur caused by a combination of small depth of field,
insufficient lighting and from motion blur due to rapid bubble movement. These adverse conditions are typical for open sea underwater
bubble images. As a consequence so called ’bubble boxes’ have been built, which use elaborate setups, specialized cameras and high
power illumination. A typical value of light power used is 1000W (Leifer et al., 2003).
In this paper we propose the compensation of defocus and motion blur in underwater images by using blind deconvolution techniques.
The quality of the images can be greatly improved, which will relax requirements on bubble boxes, reduce their energy consumption
and widen their usability.

1. INTRODUCTION

In areas like the Panarea area near Sicily (McGinnis et al., 2011)
or the Tommelitten (Schneider von Deimling et al., 2011) in the
North Sea, large amounts of carbon dioxide and methane are
emitted from underwater gas seeps.

Because of the significance of underwater gas emissions on ma-
rine life (Ishimatsu et al., 2004), (Dando and Hovland, 1992) and
because of the impact on the climate, accurate measurements of
the properties of the occurring gas bubbles are necessary, to be
able to accurately estimate their impact (Liang et al., 2011). Dif-
ferent ways to measure gas bubbles have been pursued in recent
years. Most prevailing are acoustic (McGinnis et al., 2006) and
optical measurement. We focus on camera based measurements,
because they allow more accurate observations of gas bubbles.
High quality images allow flow measurement with an error of less
than 6 percent, as confirmed by practical tests (Zelenka, 2014).

Underwater imaging conditions are far from ideal for this kind of
observations. They typically suffer from low light, due to power
restrictions. The flamboyant bubbles can reach velocities of up
to 25cm per second (Leifer et al., 2003). To prevent motion blur,
high shutter speed and low integration times are necessary, which
results in even less light on the image sensor (for detailed experi-
ments see (Leifer et al., 2003)). Using a fast lens, which means a
high aperture, is not a solution, because this lowers the depth of
field and leads to potentially defocused images.
To overcome this problems, so called bubble boxes have been
developed (Thomanek et al., 2010). A bubble box as shown in
Figure 1 includes a camera, channeling elements to concentrate
the bubbles in the cameras depth of focus, and a backlight illu-
mination. Although front side illumination is known (Zielinski et
al., 2010), for quantitative bubble measurement backlight illumi-
nation is prevalent due to higher light efficiency and bubble rim
visibility.

This does not solve the problem entirely, as strong lighting is
still an issue, as the 1000 Watt illuminations in (Wang and Dong,
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Figure 1: Drawing of a typical bubblebox

2009) and (Leifer et al., 2003) demonstrate. Because of the imag-
ing conditions (see above), the bubble box also requires a high
speed camera, such as in (Cheng and Burkhardt, 2006) (Leifer et
al., 2003). Both requirements are costly and unwieldy in expedi-
tion use.

Another factor often neglected in the literature is the presence of
light scattering in the underwater ocean settings, caused by impu-
rities in the water. This effect disturbs the light propagation and
leads to blurry imaging and lowered accuracy, similar to defocus
blur.

In this paper a different approach is developed, which is the ap-
plication of suitable blind deconvolution techniques. The goal is
not to avoid any blur or defocus, e.g. using high speed cameras
and high power illuminations, but to compensate for these ef-
fects. This allows a simplified buildup of a bubble box or images
of higher quality in existing builds, while allowing more flexible
experiments.

Blind deconvolution techniques in general underwater settings
have been used with success in (Fan et al., 2010a), (Fan et al.,
2010b) and with the adapted Richardson-Lucy algorithm in (Wu
et al., 2013), while the application on bubbly flow images is novel.
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In this paper we focus on two different algorithms, the Richardson-
Lucy standard algorithm and a more recent technique.

The Richardson-Lucy Algorithm by (Richardson, 1972) and (Lucy,
1974) with adaption to blind deconvolution by (Fish et al., 1995)
is a fast standard deconvolution algorithm with a matlab imple-
mentation (TheMathworks, 2015), which includes additional damp-
ening. In recent years significant progress in the field of blind
deconvolution has been made (Levin et al., 2011). Of particular
interest are the gradient sparsity methods, because the gradient
sparsity prior, which was originally established for natural im-
ages, also applies very well on underwater gas bubble images.
Which ideally consist of a uniform background with sparsely dis-
tributed bubbles with high gradient rims.

We compare the heavy-tailed gradient sparsity MAP(Maximum
a posteriori) blind deconvolution method by (Kotera et al., 2013)
with the preceding standard technique and test whether they are
suitable and applicable to underwater gas bubble images.

2. BLIND DECONVOLUTION TECHNIQUES

We model the observed image O with:

O = S ∗B + n, (1)

where S is the undisturbed signal disturbed by B, the blur kernel
or point spread function (PSF) and n models added noise during
the image formation. The aim of deconvolution algorithms is the
reconstruction of the undisturbed signal S from the observation
O. If the PSF is unknown, a blind deconvolution algorithm with
the added difficulty of estimating an unknown B is necessary.

We use blind deconvolution techniques, because the exact blur
model of an underwater image is often unknown. Moreover mo-
tion blur is dependent on bubble speed, the very parameter to
be measured. Note that this reconstruction problem of two un-
knowns from a single observation is inherently ill posed. A more
in depth analysis of this problem can be found in (Levin et al.,
2011) and (Perrone and Favaro, 2014).

The Richardson-Lucy deconvolution algorithm views this image
formation model from a Bayesian perspective. For discrete event
A, B with an index k and j the Bayes theorem states:

P (A|B) =
P (B|A) · P (A)∑
k P (B|Ak)P (Ak)

. (2)

From this it follows:

P (A) =
∑
k

P (A|Bk)P (Bk)

=
∑
k

P (Bk|A)P (A)∑
j P (B|Aj)P (Aj)

P (Bk),
(3)

An iterative algorithm with iteration index i is defined by:

P (A)i+1 = P (A)i
∑
k

P (Bk|A)P (Bk)∑
j P (B|Aj)P (Aj)

. (4)

Applied to the deconvolution problem of Equation 1, this means
associating the observed image O with P (B), the undisturbed
signal S with P (A) and the blur kernel B with P (B|A), similar
to (Fish et al., 1995). In convolution notation this can be written
as:

Si+1(x) = Si(x)
O(x)

Si(x)⊗B(x)
⊗B(−x). (5)

If the blur kernel is to be estimated, the analog update formula is:

Bi+1(x) = Bi(x)
O(x)

Bi(x)⊗ S(x)
⊗ S(−x). (6)

The Richardson-Lucy blind deconvolution algorithm (Fish et al.,
1995) approaches the reconstruction problem of image S and PSF
B by alternating iterations in which the image and the PSF are re-
fined. In this paper we use the standard matlab inplementation,
which includes an additional dampening, to decrease noise prop-
agation in the course of the iterations (TheMathworks, 2015).

In the following the blind deconvolution algorithm by (Kotera
et al., 2013) is presented. It relies on a gradient sparsity prior
that is maximized in the MAP(Maximum a posteriori)-estimation
framework.

Given the Bayesian theorem and the image model Equation 1,
neglecting noise, the goal is finding the MAP(Maximum A Pos-
teriori) of

P (S,B|O) =
P (O|S,B)P (S,B)

P (O)

∝ P (O|S,B)P (S,B)

= P (O|S,B)P (S)P (B),

(7)

, where P (S), etc. denote the probabilities and conditional prob-
abilities of O,S, and B, while assuming a Gaussian distribution
with parameter µ of

P (O|(S,B)) =∝ e−
µ
2
‖S⊗B−O‖2 . (8)

Q(S) and R(B) are regularizers of S and B respectively, to
guide the optimization towards likely solutions. For the image
S the regularizer Q regards the spatial gradients Dx and Dy of
S:

Q(S) =
∑
i

((Dx)
2
i + (Dy)

2
i )
p
2 , (9)

with p ∈ (0, 1) and index i over the entirety of the partial deriva-
tives Dx and Dy . The variable p defines the norm enforced on
the gradients.

The blur kernel B is regularized with

R(B) =
∑
i

ω(Bi), (10)

where

ω(Bi) =

{
Bi if Bi ≥ 0

∞ else
(11)

with the running index i over all Bi in B to enforce sparsity and
non-negativity.

Instead of solving the MAP-problem directly, the negative loga-
rithm of the target function is minimized, a common technique
for MAP-estimation (Meintrup and Schaeffler, 2005). Constants
are disregarded, because they do not influence the minimum:

L(S,B) = − log(P ((S,B)|O))

= − log(P (O|S,B)P (S)P (B))

= − log(P (O|S,B))− log(P (S))− log(P (B))

=
µ

2
S ⊗ ‖B −O‖2 +Q(S) +R(B).

(12)
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In (Kotera et al., 2013) this optimization problem is solved using
an augmented Lagrangian method in a multi-scale approach by
alternatingly optimizing image and blur kernel.

3. APPLICATION AND RESULTS

In a laboratory setting a Point Grey Grasshopper 2 camera , back-
light illumination and an air seep in a water tank are used in a
similar build as shown in Figure 1 to obtain images of bubbles
with varying acquisition parameters. The light power and camera
setting such as focus, aperture and shutter speed are adjustable
and provide a good foundation for experimentation with different
kinds and strengths of blur. Images acquired with this system are
used in the following.

3.1 Defocus blur

The two main sources of blur identified in a bubble box are defo-
cus blur and motion blur.

First we will concentrate on defocus blur, which occurs if the
bubbles are outside of the depth of field, centered at the focal
plane. The depth of field determines the utility of the bubble me-
ter, because it limits the distance range in which bubbles can be
measured. A large depth of field requires a lens with a small aper-
ture. However due to the difficult lighting conditions in underwa-
ter settings discussed in the introduction, the aperture should be
as large as reasonably possible. Solving this conflict by selecting
an appropriate lens is a design decision requiring a compromise.
In the following paragraph we show how the blind deconvolution
techniques presented in the previous section apply to this setting
and how they mitigate blur.

(a) Blurred original (b) Richardson-Lucy
blind deconvolution
result

(c) Gradient sparcity
MAP Deconvolution
result

Figure 2: Deconvolution of defocus blur. Both Richardson-Lucy
and gradient sparsity MAP blind deconvolution achieve usable
result, however the Richardson-Lucy method requires a good ini-
tialization and shows inferior bubble edge sharpness.

A comparison of the results from Richardson-Lucy and gradient
sparsity MAP-estimation (Kotera et al., 2013) on an image with
mild defocus blur is shown in Figure 2 shows sharper edges and
good deblurring. While the Richardson-Lucy algorithm is much
faster, it suffers from strong ringing artifacts and increased noise.
The restoration using MAP-estimation leads to much better re-
sults, which less artifacts, less increase in noise and sharper bub-
ble rims. Therefore it is our method of choice for the following
experiments.

Using deconvolution on a noisy image as in Figure 3(a) reveals
a negative property of the deconvolution. It increases the already
present noise as shown in Figure 3(b).

(a) Original (b) Deconvolution re-
sult

Figure 3: Noisy blurred image and its gradient sparsity deconvo-
lution result.

3.2 Motion blur

Motion blur occurs if due to a combination of bubble motion and
shutter speed, the light from a bubble is spread over several pixel.
Choosing a very higher shutter speed, with a very short integra-
tion time can solve this problem, but the light intensity avail-
able for the image sensor is also determined by the integration
time. Therefore this leads to dark and noisy images, unless a
high power illumination is chosen.

In Figure 4 a series of images acquired with different shutter
speeds is shown. In this image series automatic gain control to-
gether with strong illumination and a large aperture lens were
used to allow capturing images with constant brightness, even
though the integration time differs significantly. Note that such
a large aperture lens also negatively influences the depth of field.
The left image was acquired with a very short integration time of
only 0.0004s, set by the camera control software, shows no mo-
tion blur, while the image in the middle shows some motion blur
with an estimated blur radius of approx. 10 pixel and the image
on the right shows very strong motion blur with a blur radius of
approx. 15 pixel.

(a) 0.0004s (b) 0.0020s (c) 0.0032s

Figure 4: Bubble images acquired with different integration times
with automatic gain control.

While applying the deconvolution algorithm on images with dif-
ferent intensities of motion blur, it becomes clear that there are
limits to how strong the blur can be for the deconvolution to
achieve a full compensation of the blur effects. We define a de-
convolution successful only if the result is visually plausible and
the blurred edges are fully restored without introducing artifacts,
that may hinder an evaluation of the images.

Figure 5 shows the deconvolution of image with medium motion
blur, the same image as in Figure 4(b). The rim of the deconvolu-
tion result is sharp, and resembles the low integration time image
in Figure 4(a).

Next we measure the bubbles before and after deconvolution. For
the bubble shown in Figure 6(a) which is also part of Figure 5(a)
the vertical axis measured with an image viewer shrinks with the
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(a) 0.0020s integration time (b) Deconvolution result
with gradient sparsity MAP

Figure 5: Medium motion blur image and gradient sparsity de-
convolution. The dotted blue rectangle shows the cropped seg-
ment of Figure 6.

(a) Original (b) Deconvolution result

(c) Snake segmentation on
original image.

(d) Snake segmentation on
deconvolution image

Figure 6: Measuring the bubble size with the snake algorithm.
The initialization is shown in green, the snake is shown in red,
while the fitted ellipse in blue.

deconvolution from 42 pixel to 37 pixel. This change is expected
as blur around the rim of the bubble is removed, although the
result is not as good as in artificial images (see Figure 9) and the
restored contour could be even smaller.

Furthermore we measure the bubble size with automated algo-
rithms (Zelenka, 2014). The different steps of the bubble segmen-
tation are shown in Figures 6(c,d). A snake, an active contour,
is initialized with the green bounding rectangle and iteratively
contracts towards higher image gradients under smoothness con-
straints. The final state of the snake is shown in red. To accurately
measure the size the blue ellipse is fitted into the snake. The auto-
matically measured bubble size remains constant with approx. 38
pixel height, which is confirmed by the segmentations in Figure
6. The weak blur on the outer rim of the bubble is disregarded
and does not disturb the image gradient based algorithm, which
is robust enough to cope with this blur.

For stronger motion blur shown in Figure 7 and Figure 8 the mo-
tion blur is too strong to be removed with a same parameters used
in Figure 5. On the original image, the snake method fails to ini-
tialize and attempts to use multiple snakes for a single bubble (see
Figure 8) and due to the blur even a manual size measurement is

hard. The deconvolution with standard parameters does not fully
restore the original edges but creates new edges further around
the bubble.

Changing the deconvolution parameters, allowing a larger PSF
and weighting the blur kernel regularization in the blur kernel
estimation the 2.5 times more than the data term, compensates
the stronger blur (see Figure 7). It restores the sharp rim of the
bubbles, similar in sharpness to non-blur image in Figure 4(a)
and allows an accurate automatic measurement as in Figure 8.
Because of this advantage, we think that the strong deconvolution
artifacts, apparent by the white halo around the bubbles, can be
tolerated.

(a) 0.0032s integration time (b) Deconvolution result
with gradient sparsity MAP

Figure 7: Strong motion blur image and gradient sparsity decon-
volution with changed weighting on the regularization allowing
a more flexible blur kernel. The dotted blue rectangle shows the
cropped segment of Figure 8.

(a) Original (b) Deconvolution result

(c) Failed segmentation of
the original image

(d) Segmentation of the de-
convolution image

Figure 8: Snake based measurement of a bubble from Figure 7,
colors as in Figure 6.

To test whether the result of blind deconvolution is accurate, which
means it does not over- or under-compensate the blur effects, tests
on blurred data with known ground truth is necessary. In the
following experiment a sharp image is artificially blurred, then
the deconvolution algorithm is applied and the result is compared
with the sharp image. The resulting images are shown in Fig-
ure 9 with the original image on the left, with the blurred im-
age in the middle and the deconvolution on the right side. This
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(a) Original image (b) Artificial motion blurred
image

(c) Deconvolution result of
image (b)

Figure 9: Comparison between original, blurred image and gradi-
ent sparsity MAP deconvolution result for gas bubbles with 6mm
diameter in a bubble box with back illumination. This demon-
strates the accuracy of the deconvolution.

demonstrates that a successful deconvolution with gradient spar-
sity MAP can provide an accurate restoration of the non-blurred
image and can therefore be used for further evaluation.

4. CONCLUSIONS

In our experiments we have observed, how motion and defocus
blur can influence the image and how deconvolution can restore
them. Blur can lead to an overestimation of the bubble size or
prevent automatic bubble measurements.A high measurement ac-
curacy is necessary, because the bubble radius influences the vol-
ume with the third power and bubble shape parameters like ellip-
ticity are important to gas dissolution models like (McGinnis et
al., 2006) and (Liang et al., 2011).

The two different algorithms showed a strong difference in per-
formance. The standard blind Richardson-Lucy deconvolution,
provided a good initialization, shows acceptable results for small
defocus blur, even though ringing artifacts occur. The gradient
sparsity MAP deconvolution can compensate much stronger blur
and even some motion blur without artifacts. For strong motion
blur, strong restoration artifacts have to be accepted.

Nevertheless with deconvolution, on images which could not be
evaluated beforehand, the blur is removed, sharp contours are re-
stored and the automatic evaluation is enabled. This allows clear
measurements and lowered overestimation, which are strong ad-
vantages. The complete potential of applying blind deconvolu-
tion on bubble images is shown in the results seen in the compen-
sation of artificial motion blur.

In case of non-changing conditions, such as bubble speed and wa-
ter parameters, the restored blur kernel varies little. If the imag-
ing conditions allow it, we propose using the blind-deconvolution
every few images to reconstruct the blur kernel from an initial
image and reuse it for in the following images. This means for
the consecutive images only non-blind deconvolution is required
and the computational costs can be significantly reduced. The
gradient sparsity MAP deconvolution takes 9s on the image in
Figure 2, while the non-blind deconvolution Richardson-Lucy al-
gorithm with the blur kernel set by the blind deconvolution is
much faster with 1s.

Currently only spatially invariant blur is considered. For future
work, a spatially variant blur kernel estimation could be benefi-
cial, because although the motion blur of the bubble in an image
is similar in direction and magnitude, due to the variations in bub-
ble motion it is not identical. Furthermore, with a small depth of
field not all bubbles are in focus and a bubble may even change
between focus and defocus over time. As future work, this means
that the blur model could be estimated for every bubble individu-
ally and incorporated or partially derived from the measured bub-
ble motion.

In summary, we show in this paper, that blind deconvolution gives
significant improvements in image quality and extends the usable
depth of field in an underwater environment. We see that a certain
amount of motion and defocus blur can be permitted with decon-
volution, while maintaining high measurement accuracy . The
compensation of image blur caused by defocus and motion per-
mits more accurate flow measurements and relaxed requirements
on underwater observatory equipment. This allows the design of
a bubble box with higher measurement accuracy in a simplified
setup, larger effective depth of field, and due to a higher tolerance
to motion blur, less powerful illumination and camera.
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