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The purposes of this work are (1) to show that the appropriate generalizations of the oscillator algebra permit the construction of a
wide set of nonlinear coherent states in unified form and (2) to clarify the likely contradiction between the nonclassical properties
of such nonlinear coherent states and the possibility of finding a classical analog for them since they are 𝑃-represented by a delta
function. In (1) we prove that a class of nonlinear coherent states can be constructed to satisfy a closure relation that is expressed
uniquely in terms of the Meijer 𝐺-function. This property automatically defines the delta distribution as the 𝑃-representation of
such states.Then, in principle, there must be a classical analog for them. Among other examples, we construct a family of nonlinear
coherent states for a representation of the su(1, 1) Lie algebra that is realized as a deformation of the oscillator algebra. In (2), we use
a beam splitter to show that the nonlinear coherent states exhibit properties like antibunching that prohibit a classical description for
them.We also show that these states lack second-order coherence.That is, although the 𝑃-representation of the nonlinear coherent
states is a delta function, they are not full coherent.Therefore, the systems associated with the generalized oscillator algebras cannot
be considered “classical” in the context of the quantum theory of optical coherence.

1. Introduction

The nonclassical properties of light have received a great deal
of attention in recent years, mainly in connection with quan-
tumoptics [1], quantum information [2], and the principles of
quantum mechanics [3]. Among other nonclassical profiles,
the related states can be generated by nonlinear processes
to have sub-Poissonian statistics [4] or to exhibit squeezing
(reduction of the variance) in one quadrature [5]. Some
deformations of the algebra generated by the conventional
boson operators have been proposed to represent photons
with “unusual properties” [6, 7], which have found applica-
tions in the photon counting statistics, squeezing, and signal-
to-quantum noise ratio [8]. The immediate generalizations
[9, 10] motivated the development of the subject as an
important branch of quantum optics [1]. The deformations
of the boson algebra include supersymmetric structures [11–
14] for which the so-called polynomial Heisenberg algebras
are quite natural [15–18]. Recently, some non-Hermitian
models have been shown to obey the distortions of the

boson algebra that arise in the conventional supersymmetric
approaches [19, 20]. In all cases, the deformed oscillator
algebras have been used to construct the corresponding
generalized (also called nonlinear) coherent states. Most of
these states exhibit nonclassical properties that distinguish
them from the coherent states of the conventional boson
algebra.

In this work we propose a modification of the conven-
tional boson (also called oscillator) algebra that permits the
recovering of the majority of the already studied deformed
boson algebras as particular cases. The nonlinear coherent
states of these generalized oscillator algebras can be written
in the same mathematical form, which facilitates their study.
We shall address the discussion to polynomial-like algebras
because, as we are going to prove, the closure relation satisfied
by the corresponding nonlinear coherent states is expressed
uniquely in terms of the Meijer 𝐺-function. Accordingly,
the 𝑃-representation [21, 22] of all the nonlinear coherent
states we deal with is as singular as the 𝛿-distribution.
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Then, following [23, 24], the fields represented by such states
would have a classical analog. However, these states have
nonclassical properties that can be exhibited either with the
help of a beam splitter [25] (see also [26]) or by showing
that their statistics is sub-Poissonian [4]. We face this likely
contradiction by interpreting the action of a beam splitter
on a given photon state as the equivalent of a double-slit
interference experiment in the single-photon regime [27,
28] (see also [29]). Then, we use this equivalence to show
that the fields represented by the nonlinear coherent states
exhibit antibunching (the probability of two or more photons
arriving together at the same point is zero), so they cannot
be modeled in classical form. The conclusion is that the
nonlinear coherent states are not full coherent although their𝑃-representation is a delta function.Then, they do not satisfy
the notion of classicalness introduced by Glauber in his
quantum theory of optical coherence [23].

The paper is organized as follows. In Section 2 we gener-
alize the oscillator algebra and give some immediate exam-
ples. Section 3 deals with the construction of the nonlinear
coherent states. We show that the completeness of these
states is always possible for the polynomial-like algebras in
terms of the Meijer 𝐺-function. Some examples are also
discussed. In Section 4 we show that the 𝑃-representation of
the nonlinear coherent states is given by the 𝛿-distribution
while the photon states are represented by the derivatives of𝛿. In Section 5 we analyze the likely contradiction between
the completeness and the nonclassicality of the nonlinear
coherent states. Some final remarks are given in Section 6.We
have added an appendix with some important mathematical
expressions that are not required for reading the paper but are
necessary to follow the calculations.

2. Generalized Oscillators

The conventional boson ladder operators 𝑎 and 𝑎† satisfy
the algebraic relation [𝑎, 𝑎†] = 1. If the number operator𝑛 = 𝑎†𝑎 is considered, then [𝑛, 𝑎] = −𝑎 and [𝑛, 𝑎†] = 𝑎†.
The latter expressions define the oscillator (or boson) algebra
and show that the action of 𝑎† on any number eigenvector|𝑛⟩, 𝑛 = 0, 1, 2, . . ., produces a new eigenvector of 𝑛 with
eigenvalue 𝑛 + 1. Similarly, 𝑎|𝑛 + 1⟩ is proportional to the
number eigenvector |𝑛⟩, while 𝑎|0⟩ = 0. In the sequel we
shall modify the oscillator algebra by preserving the number
operator 𝑛 but changing the ladder operators, now written𝑎�퐸 and 𝑎†�퐸, as the set of generators. We say that any system
obeying the new algebra is a generalized oscillator.

2.1. Deformed Oscillator Algebras. To define the generalized
oscillators let us introduce the pair of ladder operators

𝑎�퐸 |𝑛⟩ = √𝐸 (𝑛) |𝑛 − 1⟩ ,
𝑎†�퐸 |𝑛⟩ = √𝐸 (𝑛 + 1) |𝑛 + 1⟩ ,

𝑛 = 0, 1, 2, . . . ,
(1)

where 𝐸 is a nonnegative function, 𝑎†�퐸 is the Hermitian
conjugate of 𝑎�퐸, and |𝑛⟩ is eigenvector of the number operator

with eigenvalue 𝑛. The following algebraic relations can be
proven:

[𝑛, 𝑎�퐸] = −𝑎�퐸,
[𝑛, 𝑎†�퐸] = 𝑎†�퐸. (2)

The product 𝑎†�퐸𝑎�퐸 preserves the number of quanta since it is
equal to the function 𝐸(𝑛). Equivalently, 𝑎�퐸𝑎†�퐸 = 𝐸(𝑛 + 1).
Then

[𝑎�퐸, 𝑎†�퐸] = 𝐸 (𝑛 + 1) − 𝐸 (𝑛) . (3)

As the vacuum state |0⟩ does not contain quanta we shall
assume 𝐸(0) = 0 in order to have 𝑎�퐸|0⟩ = 0. The number
eigenvectors

|𝑛⟩ = (𝑎†)�푛
√𝑛! |0⟩ , 𝑛 = 0, 1, 2, . . . , (4)

are now expressed as

|𝑛⟩ = (𝑎†�퐸)�푛√𝐸 (𝑛)! |0⟩ ,
𝐸 (𝑛)! = 𝐸 (1) 𝐸 (2) ⋅ ⋅ ⋅ 𝐸 (𝑛) , 𝐸 (0)! ≡ 1, 𝑛 = 0, 1, . . . ,

(5)

and will be used as the orthonormal basis of the Hilbert space
H. The latter consists of all vectors

󵄨󵄨󵄨󵄨𝜓⟩ =
∞∑
�푛=0

𝜓�푛 |𝑛⟩ ,
𝜓�푛 fl ⟨𝑛 | 𝜓⟩ ∈ C,

(6)

such that

⟨𝜓 | 𝜓⟩ = ∞∑
�푛=0

󵄨󵄨󵄨󵄨𝜓�푛󵄨󵄨󵄨󵄨2 < ∞. (7)

2.2. Examples. The following list of examples does not
exhaust all the possible generalizations of the oscillator
algebras that can be performed with the rules defined in
(1)–(3). We explicitly mention such cases because either they
are connected with approaches already reported, or they give
rise to very important results in mathematical physics or they
find applications in quantum optics.

2.2.1. 𝑓-Oscillators. An important class of generalized har-
monic oscillators has been already introduced and is nowa-
days known as the set of 𝑓-oscillators [10]. These oscillators
are recovered here bymaking𝐸(𝑛) = 𝑛𝑓2(𝑛) in (1)–(3), with𝑓
a properly chosen real-valued function. In this case the ladder
operators 𝑎�퐸 and 𝑎†�퐸 are factorized as

𝑎�퐸 = 𝑎𝑓 (𝑛) = 𝑓 (𝑛 + 1) 𝑎,
𝑎†�퐸 = 𝑓 (𝑛) 𝑎† = 𝑎†𝑓 (𝑛 + 1) . (8)

The 𝑓-oscillators have been associated with the center-of-
mass motion of a trapped and bichromatically laser-driven
ion [9] and are also related to a “frequency blue shift” in high
intensity photon beams [10].
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2.2.2. 𝑞-Deformed Oscillators. It has been shown [10] that the
special choice of the 𝑓-function

𝑓 (𝑛) = √ sinh (𝜆𝑛)𝑛 sinh 𝜆 , 𝜆 = ln 𝑞, 𝑞 ∈ R, (9)

reduces commutator (3) of the 𝑓-operators (8) to the rule of𝑞-deformed oscillators obeyed by the “physics” bosons [6, 7]

𝑎�퐸𝑎†�퐸 − 𝑞𝑎†�퐸𝑎�퐸 = 𝑞−�푛. (10)

The above approach has important applications in quantum
optics as regards the photon counting statistics, squeezing
and signal-to-quantum noise ratio [8].

2.2.3. Polynomial-Like Oscillators. Other relevant classes of
oscillators are obtained by assuming that 𝐸(𝑛) is a real
polynomial of degree ℓ ≥ 1,

𝐸 (𝑛) = ℓ∏
�푝=1

(𝛼�푝𝑛 + 𝛽�푝) = 𝛾ℓ ℓ∏
�푝=1

(𝑛 + 𝛿�푝) ,

𝛾ℓ = ℓ∏
�푝=1

𝛼�푝,

𝛿�푝 = 𝛽�푝𝛼�푝 .

(11)

The expression

𝐸 (𝑛)! = 𝛾�푛ℓ ℓ∏
�푝=1

Γ (𝑛 + 1 + 𝛿�푝)
Γ (1 + 𝛿�푝) (12)

is easily achieved and will be useful in the sequel. In this
case the commutator relations (2)-(3) define a polynomial
Heisenberg algebra of degree ℓ−1.Thepolynomial algebras are
quite natural in the higher order supersymmetric approaches
[11–14] and are usually connected with nonlinearities that
arise because the differential order of the operators that
intertwine the SUSYpartnerHamiltonians is greater than one
[12].The examples discussed in Sections 2.2.4, 2.2.5, and 2.2.6
are special cases of polynomial algebras.

(i) The simplest example is obtained for ℓ = 1. The
commutator (3) is the 0–degree polynomial𝐸(𝑛+1)−𝐸(𝑛) = 𝛼1. The condition 𝐸(0) = 0 implies 𝛽1 = 0, by
necessity. Then, for 𝛼1 = 1 one gets 𝐸(𝑛) = id, with
id ≡ I the identity operator inH. In this case 𝑎id = 𝑎
and 𝑎†id = 𝑎†, so that (2)-(3) define the conventional
algebra of the oscillator.

2.2.4. 𝑠𝑢(1, 1)-Oscillators. If 𝐸 is a quadratic polynomial (ℓ =2), the commutator (3) gives rise to the first-order degree
polynomial

𝐸 (𝑛 + 1) − 𝐸 (𝑛) = 2𝛼1𝛼2𝑛 + 𝛼1𝛽2 + 𝛼2𝛽1 + 𝛼1𝛼2. (13)

A striking example occurs for 𝛽2 = 0 since the related
function 𝐸(𝑛) = 𝛼1𝛼2𝑛2 + 𝛼2𝛽1𝑛 leads to the su(1, 1) Lie
algebra

[𝐾0, 𝐾±] = ±𝐾±,
[𝐾−, 𝐾+] = 2𝐾0 (14)

(similar expressions are obtained for 𝛽1 = 0 and arbitrary𝛽2). Indeed, by making 𝐸(𝑛) = 𝑛𝑓2(𝑛) with 𝑓(𝑛) =√𝛼2(𝛼1𝑛 + 𝛽1), the identification
𝐾− = 𝑎�퐸 = 𝑎√𝛼2 (𝛼1𝑛 + 𝛽1),
𝐾+ = 𝑎†�퐸 = √𝛼2 (𝛼1𝑛 + 𝛽1)𝑎†,
𝐾0 = 𝛼1𝛼2𝑛 + 12 (𝛼2𝛽1 + 𝛼1𝛼2)

(15)

gives the algebra (14) from relations (2)-(3).

(ii) If additionally to 𝛽2 = 0 we take 𝛼1 = 𝛼2 =𝛽1 = 1, then 𝐸(𝑛) = 𝑛(𝑛 + 1). The generators of
the su(1, 1) Lie algebra are in this case 𝐾0 = 𝑛 +1, 𝐾− = 𝑎√𝑛 + 1, and 𝐾+ = 𝐾†−. The operators𝐾± have been already used to represent the atom-
photon coupling of the Jaynes-Cummings model [30]
for intensity dependent interactions [31, 32].

2.2.5. SUSY-LikeOscillators. Aspecial case of commutator (3)
is obtained if the 𝐸-function is a cubic polynomial (ℓ = 3)
such that 𝐸(1) = 𝐸(0) = 0. The latter condition means that
the vacuum |0⟩ is annihilated by both ladder operators, 𝑎�퐸
and 𝑎†�퐸, while the 1-photon state |1⟩ is annihilated by 𝑎�퐸. That
is,

𝑎�퐸 |1⟩ = 𝑎�퐸 |0⟩ = 𝑎†�퐸 |0⟩ = 0. (16)

Then, the action of the ladder operators on the subspace {|𝑛+2⟩, 𝑛 = 0, 1, 2, . . .} is a modification of rule (1); namely,

𝑎�퐸 |𝑛 + 2⟩ = √𝐸 (𝑛 + 2) |𝑛 + 1⟩ ,
𝑎†�퐸 |𝑛 + 1⟩ = √𝐸 (𝑛 + 2) |𝑛 + 2⟩ ,

𝑛 ≥ 0.
(17)

Assuming that the solutions of (16) are given, the number
eigenvectors |𝑛+2⟩ are now generated from the 1-photon state

|𝑛 + 2⟩ = 𝑎†(�푛+1)�퐸√𝐸 (𝑛 + 2)! |1⟩ , 𝑛 ≥ 0. (18)

The above construction is associated with the eigenstates of
a series of Hermitian Hamiltonians that share their spectrum
with the conventional harmonic oscillator, which is shifted
in one unit of energy. That is, the energies are given by𝐸�푛 = 𝑛 − 1/2 [15]. Such Hamiltonians are supersymmetric
(SUSY) partners of the conventional oscillator for which the
supersymmetry is unbroken [11]. A more general treatment
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includes non-HermitianHamiltonians whose eigenvalues are
given by 𝐸�푛+1 = 𝑛 + 1/2 and 𝐸0 = 𝜖 < 1/2 [19, 20]. Thus,
the spectrum of such non-Hermitian Hamiltonians includes
all the oscillator energies 𝑛 + 1/2 plus an additional real
eigenvalue 𝜖which is located below the ground state energy of
the conventional oscillator. The 𝐸-function for this case can
be derived from (11) with 𝛼1 = 𝛼2 = 𝛼3 = 𝛽1 = 1, 𝛽2 = 1/2−𝜖,
and 𝛽3 = 3/2 − 𝜖. Namely,

𝐸 (𝑛 + 2) = (𝑛 + 1) (𝑛 + 12 − 𝜖) (𝑛 + 32 − 𝜖) , 𝑛 ≥ 0. (19)

The non-Hermitian Hamiltonians associated with (19) are
constructed with a complex-valued potential [19], so that
their study requires a biorthogonal structure for the space
of states [20]. In the appropriate limit, the imaginary part of
the potential is cancelled and the model becomes Hermitian,
although the generalized algebra defined by (19) is preserved.
Then, in such limit, the algebraic structure of the oscillators
reported in [15] is recovered by making 𝜖 = −1/2.

Notice that the algebras described above depend on the
ground energy of the system. That is, systems with different
ground energies 𝜖 will be regulated by different algebras.

2.2.6. Distorted SUSY-Like Oscillators. Another 𝐸-function
that satisfies the supersymmetric relations (16)–(18) is defined
as 𝐸(𝑛 + 2) = 𝑤 + 𝑛, with 𝑤 a nonnegative parameter and𝐸(1) = 𝐸(0) = 0. In this case the commutator (3) gives

𝐸 (𝑛 + 1) − 𝐸 (𝑛) = {{{{{
0 𝑛 = 0
𝑤 𝑛 = 1
1 𝑛 ≥ 2.

(20)

Thus, the operators 𝑎�퐸 and 𝑎†�퐸 are the generators of an algebra
that imitates the Heisenberg one. If we concentrate on the
subspace spanned by {|𝑛⟩, 𝑛 ≥ 2} only, then the commutator
(20) is completely equivalent to the oscillator one. The same
occurs in the subspace spanned by |1⟩, up to the constant𝑤 ≥0. For this reason, the algebra defined by (20) is referred to
as distorted Heisenberg algebra, and 𝑤 is called the distortion
parameter [16, 17].

We would like to remark that, contrary to what hap-
pens with the algebra of the previous section, the distorted
Heisenberg algebra does not depend on the ground energy of
the system. Besides, the results associated with (20) are also
easily extended to non-Hermitian Hamiltonians by using the
biorthogonal approach developed in [20].

Other versions of polynomial algebras can be obtained
from either the N-fold or the nonlinear supersymmetric
models discussed in [13, 14] and [12], respectively.

3. Nonlinear Coherent States

Up to a normalization constant, the solutions to the eigen-
value equation 𝑎�퐸|𝑧�퐸⟩ = 𝑧|𝑧�퐸⟩, with 𝑧 ∈ C, can be written in
the form

󵄨󵄨󵄨󵄨𝑧�퐸⟩ =
∞∑
�푛=0

𝑧�푛
√𝐸 (𝑛)! |𝑛⟩ . (21)

The vector |𝑧�퐸⟩ belongs to H only if the series (21) is
norm convergent. Thus, if |𝑧�퐸⟩�푁 = N�퐸(|𝑧|)|𝑧�퐸⟩ denotes the
normalized solution �푁⟨𝑧�퐸 | 𝑧�퐸⟩�푁 = |N�퐸(|𝑧|)|2⟨𝑧�퐸 | 𝑧�퐸⟩ = 1,
then the expression

N�퐸 (|𝑧|) = [∞∑
�푛=0

|𝑧|2�푛𝐸 (𝑛)!]
−1/2

(22)

must be finite. Clearly, not any 𝐸 and |𝑧| are allowed. In the
following we assume that N�퐸(|𝑧|) is finite for 𝑧 ∈ S ⊆ C,
with S defined whenever 𝐸 has been provided, and say that|𝑧�퐸⟩�푁 is a generalized (nonlinear) coherent state. Concrete
realizations will be shown in the examples.

The probability of having 𝑛 photons associated with the
nonlinear coherent state |𝑧�퐸⟩�푁 is given by P�퐸(𝑛, |𝑧|) = |⟨𝑛 |𝑧�퐸⟩�푁|2 = N2�퐸(|𝑧|)|𝑧|2�푛/𝐸(𝑛)!, and the average photonnumber
is

⟨𝑛⟩�푧�퐸 = N
2
�퐸 (|𝑧|) ∞∑

�푛=0

|𝑧|2(�푛+1)𝐸 (𝑛 + 1)! (𝑛 + 1) . (23)

Following [33] we may introduce the 𝐸-exponential function
(see details in Appendix)

𝑒�푥�퐸 = ∞∑
�푛=0

𝑥�푛𝐸 (𝑛)! . (24)

Then, using (5), the coherent state (21) and the normalization
constant (22) can be written in simpler form, respectively,
|𝑧�퐸⟩ = 𝑒�푧�푎†�퐸�퐸 |0⟩ andN�퐸(𝑧) = (𝑒|�푧|2�퐸 )−1/2.

(iii) For the identity function 𝐸 = id we have 𝑒�푥id = 𝑒�푥
as an appropriate limit; see (A.5) of Appendix. Then,
the vectors |𝑧id⟩�푁 ≡ |𝑧⟩�푁 represent the conventional
coherent states of the harmonic oscillator.

3.1. Completeness. As usual, although the nonlinear coherent
states |𝑧�퐸⟩�푁 are not mutually orthogonal ⟨𝑧�퐸 | 𝑧�耠�퐸⟩ =
N�퐸(𝑧)N�퐸(𝑧�耠)𝑒�푧∗�푧�耠�퐸 (hereafter the symbol ∗ denotes complex
conjugation), they satisfy a closure relation

I = ∫N
2
�퐸 (𝑧) 󵄨󵄨󵄨󵄨𝑧�퐸⟩ ⟨𝑧�퐸󵄨󵄨󵄨󵄨 𝑑𝜇�퐸 (𝑧) , (25)

with 𝑑𝜇�퐸(𝑧) a measure function to be determined. Let us
write

𝑑𝜎�퐸 (𝑧) = N
2
�퐸 (𝑧) 𝑑𝜇�퐸 (𝑧) = 𝑑2𝑧𝜋 Λ �퐸 (|𝑧|2) , (26)

where Λ �퐸 is an additional function to be determined, 𝑑2𝑧 =𝑟𝑑𝑟𝑑𝜃, and 𝑧 = 𝑟𝑒�푖�휃. After integrating over 𝜃, expression (25)
is as follows:

I = ∞∑
�푛=0

|𝑛⟩ ⟨𝑛|𝐸 (𝑛)! ∫
∞

0
Λ �퐸 (𝑥) 𝑥�푛𝑑𝑥, 𝑥 = 𝑟2. (27)

As the number eigenvectors |𝑛⟩ form a complete set, the
above equality is achieved whenever Λ �퐸 satisfies

∫∞
0
Λ �퐸 (𝑥) 𝑥�푛𝑑𝑥 = 𝐸 (𝑛)! (28)

After the change 𝑛 → 𝑚− 1, integral equation (28) coincides
with the Mellin transform [34] of Λ �퐸(𝑥).
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3.2. Examples. Once algebras (2)-(3) and the related coherent
states (21), with closure relation (25), have been given in
general form, it is profitable to analyze concrete realizations in
detail.The coherent states for the𝑓-oscillators of Section 2.2.1
and those for the 𝑞-oscillators of Section 2.2.2 have been
exhaustively studied in [10] and [6, 7], respectively. Hence,
it is not necessary to revisit them in the present work. Never-
theless, we would like to mention that the former have been
used in approaching the Jaynes-Cummings model for some
nonlinear Kerr media [35] and that the coherent states of the𝑞-oscillators can be recovered from those reported in [10] as
a particular case (see [36, 37] for early constructions using
other definition of the 𝐸-function). Next, we pay attention to
the coherent states associated with the polynomial algebras
derived in Section 2.2.3. The reason is that such algebras
are general enough to include a plenty of cases which have
a common property. Namely, the measure permitting the
resolution of the identity (25) is given in terms of a Meijer𝐺-function.
3.2.1. Polynomial-Like Oscillators. The explicit form of the 𝐸-
exponential function (24) for the ℓ-polynomial 𝐸-functions
(11)-(12) is given in (A.2) of Appendix. Except for some
atypical cases, the normalization constant (22) is well defined
so that the related coherent states |𝑧�퐸⟩�푁 are in the Hilbert
space H. To satisfy closure relation (25), in this case the
Mellin transform (28) is simplified by using the change of
variables:

𝑦 = 𝑥𝛾ℓ ,

𝑀�퐸 (𝑦) = [ ℓ∏
�푝=1

Γ (1 + 𝛿�푝)] 𝛾ℓΛ �퐸 (𝑥) .
(29)

Thus, we arrive at the moment problem

∫∞
0
𝑀�퐸 (𝑦) 𝑦�푛−1𝑑𝑦 = Γ (𝑛 + 𝛿1) ⋅ ⋅ ⋅ Γ (𝑛 + 𝛿ℓ) , (30)

which is theMellin-Barnes integral representation [38] of the
following Meijer G-function:

𝑀�퐸 (𝑦) = 𝐺ℓ,00,ℓ ( 𝑦 −
𝛿1, . . . , 𝛿ℓ ) . (31)

After substituting this last result into (29) and (26) we obtain
the explicit form of the measure we are looking for.

(iv) For ℓ = 1, the introduction of 𝐸(𝑛) = 𝛼𝑛 + 𝛽 in (21)-
(22) gives the normalized vectors

󵄨󵄨󵄨󵄨𝑧�퐸⟩�푁
= [ Γ (1 + 𝛿)
1𝐹1 (1, 1 + 𝛿, |𝑧|2 /𝛼)]

1/2 ∞∑
�푛=0

(𝑧/√𝛼)�푛
√Γ (𝑛 + 1 + 𝛿) |𝑧⟩ ,

(32)

where we have used (A.4) of Appendix. The Meijer
G-function (31) is very simple in this case𝐺1,00,1(𝑥, 𝛿) =

𝑒−�푥𝑥�훿. Then, the nonlinear coherent states (32) form
an overcomplete set in the Hilbert spaceHwhenever𝐸(0) = 0; see paragraph between (3) and (5). Then𝛼 = 1 and 𝛽 = 0 (equivalently 𝛿 = 0), so that
(32) is reduced to the expression of the conventional
coherent states |𝑧id⟩�푁.

3.2.2. su(1, 1)-Oscillators. For the 𝐸-function derived in
Section 2.2.4, the explicit form of 𝑒�푥�퐸 is given in (A.6) of
Appendix. In particular, using 𝛼1 = 𝛼2 = 𝛽1 = 1 one gets
the expression 𝑒�푥�퐸 = 𝐼1(2√𝑥)/√𝑥, with 𝐼](𝑧) the modified
Bessel function of the first kind [38].Then, the normalization
constant N�퐸(𝑧) = √|𝑧|/𝐼1(2|𝑧|) is finite for any 𝑧 ∈ C, and
the measure acquires the form

𝑑𝜇�퐸 (𝑧) = 𝑑2𝑧𝜋 𝐼1 (2 |𝑧|)|𝑧| 𝐺2,00,2 ( |𝑧|2 −
1, 0 )

= 𝑑2𝑧𝜋 2𝐼1 (2𝑧)𝐾1 (2𝑧) ,
(33)

with 𝐾](𝑧) being the modified Bessel function of the second
kind [38]. Therefore, the generalized SU(1, 1) coherent states

󵄨󵄨󵄨󵄨𝑧�퐸⟩�푁 = [ |𝑧|𝐼1 (2 |𝑧|)]
1/2 ∞∑
�푛=0

𝑧�푛
√𝑛! (𝑛 + 1)! |𝑛⟩ (34)

form an overcomplete set in the Hilbert spaceH.
The probabilityP�퐸(𝑛, |𝑧|) of detecting 𝑛 photons and the

average photon number ⟨𝑛⟩�푧�퐸 are in this case given by the
expressions

P�퐸 (𝑛, |𝑧|) = 1Γ (𝑛 + 1) Γ (𝑛 + 2) |𝑧|2�푛+1𝐼1 (2 |𝑧|) ,
⟨𝑛⟩�푧�퐸 = 𝐼2 (2 |𝑧|)𝐼1 (2 |𝑧|) |𝑧| .

(35)

In Figure 1(a) we can appreciate that the maximum of the
probability P�퐸(𝑛, |𝑧|) is shifted to the right of the |𝑧|-axis as𝑛 → ∞. For 𝑛 = 0, the probability decreases exponentially
as |𝑧| → ∞; see Figure 1(b). The latter is consistent with the
behavior of the average photon number ⟨𝑛⟩�푧�퐸 since it grows
up linearly with |𝑧|; see Figure 1(c).
3.2.3. SUSY-Oscillators. The nonlinear coherent states for the
supersymmetric oscillators of Sections 2.2.5 and 2.2.6 are
constructed by adjusting superpositions (21) to rule (18) since
the vacuum |0⟩ and the 1-photon |1⟩ states are annihilated
by both ladder generators, 𝑎�퐸 and 𝑎†�퐸, just as this has been
indicated in (16). They can be also obtained as a limit case
from either the Hermitian approaches reported in [16, 17]
(important improvements are reported in [18]) or the non-
Hermitian ones introduced in [20].

4. Hilbert Spaces of Analytic Functions

One of the main properties of the coherent states is their
ability to form a basis of the Hilbert space H, even when
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Figure 1: (a)The probabilityP�퐸(𝑛, |𝑧|) of detecting 𝑛 photons associated with the SU(1, 1) coherent states (34). (b)The probabilityP�퐸(0, |𝑧|)
of finding the system in the vacuum state as a function of |𝑧|. (c) The average photon number ⟨𝑛⟩�푧�퐸 in terms of |𝑧|.

they are nonorthogonal [23, 24]. In this form, they can be
used to represent not only any vector in H, but also the
operators defined to act on H in closed form [21, 22]. In
the previous section we have shown that the coherent states
(21) associated with the generalized oscillator algebras (2)-(3)
satisfy the identity resolution (25)-(26). Here we shall go a
step further by applying such property in constructing new
representation spaces for the states of the new oscillators.

Using the identity resolution (25)-(26), the vectors (6) can
be expressed as a superposition of coherent states

󵄨󵄨󵄨󵄨𝜓⟩ = ∫𝑑𝜎�퐸 (𝑧) 𝜓 (𝑧) 󵄨󵄨󵄨󵄨𝑧∗�퐸⟩ , (36)

where 𝑑𝜎�퐸(𝑧∗) = 𝑑𝜎�퐸(𝑧), and the complex series

𝜓 (𝑧) fl ⟨𝑧∗�퐸 | 𝜓⟩ = ∞∑
�푛=0

𝑧�푛𝜓�푛√𝐸 (𝑛)! (37)

defines the representation of |𝜓⟩ in the basis |𝑧�퐸⟩�푁. As we
are assuming that 𝐸(𝑛) is such thatN�퐸(|𝑧|) in (22) is finite, it
could be shown that (37) converges for all finite |𝑧|. Concrete
realizations depend on the explicit form of the 𝐸-function.
In particular, for the cases discussed in Section 3.2, 𝜓(𝑧)
are complex-valued functions which are analytic over the
whole complex 𝑧-plane [17, 20]. Indeed, as these functions
are holomorphic and are in one-to-one correspondence with
the number eigenstates, they are elements of a Hilbert space
of entire functionsF�퐸 named after Fock [39] and Bargmann
[40]. In general, from the Schwarz inequality we get |𝜓(𝑧)| ≤
N−1�퐸 (𝑧)‖|𝜓⟩‖, so that the growth of |𝜓(𝑧)| will be bounded
from above by the reciprocal of the normalization constant.
In such a representation it follows that

𝑎†�퐸,�표�푝𝜓 (𝑧) fl ⟨𝑧∗�퐸 󵄨󵄨󵄨󵄨󵄨𝑎†�퐸󵄨󵄨󵄨󵄨󵄨 𝜓⟩ =
∞∑
�푛=0

𝑧�푛+1𝜓�푛√𝐸 (𝑛)! = 𝑧𝜓 (𝑧) . (38)

Thus, the action of the creation operator 𝑎†�퐸 on the spaceF�퐸
is reduced to the multiplication by 𝑧. On the other hand, for
the annihilation operator one gets

𝑎�퐸,�표�푝𝜓 (𝑧) fl ⟨𝑧∗�퐸 󵄨󵄨󵄨󵄨𝑎�퐸󵄨󵄨󵄨󵄨 𝜓⟩ =
∞∑
�푛=1

𝑧�푛−1
√𝐸 (𝑛)!𝐸 (𝑛) 𝜓�푛. (39)

Comparing with the derivative of 𝜓(𝑧) with respect to 𝑧,
𝑑𝑑𝑧𝜓 (𝑧) =

∞∑
�푛=1

𝑛𝑧�푛−1
√𝐸 (𝑛)!𝜓�푛, (40)

we realize that 𝑎�퐸 is not the canonical conjugate of 𝑎†�퐸 in F�퐸
for arbitrary forms of 𝐸. Nevertheless, the operator 𝑏̂�퐸 that
corresponds to (40) and satisfies [𝑏̂�퐸, 𝑎†�퐸] = 1 inF�퐸 produces
also the linearization of algebras (1)–(3). Preliminary results
on the matter can be found in [18]; the detailed construction
of 𝑏̂�퐸 for the general case we are dealing with will be reported
elsewhere.

Of course, if 𝐸 = id the above expressions are reduced
to those of the conventional oscillator for which the Fock-
Bargmann spaceFid is formed by entire analytic functions of
growth (1/2, 2). In this case, the usual boson operators 𝑎†id =𝑎† and 𝑎id = 𝑎 correspond to the multiplication by 𝑧 and the
derivative with respect to 𝑧, respectively.

The representation (37) is useful to describe pure states
only. Amore general and versatile representation is offered by
the density operator 𝜌which includes pure states, Tr𝜌2 = Tr𝜌,
as well as mixed states Tr𝜌2 < Tr𝜌. Following [21, 22], let us
write 𝜌 in 𝑃-representation

𝜌 = ∫𝑑𝜎�퐸 (𝑧) 𝑃 (𝑧) 󵄨󵄨󵄨󵄨𝑧�퐸⟩ ⟨𝑧�퐸󵄨󵄨󵄨󵄨 . (41)

The main point here is to find the appropriate 𝑃-function
such that (41) can be interpreted as a “diagonal” continuous
matrix representation of 𝜌. In doing so, 𝑃(𝑧) would play the
role of a nonnegative weight function, defined at all points of
the complex 𝑧-plane.

As indicated earlier, for 𝐸 = id we recover the con-
ventional coherent states |𝑧id⟩�푁 = |𝑧⟩�푁 of the harmonic
oscillator. In such a case the density operators (41) describe
the light emitted by a completely chaotic source, a model
that includes all known natural light sources [23]. Also in
this case the 𝑃-function need not have the properties of a
probability distribution [22] and does not exist for all 𝜌 [21].
However, as the classical probability theory allows for delta
function distributions, 𝑃 can be as singular as 𝛿(2)(𝑧) =𝛿(Re𝑧)𝛿(Im𝑧) [21, 22]. In the quantum theory of optical
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coherence [23], if the 𝑃-function of a given state 𝜌 does not
possess properties of a classical probability distribution, or
it does not exist, such state does not have classical analog.
Coming back to our approach, in the simplest case, the
density operator 𝜌�푧 = |𝑧�퐸⟩⟨𝑧�퐸| of any of the coherent states
in (41) should be represented by a distribution 𝛿(2)(𝑧 − 𝑧�耠).
Otherwise, the identity (25)-(26) would be not valid. Thus,
as in the conventional case, the function 𝑃(𝑧) should have, at
most, 𝛿-type singularities.

To investigate the 𝑃-representation for other states con-
sider the superposition

󵄨󵄨󵄨󵄨𝛽⟩ =
∞∑
�푛=0

𝛽�푛√𝐸 (𝑛)!𝑛! |𝑛⟩ , (42)

we may calculate the matrix elements

⟨−𝛽 󵄨󵄨󵄨󵄨𝜌󵄨󵄨󵄨󵄨 𝛽⟩ = ∫𝑑𝜎�퐸 (𝑧) 𝑃 (𝑧) 𝑒�훽�푧∗−�훽∗�푧. (43)

Then, the 𝑃-function is obtained from the two-dimensional
inverse Fourier transform

𝑃 (𝑧) = 1Λ (𝑟2) ∫ 𝑑2𝛽 ⟨−𝛽 󵄨󵄨󵄨󵄨𝜌󵄨󵄨󵄨󵄨 𝛽⟩ 𝑒�훽
∗�푧−�훽�푧∗ . (44)

As an immediate application consider the number eigenstate𝜌�푛 = |𝑛⟩⟨𝑛|, then
𝑃�푛 (𝑧) = 𝐸 (𝑛)!

(𝑛!)2 Λ (𝑟2)
𝜕2�푛𝜕𝑧�푛𝜕𝑧∗�푛 𝛿(2) (𝑧) , 𝑛 ≥ 0. (45)

That is, with exception of the vacuum |0⟩, the 𝑃-
representation of the number eigenstates |𝑛⟩ is as singular as
the derivatives of the 𝛿-distribution. Therefore, according to
[23], the fields represented by any of the number eigenstates|𝑛+1⟩ do not have classical analog.This result is quite natural
since the states |𝑛 + 1⟩ cannot be described in classical terms,
no matter the approach used in their study. In this form, the
continuous matrix representation (41) is consistent with the
results obtained in terms of the conventional coherent states
for the vectors |𝑛 + 1⟩.

On the other hand, the 𝑃-representation of the vacuum|0⟩ and the generalized coherent states |𝑧�퐸⟩�푁 are the delta
function 𝛿(2)(𝑧 − 𝑧�耠), with 𝑧�耠 = 0 for |0⟩. The above criterion
of classicality would mean that the nonlinear coherent states|𝑧�퐸⟩�푁 are able to represent fields with classical analog, at
least at the same level as the vacuum |0⟩. The latter is
because the singularity of the delta distribution is integrable,
so that 𝑃(𝑧) = 𝛿(2)(𝑧) is admissible as a classical probability
distribution [23]. Such statement is rather clear for 𝐸 = id
since the conventional coherent states |𝑧id⟩�푁 are indeed as
classical as the vacuum |0⟩. The situation changes if 𝐸 ̸= id,
as we are going to see in the next sections.

5. Does the Completeness of Generalized
Coherent States Imply Classicality?

We have shown that all the nonlinear coherent states |𝑧�퐸⟩�푁
associated with the ℓ-order polynomials (11)-(12) have a

Figure 2: The 50 : 50 beam splitter represented by the operator BS
in (46). This is a two-channel optical device operating on states|⋅⟩ ⊗ |⋅⟩, where the ket at the left (right) stands for “horizontal”
(“vertical”) signal. The dashed dotted arrow represents classical
states like the vacuum |0⟩while the continuous arrows are associated
with nonclassical states like the number eigenstates |𝑛 + 1⟩.

resolution to the identity (25) that is expressed in terms
of the Meijer 𝐺-function (31). The latter means that the 𝑃-
representation of all superpositions (21) is the distribution𝛿(2)(𝑧 − 𝑧�耠), just as this occurs for the vacuum |0⟩ which is𝑃-represented by 𝛿(2)(𝑧). Hence, |𝑧�퐸⟩�푁 is a displaced version
of |0⟩.The question is if such property is a sufficient condition
for the vectors |𝑧�퐸⟩�푁 to represent fields with classical analog.
We look for an answer to this problem by using the criterion
introduced in [25], as well as the parameter introduced by
Mandel [4], to identify the possible classicality of such states.

5.1. Beam Splitter Criterion. Consider a single photon |1⟩
entering a 50 : 50 beam splitter

BS = exp [𝑖𝜋4 (𝑎†�퐻𝑎�푉 + 𝑎�퐻𝑎†�푉)] . (46)

The subindex “𝐻” (“𝑉”) stands for the horizontal (vertical)
channel of the beam splitter; see Figure 2. As a vacuum |0⟩
enters the other input port of the beam splitter, the entire
input state is the product |1⟩ ⊗ |0⟩ ≡ |1, 0⟩. Hereafter the
ket at the left (right) in the tensor products |⋅⟩ ⊗ |⋅⟩ stands
for “horizontal” (“vertical”) signal with respect to the beam
splitter shown in Figure 2. The output is the Bell state |𝛽⟩ =(1/√2)(|1, 0⟩ + 𝑖|0, 1⟩) which, as it is well known, encodes
nonclassical correlations [2, 3]. Such state is distinguished
from the classical correlation 𝜌clas = (1/2)(|1⟩⟨1| ⊗ |0⟩⟨0| +|0⟩⟨0|⊗|1⟩⟨1|) because the off-diagonal elements of its density
operator |𝛽⟩⟨𝛽| are associated with transitions |0⟩ ↔ |1⟩,
occurring in both channels, that are invariant under a change
of basis.That is, the off-diagonal elements |𝛽⟩⟨𝛽|−𝜌clas that are
different from zero produce entanglement. In general, when
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the state |𝑛, 0⟩ enters the beam splitter, one gets the well-
known binomial distribution of bipartite photon states

BS |𝑛, 0⟩ = 12�푛/2
�푛∑
�푘=0

( 𝑛
𝑘 )
1/2 𝑒�푖(�휋/2)�푘 |𝑘, 𝑛 − 𝑘⟩ , (47)

where a global phase has been dropped. The straightforward
calculation shows that the off-diagonal elements of the
density operator BS|𝑛, 0⟩⟨𝑛, 0|(BS)† are different from zero,
so that the pure state (47) encodes nonclassical correlations.
These off-diagonal elements are such that measuring the
number of photons at the horizontal output port of the
beam splitter is affected by the result of detecting photons
at the vertical port and vice versa. This last result has
motivated the conjecture that the entangled output state from
a beam splitter requires nonclassicality in the input state [25].
Assuming that the conjecture can be proved (see, e.g., [26]),
this would be used as a criterion for nonclassicality. If the off-
diagonal terms of the output state |𝜓out⟩⟨𝜓out| are nontrivial,
then the input state |𝜓in⟩⟨𝜓in| is nonclassical in at least one of
its two channels [25].

Let us analyze the presence of nonclassical correlations in
(47) by considering the probability of finding𝑚 and 𝑟photons
in the horizontal and vertical channels, respectively,

|⟨𝑚, 𝑟 |BS| 𝑛, 0⟩|2
= Γ (𝑟 + 1/2) Γ (𝑚 + 1/2)Γ (𝑟 + 1) Γ (𝑚 + 1) [ 12�푟+�푚𝐵 (𝑟 + 1/2,𝑚 + 1/2)] .

(48)

Here, 𝐵(𝑎, 𝑏) stands for the Euler beta function [38] which, as
far as we know, cannot be expressed as 𝐵(𝑎, 𝑏) = 𝑓(𝑎)𝑔(𝑏) for
any functions 𝑓 and 𝑔. Therefore, probability (48) cannot be
factorized as the product of two independent distributions,
one for each output port of the beam splitter. This property
is concomitant to the impossibility of writing the bipartite
photon states (47) as the product of any state |𝜙�퐻⟩ of the
horizontal channel with a state |𝜙�푉⟩ of the vertical one, that
is, BS|𝑛, 0⟩ ̸= |𝜙�퐻⟩ ⊗ |𝜙�푉⟩ if 𝑛 ̸= 0.

On the other hand, a measure of the nonclassicality of
states is given by the Mandel parameter

𝑄 = (Δ𝑛)2⟨𝑛⟩ − 1, (49)

which indeed indicates the degree to which the statistics of
a given field is sub-Poissonian [4]. For a field represented by
the number eigenvector |𝑛 + 1⟩ one gets 𝑄 = −1, so that the
field is sub-Poissonian (−1 ≤ 𝑄 < 0). Classical fields like
those represented by either a coherent state or a vacuum are
Poissonian (𝑄 = 0) or even super-Poissonian (𝑄 > 0) if they
correspond to thermal light.

Now, let us write 𝑛tot = 𝑛�퐻 + 𝑛�푉 for the total number
operator associated with either the input or the output
ports of the beam splitter. Here 𝑛�퐻 = 𝑛 ⊗ I and 𝑛�푉 =
I ⊗ 𝑛 are the number operators for the horizontal and
vertical channels, respectively. We may prove the expression(Δ𝑛tot)2 = (Δ𝑛�퐻)2 + (Δ𝑛�푉)2, meaning that the variance of any
signal involved with a beam splitter is the result of adding the

variances of the horizontal and vertical channels. A simple
calculation shows that (47) is such that ⟨𝑛�퐻⟩ = ⟨𝑛�푉⟩ = 𝑛/2
and ⟨𝑛2�퐻⟩ = ⟨𝑛2�푉⟩ = (1/4)𝑛(1 + 𝑛), so that 𝑄�퐻 = 𝑄�푉 =−1/2.Thus, the horizontal and vertical signals of (47) are sub-
Poissonian (nonclassical).

For the present case, the conjecture indicated in [25],
hereafter the (Knight) K-conjecture, is trivially verified since
the number eigenstate |𝑛⟩ injected into the beam splitter to
produce superposition (47) is clearly nonclassical if 𝑛 ̸= 0.
5.2. Classical Signals. Although the above discussion is true
for the number eigenvectors |𝑛 + 1⟩ in any of the input chan-
nels, the result cannot be generalized for any superposition of
such states. For instance, the input state |𝑧, 0⟩, with |𝑧id⟩�푁 =|𝑧⟩�푁 a conventional coherent state of the harmonic oscillator,
produces the separable (classical) signal

BS |𝑧, 0⟩ = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑧√2⟩�푁 ⊗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑖𝑧√2⟩�푁 . (50)

The latter confirms that the coherent state |𝑧⟩�푁 is classical.
The separability of the state BS|𝑧, 0⟩ can be also studied in
terms of the probability P(𝑛, 𝑚, |𝑧|) = |⟨𝑛,𝑚|BS|𝑧, 0⟩|2 of
detecting 𝑛 photons in the horizontal channel and𝑚 photons
in the vertical one.The result is shown in Figure 3 for ⟨𝑛⟩ = 16
in the input signal. In general, the distribution spreads out on
the 𝑛𝑚-plane while its center is shifted along the line 𝑚 = 𝑛
as |𝑧| → ∞; see Figure 4.

In this case the probability P(𝑛, 𝑚, |𝑧|) can be expressed
as the product of two Poisson distributions with mean value|𝑧|2/√2, one for each output port,

𝑃oisson ( |𝑧|√2 , 𝑛) = 𝑒−|�푧|2/2Γ (𝑛 + 1) (|𝑧|
2

2 )�푛 . (51)

The latter means that measuring the number of photons at
the horizontal output port does not depend on the result
of detecting photons at the vertical output port of the
beam splitter. This result enforces the notion of classicality
associated with the conventional coherent states of light.

Now, it can be shown that state (50) gives (Δ𝑛ℓ)2out =⟨𝑛ℓ⟩out, with ℓ = 𝐻,𝑉. Then 𝑄�퐻,out = 𝑄�푉,out = 0. The latter
is consistent with the separability of P(𝑛,𝑚, |𝑧|) indicated
above since the same Poisson distribution (51) determines
the photon-detection for the two output ports of the beam
splitter.

Summarizing the properties of the state (50), generated
when the classical signal |𝑧id⟩�푁 enters a 50 : 50 beam splitter,
we have the following:

(1.C) The average occupation number P(𝑛,𝑚, |𝑧|) can be
factorized as the product of two independent Poisson
distributions, one for each output port.

(2.C) The variances of the input and output signals are
equal.

(3.C) The variances of the horizontal and vertical output
signals coincide and are equal to one-half the variance
of the input signal.
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Figure 3: Using the classical state |𝑧, 0⟩ as input in the beam splitter of Figure 2, the probabilityP(𝑛,𝑚, |𝑧|) of detecting 𝑛 and𝑚 photons at
the horizontal and vertical output ports is factorizable as the product of two independent Poisson distributions (51). The figures (a) and (b)
correspond to the distributionP(𝑛,𝑚, 4) obtained for an input signal with ⟨𝑛⟩ = 16, and (c) shows some of its level curves, respectively.
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Figure 4: The distributionP(𝑛,𝑚, |𝑧|) in the 𝑛𝑚-plane for the indicated values of |𝑧|.

Point (1.C) and the product in (50) are concomitant since
we can take one of them as a given property to verify the other
one and vice versa. Here, we would like to emphasize that
points (2.C) and (3.C) would serve as a criterion to investigate
the possibility of factorizing the state BS|𝜓, 0⟩, equivalently
P(𝑛,𝑚, |𝑧|), when |𝜓⟩ is an arbitrary superposition of photon
states. As the factorization of BS|𝜓, 0⟩ means no quantum
correlations, properties (2.C) and (3.C) may imply the clas-
sicality of |𝜓⟩.

As we can see, also in this case the K-conjecture is trivially
verified since the conventional coherent state |𝑧id⟩�푁 injected

into the beam splitter to produce the vector (50) is classical
for any |𝑧|.
5.3. Nonclassical Signals Associated with Generalized Oscil-
lators. The above analysis can be extended to any state of
form (21) that enters the beam splitter in the horizontal port,
together with a vacuum |0⟩ in the vertical channel. Aswe have
seen, the separability of the distribution P�퐸(𝑛,𝑚, |𝑧|) plays
an important role in the identification of classicality. In the
sequel we are going to pay special attention to the SU(1, 1)
coherent states derived in Section 3.2.2. The other coherent
states mentioned in Section 3 lead to similar conclusions.
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Figure 5: Using the input signal |𝑧�퐸, 0⟩, with |𝑧�퐸⟩�푁, the nonlinear coherent state (34), and ⟨𝑛⟩�푧�퐸 = 16, the probability P�퐸(𝑛,𝑚, 16.7442) of
detecting 𝑛 and 𝑚 photons at the horizontal and vertical output ports of a beam splitter is shown in (a) and (b). Some of the corresponding
level curves are depicted in (c). The average photon number ⟨𝑛⟩�푧�퐸 is defined in (35) as a function of |𝑧|. Compare with Figure 3.
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Figure 6: The distributionP�퐸(𝑛,𝑚, |𝑧|) in the 𝑛𝑚-plane for the indicated values of |𝑧|. Compare with Figure 4.

Using the SU(1, 1) coherent state (34), the probability of
detecting 𝑛 photons in the horizontal channel and𝑚 photons
in the vertical one gives

P�퐸 (𝑛,𝑚, |𝑧|)
= 2−�푛−�푚 (𝑛 + 1) (𝑚 + 1) 𝐵 (𝑚 + 1, 𝑛 + 1)Γ (𝑛 + 1) Γ (𝑛 + 2) Γ (𝑚 + 1) Γ (𝑚 + 2) 𝐼1 (2 |𝑧|) |𝑧|

2(�푛+�푚)+1 . (52)

The behavior of this last distribution is shown in Figure 5 for
the average photon number ⟨𝑛⟩�푧�퐸 = 16 in the input signal; the
latter value has been chosen for comparison with the result of
Figure 3. The squeezing ofP�퐸(𝑛,𝑚, |𝑧|) along the line 𝑛 = 𝑚
is notable. Concerning the global profile, as in the previous

case, distribution (52) spreads out in the 𝑛𝑚-plane while its
center is shifted along the line𝑚 = 𝑛 as |𝑧| → ∞; see Figure 6.

As it occurred for probability (48), the presence of
the beta function in (52) prohibits the factorization of
P�퐸(𝑛,𝑚, |𝑧|) as the product of two independent probability
distributions if 𝑛 and𝑚 are both different from zero.The latter
means that detecting photons at the vertical output port of the
beam splitter affects the counting of photons in the horizontal
output port.

In turn, the variances (Δ𝑛�퐸,tot)2 and (Δ𝑛�퐸,tot)2out of the
input |𝑧�퐸, 0⟩ and output BS|𝑧�퐸, 0⟩ signals are not the same.
Indeed, the latter is larger than the former for practically
any |𝑧| ̸= 0; see Figure 7(a). However, the horizontal and
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Figure 7: (a) The variances of the input |𝑧�퐸, 0⟩ and output BS|𝑧�퐸, 0⟩ signals of a 50 : 50 beam splitter, red-dashed, and blue, respectively, with|𝑧�퐸⟩�푁 the su(1, 1) coherent state (34). (b) The variances of the signals at the horizontal and vertical output ports are equal (blue) and shorter
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Compare with Figure 3. In (b) we have ⟨𝑛⟩ = 280.369 and ⟨𝑛⟩�푧�퐸 = 16. Compare with Figure 5. In all cases the maximum ofP(𝑛,𝑚, |𝑧|) and
P�퐸(𝑛,𝑚, |𝑧|) is reached at ⟨𝑛⟩/2 and ⟨𝑛⟩�푧�퐸/2, respectively.

vertical output variances coincide and they are shorter than
the variance of |𝑧�퐸, 0⟩; see Figure 7(b). Such squeezing is
specially clear along the line 𝑛 = 𝑚, as this has been indicated
above. See Figure 8 for a detailed comparison.

The above results indicate that the SU(1, 1) coherent
sates (34) are nonclassical although they can be interpreted
as displaced versions of the vacuum |0⟩. Indeed, the direct
calculation shows that the Mandel parameter associated with|𝑧�퐸⟩�푁 is such that −1/2 ≤ 𝑄 ≤ 0 for all |𝑧| ≥ 0 and𝑄 = 0 for |𝑧| = 0 only. Moreover, 𝑄 → −1/2 as |𝑧| → ∞;
see the blue curve depicted in Figure 9. That is, the statistics
associated with the state (34) is sub-Poissonian, so that it is
nonclassical. On the other hand, the Mandel parameter for
the horizontal and vertical channels of the output signal in
the interferometer gives a result that is equal to one-half the
result of the input signal; see the dashed-red curve in Figure 9.

The properties of the state that is generated when the
nonclassical signal |𝑧�퐸⟩�푁 enters a 50 : 50 beam splitter are as
follows:
(1.N) The average occupation numberP�퐸(𝑛,𝑚, |𝑧|) cannot

be factorized as the product of two independent
probability distributions.

(2.N) The variances of the input and output signals are
different.

(3.N) The variances of the horizontal and vertical output
signals are shorter than one-half the variance of the
input signal.

Properties (1.N)–(3.N) are in opposition to (1.C)–(3.C)
ones. As the last are not satisfied, the state BS|𝑧�퐸⟩, equiv-
alently P�퐸(𝑛,𝑚, |𝑧|), cannot be factorized and |𝑧�퐸⟩ is non-
classical. Besides, the squeezing property (3.N) is markedly
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Figure 9: The blue curve represents the Mandel parameter 𝑄 of
the SU(1, 1) coherent states (34) as a function of |𝑧|. This converges
to −1/2 as |𝑧| → ∞. The dashed-red curve represents the Mandel
parameter for both the horizontal and vertical signals at the output
ports of a beam splitter when it is injected with the state |𝑧�퐸, 0⟩,
where |𝑧�퐸⟩�푁 is the coherent state (34).

different to (3.C) and implies the squeezing of the distribution
P�퐸(𝑛,𝑚, |𝑧|) along the line 𝑛 = 𝑚.

Then, the K-conjecture is also verified for the nonlinear
coherent states defined in (34). Namely, as the output state
BS|𝑧�퐸, 0⟩ is nonseparable, the state |𝑧�퐸⟩�푁 in the horizontal
input port of the beam splitter is nonclassical. The same
conclusion is obtained for any of the nonlinear coherent
states (21) that can be constructed with generalized oscillator
algebras (1)–(3). However, we have shown that these states
have a 𝑃-representation that is proportional to 𝛿(2)(𝑧−𝑧�耠), so
that they can be classified as displaced versions of the vacuum|0⟩. Is there any contradiction between the nonseparability of
the states BS|𝑧�퐸, 0⟩ and the 𝑃-representation of |𝑧�퐸⟩�푁?
5.4. Refinement of the Criterion. To clarify the results of the
previous sections let us emphasize that the states BS|𝑛, 0⟩
defined in (47) are nothing but a class of generalized coherent
states [41] (see also [42]) associated with the su(2) Lie algebra
realized in terms of two oscillators, that is, in the so-called
Schwinger representation [43],

󵄨󵄨󵄨󵄨𝜉⟩ = 1
(1 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2)−�푛/2

�푛∑
�푘=0

( 𝑛
𝑘 )
1/2 𝜉�푘 |𝑘, 𝑛 − 𝑘⟩ . (53)

A simple inspection shows that making 𝜉 = 𝑒�푖(�휋/2) in this
last expression gives state (47). The states |𝜉⟩ also have a
resolution to the identity and are represented by a 𝑃-function
that is proportional to the 𝛿-distribution. However, they are
nonclassical, as this has been discussed in Section 5.1.

In many ways, the action of the beam splitter on the
incoming state |𝑛, 0⟩ is equivalent to a double-slit interference
experiment in the single-photon regime; see, for example,
[27, 28]. Indeed, since the detector and electronic instrumen-
tation dead-time limitations make the direct measurement
of antibunching in a double-slit experiment difficult [28],

the output intensities are instead measured by using a 50 : 50
beam splitter and two detectors [27].These and other photon
correlation experiments have their origin in the Hanbury-
Brown and Twiss experiments [29], the results of which have
shown the importance of distinguishing between the first
two orders of coherence. Following Glauber [23], given the
normalized form of the correlation functions

𝑔(�푛) (𝑥1, . . . , 𝑥2�푛) = 𝐺(�푛) (𝑥1, . . . , 𝑥�푛)
∏2�푛�푗=1 {𝐺(1) (𝑥�푗, 𝑥�푗)}1/2 ,

𝑥�푗 ≡ (󳨀→𝑟 �푗, 𝑡�푗) ,
(54)

the necessary condition of coherence is that |𝑔(�푗)| = 1. The
first-order coherence is obtained if 𝑗 = 1. This coincides with
the definition of coherence used in optics previous to the
theory of Glauber. On the other hand, a field characterized
by 𝑛th order coherence corresponds to 𝑗 ≤ 𝑛. The full
coherence implies that |𝑔(�푛)| = 1 holds for all 𝑛. Light
beams from ordinary sources can be made optimally first-
order coherent but they lack second-order coherence [23].
In turn, the conventional coherent states are coherent to all
orders. Next, we follow [23] and adopt the factorization of𝐺(�푛) producing 𝑔(�푛) = 1 in (54) as the definition of the 𝑛th
order coherent fields.

The straightforward calculation shows that the horizontal
and vertical channels of the nonlinear coherent states (47),
equivalently (53), lack second-order coherence since 𝑔(2) =1 − 1/𝑛 < 1 for 𝑛 ̸= 0. This means that the photons
in such ports are anticorrelated, so that they cannot be
created or annihilated simultaneously. The result 𝑔(2) ̸=1 is due to the fact that 𝐺(2) cannot be factorized as the
product of two 𝐺(1)–functions. The statement is equivalent
to the impossibility of factorizing either the vector BS|𝑛, 0⟩
or probability (48). Notice however that 𝑔(2) → 1 for 𝑛 →∞. That is, for a large number of photons, state (47) can
be associated with the results of an interference experiment
involving a classical field.

As regards the SU(1, 1) coherent states (34), for the
horizontal and vertical output ports of the beam splitter we
obtain the expression

𝑔(2) = 𝐼1 (2 |𝑧|) 𝐼3 (2 |𝑧|)𝐼22 (2 |𝑧|) . (55)

This last function satisfies 𝑔(2) < 1 for all finite |𝑧| and goes
to one for |𝑧| → ∞; see Figure 10. As |𝑧| ≫ 1 implies a
large average photon number; see Figure 1(c), the latter result
means that the coherent states (34) allow for bunching of
photons only at the limit ⟨𝑛⟩�푧�퐸 →∞. Again, the result 𝑔(2) ̸=
1 is associated with the fact that neither the function 𝐺(2) nor
probability (52) nor the state BS|𝑧�퐸, 0⟩ can be factorized.

As we have seen, the nonlinear coherent states |𝑧�퐸⟩�푁 are
not full coherent although their 𝑃-representation is a delta
function, so that they cannot be considered “classical” in the
sense established by Glauber [23]. Besides, the impossibility
of factorizing either the second-order correlation function
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Figure 10: The normalized form of the correlation function of
second order (54) for the horizontal and vertical output channels of
a 50 : 50 beam splitter injected by one of the SU(1, 1) coherent states|𝑧�퐸⟩ defined in (34).

𝐺(2), the probability of detecting 𝑛 and 𝑚 photons in the
horizontal and vertical output channels, or the output state
BS|𝑧�퐸, 𝑛⟩ associated with a 50 : 50 beam splitter means that
the fields represented by |𝑧�퐸⟩�푁 are nonclassical.
6. Concluding Remarks

We have shown that the nonlinear coherent states associated
with a series of generalized oscillator algebras can be written
in the same mathematical form. If such algebras are polyno-
mial the related coherent states satisfy a closure relation that
is uniquely expressed in terms of the Meijer 𝐺-function. We
have also shown that although the 𝑃-representation of these
states is as singular as the delta function, they have no classical
analog.The latter is due to the fact that such states are not full
coherent in the sense established by Glauber in his quantum
theory of optical coherence [23]. Then, a field represented by
any nonlinear coherent statewhich is𝑃-represented by a delta
function will have classical analog whenever such state is full
coherent.

As a byproduct of this work, we have shown that the
criterion of separability introduced in [25] for distinguishing
nonclassicality of states can be refined by considering also the
separability of either the second-order correlation function𝐺(2) or the probability of detecting 𝑛 and 𝑚 photons in the
horizontal and vertical output ports of a 50 : 50 beam splitter.

Appendix

The 𝐸-Exponential Function
The 𝐸-function introduced in Section 3,

𝑒�푥�퐸 = ∞∑
�푛=0

𝑥�푛𝐸 (𝑛)! ,
𝐸 (𝑛)! = 𝐸 (1) 𝐸 (2) ⋅ ⋅ ⋅ 𝐸 (𝑛) , 𝐸 (0)! ≡ 1,

(A.1)

acquires a simple form if 𝐸(𝑛) is the polynomial of degree ℓ
defined in (11)-(12). Explicitly,

𝑒�푥�퐸 = 1𝐹ℓ (1; 1 + 𝛿�푗; 𝑥𝛾ℓ) ,
𝛿�푗 = 𝛽�푗𝛼�푗 , 𝛾ℓ = 𝛼1 ⋅ ⋅ ⋅ 𝛼ℓ, 𝑗 = 1, . . . , ℓ,

(A.2)

where

�푝𝐹�푞 (𝑎1, . . . , 𝑎�푝, 𝑏1, . . . , 𝑏�푞; 𝑧) ≡ �푝𝐹�푞 (𝑎�푗, 𝑏�푗; 𝑧)
= Γ (𝑏1) ⋅ ⋅ ⋅ Γ (𝑏�푞)
Γ (𝑎1) ⋅ ⋅ ⋅ Γ (𝑎�푝)

∞∑
�푛=0

Γ (𝑎1 + 𝑛) ⋅ ⋅ ⋅ Γ (𝑎�푝 + 𝑛)
Γ (𝑏1 + 𝑛) ⋅ ⋅ ⋅ Γ (𝑏�푞 + 𝑛)

𝑧�푛𝑛!
(A.3)

stands for the generalized hypergeometric function [38]. The
following particular cases are of special interest:

(i) For ℓ = 1 and 𝛽 ̸= 0 we have
𝑒�푥�퐸 = 1𝐹1 (1, 1 + 𝛿, 𝑥𝛼)
= 𝛿𝑒�푥/�훼 (𝛼𝑥)

�훿 [Γ (𝛿) − Γ (𝛿, 𝑥𝛼)] .
(A.4)

In particular, for 𝛽 = 0 we get 𝛿 = 0 and
𝑒�푥�퐸 = lim
�훿→0
1𝐹1 (1, 1 + 𝛿, 𝑥𝛼) = 𝑒�푥/�훼. (A.5)

(ii) For ℓ = 2 and either 𝛽1 = 0 or 𝛽2 = 0, one gets
𝑒�푥�퐸 = 1𝐹2 (1; 1, 1 + 𝛿; 𝑥) = 1𝐹2 (1; 1 + 𝛿, 1; 𝑥)

= Γ (1 + 𝛿) (𝛾2𝑥 )
�훿/2 𝐼�훿 (2 𝑥𝛾2) ,

(A.6)

with 𝐼](𝑧) the modified Bessel function of the first kind [38].
(iii) For ℓ = 3 and 𝛼1 = 𝛼2 = 𝛼3 = 𝛽1 = 𝛼, with arbitrary𝛽2 and 𝛽3, the 𝐸-exponential function (A.1) becomes

𝑒�푥�퐸 = 1𝐹3 (1; 2, 1 + 𝛿2, 1 + 𝛿3; 𝑥𝛾3)
= 𝛾3𝛿2𝛿3𝑥 [ 0𝐹2 (𝛿2, 𝛿3; 𝑥𝛾3) − 1] .

(A.7)
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