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Abstract

We consider the Itô stochastic differential equation dXt = ∑m
j=1 Aj (Xt )dw

j
t + A0(Xt )dt on R

d . The

diffusion coefficients A1, . . . ,Am are supposed to be in the Sobolev space W
1,p
loc (Rd) with p > d, and to

have linear growth. For the drift coefficient A0, we distinguish two cases: (i) A0 is a continuous vector field
whose distributional divergence δ(A0) with respect to the Gaussian measure γd exists, (ii) A0 has Sobolev

regularity W
1,p′
loc for some p′ > 1. Assume

∫
Rd exp[λ0(|δ(A0)| + ∑m

j=1(|δ(Aj )|2 + |∇Aj |2))]dγd < +∞
for some λ0 > 0. In case (i), if the pathwise uniqueness of solutions holds, then the push-forward (Xt )#γd

admits a density with respect to γd . In particular, if the coefficients are bounded Lipschitz continuous, then
Xt leaves the Lebesgue measure Lebd quasi-invariant. In case (ii), we develop a method used by G. Crippa
and C. De Lellis for ODE and implemented by X. Zhang for SDE, to establish existence and uniqueness of
stochastic flow of maps.
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1. Introduction

Let A0,A1, . . . ,Am : R
d → R

d be continuous vector fields on R
d . We consider the following

Itô stochastic differential equation on R
d (abbreviated as SDE)

dXt =
m∑

j=1

Aj(Xt )dw
j
t + A0(Xt )dt, X0 = x, (1.1)

where wt = (w1
t , . . . ,w

m
t ) is the standard Brownian motion on R

m. It is a classical fact in the
theory of SDE (see [16,17,21,30]) that, if the coefficients Aj are globally Lipschitz continuous,
then SDE (1.1) has a unique strong solution which defines a stochastic flow of homeomorphisms
on R

d ; however contrary to ordinary differential equations (abbreviated as ODE), the regular-
ity of the homeomorphisms is only Hölder continuity of order 0 < α < 1. Thus it is not clear
whether the Lebesgue measure Lebd on R

d admits a density under the flow Xt . In the case
where the vector fields Aj , j = 0,1, . . . ,m, are in C∞

b (Rd ,R
d), the SDE (1.1) defines a flow of

diffeomorphisms, and Kunita [21] showed that the measures on R
d which have a strictly positive

smooth density with respect to Lebd are quasi-invariant under the flow. This result was recently
generalized in [27] to the case where the drift A0 is allowed to be only log-Lipschitz continuous.
Studies on SDE beyond the Lipschitz setting attracted great interest during the last years, see for
instance [10,13,12,19,20,23,24,29,34,35].

In the context of ODE, existence of a flow of quasi-invariant measurable maps associated to
a vector field A0 belonging to Sobolev spaces appeared first in [6]. In the seminal paper [7],
Di Perna and Lions developed transport equations to solve ODE without involving exponential
integrability of |∇A0|. On the other hand, L. Ambrosio [1] took advantage of using continuity
equations which allowed him to construct quasi-invariant flows associated to vector fields A0
with only BV regularity. In the framework for Gaussian measures, the Di Perna–Lions method
was developed in [4], also in [2,11] on the Wiener space.

The situation for SDE is quite different: even for vector fields A0,A1, . . . ,Am in C∞ with
linear growth, if no conditions were imposed on the growth of the derivatives, the SDE (1.1)
may not define a flow of diffeomorphisms (see [25,26]). More precisely, let τx be the life time
of the solution to (1.1) starting from x. The SDE (1.1) is said to be complete if for each x ∈ R

d ,
P(τx = +∞) = 1; it is said to be strongly complete if P(τx = +∞, x ∈ R

d) = 1. The goal in
[26] is to construct examples for which the coefficients are smooth, but such that the SDE (1.1)
is not strongly complete (see [13,25] for positive examples). Now consider

Σ = {
(w,x) ∈ Ω × R

d : τx(w) = +∞}
.

Suppose that SDE (1.1) is complete, then for any probability measure μ on R
d ,

∫
Rd

( ∫
Ω

1Σ(w,x)dP(w)

)
dμ(x) = 1.

Thus, by Fubini’s theorem,
∫
Ω

(
∫

Rd 1Σ(w,x)dμ(x))dP(w) = 1. It follows that there exists a full
measure subset Ω0 ⊂ Ω such that for all w ∈ Ω0, τx(w) = +∞ holds for μ-almost every x ∈ R

d .
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Now under the existence of a complete unique strong solution to SDE (1.1), we have a flow of
measurable maps x → Xt(w,x).

Recently, inspired by previous work due to Ambrosio, Lecumberry and Maniglia [3], Crippa
and De Lellis [5] obtained some new type of estimates of perturbation for ODE whose coeffi-
cients have Sobolev regularity. More precisely, the absence of Lipschitz condition was filled by
the following inequality: for f ∈ W

1,1
loc (Rd),

∣∣f (x) − f (y)
∣∣ � Cd |x − y|(MR|∇f |(x) + MR|∇f |(y)

)
holds for x, y ∈ Nc and |x − y| � R, where N is a negligible set of R

d and MRg is the maximal
function defined by

MRg(x) = sup
0<r�R

1

Lebd(B(x, r))

∫
B(x,r)

∣∣g(y)
∣∣dy,

where B(x, r) = {y ∈ R
d : |y − x| � r}; the classical moment estimate is replaced by estimating

the quantity

∫
B(0,r)

log

( |Xt(x) − X̃t (x)|
σ

+ 1

)
dx,

where σ > 0 is a small parameter. This method has recently been successfully implemented to
SDE by X. Zhang in [36].

The aim in this paper is two-fold: first we shall study absolute continuity of the push-forward
measure (Xt )# Lebd with respect to Lebd , once the SDE (1.1) has a unique strong solution;
secondly we shall construct strong solutions (for almost all initial values) using the approach
mentioned above for SDE with coefficients in Sobolev space. The key point is to obtain an
a priori Lp estimate for the density. To this end, we shall work with the standard Gaussian
measure γd ; this will be done in Section 2. The main result in Section 3 is the following

Theorem 1.1. Let A0,A1, . . . ,Am be continuous vector fields on R
d of linear growth. Assume

that the diffusion coefficients A1, . . . ,Am are in the Sobolev space
⋂

q>1 D
q

1(γd) and that δ(A0)

exists; furthermore there exists a constant λ0 > 0 such that

∫
Rd

exp

[
λ0

(∣∣δ(A0)
∣∣ +

m∑
j=1

(∣∣δ(Aj )
∣∣2 + |∇Aj |2

))]
dγd < +∞. (1.2)

Suppose that pathwise uniqueness holds for SDE (1.1). Then (Xt )#γd is absolutely continuous
with respect to γd and the density is in L1 logL1.

A consequence of this theorem concerns the following classical situation.
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Theorem 1.2. Let A0,A1, . . . ,Am be globally Lipschitz continuous. Suppose that there exists a
constant C > 0 such that

m∑
j=1

〈
x,Aj (x)

〉2 � C
(
1 + |x|2) for all x ∈ R

d . (1.3)

Then the stochastic flow of homeomorphisms Xt generated by SDE (1.1) leaves the Lebesgue
measure Lebd quasi-invariant.

Remark that condition (1.3) not only includes the case of bounded Lipschitz diffusion co-
efficients, but also, maybe more significant, indicates the role of dispersion: the vector fields
A1, . . . ,Am should not go radially to infinity. The purpose of Section 4 is to find conditions that
guarantee strict positivity of the density, in case where existence of the inverse flow is not known,
see Theorem 4.4.

The main result of Section 5 is

Theorem 1.3. Assume that the diffusion coefficients A1, . . . ,Am belong to the Sobolev space⋂
q>1 D

q

1(γd) and the drift A0 ∈ D
q

1(γd) for some q > 1. Assume condition (1.2) and that the
coefficients A0,A1, . . . ,Am are of linear growth, then there is a unique stochastic flow of mea-
surable maps X : [0, T ] × Ω × R

d → R
d , which solves (1.1) for almost all initial x ∈ R

d and
the push-forward (Xt (w, ·))#γd admits a density with respect to γd , which is in L1 logL1.

When the diffusion coefficients satisfy uniform ellipticity, a classical result due to Stroock
and Varadhan [32] says that if the diffusion coefficients A1, . . . ,Am are bounded continuous and
the drift A0 is bounded Borel measurable, then weak uniqueness holds, that is uniqueness in law
of the diffusion. This result was strengthened by Veretennikov [33], saying that in fact pathwise
uniqueness holds. When A0 is not bounded, some conditions on the diffusion coefficients were
needed. In the case where the diffusion matrix a = (aij ) is the identity, the drift A0 in (1.1)
can be quite singular: A0 ∈ L

p

loc(R
d) with p > d + 2 implies that SDE (1.1) has the pathwise

uniqueness (see Krylov and Röckner [20] for a more complete study); if the diffusion coeffi-
cients A1, . . . ,Am are bounded continuous, under a Sobolev condition, namely, Aj ∈ W

1,2(d+1)
loc

for j = 1, . . . ,m and A0 ∈ L
2(d+1)
loc (Rd), X. Zhang proved in [34] that SDE (1.1) admits a unique

strong solution. Note that even in this uniformly non-degenerated case, if the diffusion coeffi-
cients lose the continuity, there are counterexamples for which weak uniqueness does not hold,
see [19,31].

Finally we would like to mention that under weaker Sobolev type conditions, the connection
between weak solutions and Fokker–Planck equations has been investigated in [14,22]; some
notions of “generalized solutions”, as well as the phenomena of coalescence and splitting, have
been explored in [23,24]. Stochastic transport equations are studied in [15,36].

2. Lp estimate of the density

The purpose of this section is to derive a priori estimates for the density of the push-forwards
under the flow. We assume that the coefficients A0,A1, . . . ,Am of SDE (1.1) are smooth with
compact support in R

d . Then the solution Xt , i.e., x 	→ Xt(x), is a stochastic flow of diffeomor-
phisms on R

d . Moreover SDE (1.1) is equivalent to the following Stratonovich SDE
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dXt =
m∑

j=1

Aj(Xt ) ◦ dw
j
t + Ã0(Xt )dt, X0 = x, (2.1)

where Ã0 = A0 − 1
2

∑m
j=1 LAj

Aj and LA denotes the Lie derivative with respect to A.

Let γd be the standard Gaussian measure on R
d , and γt = (Xt )#γd, γ̃t = (X−1

t )#γd the push-
forwards of γd respectively by the flow Xt and its inverse flow X−1

t . To fix ideas, we denote
by (Ω,F ,P) the probability space on which the Brownian motion wt is defined. Let Kt = dγt

dγd

and K̃t = dγ̃t

dγd
be the densities with respect to γd . By Lemma 4.3.1 in [21], the Radon–Nikodym

derivative K̃t has the following explicit expression

K̃t (x) = exp

(
−

m∑
j=1

t∫
0

δ(Aj )
(
Xs(x)

) ◦ dw
j
s −

t∫
0

δ(Ã0)
(
Xs(x)

)
ds

)
, (2.2)

where δ(Aj ) denotes the divergence of Aj with respect to the Gaussian measure γd :

∫
Rd

〈∇ϕ,Aj 〉dγd =
∫
Rd

ϕδ(Aj )dγd, ϕ ∈ C1
c

(
R

d
)
.

It is easy to see that Kt and K̃t are related to each other by the equality below:

Kt(x) = [
K̃t

(
X−1

t (x)
)]−1

. (2.3)

In fact, for any ψ ∈ C∞
c (Rd), we have

∫
Rd

ψ(x)dγd(x) =
∫
Rd

ψ
[
Xt

(
X−1

t (x)
)]

dγd(x)

=
∫
Rd

ψ
[
Xt(y)

]
K̃t (y)dγd(y)

=
∫
Rd

ψ(x)K̃t

(
X−1

t (x)
)
Kt(x)dγd(x),

which leads to (2.3) due to the arbitrariness of ψ ∈ C∞
c (Rd). In the following we shall estimate

the Lp(P × γd) norm of Kt .
We rewrite the density (2.2) with the Itô integral:

K̃t (x) = exp

(
−

m∑
j=1

t∫
0

δ(Aj )
(
Xs(x)

)
dw

j
s −

t∫
0

[
1

2

m∑
j=1

LAj
δ(Aj ) + δ(Ã0)

](
Xs(x)

)
ds

)
.

(2.4)
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Lemma 2.1. We have

1

2

m∑
j=1

LAj
δ(Aj ) + δ(Ã0) = δ(A0) + 1

2

m∑
j=1

|Aj |2 + 1

2

m∑
j=1

〈∇Aj , (∇Aj)
∗〉, (2.5)

where 〈·,·〉 denotes the inner product of R
d ⊗ R

d and (∇Aj)
∗ the transpose of ∇Aj .

Proof. Let A be a C2 vector field on R
d . From the expression

δ(A) =
d∑

k=1

(
xkA

k − ∂Ak

∂xk

)
,

we get

LAδ(A) =
d∑


,k=1

(
A
Akδk
 + A
xk

∂Ak

∂x


− A
 ∂2Ak

∂x
∂xk

)
. (2.6)

Note that

∂

∂xk

(
A
 ∂Ak

∂x


)
= ∂Ak

∂x


∂A


∂xk

+ A
 ∂2Ak

∂xk∂x


.

Thus, by means of (2.6), we obtain

LAδ(A) = |A|2 + δ(LAA) + 〈∇A, (∇A)∗
〉
. (2.7)

Recall that δ(Ã0) = δ(A0)− 1
2

∑m
j=1 δ(LAj

Aj ). Hence, replacing A by Aj in (2.7) and summing
over j , gives formula (2.5). �

We can now prove the following key estimate.

Theorem 2.2. For p > 1,

‖Kt‖Lp(P×γd )

�
[ ∫

Rd

exp

(
pt

[
2
∣∣δ(A0)

∣∣ +
m∑

j=1

(|Aj |2 + |∇Aj |2 + 2(p − 1)
∣∣δ(Aj )

∣∣2)])
dγd

] p−1
p(2p−1)

.

(2.8)
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Proof. Using relation (2.3), we have

∫
Rd

E
[
K

p
t (x)

]
dγd(x) = E

∫
Rd

[
K̃t

(
X−1

t (x)
)]−p dγd(x)

= E

∫
Rd

[
K̃t (y)

]−p
K̃t (y)dγd(y)

=
∫
Rd

E
[(

K̃t (x)
)−p+1]

dγd(x). (2.9)

To simplify the notation, denote the right-hand side of (2.5) by Φ . Then K̃t (x) rewrites as

K̃t (x) = exp

(
−

m∑
j=1

t∫
0

δ(Aj )
(
Xs(x)

)
dw

j
s −

t∫
0

Φ
(
Xs(x)

)
ds

)
.

Fixing an arbitrary r > 0, we get

(
K̃t (x)

)−r = exp

(
r

m∑
j=1

t∫
0

δ(Aj )
(
Xs(x)

)
dw

j
s + r

t∫
0

Φ
(
Xs(x)

)
ds

)

= exp

(
r

m∑
j=1

t∫
0

δ(Aj )
(
Xs(x)

)
dw

j
s − r2

m∑
j=1

t∫
0

∣∣δ(Aj )
(
Xs(x)

)∣∣2 ds

)

× exp

( t∫
0

(
r2

m∑
j=1

∣∣δ(Aj )
∣∣2 + rΦ

)(
Xs(x)

)
ds

)
.

By Cauchy–Schwarz’s inequality,

E
[(

K̃t (x)
)−r] �

[
E exp

(
2r

m∑
j=1

t∫
0

δ(Aj )
(
Xs(x)

)
dw

j
s − 2r2

m∑
j=1

t∫
0

∣∣δ(Aj )
(
Xs(x)

)∣∣2 ds

)]1/2

×
[

E exp

( t∫
0

(
2r2

m∑
j=1

∣∣δ(Aj )
∣∣2 + 2rΦ

)(
Xs(x)

)
ds

)]1/2

=
[

E exp

( t∫
0

(
2r2

m∑
j=1

∣∣δ(Aj )
∣∣2 + 2rΦ

)(
Xs(x)

)
ds

)]1/2

, (2.10)
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since the first term on the right-hand side of the inequality in (2.10) is the expectation of a
martingale. Let

Φ̃r = 2r
∣∣δ(A0)

∣∣ + r

m∑
j=1

(|Aj |2 + |∇Aj |2 + 2r
∣∣δ(Aj )

∣∣2)
.

Then by (2.10), along with the definition of Φ and Cauchy–Schwarz’s inequality, we obtain

∫
Rd

E
[(

K̃t (x)
)−r]dγd �

[ ∫
Rd

E exp

( t∫
0

Φ̃r

(
Xs(x)

)
ds

)
dγd

]1/2

. (2.11)

Following the idea of A.B. Cruzeiro ([6, Corollary 2.2], see also Theorem 7.3 in [8]) and by
Jensen’s inequality,

exp

( t∫
0

Φ̃r

(
Xs(x)

)
ds

)
= exp

( t∫
0

tΦ̃r

(
Xs(x)

)ds

t

)
� 1

t

t∫
0

etΦ̃r (Xs(x)) ds.

Define I (t) = sup0�s�t

∫
Rd E[Kp

t (x)]dγd . Integrating on both sides of the above inequality and
by Hölder’s inequality,

∫
Rd

E exp

( t∫
0

Φ̃r

(
Xs(x)

)
ds

)
dγd(x) � 1

t

t∫
0

E

∫
Rd

etΦ̃r (Xs(x)) dγd(x)ds

= 1

t

t∫
0

E

∫
Rd

etΦ̃r (y)Ks(y)dγd(y)ds

� 1

t

t∫
0

∥∥etΦ̃r
∥∥

Lq(γd )
‖Ks‖Lp(P×γd ) ds

�
∥∥etΦ̃r

∥∥
Lq(γd )

I (t)1/p,

where q is the conjugate number of p. Thus it follows from (2.11) that

∫
Rd

E
[(

K̃t (x)
)−r]dγd(x) �

∥∥etΦ̃r
∥∥1/2

Lq(γd )
I (t)1/2p. (2.12)

Taking r = p − 1 in the above estimate and by (2.9), we obtain

∫
d

E
[
K

p
t (x)

]
dγd(x) �

∥∥etΦ̃p−1
∥∥1/2

Lq(γd )
I (t)1/2p.
R
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Thus we have I (t) � ‖etΦ̃p−1‖1/2
Lq(γd )I (t)1/2p . Solving this inequality for I (t) gives

∫
Rd

E
[
K

p
t (x)

]
dγd(x) � I (t) �

[ ∫
Rd

exp

(
pt

p − 1
Φ̃p−1(x)

)
dγd(x)

] p−1
2p−1

.

Now the desired estimate follows from the definition of Φ̃p−1. �
Corollary 2.3. For any p > 1,

‖K̃t‖Lp(P×γd )

�
[ ∫

Rd

exp

(
(p + 1)t

[
2
∣∣δ(A0)

∣∣ +
m∑

j=1

(|Aj |2 + |∇Aj |2 + 2p
∣∣δ(Aj )

∣∣2)])
dγd

] 1
2p+1

.

(2.13)

Proof. Similar to (2.12), we have for r > 0,∫
Rd

E
[(

K̃t (x)
)r]dγd(x) �

∥∥etΦ̃r
∥∥1/2

Lq(γd )
I (t)1/2p, (2.14)

where Φ̃r and I (t) are defined as above. Since I (t) � ‖etΦ̃p−1‖p/(2p−1)

Lq(γd ) , by taking r = p − 1, we
get ∫

Rd

E
[(

K̃t (x)
)p−1]dγd(x)

�
∥∥etΦ̃p−1

∥∥p/(2p−1)

Lq(γd )

=
[ ∫

Rd

exp

(
pt

[
2
∣∣δ(A0)

∣∣ +
m∑

j=1

(|Aj |2 + |∇Aj |2 + 2(p − 1)
∣∣δ(Aj )

∣∣2)])
dγd

] p−1
2p−1

.

Replacing p by p + 1 in the last inequality gives the claimed estimate. �
3. Absolute continuity under flows generated by SDEs

Now assume that the coefficients Aj in SDE (1.1) are continuous and of linear growth. Then it
is well known that SDE (1.1) has a weak solution of infinite life time. In order to apply the results
of the preceding section, we shall regularize the vector fields using the Ornstein–Uhlenbeck
semigroup {Pε}ε>0 on R

d :

PεA(x) =
∫
Rd

A
(
e−εx +

√
1 − e−2εy

)
dγd(y).

We have the following simple properties.
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Lemma 3.1. Assume that A is continuous and |A(x)| � C(1 + |x|q) for some q � 0. Then

(i) there is Cq > 0 independent of ε, such that

∣∣PεA(x)
∣∣ � Cq

(
1 + |x|q)

, for all x ∈ R
d;

(ii) PεA converges uniformly to A on any compact subset as ε → 0.

Proof. (i) Note that |e−εx +√
1 − e−2εy| � |x|+ |y| and that there exists a constant C > 0 such

that (|x| + |y|)q � C(|x|q + |y|q). Using the growth condition on A, we have for some constant
C > 0 (depending on q),

∣∣PεA(x)
∣∣ �

∫
Rd

∣∣A(
e−εx +

√
1 − e−2εy

)∣∣dγd(y)

� C

∫
Rd

(
1 + |x|q + |y|q)

dγd(y) � C
(
1 + |x|q + Mq

)

where Mq = ∫
Rd |y|q dγd(y). Changing the constant yields (i).

(ii) Fix R > 0 and x in the closed ball B(R) of radius R, centered at 0. Let R1 > R be arbitrary.
We have

∣∣PεA(x) − A(x)
∣∣ �

∫
Rd

∣∣A(
e−εx +

√
1 − e−2εy

) − A(x)
∣∣dγd(y)

=
( ∫

B(R1)

+
∫

B(R1)
c

)∣∣A(
e−εx +

√
1 − e−2εy

) − A(x)
∣∣dγd(y)

=: I1 + I2. (3.1)

By the growth condition on A, for some constant Cq > 0, independent of ε, we have

I2 �
∫

B(R1)
c

(∣∣A(
e−εx +

√
1 − e−2εy

)∣∣ + ∣∣A(x)
∣∣)dγd(y)

� Cq

∫
B(R1)

c

(
1 + Rq + |y|q)

dγd(y),

where the last term tends to 0 as R1 → +∞. For given η > 0, we may take R1 large enough such
that I2 < η. Then there exists εR1 > 0 such that for ε < εR1 and |y| � R1,

∣∣e−εx +
√

1 − e−2εy
∣∣ � e−εR +

√
1 − e−2εR1 � R1.
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Note that

∣∣e−εx +
√

1 − e−2εy − x
∣∣ � εR + √

2εR1, for |x| � R, |y| � R1.

Since A is uniformly continuous on B(R1), there exits ε0 � εR1 such that

∣∣A(
e−εx +

√
1 − e−2εy

) − A(x)
∣∣ � η for all y ∈ B(R1), ε � ε0.

As a result, the term I1 � η. Therefore by (3.1), for any ε � ε0,

sup
|x|�R

∣∣PεA(x) − A(x)
∣∣ � 2η.

The result follows from the arbitrariness of η > 0. �
The vector field PεA is smooth on R

d but does not have compact support. We introduce
cut-off functions ϕε ∈ C∞

c (Rd , [0,1]) satisfying

ϕε(x) = 1 if |x| � 1

ε
, ϕε(x) = 0 if |x| � 1

ε
+ 2 and ‖∇ϕε‖∞ � 1.

Set

Aε
j = ϕεPεAj , j = 0,1, . . . ,m.

Now consider the Itô SDE (1.1) with Aj being replaced by Aε
j (j = 0,1, . . . ,m), and denote the

corresponding terms by adding the superscript ε, e.g. Xε
t ,K

ε
t , etc.

In the sequel, we shall give a uniform estimate to Kε
t . To this end, we need some preparations

in the spirit of Malliavin calculus [28]. For a vector field A on R
d and p > 1, we say that

A ∈ D
p

1 (γd) if A ∈ Lp(γd) and if there exists ∇A : R
d → R

d ⊗ R
d in Lp(γd) such that for any

v ∈ R
d ,

∇A(x)(v) = ∂vA := lim
η→0

A(x + ηv) − A(x)

η
holds in Lp′

(γd) for any p′ < p.

For such A ∈ D
p

1 (γd), the divergence δ(A) ∈ Lp(γd) exists and the following relations hold:

∇PεA = e−εPε(∇A), δ(PεA) = eεPε

(
δ(A)

)
. (3.2)

Note that the second term in (3.2) holds once the divergence δ(A) ∈ Lp exists for some p > 1. If
A ∈ Lp(γd), then PεA ∈ D

p

1 (γd) and limε→0 ‖PεA − A‖Lp = 0.

Lemma 3.2. Assume the vector field A ∈ Lp(γd) admits the divergence δ(A) ∈ Lp(γd) for p > 1,
and denote by Aε = ϕεPεA. Then for ε ∈ ]0,1],
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∣∣δ(Aε
)∣∣ � Pε

(|A| + e
∣∣δ(A)

∣∣),∣∣Aε
∣∣2 � Pε

(|A|2),∣∣δ(Aε
)∣∣2 � Pε

[
2
(|A|2 + e2

∣∣δ(A)
∣∣2)]

.

If furthermore A ∈ D
p

1 (γd), then

∣∣∇Aε
∣∣2 � Pε

[
2
(|A|2 + |∇A|2)].

Proof. Note that according to (3.2), δ(Aε) = δ(ϕεPεA) = ϕεe
εPεδ(A) − 〈∇ϕε,PεA〉, from

where the first inequality follows. In the same way, the other results are obtained. �
Applying Theorem 2.2 to Kε

t with p = 2, we have

∥∥Kε
t

∥∥
L2(P×γd )

�
[ ∫

Rd

exp

(
2t

[
2
∣∣δ(Aε

0

)∣∣ +
m∑

j=1

(∣∣Aε
j

∣∣2 + ∣∣∇Aε
j

∣∣2 + 2
∣∣δ(Aε

j

)∣∣2)])
dγd

]1/6

.

(3.3)

By Lemma 3.2,

2
∣∣δ(Aε

0

)∣∣ +
m∑

j=1

(∣∣Aε
j

∣∣2 + ∣∣∇Aε
j

∣∣2 + 2
∣∣δ(Aε

j

)∣∣2)

� Pε

[
2|A0| + 2e

∣∣δ(A0)
∣∣ +

m∑
j=1

(
7|Aj |2 + 2|∇Aj |2 + 4e2

∣∣δ(Aj )
∣∣2)]

.

We deduce from Jensen’s inequality and the invariance of γd under the action of the semigroup
Pε that

∥∥Kε
t

∥∥
L2(P×γd )

�
[ ∫

Rd

exp

(
4t

[
|A0| + e

∣∣δ(A0)
∣∣ +

m∑
j=1

(
4|Aj |2 + |∇Aj |2 + 2e2

∣∣δ(Aj )
∣∣2)])

dγd

]1/6

(3.4)

for any ε � 1. According to (3.4), we consider the following conditions.

Assumptions (H).

(A1) For j = 1, . . . ,m, Aj ∈ ⋂
q�1 D

q

1(γd), A0 is continuous and δ(A0) exists.
(A2) The vector fields A0,A1, . . . ,Am have linear growth.
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(A3) There exists λ0 > 0 such that

∫
Rd

exp

[
λ0

(∣∣δ(A0)
∣∣ +

m∑
j=1

∣∣δ(Aj )
∣∣2

)]
dγd < +∞.

(A4) There exists λ0 > 0 such that

∫
Rd

exp

(
λ0

m∑
j=1

|∇Aj |2
)

dγd < +∞.

Note that by Sobolev’s embedding theorem, the diffusion coefficients A1, . . . ,Am admit
Hölder continuous versions. In what follows, we consider these continuous versions. It is clear
that under the conditions (A2)–(A4), there exists T0 > 0 small enough, such that

ΛT0 :=
[ ∫

Rd

exp

(
4T0

[
|A0| + e

∣∣δ(A0)
∣∣

+
m∑

j=1

(
4|Aj |2 + |∇Aj |2 + 2e2

∣∣δ(Aj )
∣∣2)])

dγd

]1/6

< ∞. (3.5)

In this case, for t ∈ [0, T0],

sup
0<ε�1

∥∥Kε
t

∥∥
L2(P×γd )

� ΛT0 . (3.6)

Theorem 3.3. Let T > 0 be given. Under (A1)–(A4) in Assumptions (H), there are two positive
constants C1 and C2, independent of ε, such that

sup
0<ε�1

E

∫
Rd

Kε
t

∣∣logKε
t

∣∣dγd � 2(C1T )1/2ΛT0 + C2T Λ2
T0

, for all t ∈ [0, T ].

Proof. We follow the arguments of Proposition 4.4 in [11]. By (2.3) and (2.4), we have

Kε
t

(
Xε

t (x)
) = [

K̃ε
t (x)

]−1 = exp

(
m∑

j=1

t∫
0

δ
(
Aε

j

)(
Xε

s (x)
)

dw
j
s +

t∫
0

Φε

(
Xε

s (x)
)

ds

)
,

where

Φε = δ
(
Aε

0

) + 1

2

m∑
j=1

∣∣Aε
j

∣∣2 + 1

2

m∑
j=1

〈∇Aε
j ,

(∇Aε
j

)∗〉
.

Thus
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E

∫
Rd

Kε
t

∣∣logKε
t

∣∣dγd = E

∫
Rd

∣∣logKε
t

(
Xε

t (x)
)∣∣dγd(x)

� E

∫
Rd

∣∣∣∣∣
m∑

j=1

t∫
0

δ
(
Aε

j

)(
Xε

s (x)
)

dw
j
s

∣∣∣∣∣dγd(x)

+ E

∫
Rd

∣∣∣∣∣
t∫

0

Φε

(
Xε

s (x)
)

ds

∣∣∣∣∣dγd(x)

=: I1 + I2. (3.7)

Using Burkholder’s inequality, we get

E

∣∣∣∣∣
m∑

j=1

t∫
0

δ
(
Aε

j

)(
Xε

s (x)
)

dw
j
s

∣∣∣∣∣ � 2E

[(
m∑

j=1

t∫
0

∣∣δ(Aε
j

)(
Xε

s (x)
)∣∣2 ds

)1/2]
.

For the sake of simplifying the notations, write Ψε = ∑m
j=1 |δ(Aε

j )|2. By Cauchy’s inequality,

I1 � 2

[ t∫
0

E

∫
Rd

∣∣Ψε

(
Xε

s (x)
)∣∣dγd(x)ds

]1/2

. (3.8)

Now we are going to estimate E
∫

Rd |Ψε(X
ε
s (x))|2α

dγd(x) for α ∈ Z+ which will be done induc-
tively. First if s ∈ [0, T0], then by (3.4) and (3.6), along with Cauchy’s inequality,

E

∫
Rd

∣∣Ψε

(
Xε

s (x)
)∣∣2α

dγd(x) = E

∫
Rd

∣∣Ψε(y)
∣∣2α

Kε
s (y)dγd(y)

� ‖Ψε‖2α

L2α+1
(γd )

∥∥Kε
s

∥∥
L2(P×γd )

� ΛT0‖Ψε‖2α

L2α+1
(γd )

. (3.9)

Now for s ∈ ]T0,2T0], we shall use the flow property of Xε
s : let (θT0w)t := wT0+t − wT0 and

X
ε,T0
t be the solution of the Itô SDE driven by the new Brownian motion (θT0w)t , then

Xε
T0+t (x,w) = X

ε,T0
t

(
Xε

T0
(x,w), θT0w

)
, for all t � 0,

and X
ε,T0
t enjoys the same properties as Xε . Therefore,
t
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E

∫
Rd

∣∣Ψε

(
Xε

s (x)
)∣∣2α

dγd(x) = E

∫
Rd

∣∣Ψε

(
X

ε,T0
s−T0

(
Xε

T0
(x)

))∣∣2α

dγd(x)

= E

∫
Rd

∣∣Ψε

(
X

ε,T0
s−T0

(y)
)∣∣2α

Kε
T0

(y)dγd(y)

which is dominated, using Cauchy–Schwarz inequality

(
E

∫
Rd

∣∣Ψε

(
X

ε,T0
s−T0

(y)
)∣∣2α+1

dγd(y)

)1/2∥∥Kε
T0

∥∥
L2(P×γd )

�
(
ΛT0‖Ψε‖2α+1

L2α+2
(γd )

)1/2
ΛT0 = Λ1+2−1

T0
‖Ψε‖2α

L2α+2
(γd )

.

Repeating this procedure, we finally obtain, for all s ∈ [0, T ],

E

∫
Rd

∣∣Ψε

(
Xε

s (x)
)∣∣2α

dγd(x) � Λ1+2−1+···+2−N+1

T0
‖Ψε‖2α

L2α+N
(γd )

,

where N ∈ Z+ is the unique integer such that (N − 1)T0 < T � NT0. In particular, taking α = 0
gives

E

∫
Rd

∣∣Ψε

(
Xε

s (x)
)∣∣dγd(x) � Λ2

T0
‖Ψε‖L2N

(γd )
. (3.10)

By Lemma 3.2,

sup
0<ε�1

‖Ψε‖L2N
(γd )

�
∥∥∥∥∥2

m∑
j=1

(|Aj |2 + e2
∣∣δ(Aj )

∣∣2)∥∥∥∥∥
L2N

(γd )

=: C1

whose right-hand side is finite under the assumptions (A2)–(A4). This along with (3.8) and (3.10)
leads to

I1 � 2(C1T )1/2ΛT0 . (3.11)

The same manipulation works for the term I2 and we get

I2 � C2T Λ2
T0

, (3.12)

where

C2 =
∥∥∥∥∥|A0| + e

∣∣δ(A0)
∣∣ + 3

2

m∑
j=1

|Aj |2 +
m∑

j=1

|∇Aj |2
∥∥∥∥∥

L2N
(γd )

< ∞.

Now we draw the conclusion from (3.7), (3.11) and (3.12). �
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It follows from Theorem 3.3 that the family {Kε
. }0<ε�1 is weakly compact in L1([0, T ] ×

Ω × R
d). Along a subsequence, Kε

. converges weakly to some K. ∈ L1([0, T ] × Ω × R
d) as

ε → 0. Let

C =
{
u ∈ L1([0, T ] × Ω × R

d
)
: ut � 0,

∫
Rd

E[ut logut ]dγd � 2(C1T )1/2ΛT0 + C2T Λ2
T0

}
.

By convexity of the function s → s log s, it is clear that C is a convex subset of L1([0, T ] ×
Ω × R

d). Since the weak closure of C coincides with the strong one, there exists a sequence of
functions u(n) ∈ C which converges to K in L1([0, T ] × Ω × R

d). Along a subsequence, u(n)

converges to K almost everywhere. Hence by Fatou’s lemma, we get for almost all t ∈ [0, T ],
∫
Rd

E(Kt logKt)dγd � 2(C1T )1/2ΛT0 + C2T Λ2
T0

. (3.13)

Theorem 3.4. Assume conditions (A1)–(A4) and that pathwise uniqueness holds for SDE (1.1).
Then for each t > 0, there is a full subset Ωt ⊂ Ω such that for all w ∈ Ωt , the density K̂t of
(Xt )#γd with respect to γd exists and K̂t ∈ L1 logL1.

Proof. Under these assumptions, we can use Theorem A in [18]. For the convenience of the
reader, we include the statement:

Theorem 3.5. (See [18].) Let σn(x) and bn(x) be continuous, taking values respectively in the
space of (d × m)-matrices and R

d . Suppose that

sup
n

(∥∥σn(x)
∥∥ + ∣∣bn(x)

∣∣) � C
(
1 + |x|),

and for any R > 0,

lim
n→+∞ sup

|x|�R

(∥∥σn(x) − σ(x)
∥∥ + ∣∣bn(x) − b(x)

∣∣) = 0.

Suppose further that for the same Brownian motion B(t), Xn(x, t) solves the SDE

dXn(t) = σn

(
Xn(t)

)
dB(t) + bn

(
Xn(t)

)
dt, Xn(0) = x.

If pathwise uniqueness holds for

dX(t) = σ
(
X(t)

)
dB(t) + b

(
X(t)

)
dt, X(0) = x,

then for any R > 0, T > 0,

lim
n→+∞ sup

|x|�R

E

(
sup

0�t�T

∣∣Xn(t, x) − X(t, x)
∣∣2

)
= 0. (3.14)
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We continue the proof of Theorem 3.4. By means of Lemma 3.1 and Theorem 3.5, for any
T ,R > 0, we get

lim
ε→0

sup
|x|�R

E

[
sup

0�t�T

∣∣Xε
t (x) − Xt(x)

∣∣2
]

= 0. (3.15)

Now fixing arbitrary ξ ∈ L∞(Ω) and ψ ∈ C∞
c (Rd), we have

E

∫
Rd

∣∣ξ(·)∣∣∣∣ψ(
Xε

t (x)
) − ψ

(
Xt(x)

)∣∣dγd(x)

� ‖ξ‖∞
( ∫

B(R)

+
∫

B(R)c

)
E

∣∣ψ(
Xε

t (x)
) − ψ

(
Xt(x)

)∣∣dγd(x)

=: J1 + J2. (3.16)

By (3.15),

J1 � ‖ξ‖∞‖∇ψ‖∞
∫

B(R)

E
∣∣Xε

t (x) − Xt(x)
∣∣dγd(x)

� ‖ξ‖∞‖∇ψ‖∞
[

sup
|x|�R

E

(
sup

0�t�T

∣∣Xε
t (x) − Xt(x)

∣∣2
)]1/2 → 0, (3.17)

as ε tends to 0. It is obvious that

J2 � 2‖ξ‖∞‖ψ‖∞γd

(
B(R)c

)
. (3.18)

Combining (3.16), (3.17) and (3.18), we obtain

lim sup
ε→0

E

∫
Rd

|ξ |∣∣ψ(
Xε

t (x)
) − ψ

(
Xt(x)

)∣∣dγd(x) � 2‖ξ‖∞‖ψ‖∞γd

(
B(R)c

) → 0

as R ↑ ∞. Therefore

lim
ε→0

E

∫
Rd

ξψ
(
Xε

t (x)
)

dγd(x) = E

∫
Rd

ξψ
(
Xt(x)

)
dγd. (3.19)

On the other hand, by Theorem 3.3, for each fixed t ∈ [0, T ], up to a subsequence, Kε
t con-

verges weakly in L1(Ω × R
d) to some K̂t , hence

E

∫
Rd

ξψ
(
Xε

t (x)
)

dγd(x) = E

∫
Rd

ξψ(y)Kε
t (y)dγd(y)

→ E

∫
d

ξψ(y)K̂t (y)dγd(y). (3.20)
R
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This together with (3.19) leads to

E

∫
Rd

ξψ
(
Xt(x)

)
dγd(x) = E

∫
Rd

ξψ(y)K̂t (y)dγd(y).

By the arbitrariness of ξ ∈ L∞(Ω), there exists a full measure subset Ωψ of Ω such that

∫
Rd

ψ
(
Xt(x)

)
dγd(x) =

∫
Rd

ψ(y)K̂t (y)dγd(y), for any ω ∈ Ωψ.

Now by the separability of C∞
c (Rd), there exists a full subset Ωt such that the above equality

holds for any ψ ∈ C∞
c (Rd). Hence (Xt )#γd = K̂tγd . �

Remark 3.6. The Kt(w,x) appearing in (3.13) is defined almost everywhere. It is easy to see
that Kt(w,x) is a measurable modification of {K̂t (w,x); t ∈ [0, T ]}.

Remark 3.7. Beyond the Lipschitz condition, several sufficient conditions guaranteeing pathwise
uniqueness for SDE (1.1) can be found in the literature. For example in [12], the authors give the
condition

m∑
j=1

∣∣Aj(x) − Aj(y)
∣∣2 � C|x − y|2r(|x − y|2),

∣∣A0(x) − A0(y)
∣∣ � C|x − y|r(|x − y|2),

for |x − y| � c0 small enough, where r : ]0, c0] → ]0,+∞[ is C1 satisfying

(i) lims→0 r(s) = +∞,
(ii) lims→0

sr ′(s)
r(s)

= 0, and

(iii)
∫ c0

0
ds

sr(s)
= +∞.

Corollary 3.8. Suppose that the vector fields A0,A1, . . . ,Am are globally Lipschitz continuous
and there exists a constant C > 0, such that

m∑
j=1

〈
x,Aj (x)

〉2 � C
(
1 + |x|2) for all x ∈ R

d . (3.21)

Then (Xt )# Lebd � Lebd for any t ∈ [0, T ].

Proof. It is obvious that hypotheses (A1), (A2) and (A4) are satisfied, and that for some constant
C > 0,

∣∣δ(A0)
∣∣(x) � C

(
1 + |x|2).
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Hence there exists λ0 > 0 such that
∫

Rd exp(λ0|δ(A0)|)dγd < +∞. Finally we have

m∑
j=1

∣∣δ(Aj )
∣∣2

(x) � 2
m∑

j=1

〈
x,Aj (x)

〉2 + 2
m∑

j=1

Lip(Aj )
2.

Therefore, under condition (3.21), there exists λ0 > 0 such that

∫
Rd

exp

(
λ0

m∑
j=1

∣∣δ(Aj )
∣∣2

)
dγd < +∞.

Hence, hypothesis (A3) is satisfied as well. By Theorem 3.4, we have (Xt )#γd = K̂tγd . Let A be a
Borel subset of R

d such that Lebd(A) = 0, then γd(A) = 0; therefore
∫

Rd 1{Xt (x)∈A} dγd(x) = 0.
It follows that 1{Xt (x)∈A} = 0 for Lebd almost every x, which implies Lebd(Xt ∈ A) = 0; this
means that (Xt )# Lebd is absolutely continuous with respect to Lebd . �

In the next section, we shall prove that under the conditions of Corollary 3.8, the density
of (Xt )# Lebd with respect to Lebd is strictly positive, in other words, Lebd is quasi-invariant
under Xt .

Corollary 3.9. Assume that conditions (A1)–(A4) hold. Let σ = (Ai
j ) and suppose that for some

C > 0,

σ(x)σ (x)∗ � C Id, for all x ∈ R
d .

Then (Xt )#γd is absolutely continuous with respect to γd .

Proof. The conditions (A1)–(A4) are stronger than those in Theorem 1.1 of [34] given by
X. Zhang, so the pathwise uniqueness holds. Hence Theorem 3.4 applies to this case. �
4. Quasi-invariance under stochastic flow

In the sequel, by quasi-invariance we mean that the Radon–Nikodym derivative of the cor-
responding push-forward measure is strictly positive. First we prove that in the situation of
Corollary 3.8, the Lebesgue measure is in fact quasi-invariant under the stochastic flow of home-
omorphisms. To this end, we need some preparations. In what follows, T0 > 0 is chosen small
enough such that (3.5) holds.

Proposition 4.1. Let q � 2. Then

lim
ε→0

∫
Rd

E

[∣∣∣∣∣ sup
0�t�T0

m∑
j=1

t∫
0

[
δ
(
Aε

j

)(
Xε

s

) − δ(Aj )(Xs)
]

dw
j
s

∣∣∣∣∣
q]

dγd = 0. (4.1)



1148 S. Fang et al. / Journal of Functional Analysis 259 (2010) 1129–1168
Proof. By Burkholder’s inequality,

E

(
sup

0�t�T0

∣∣∣∣∣
m∑

j=1

t∫
0

[
δ
(
Aε

j

)(
Xε

s

) − δ(Aj )(Xs)
]

dw
j
s

∣∣∣∣∣
q)

� CE

[( T0∫
0

m∑
j=1

∣∣δ(Aε
j

)(
Xε

s

) − δ(Aj )(Xs)
∣∣2 ds

)q/2]

� CT
q/2−1
0

m∑
j=1

T0∫
0

E
(∣∣δ(Aε

j

)(
Xε

s

) − δ(Aj )(Xs)
∣∣q)

ds.

Again by the inequality (a + b)q � Cq(aq + bq), there exists a constant Cq,T0 > 0 such that the
above quantity is dominated by

Cq,T0

m∑
j=1

[ T0∫
0

E
(∣∣δ(Aε

j

)(
Xε

s

) − δ(Aj )
(
Xε

s

)∣∣q)
ds +

T0∫
0

E
(∣∣δ(Aj )

(
Xε

s

) − δ(Aj )(Xs)
∣∣q)

ds

]
.

(4.2)

Let I ε
1 and I ε

2 be the two terms in the squared bracket of (4.2). Note that

∫
Rd

E
(∣∣δ(Aε

j

)(
Xε

s

) − δ(Aj )
(
Xε

s

)∣∣q)
dγd = E

∫
Rd

∣∣δ(Aε
j

) − δ(Aj )
∣∣qKε

s dγd

�
∥∥δ

(
Aε

j

) − δ(Aj )
∥∥q

L2q (γd )

∥∥Kε
s

∥∥
L2(P×γd )

. (4.3)

According to (3.5), for s � T0, we have ‖Kε
s ‖L2(P×γd ) � ΛT0 . Remark that

δ
(
Aε

j

) = δ(ϕεPεAj ) = ϕεe
εPεδ(Aj ) − 〈∇ϕε,PεAj 〉,

which converges to δ(Aj ) in L2q(γd). By (4.3),

∫
Rd

I ε
1 dγd =

T0∫
0

[ ∫
Rd

E
(∣∣δ(Aε

j

)(
Xε

s

) − δ(Aj )
(
Xε

s

)∣∣q)
dγd

]
ds

� T0ΛT0

∥∥δ
(
Aε

j

) − δ(Aj )
∥∥q

L2q (γd )

which tends to 0 as ε → 0.
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For the estimate of I ε
2 , we remark that

∫
Rd |δ(Aj )|2q dγd < +∞. Let η > 0 be given. There

exists ψ ∈ Cc(R
d) such that

∫
Rd

∣∣δ(Aj ) − ψ
∣∣2q dγd � η2.

We have, for some constant Cq > 0,

∫
Rd

E
(∣∣δ(Aj )

(
Xε

s

) − δ(Aj )(Xs)
∣∣q)

dγd

� Cq

[ ∫
Rd

E
(∣∣δ(Aj )

(
Xε

s

) − ψ
(
Xε

s

)∣∣q)
dγd +

∫
Rd

E
(∣∣ψ(

Xε
s

) − ψ(Xs)
∣∣q)

dγd

+
∫
Rd

E
(∣∣ψ(Xs) − δ(Aj )(Xs)

∣∣q)
dγd

]
. (4.4)

Again by (3.6), we find

E

[ ∫
Rd

∣∣δ(Aj )
(
Xε

s

) − ψ
(
Xε

s

)∣∣q dγd

]
= E

[ ∫
Rd

∣∣δ(Aj ) − ψ
∣∣qKε

s dγd

]

�
∥∥δ(Aj ) − ψ

∥∥q

L2q (γd )
ΛT0 � ΛT0η.

In the same way,

E

[ ∫
Rd

∣∣δ(Aj )(Xs) − ψ(Xs)
∣∣q dγd

]
� ΛT0η.

To estimate the second term on the right-hand side of (4.4), we use Theorem 3.5: from (3.14),
we see that up to a subsequence, Xε

s (w,x) converges to Xs(w,x), for each s � T0 and almost all
(w,x) ∈ Ω × R

d . By Lebesgue’s dominated convergence theorem,

lim
ε→0

∫
Rd

E
(∣∣ψ(

Xε
s

) − ψ(Xs)
∣∣q)

dγd = 0.

In conclusion, limε→0
∫

Rd I ε
2 dγd = 0. According to (4.2), the proof of (4.1) is complete. �

Proposition 4.2. Let Φ be defined by

Φ = δ(A0) + 1

2

m∑
j=1

|Aj |2 + 1

2

m∑
j=1

〈∇Aj , (∇Aj)
∗〉, (4.5)
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and analogously Φε where Aj is replaced by Aε
j . Then

lim
ε→0

∫
Rd

T0∫
0

E
(∣∣Φε

(
Xε

s

) − Φ(Xs)
∣∣q)

ds dγd = 0. (4.6)

Proof. Along the lines of the proof of Proposition 4.1, it is sufficient to remark that

lim
ε→0

‖Φε − Φ‖L2q (γd ) = 0. (4.7)

To see this, let us check convergence for the last term in the definition of Φε . We have

∣∣〈∇Aε
j ,

(∇Aε
j

)∗〉 − 〈∇Aj , (∇Aj)
∗〉∣∣

�
∥∥∇Aε

j − ∇Aj

∥∥∥∥∇Aε
j

∥∥ + ‖∇Aj‖
∥∥∇Aε

j − ∇Aj

∥∥.

Note that Aε
j = ϕεPεAj . Thus

∇Aε
j = ∇ϕε ⊗ PεAj + e−εϕεPε(∇Aj),

which converges to ∇Aj in L2q(γd) as ε → 0. �
Now we can prove

Proposition 4.3. Under the conditions of Corollary 3.8, the Lebesgue measure Lebd is quasi-
invariant under the stochastic flow.

Proof. Let kt be the density of (Xt )# Lebd with respect to Lebd . We shall prove that kt is strictly
positive. Set

K̃ε
t (x) = exp

(
−

m∑
j=1

t∫
0

δ
(
Aε

j

)(
Xε

s (x)
)

dw
j
s −

t∫
0

Φε

(
Xε

s (x)
)

ds

)
, (4.8)

where Φε is defined in Proposition 4.2. By (2.3) we have

∫
Rd

ψ
(
Xε

t

)
K̃ε

t dγd =
∫
Rd

ψ dγd, ψ ∈ C1
c

(
R

d
)
. (4.9)

Applying Propositions 4.1 and 4.2, up to a subsequence, for each t � T0 and almost every (w,x),
the term K̃ε

t (w,x) defined in (4.8) converges to

K̃t (x) = exp

(
−

m∑
j=1

t∫
δ(Aj )

(
Xs(x)

)
dw

j
s −

t∫
Φ

(
Xs(x)

)
ds

)
. (4.10)
0 0
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By Corollary 2.3 and Lemma 3.2, we may assume that T0 is small enough so that for any t � T0,
the family {K̃ε

t : ε � 1} is also bounded in L2(P × γd). Therefore, by the uniform integrability,
letting ε → 0 in (4.9), we get P-almost surely,

∫
Rd

ψ(Xt )K̃t dγd =
∫
Rd

ψ dγd, ψ ∈ C1
c

(
R

d
)
. (4.11)

Now taking a Borel version of x → K̃t (w,x). Under the assumptions, the solution Xt is a
stochastic flow of homeomorphisms, hence the inverse flow X−1

t exists. Consequently, if t � T0,
we deduce from (4.11) that the density Kt(w,x) of (Xt )#γd with respect to γd admits the ex-
pression Kt(w,x) = [K̃t (w,X−1

t (w, x))]−1 which is strictly positive. For Xt+T0 with t � T0, we
use the flow property: Xt+T0(w,x) = Xt(θT0w,XT0(w,x)). Thus, for any ψ ∈ C1

c (Rd),

∫
Rd

ψ(Xt+T0)dγd =
∫
Rd

ψ
(
Xt(XT0)

)
dγd

=
∫
Rd

ψ(Xt )KT0 dγd

=
∫
Rd

ψKT0

(
X−1

t

)
Kt dγd.

That is to say, the density Kt+T0 = KT0(X
−1
t )Kt is strictly positive. Continuing in this way, we

obtain that Kt is strictly positive for any t � 0.
Now if ρ(x) denotes the density of γd with respect to Lebd , then

kt (w,x) = ρ
(
X−1

t (w, x)
)−1

Kt(w,x)ρ(x) > 0

which concludes the proof. �
In what follows, we will give examples for which existence of the inverse flow is not known.

Theorem 4.4. Let A1, . . . ,Am be bounded C1 vector fields on R
d such that their derivatives

are of linear growth; furthermore let A0 be continuous of linear growth such that δ(A0) exists.
Define

Â0 = A0 −
m∑

j=1

LAj
Aj . (4.12)

Suppose that δ(Â0) exists and that

∫
d

exp
(
λ0

(∣∣δ(A0)
∣∣ + ∣∣δ(Â0)

∣∣))dγd < +∞, for some λ0 > 0. (4.13)
R
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If pathwise uniqueness holds both for SDE (1.1) and for

dYt =
m∑

j=1

Aj(Yt )dw
j
t − Â0(Yt )dt, (4.14)

then the solution Xt to SDE (1.1) leaves the Gaussian measure γd quasi-invariant.

Proof. Obviously the conditions in Theorem 3.4 are satisfied; hence (Xt )#γd = Ktγd . Let t > 0
be given, we consider the dual SDE to (1.1):

dY t
s =

m∑
j=1

Aj

(
Y t

s

)
dw

t,j
s − Â0

(
Y t

s

)
ds

for which pathwise uniqueness holds; here wt
s = wt−s − wt with s ∈ [0, t]. Let Aε

j , j =
0,1, . . . ,m, be the vector fields defined as above. Consider

dY t,ε
s =

m∑
j=1

Aε
j

(
Y t,ε

s

)
dw

t,j
s − Âε

0

(
Y t,ε

s

)
ds,

where Âε
0 = Aε

0 −∑m
j=1 LAε

j
Aε

j . Then it is known that (Xε
t )

−1 = Y
t,ε
t . It is easy to check that for

some constant C > 0 independent of ε,

∣∣Âε
0(x)

∣∣ � C
(
1 + |x|). (4.15)

Moreover,

LAε
j
Aε

j =
d∑

k=1

(
Aε

j

)k
[
∂ϕε

∂xk

PεAj + ϕεe
−εPε

(
∂Aj

∂xk

)]

which converges locally uniformly to LAj
Aj . Therefore Âε

0 converges uniformly over any com-

pact subset to Â0. By Theorem 3.5,

lim
ε→0

sup
|x|�R

E

(
sup

0�s�t

∣∣Y t,ε
s − Y t

s

∣∣2
)

= 0.

It follows that, along a sequence, Y
t,ε
t converges to Y t

t for almost every (w,x). Now let ψ1,ψ2 ∈
Cb(R

d), we have for t � T0,

∫
Rd

ψ1 · ψ2
(
Xε

t

)
K̃ε

t dγd =
∫
Rd

ψ1
(
Y

t,ε
t

) · ψ2 dγd.
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Letting ε → 0 leads to

∫
Rd

ψ1 · ψ2(Xt )K̃t dγd =
∫
Rd

ψ1
(
Y t

t

) · ψ2 dγd. (4.16)

Taking ψ1 and ψ2 positive in (4.16) and using a monotone class argument, we see that
Eq. (4.16) holds for any positive Borel functions ψ1 and ψ2. Hence taking a Borel version of
K̃t and setting ψ1 = 1/K̃t in (4.16), we get

∫
Rd

ψ2(Xt )dγd =
∫
Rd

[
K̃t

(
Y t

t

)]−1
ψ2 dγd. (4.17)

It follows that Kt = [K̃t (Y
t
t )]−1 > 0 for t � T0. For Xt+T0 with t � T0, we shall use re-

peatedly (4.16). By the flow property, Xt+T0(w,x) = Xt(θT0w,XT0(w,x)) where (θT0w)t =
wt+T0 − wT0 . Letting t = T0 and replacing ψ2 by ψ2(Xt ) we get

∫
Rd

ψ1 · ψ2(Xt+T0)K̃T0 dγd =
∫
Rd

ψ1
(
Y

T0
T0

)
ψ2(Xt )dγd.

Taking ψ1 = 1/K̃T0 in the above equality, we get

∫
Rd

ψ2(Xt+T0)dγd =
∫
Rd

[
K̃T0

(
Y

T0
T0

)]−1
ψ2(Xt )dγd

=
∫
Rd

[
K̃T0

(
Y

T0
T0

)]−1
ψ2(Xt )K̃

−1
t K̃t dγd

=
∫
Rd

[
K̃T0

(
Y

T0
T0

(
Y t

t

))]−1[
K̃t

(
Y t

t

)]−1
ψ2 dγd,

where in the last equality we have used (4.16) with ψ1 = [K̃T0(Y
T0
T0

)]−1K̃−1
t . It follows that the

density Kt+T0 of (Xt+T0)#γd with respect to γd is strictly positive, and so on. �
Corollary 4.5. Let A1, . . . ,Am be bounded C2 vector fields such that their derivatives up to
order 2 grow at most linearly, and let A0 be a continuous vector field of linear growth. Suppose
that

∣∣A0(x) − A0(y)
∣∣ � CR|x − y| logk

1

|x − y|
for |x| � R, |y| � R, |x − y| � c0 small enough, (4.18)

where logk s = (log s)(log log s) . . . (log . . . log s). Suppose further that
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div(A0) =
d∑

j=1

∂A
j

0

∂xj

exists and is bounded. Then the stochastic flow Xt defined by SDE (1.1) leaves the Lebesgue
measure quasi-invariant.

Proof. It is obvious that Â0 defined in (4.12) satisfies condition (4.18); therefore by [12], path-
wise uniqueness holds for SDE (1.1) and (4.14). Note that δ(A0) = 〈x,A0〉 − div(A0). Then
condition (4.13) is satisfied; thus Theorem 4.4 yields the result. �
5. The case A0 in a Sobolev space

From now on, A0 is no longer supposed to be continuous, but to lie in some Sobolev space,
that is, condition (A1) in (H) is replaced by

(A1′) For i = 1, . . . ,m, Ai ∈ ⋂
q�1 D

q

1(γd), A0 ∈ D
q

1(γd) for some q > 1.

First we establish the following a priori estimate on perturbations, using the method developed
in [36]. Let {A0,A1, . . . ,Am} be a family of measurable vector fields on R

d . We first give a
precise meaning of solution to the following SDE

dXt =
m∑

i=1

Ai(Xt )dwi
t + A0(Xt )dt, X0 = x. (5.1)

Definition 5.1. We say that a measurable map X : Ω × R
d → C([0, T ],R

d) is a solution to the
Itô SDE (5.1) if

(i) for each t ∈ [0, T ] and almost all x ∈ R
d , w → Xt(w,x) is measurable with respect to Ft ,

i.e., the natural filtration generated by the Brownian motion {ws : s � t};
(ii) for each t ∈ [0, T ], there exists Kt ∈ L1(P × R

d) such that (Xt (w, ·))#γd admits Kt as the
density with respect to γd ;

(iii) almost surely

m∑
i=1

T∫
0

∣∣Ai

(
Xs(w,x)

)∣∣2 ds +
T∫

0

∣∣A0
(
Xs(w,x)

)∣∣ds < +∞;

(iv) for almost all x ∈ R
d ,

Xt(w,x) = x +
m∑

i=1

t∫
0

Ai

(
Xs(w,x)

)
dwi

s +
t∫

0

A0
(
Xs(w,x)

)
ds;

(v) the flow property holds

Xt+s(w,x) = Xt

(
θsw,Xs(w,x)

)
.
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Now let {Â0, Â1, . . . , Âm} be another family of measurable vector fields on R
d , and denote

by X̂t the solution to the SDE

dX̂t =
m∑

i=1

Âi(X̂t )dwi
t + Â0(X̂t )dt, X̂0 = x. (5.2)

Let K̂t be the density of (X̂t )#γd with respect to γd and define

Λp,T = sup
0�t�T

(‖Kt‖Lp(P×γd ) ∨ ‖K̂t‖Lp(P×γd )

)
. (5.3)

Theorem 5.2. Let q > 1. Suppose that A1, . . . ,Am as well as Â1, . . . , Âm are in D
2q

1 (γd) and

A0, Â0 ∈ D
q

1(γd). Then, for any T > 0 and R > 0, there exist constants Cd,q,R > 0 and CT > 0
such that for any σ > 0,

E

[ ∫
GR

log

(
sup0�t�T |Xt − X̂t |2

σ 2
+ 1

)
dγd

]

� CT Λp,T

{
Cd,q,R

[
‖∇A0‖Lq +

(
m∑

i=1

‖∇Ai‖2
L2q

)1/2

+
m∑

i=1

‖∇Ai‖2
L2q

]

+ 1

σ 2

m∑
i=1

‖Ai − Âi‖2
L2q + 1

σ

[
‖A0 − Â0‖Lq +

(
m∑

i=1

‖Ai − Âi‖2
L2q

)1/2]}
,

where p is the conjugate number of q: 1/p + 1/q = 1, and

GR(w) =
{
x ∈ R

d : sup
0�t�T

∣∣Xt(w,x)
∣∣ ∨ ∣∣X̂t (w,x)

∣∣ � R
}
. (5.4)

Proof. Denote ξt = Xt − X̂t , then ξ0 = 0. By Itô’s formula,

d|ξt |2 = 2
m∑

i=1

〈
ξt ,Ai(Xt ) − Âi(X̂t )

〉
dwi

t + 2
〈
ξt ,A0(Xt ) − Â0(X̂t )

〉
dt

+
m∑

i=1

∣∣Ai(Xt ) − Âi(X̂t )
∣∣2 dt. (5.5)

For σ > 0, log(|ξt |2/σ 2 + 1) = log(|ξt |2 + σ 2) − logσ 2. Again by Itô’s formula,

d log
(|ξt |2 + σ 2) = d|ξt |2

|ξt |2 + σ 2
− 1

2

4
∑m

i=1〈ξt ,Ai(Xt ) − Âi(X̂t )〉2

(|ξt |2 + σ 2)2
dt.

Using (5.5), we obtain
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d log
(|ξt |2 + σ 2) = 2

m∑
i=1

〈ξt ,Ai(Xt ) − Âi(X̂t )〉
|ξt |2 + σ 2

dwi
t + 2

〈ξt ,A0(Xt ) − Â0(X̂t )〉
|ξt |2 + σ 2

dt

+
m∑

i=1

|Ai(Xt ) − Âi(X̂t )|2
|ξt |2 + σ 2

dt − 2
m∑

i=1

〈ξt ,Ai(Xt ) − Âi(X̂t )〉2

(|ξt |2 + σ 2)2
dt

=: dI1(t) + dI2(t) + dI3(t) + dI4(t). (5.6)

Let τR(x) = inf{t � 0: |Xt(x)| ∨ |X̂t (x)| > R}. Remark that almost surely, GR ⊂
{x: τR(x) > T } and for any t � 0, {τR > t} ⊂ B(R). Therefore

E

[ ∫
GR

sup
0�t�T

∣∣I1(t)
∣∣dγd

]
� E

[ ∫
B(R)

sup
0�t�T ∧τR

∣∣I1(t)
∣∣dγd

]
.

By Burkholder’s inequality,

E

[
sup

0�t�T ∧τR

∣∣I1(t)
∣∣2

]
� 4E

[ T ∧τR∫
0

m∑
i=1

〈ξt ,Ai(Xt ) − Âi(X̂t )〉2

(|ξt |2 + σ 2)2
dt

]
,

which is obviously less than

4E

[ T ∧τR∫
0

m∑
i=1

|Ai(Xt ) − Âi(X̂t )|2
|ξt |2 + σ 2

dt

]
.

Hence

E

[ ∫
B(R)

sup
0�t�T ∧τR

∣∣I1(t)
∣∣dγd

]

� 4

[ T∫
0

(
E

∫
{τR>t}

m∑
i=1

|Ai(Xt ) − Âi(X̂t )|2
|ξt |2 + σ 2

dγd

)
dt

]1/2

. (5.7)

We have Ai(Xt ) − Âi(X̂t ) = Ai(Xt ) − Ai(X̂t ) + Ai(X̂t ) − Âi(X̂t ). Using the density K̂t , it is
clear that

E

∫
{τR>t}

|Ai(X̂t ) − Âi(X̂t )|2
|ξt |2 + σ 2

dγd � 1

σ 2
E

∫
Rd

∣∣Ai(X̂t ) − Âi(X̂t )
∣∣2 dγd

= 1

σ 2
E

∫
Rd

|Ai − Âi |2K̂t dγd.
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Thus by Hölder’s inequality and according to (5.3), we have

E

∫
{τR>t}

|Ai(X̂t ) − Âi(X̂t )|2
|ξt |2 + σ 2

dγd � Λp,T

σ 2
‖Ai − Âi‖2

L2q . (5.8)

Now we shall use Theorem A.1 in Appendix A to estimate the other term. Note that on the set
{τR > t}, Xt, X̂t ∈ B(R), thus |Xt − X̂t | � 2R. Since (Xt )#γd � γd and (X̂t )#γd � γd , we can
apply (A.2) so that

∣∣Ai(Xt ) − Ai(X̂t )
∣∣ � Cd |Xt − X̂t |

(
M2R|∇Ai |(Xt ) + M2R|∇Ai |(X̂t )

)
.

Then

E

[ ∫
{τR>t}

|Ai(Xt ) − Ai(X̂t )|2
|ξt |2 + σ 2

dγd

]
� C2

dE

∫
{τR>t}

(
M2R|∇Ai |(Xt ) + M2R|∇Ai |(X̂t )

)2
dγd.

Notice again that on {τR(x) > t}, Xt(x) and X̂t (x) are in B(R), therefore

E

[ ∫
{τR>t}

|Ai(Xt ) − Ai(X̂t )|2
|ξt |2 + σ 2

dγd

]
� 2C2

dE

∫
B(R)

(
M2R|∇Ai |

)2
(Kt + K̂t )dγd

� 4C2
dΛp,T

( ∫
B(R)

(
M2R|∇Ai |

)2q dγd

)1/q

. (5.9)

Remark that the maximal function inequality does not hold for the Gaussian measure γd on
the whole space R

d . However, on each ball B(R),

γd |B(R) � 1

(2π)d/2
Lebd |B(R) � eR2/2γd |B(R).

Thus, according to (A.3),

∫
B(R)

(
M2R|∇Ai |

)2q dγd � 1

(2π)d/2

∫
B(R)

(
M2R|∇Ai |

)2q dx

� Cd,q

(2π)d/2

∫
B(3R)

|∇Ai |2q dx

� Cd,qe9R2/2
∫

B(3R)

|∇Ai |2q dγd

� Cd,qe9R2/2‖∇Ai‖2q

L2q .
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Therefore by (5.9), there exists a constant Cd,q,R > 0 such that

E

[ ∫
{τR>t}

|Ai(Xt ) − Ai(X̂t )|2
|ξt |2 + σ 2

dγd

]
� Cd,q,RΛp,T ‖∇Ai‖2

L2q .

Combining this estimate with (5.7) and (5.8), we get

E

[ ∫
GR

sup
0�t�T

∣∣I1(t)
∣∣dγd

]

� CT 1/2Λ
1/2
p,T

(
Cd,q,R

m∑
i=1

‖∇Ai‖2
L2q + 1

σ 2

m∑
i=1

‖Ai − Âi‖2
L2q

)1/2

. (5.10)

Now we turn to deal with I2(t) in (5.6). We have

E

[ ∫
GR

sup
0�t�T

∣∣I2(t)
∣∣dγd

]
� 2

T∫
0

[
E

∫
GR

|A0(Xt ) − Â0(X̂t )|
(|ξt |2 + σ 2)1/2

dγd

]
dt.

Note that for x ∈ GR , X̂t (x) ∈ B(R) for each t ∈ [0, T ], thus

E

[ ∫
GR

|A0(X̂t ) − Â0(X̂t )|
(|ξt |2 + σ 2)1/2

dγd

]
� 1

σ
E

∫
B(R)

|A0 − Â0|K̂t dγd � Λp,T

σ
‖A0 − Â0‖Lq .

Again using (A.2),

E

[ ∫
GR

|A0(Xt ) − A0(X̂t )|
(|ξt |2 + σ 2)1/2

dγd

]
� CdE

∫
GR

(
M2R|∇A0|(Xt ) + M2R|∇A0|(X̂t )

)
dγd,

which is dominated by

CdE

[ ∫
B(R)

(
M2R|∇A0|

)
(Kt + K̂t )dγd

]
� Cd,q,R‖∇A0‖Lq Λp,T .

Therefore we arrive at the following estimate for I2:

E

[ ∫
GR

sup
0�t�T

∣∣I2(t)
∣∣dγd

]
� 2T Λp,T

(
Cd,q,R‖∇A0‖Lq + 1

σ
‖A0 − Â0‖Lq

)
. (5.11)



S. Fang et al. / Journal of Functional Analysis 259 (2010) 1129–1168 1159
In the same way we get

E

[ ∫
GR

sup
0�t�T

∣∣I3(t)
∣∣dγd

]

� CT Λp,T

(
Cd,q,R

m∑
i=1

‖∇Ai‖2
L2q + 1

σ 2

m∑
i=1

‖Ai − Âi‖2
L2q

)
. (5.12)

The term I4(t) is negative and hence omitted. Combining (5.6) and (5.10)–(5.12), the proof is
completed. �

Now we shall construct a solution to SDE (5.1). To this end, we take ε = 1/n and write An
j

instead of A
1/n
j introduced in Section 3. Then by assumption (A2) and Lemma 3.1, there is a

constant C > 0 independent of n and i, such that

∣∣An
i (x)

∣∣ � C
(
1 + |x|). (5.13)

Let Xn
t be the solution to Itô SDE (5.1) with coefficients An

i (i = 0,1, . . . ,m). Then for any
α � 1 and T > 0, there exists Cα,T > 0 independent of n such that

E

(
sup

0�t�T

∣∣Xn
t

∣∣α)
� Cα,T

(
1 + |x|α)

, for all x ∈ R
d . (5.14)

Let Kn
t be the density of (Xn

t )#γd with respect to γd . Under the hypotheses (A2)–(A4), there
exists T0 > 0 such that (recall that p is the conjugate number of q > 1):

Λp,T0 :=
[ ∫

Rd

exp

(
2pT0

[
|A0| + e

∣∣δ(A0)
∣∣

+
m∑

j=1

(
2p|Aj |2 + |∇Aj |2 + 2(p − 1)e2

∣∣δ(Aj )
∣∣2)])

dγd

] p−1
p(2p−1)

< ∞.

(5.15)

Similar to (3.6), we have

sup
t∈[0,T0]

sup
n�1

∥∥Kn
t

∥∥
Lp(γd×P)

� Λp,T0 < +∞. (5.16)

Next we shall prove that the family {Xn: n � 1} converges to some stochastic field.
.
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Theorem 5.3. Let T0 be given in (5.15). Then, under the assumptions (A1′) and (A2)–(A4), there
exists X : Ω × R

d → C([0, T0],R
d) such that for any α � 1,

lim
n→∞E

[ ∫
Rd

(
sup

0�t�T0

∣∣Xn
t − Xt

∣∣α)
dγd

]
= 0. (5.17)

Proof. We shall prove that {Xn: n � 1} is a Cauchy sequence in Lα(Ω × R
d ;C([0, T0],R

d)).
Denote by ‖ · ‖∞,T0 the uniform norm on C([0, T0],R

d). We have to prove that

lim
n,k→+∞ E

[ ∫
Rd

∥∥Xn − Xk
∥∥α

∞,T0
dγd

]
= 0. (5.18)

First by (5.14), the quantity

Jα,T0 := sup
n�1

E

[ ∫
Rd

∥∥Xn
∥∥2α

∞,T0
dγd

]
� Cα,T0

∫
Rd

(
1 + |x|2α

)
dγd (5.19)

is obviously finite. Let R > 0 and set

Gn,R(w) = {
x ∈ R

d :
∥∥Xn(w,x)

∥∥∞,T0
� R

}
.

Using (5.19), for any α � 1 and R > 0, we have

sup
n�1

E
[
γd

(
Gc

n,R

)]
� Jα,T0

R2α
.

Now by Cauchy–Schwarz inequality

E

[ ∫
Gc

n,R∪Gc
k,R

∥∥Xn − Xk
∥∥α

∞,T0
dγd

]

�
(
E

[
γd

(
Gc

n,R ∪ Gc
k,R

)])1/2 ·
(

E

∫
Rd

∥∥Xn − Xk
∥∥2α

∞,T0
dγd

)1/2

�
(

2Jα,T0

R2α

)1/2

· (22αJα,T0

)1/2
. (5.20)

Given ε > 0, we may choose R > 1 sufficiently large such that the last quantity in inequality
(5.20) is less than ε. Then, for any n, k � 1,

E

( ∫
Gc ∪Gc

∥∥Xn − Xk
∥∥α

∞,T0
dγd

)
� ε. (5.21)
n,R k,R
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Let

σn,k = ∥∥An
0 − Ak

0

∥∥
Lq +

(
m∑

i=1

∥∥An
i − Ak

i

∥∥2
L2q

)1/2

,

which tends to 0 as n, k → +∞ since An
0 converges to A0 in Lq(γd) and An

i converges to Ai in

L2q(γd) for i = 1, . . . ,m. Now applying Theorem 5.2 with Ai and Âi being replaced respectively
by An

i and Ak
i , we get

In,k := E

[ ∫
Gn,R∩Gk,R

log

(‖Xn − Xk‖2∞,T0

σ 2
n,k

+ 1

)
dγd

]

� CT0Λp,T0

{
Cd,q,R

[∥∥∇An
0

∥∥
Lq +

(
m∑

i=1

∥∥∇An
i

∥∥2
L2q

)1/2

+
n∑

i=1

∥∥∇An
i

∥∥2
L2q

]
+ 2

}
.

Recall that An
i = ϕ1/nP1/nAi . Thus ∇An

i = ∇ϕ1/n ⊗ P1/nAi + ϕ1/ne
−1/nP1/n∇Ai and

∣∣∇An
i

∣∣ � P1/n

(|Ai | + |∇Ai |
)
.

We obtain the following uniform estimates

∥∥∇An
0

∥∥
Lq � ‖A0‖D

q
1
,

∥∥∇An
i

∥∥
L2q � ‖Ai‖

D
2q
1

.

Hence the quantity In,k is uniformly bounded with respect to n, k. Let Π̂ be the measure on
Ω × R

d defined by

∫
Ω×Rd

ψ(w,x)dΠ̂(w,x) = E

[ ∫
Gn,R∩Gk,R

ψ(w,x)dγd(x)

]
.

Obviously we have Π̂(Ω × R
d) � 1. Let η > 0 and consider

Σn,k = {
(w,x) ∈ Ω × R

d :
∥∥Xn(w,x) − Xk(w,x)

∥∥∞,T0
� η

}
which equals

{
(w,x) ∈ Ω × R

d : log

(‖Xn − Xk‖2∞,T0

σ 2
n,k

+ 1

)
� log

(
η2

σ 2
n,k

+ 1

)}
.

It follows that as n, k → +∞,

Π̂(Σn,k) � In,k

log(η2/σ 2 + 1)
→ 0, (5.22)
n,k
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since σn,k → 0 and the family {In,k: n, k � 1} is bounded. Now

E

[ ∫
Gn,R∩Gk,R

∥∥Xn − Xk
∥∥α

∞,T0
dγd

]
=

∫
Ω×Rd

∥∥Xn − Xk
∥∥α

∞,T0
dΠ̂

=
∫

Σc
n,k

∥∥Xn − Xk
∥∥α

∞,T0
dΠ̂

+
∫

Σn,k

∥∥Xn − Xk
∥∥α

∞,T0
dΠ̂. (5.23)

The first term on the right side of (5.23) is bounded by ηα , while the second one, due to (5.19)
and (5.22), is dominated by

√
Π̂(Σn,k) ·

√√√√E

∫
Rd

∥∥Xn − Xk
∥∥2α

∞,T0
dγd � 2α

√
Jα,T0Π̂(Σn,k) → 0 as n, k → +∞.

Now taking η = ε1/α and combining (5.21) and (5.23), we see that

lim sup
n,k→+∞

E

[ ∫
Rd

∥∥Xn − Xk
∥∥α

∞,T0
dγd

]
� 2ε,

which implies (5.18).
Let X ∈ Lα(Ω × R

d ;C([0, T0],R
d)) be the limit of Xn in this space. We see that for each

t ∈ [0, T ] and almost all x ∈ R
d , w → Xt(w,x) is Ft -measurable. �

Proposition 5.4. There exists a family {K̂t : t ∈ [0, T0]} of density functions on R
d such that

(Xt )#γd = K̂tγd for each t ∈ [0, T0]. Moreover,

sup
0�t�T0

‖K̂t‖Lp(P×γd ) � Λp,T0

where Λp,T0 is given by (5.16).

Proof. It is the same as the proof of Theorem 3.4. �
The same arguments as in the proof of Propositions 4.1 and 4.2 yield the following

Proposition 5.5. For any α � 2, up to a subsequence,

lim
n→∞

∫
d

E

[
sup

0�t�T0

∣∣∣∣∣
m∑

i=1

t∫
0

[
An

i

(
Xn

s

) − Ai(Xs)
]

dwi
s

∣∣∣∣∣
α]

dγd = 0,
R
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and

lim
n→∞

∫
Rd

[
E

T0∫
0

∣∣An
0

(
Xn

s

) − A0(Xs)
∣∣α ds

]
dγd = 0.

Now for regularized vector fields An
i , i = 0,1, . . . ,m, we have

Xn
t (x) = x +

m∑
i=1

t∫
0

An
i

(
Xn

s

)
dwi

s +
t∫

0

An
0

(
Xn

s

)
ds. (5.24)

When n → +∞, by Theorem 5.3 and Proposition 5.5, the two sides of (5.24) converge respec-
tively to X and

x +
m∑

i=1

.∫
0

Ai(Xs)dwi
s +

.∫
0

A0(Xs)ds

in the space Lα(Ω ×R
d;C([0, T0],R

d)). Therefore, for almost all x ∈ R
d , the following equality

holds P-almost surely:

Xt(x) = x +
m∑

i=1

t∫
0

Ai(Xs)dwi
s +

t∫
0

A0(Xs)ds, for all t ∈ [0, T0].

That is to say, Xt solves SDE (5.1) over the interval [0, T0].
The following result proves pathwise uniqueness of SDE (5.1) for a.e. initial value x ∈ R

d .

Proposition 5.6. Under the conditions (A1′) and (A2)–(A4), the SDE (5.1) has a unique solution
on the interval [0, T0].

Proof. Let (Yt )t∈[0,T0] be another solution. Set, for R > 0,

GR =
{
(w,x) ∈ Ω × R

d : sup
0�t�T0

∣∣Xt(w,x) − Yt (w,x)
∣∣ � R

}
.

Remark that in Theorem 5.2, the terms involving 1/σ and 1/σ 2 vanish. Therefore the term

I := E

∫
GR

log

(
sup0�t�T0

|Xt − Yt |2
σ 2

+ 1

)
dγd

� CT0Λp,T0Cd,q,R

[
‖A0‖D

q
1
+

(
m∑

‖Ai‖2
D

2q
1

)1/2

+
m∑

‖Ai‖2
D

2q
1

]

i=1 i=1
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is bounded for any σ > 0. For η > 0 consider

Ση =
{
(w,x) ∈ Ω × R

d : sup
0�t�T0

∣∣Xt(w,x) − Yt (w,x)
∣∣ � η

}
.

Similar to (5.22), we have

E

[ ∫
GR

1Ση dγd

]
� I

log(η2/σ 2 + 1)
→ 0, as σ → 0.

Hence we obtain

1GR
sup

0�t�T0

|Xt − Yt | = 0, (P × γd)-a.s.

Letting R → ∞, we obtain that (P × γd)-almost surely, Xt = Yt for all t ∈ [0, T0]. �
Now we extend the solution to any time interval [0, T ]. Let θT0w be the time-shift of the

Brownian motion w by T0 and denote by X
T0
t the corresponding solution to SDE driven by

θT0w. By Proposition 5.6, {XT0
t (θT0w,x): 0 � t � T0} is the unique solution to the following

SDE over [0, T0]:

X
T0
t (x) = x +

m∑
i=1

t∫
0

Ai

(
XT0

s (x)
)

d(θT0w)is +
t∫

0

A0
(
XT0

s (x)
)

ds.

For t ∈ [0, T0], define Xt+T0(w,x) = X
T0
t (θT0w,XT0(w,x)). Note that Xt is well defined on

the interval [0,2T0] up to a (P × γd)-negligible subset of Ω × Rd . Replacing x by XT0(x) in the
above equation, we get easily

Xt+T0(x) = x +
m∑

i=1

t+T0∫
0

Ai

(
Xs(x)

)
dwi

s +
t+T0∫
0

A0
(
Xs(x)

)
ds.

Therefore Xt defined as above is a solution to SDE on the interval [0,2T0]. Continuing in this
way, the solution of SDE (5.1) on the interval [0, T ] is obtained.

Theorem 5.7. The family {Xt : t ∈ [0, T ]} constructed above is the unique solution to SDE (5.1)
in the sense of Definition 5.1. Moreover, for each t ∈ [0, T ], the density Kt of (Xt )#γd with
respect to γd is in L1 logL1.

Proof. Let Yt , t ∈ [0, T ] be another solution in the sense of Definition 5.1. First by Proposi-
tion 5.6, we have (P × γd)-almost surely, Yt = Xt for all t ∈ [0, T0]. In particular, YT0 = XT0 .
Next by the flow property, Yt+T satisfies the following equation:
0
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Yt+T0(x) = YT0(x) +
m∑

i=1

t∫
0

Ai

(
Ys+T0(x)

)
d(θT0w)is +

t∫
0

A0
(
Ys+T0(x)

)
ds,

that is, Yt+T0 is a solution with initial value YT0 . But by the above discussion, Xt+T0 is also a
solution with the same initial value XT0 = YT0 . Again by Proposition 5.6, we have (P × γd)-
almost surely, Xt+T0 = Yt+T0 for all t � T0. Hence we proved that X|[0,2T0] = Y |[0,2T0].
Repeating this procedure, we obtain the uniqueness over [0, T ]. Existence of the density Kt

of (Xt )#γd with respect to γd beyond T0 is deduced from the flow property. However, to ensure
that Kt ∈ L1 logL1, we have to use Theorem 3.3 and the fact that

lim
n→∞

∫
Rd

E

[
sup

0�t�T

∣∣Xn
t − Xt

∣∣α]
dγd = 0,

which can be checked using the same arguments as in the proof of Propositions 4.1 and 4.2. �
Appendix A

For any locally integrable function f ∈ L1
loc(R

d) and R > 0, the local maximal function MRf

is defined by

MRf (x) = sup
0<r�R

1

Lebd(B(x, r))

∫
B(x,r)

∣∣f (y)
∣∣dy, (A.1)

where B(x, r) = {y ∈ R
d : |y −x| � r}. The following result is the starting point for the approach

concerning Sobolev coefficients, used in [5,36].

Theorem A.1. Let f ∈ L1
loc(R

d) be such that ∇f ∈ L1
loc(R

d). Then there is a constant Cd > 0
(independent of f ) and a negligible subset N , such that for x, y ∈ Nc with |x − y| � R,

∣∣f (x) − f (y)
∣∣ � Cd |x − y|((MR|∇f |)(x) + (

MR|∇f |)(y)
)
. (A.2)

Moreover for p > 1 and f ∈ L
p

loc(R
d), there is a constant Cd,p > 0 such that

∫
B(r)

(MRf )p dx � Cd,p

∫
B(r+R)

|f |p dx. (A.3)

Since inequality (A.2) plays a key role in the proof of Theorem 5.2, we include its proof for
the sake of the reader’s convenience.

Proof of estimate (A.2). We follow the idea of the proof of Claim #2 on p. 253 in [9]. For any
bounded measurable subset U in R

d of Lebesgue measure Lebd(U) > 0, define the average of
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f ∈ L1
loc(R

d) on U by

(f )U = −
∫

Uf (y)dy := 1

Lebd(U)

∫
U

f (y)dy.

Write (f )x,r instead of (f )B(x,r) for simplicity. Then MRf (x) = sup0<r�R(|f |)x,r . We use the
following simple inequality: for any C ∈ R,

∣∣(f )U − C
∣∣ � −

∫
U

∣∣f (y) − C
∣∣dy. (A.4)

First, for any x ∈ R
d and r ∈ ]0,R], by Poincaré’s inequality with p = 1 and p∗ = d/(d − 1)

(see [9, p. 141]), there exists Cd > 0 such that

−
∫

B(x,r)

∣∣f − (f )x,r

∣∣dy �
(

−
∫

B(x,r)

∣∣f − (f )x,r

∣∣d/(d−1) dy

)(d−1)/d

� Cdr −
∫

B(x,r)|∇f |dy � CdMR|∇f |(x)r. (A.5)

In particular, for any k � 0, by (A.4) and (A.5),

∣∣(f )x,r/2k+1 − (f )x,r/2k

∣∣ � −
∫

B(x,r/2k+1)

∣∣f − (f )x,r/2k

∣∣dy

� 2d −
∫

B(x,r/2k)

∣∣f − (f )x,r/2k

∣∣dy

� 2dCdMR|∇f |(x)r/2k.

Since f ∈ L1
loc(R

d), there is a negligible subset N ⊂ R
d such that for all x ∈ Nc , f (x) =

limr→0(f )x,r . Thus for any x ∈ Nc, by summing up the above inequality, we get

∣∣f (x) − (f )x,r

∣∣ �
∞∑

k=0

∣∣(f )x,r/2k+1 − (f )x,r/2k

∣∣ � 21+dCdMR|∇f |(x)r. (A.6)

Next for x, y ∈ Nc, x �= y and |x − y| � R, let r = |x − y|. Then by the triangular inequality,
(A.4) and (A.5),

∣∣(f )x,r − (f )y,r

∣∣ � −
∫

B(x,r)∩B(y,r)

(∣∣(f )x,r − f (z)
∣∣ + ∣∣f (z) − (f )y,r

∣∣)dz

� C̃d

[
−
∫

B(x,r)

∣∣(f )x,r − f (z)
∣∣dz + −

∫
B(y,r)

∣∣f (z) − (f )y,r

∣∣dz

]

� C̃dCd

(
MR|∇f |(x) + MR|∇f |(y)

)
r. (A.7)

Now (A.2) follows from the triangular inequality and (A.6), (A.7):
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∣∣f (x) − f (y)
∣∣ �

∣∣f (x) − (f )x,r

∣∣ + ∣∣(f )x,r − (f )y,r

∣∣ + ∣∣(f )y,r − f (y)
∣∣

� 21+dCdMR|∇f |(x)r + C̃dCd

(
MR|∇f |(x) + MR|∇f |(y)

)
r

+ 21+dCdMR|∇f |(y)r

= Cd

(
21+d + C̃d

)|x − y|(MR|∇f |(x) + MR|∇f |(y)
)
.

We obtain (A.2). �
References

[1] L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math. 158 (2004) 227–260.
[2] L. Ambrosio, A. Figalli, On flows associated to Sobolev vector fields in Wiener space: an approach à la Di Perna–

Lions, J. Funct. Anal. 256 (1) (2009) 179–214.
[3] L. Ambrosio, M. Lecumberry, S. Maniglia, Lipschitz regularity and approximate differentiability of the Di Perna–

Lions flow, Rend. Sem. Mat. Univ. Padova 114 (2005) 29–50.
[4] F. Cipriano, A.B. Cruzeiro, Flows associated with irregular R

d -vector fields, J. Differential Equations 210 (2005)
183–201.

[5] G. Crippa, C. De Lellis, Estimates and regularity results for the Di Perna–Lions flows, J. Reine Angew. Math. 616
(2008) 15–46.

[6] A.B. Cruzeiro, Équations différentielles ordinaires: non explosion et mesures quasi-invariantes, J. Funct. Anal. 54
(1983) 193–205.

[7] R.J. Di Perna, P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98
(1989) 511–547.

[8] B. Driver, Integration by parts and quasi-invariance for heat kernal measures on loop groups, J. Funct. Anal. 149
(1997) 470–547.

[9] L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, London,
1992.

[10] S. Fang, Canonical Brownian motion on the diffeomorphism group of the circle, J. Funct. Anal. 196 (2002) 162–179.
[11] Shizan Fang, Dejun Luo, Transport equations and quasi-invariant flows on the Wiener space, Bull. Sci. Math. (2009),

doi:10.1016/j.bulsci.2009.01.001, in press.
[12] S. Fang, T. Zhang, A study of a class of stochastic differential equations with non-Lipschitzian coefficients, Probab.

Theory Related Fields 132 (2005) 356–390.
[13] S. Fang, P. Imkeller, T. Zhang, Global flows for stochastic differential equations without global Lipschitz conditions,

Ann. Probab. 35 (2007) 180–205.
[14] A. Figalli, Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients,

J. Funct. Anal. 254 (2008) 109–153.
[15] F. Flandoli, M. Gubinelli, E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent.

Math. 180 (1) (2009) 1–53.
[16] Zhiyuan Huang, Foundations of Stochastic Analysis, second ed., Science Press of China, 2001 (in Chinese).
[17] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, second ed., North-Holland, Am-

sterdam, 1989.
[18] H. Kaneko, S. Nakao, A note on approximation for stochastic differential equations, in: Séminaire de Probabilités,

XXII, in: Lecture Notes in Math., vol. 1321, Springer, Berlin, 1988, pp. 155–162.
[19] N.V. Krylov, On weak uniqueness for some diffusion with discontinuous coefficients, Stochastic Process. Appl. 113

(2004) 37–64.
[20] N.V. Krylov, M. Röckner, Strong solutions of stochastic equations with singular time dependent drift, Probab.

Theory Related Fields 131 (2005) 154–196.
[21] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, 1990.
[22] C. LeBris, P.L. Lions, Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coeffi-

cients, Comm. Partial Differential Equations 33 (2008) 1272–1317.
[23] Y. Le Jan, O. Raimond, Integration of Brownian vector fields, Ann. Probab. 30 (2002) 826–873.
[24] Y. Le Jan, O. Raimond, Flows, coalescence and noise, Ann. Probab. 32 (2004) 1247–1315.
[25] X.-M. Li, Strong p-completeness of stochastic differential equations and the existence of smooth flows on non-

compact manifolds, Probab. Theory Related Fields 100 (1994) 485–511.



1168 S. Fang et al. / Journal of Functional Analysis 259 (2010) 1129–1168
[26] X.-M. Li, M. Scheutzow, Lack of strong completeness for stochastic flows, http://arxiv.org/abs/0908.1839.
[27] Dejun Luo, Quasi-invariance of Lebesgue measure under the homeomorphic flow generated by SDE with non-

Lipschitz coefficient, Bull. Sci. Math. 133 (2009) 205–228.
[28] P. Malliavin, Stochastic Analysis, Grundlehren Math. Wiss., vol. 313, Springer, 1997.
[29] P. Malliavin, The canonical diffusion above the diffeomorphism group of the circle, C. R. Acad. Sci. 329 (1999)

325–329.
[30] D. Revuz, M. Yor, Continuous Martingale and Brownian Motion, Grundlehren Math. Wiss., vol. 293, Springer-

Verlag, 1991.
[31] M.V. Safonov, Non-uniqueness for second order elliptic equations with measurable coefficients, SIAM J. Math.

Anal. 30 (1999) 879–895.
[32] D.W. Stroock, S.R.S. Varadhan, Multidimensional Diffusion Processes, Springer, New York, 1979.
[33] A.J. Veretennikov, On the strong solutions of stochastic differential equations, Theory Probab. Appl. 24 (1979)

354–366.
[34] Xicheng Zhang, Strong solutions of SDEs with singular drift and Sobolev diffusion coefficients, Stochastic Process.

Appl. 115 (2005) 1805–1818.
[35] Xicheng Zhang, Homeomorphic flows for multi-dimensional SDEs with non-Lipschitz coefficients, Stochastic

Process. Appl. 115 (3) (2005) 435–448, Erratum to “Homeomorphic flows for multi-dimensional SDEs with non-
Lipschitz coefficients”.

[36] Xicheng Zhang, Stochastic flows of SDEs with irregular coefficients and stochastic transport equations, Bull. Sci.
Math. (2009), doi:10.1016/j.bulsci.2009.12.004, in press.


	Stochastic differential equations with coefficients in Sobolev spaces
	Introduction
	Lp estimate of the density
	Absolute continuity under flows generated by SDEs
	Quasi-invariance under stochastic flow
	The case A0 in a Sobolev space
	References


