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Recently, a model for an emergent gravity based on 𝑆𝑂(5) Yang-Mills action in Euclidian 4-dimensional spacetime was proposed.
In this work we provide some 1- and 2-loop computations and show that the model can accommodate suitable predicting values
for the Newtonian constant. Moreover, it is shown that the typical scale of the expected transition between the quantum and the
geometrodynamical theory is consistent with Planck scale. We also provide a discussion on the cosmological constant problem.

1. Introduction

Quantization of the gravitational field is one of most import
problems in physics since the beginning of the 20th century.
The long pursuit of a theory of quantum gravity has generated
a variety of theoretical proposals to describe the quantum
sector of gravity; see, for instance, Loop Quantum Gravity
[1, 2], Higher Derivatives Quantum Gravity [3, 4], Causal
Sets [5], Causal Dynamical Triangulations [6], StringTheory
[7, 8], Asymptotic Safety [9, 10], Emergent Gravities [4, 11],
Hořava-Lifshitz Gravity [12], the Nojiri-Odintsov-Hořava-
Lifshitz Instability Free Gravity [13, 14], Topological Gauge
Theories [15], and so on. Each one of these theories carries its
own set of advantages and disadvantages. On the other hand,
gauge theories are relentless in describing the high energy
regime of particle physics [16–18]. Hence, one can question
if gravity could also be described by a gauge theory in its
high energy sector. In fact, since the seminal papers [19–21]
about gauge theoretical descriptions of gravity, it is known
that gravity can be, at least, dressed as a gauge theory for
the local isometries of spacetime. See also [22, 23]. Although

consistent with general relativity, these models also have
problems with its quantization.

In [24] it was proposed an induced gravity model from
a pure Yang-Mills theory based on de Sitter-type groups.
In this model, gravity emerges as an effective phenomenon
originated by a genuine Yang-Mills action in flat space. The
transition between the quantumgauge sector and the classical
geometrical sector is mediated by a mass parameter, identi-
fied with the Gribov parameter [25–43]. The combination of
the running of this parameter and the running of the coupling
parameter would provide a good scenario for an Inonu-
Wigner contraction [44] of the gauge group, deforming it
to a Poincaré-type group. Because the original action is not
invariant under the resulting group, themodel actually suffers
a dynamical symmetry breaking to Lorentz-type groups.
At this point, with the help of the mass parameter, the
gauge degrees of freedom are identified with geometrical
objects, namely, the vielbein and spin connection.At the same
time the mass parameter and the coupling parameter are
combined to generate the gravity Newtonian constant and
an emergent gravity is realized. Moreover, a cosmological
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constant inherent to the model is also generated. See also
[45, 46] for details.

The aim of the present work is to provide estimates for
the emergent parameters of the model above discussed by
applying the usual apparatus of quantum field theory (QFT).
We concentrate our efforts on 1- and 2-loop computations.
In particular, from the explicit expressions of the running
coupling and the Gribov parameters, we are able to fit
the actual value of Newtonian constant and to obtain a
renormalization group cut-off very close to the Planck scale,
as expected to be the transition scale from quantum to
classical gravity.

The cosmological constant is an essential point, which
can be related to the accelerated expansion of the Universe.
Observational data and quantum field theory prediction for
the cosmological constant strongly disagree in numerical
values [18, 47]. Following [48, 49], we can expect that
the cosmological parameter generated by the model should
combine with the value found in theoretical calculations by
quantum field theory in a way that the effective final value
fits the observational data. It is worth mentioning that the
cosmological parameter generated by the model is related to
the Gribov parameter [24]. In [50], a preliminary estimative
for these running parameters at 1-loop approximation was
scratched. From this reasonable starting, we develop here a
refinement on early predictions and we show a numerical
improvement at 1-loop calculations. Further, we improve the
techniques up to 2-loop estimates. Hence, we present a best
estimative for the Gribov parameter in order to fit the model
with a suitable emergent gravity.

This work is organized as follows. In Section 2 we resume
some concepts and ideas about our effective gravity model.
In Section 3, we present the first results that we obtained
for 1-loop estimates. In Section 4, we present the main
calculations results for running parameters at 2 loops are
performed. In Section 5, we discuss shortly our results and
some perspectives will be cast.

2. Effective Gravity from a Gauge Theory

In [24], a quantum gravity theory was constructed based
on an analogy with quantum chromodynamics; see also [45,
46]. In this section we will briefly discuss the main ideas,
definitions, and conventions behind this model1.

The starting action is the Yang-Mills action:

𝑆YM = 12 ∫𝐹𝐴𝐵 ∗ 𝐹𝐵𝐴, (1)

where 𝐹𝐴𝐵 are the field strength 2-form and 𝐹 = 𝑑𝑌 +𝜅𝑌𝑌, where 𝑑 is the exterior derivative, 𝜅 is the coupling
parameter, and 𝑌 is the gauge connection 1-form, that is,
the fundamental field in the adjoint representation. The
Hodge dual operator in 4-dimensional Euclidian spacetime
is denoted by ∗. The action equation (1) is invariant under𝑆𝑂(5) gauge transformations,𝑌 → 𝑈−1(1/𝜅𝑑+𝑌)𝑈, with𝑈 ∈𝑆𝑂(5). The infinitesimal version of the gauge transformation
is

𝑌 → 𝑌 + ∇𝛼, (2)

where ∇ = 𝑑 + 𝜅𝑌 is the full covariant derivative and 𝛼 is the
infinitesimal gauge parameter.

It is possible to decompose the gauge group according to𝑆𝑂(5) = 𝑆𝑂(4) ⊗ 𝑆(4), where 𝑆𝑂(4) is the stability group𝑆(4) is the symmetric coset space. Thus, defining 𝐽5𝑎 ≡ 𝐽𝑎,
the gauge field is also decomposed:

𝑌 = 𝑌𝐴𝐵𝐽𝐴𝐵 = 𝐴𝑎𝑏𝐽𝑎𝑏 + 𝜃𝑎𝐽𝑎, (3)

where capital Latin indices 𝐴, 𝐵, . . . run as {5, 0, 1, 2, 3} and
the small Latin indices 𝑎, 𝑏, . . . vary as {0, 1, 2, 3}. The decom-
posed field strength reads

𝐹 = 𝐹𝐴𝐵𝐽𝐴𝐵 = (Ω𝑎𝑏 − 𝜅4𝜃𝑎𝜃𝑏) 𝐽𝑎𝑏 + 𝐾𝑎𝐽𝑎, (4)

whereΩ𝑎𝑏 = 𝑑𝐴𝑎𝑏 +𝜅𝐴𝑎𝑐𝐴𝑐𝑏 and 𝐾𝑎 = 𝑑𝜃𝑎 +𝜅𝐴𝑎𝑏𝜃𝑏. Thus,
it is a simple task to find that the Yang-Mills action equation
(1) can be rewritten as

𝑆YM = 12 ∫{Ω𝑎𝑏 ∗ Ω𝑎𝑏 + 12𝐾𝑎 ∗ 𝐾𝑎 − 𝜅2Ω𝑎𝑏 ∗ (𝜃𝑎𝜃𝑏)

+ 𝜅216𝜃𝑎𝜃𝑏 ∗ (𝜃𝑎𝜃𝑏)} .
(5)

Before we advance to the next stage of the model,
let us quickly point out some important aspects of Yang-
Mills theories and their analogy with a possible quantum
gravity model. To start with, Yang-Mills theories present
two very important properties, namely, renormalizability and
asymptotic freedom [16]. The Yang-Mills action is, in fact,
renormalizable, at least to all orders in perturbation theory
[51] which means that it is stable at quantum level. In this
context, the so-called BRST symmetry has a fundamental
hole. Asymptotic freedom [52, 53], on the other hand, means
that, at high energies, the coupling parameter is very small
and we can use perturbation theory in our favor. However, as
the energy decreases, the coupling parameter increases and
the theory becomes highly nonperturbative. In this regime,
the so-called Gribov ambiguities problem takes place [25,
26]. Essentially, the gauge fixing2 is not strong enough to
eliminate all spurious degrees of freedom from the Faddeev-
Popov path integral; a residual gauge symmetry survives the
Faddeev-Popov procedure. The elimination of the Gribov
ambiguities is not entirely understood; however, it is known
that a mass parameter is required and a soft BRST symmetry
breaking associated with this parameter appears; see, for
instance, [30–32, 34, 37, 54, 55]. This parameter is known
as Gribov parameter 𝛾, and it is fixed through minimization
of the quantum action, 𝛿Σ/𝛿𝛾2 = 0, the so-called gap
equation.The action that describes the improved theory (free
of infinitesimal ambiguities) is known as Gribov-Zwanziger
action [54] and has a more refined version [27, 34] by
taking into account few-dimension two operators and their
condensation effects.

It is clear that the field 𝜃 has the same degrees of freedom
that a soldering forms in spacetime manifold (the vielbein).
However, the field 𝜃 carriesUVdimension 1while the vielbein
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is dimensionless. The presence of a mass scale is then very
important to identify the field 𝜃 with an effective soldering
form. We will show in the next sections that the Gribov
parameter is a very good candidate for this purpose.The next
step is to perform the rescalings

𝐴 → 1𝜅𝐴,
𝜃 → 𝛾

𝜅𝜃,
(6)

at the action equation (5), achieving

𝑆 = 12𝜅2 ∫[Ω
𝑎
𝑏 ∗ Ω𝑎𝑏 + 𝛾

2

2 𝐾
𝑎 ∗ 𝐾𝑎 − 𝛾

2

2 Ω
𝑎
𝑏

∗ (𝜃𝑎𝜃𝑏) + 𝛾
4

16𝜃𝑎𝜃𝑏 ∗ (𝜃𝑎𝜃𝑏)] ,
(7)

where Ω𝑎𝑏 = 𝑑𝐴𝑎𝑏 + 𝐴𝑎𝑐𝐴𝑐𝑏, 𝐾𝑎 = 𝐷𝜃𝑎, and the covariant
derivative is now𝐷 = 𝑑 + 𝐴.

The transition from the action (7) to a gravity action is
performed by studying the running behaviour of the quantity𝛾/𝜅. It is expected [24] that this quantity vanishes for a
specific energy scale.This property induces an Inonu-Wigner
contraction 𝑆𝑂(5) → 𝐼𝑆𝑂(4) [44]. However, since the action
(7) is not invariant under 𝐼𝑆𝑂(4) gauge transformations, the
theory actually suffers a symmetry breaking to the stability
group 𝑆𝑂(4). The broken theory is ready to be rewritten as a
gravity theory. The map (see [24]) is a simple identification
of the gauge fields with geometric effective entities according
to 𝛿𝑎a𝛿b𝑏𝐴𝑎𝑏 = 𝜔a

b and 𝛿a𝑎𝜃𝑎 = 𝑒a. Where the indices {a, b,
c, . . .} belong to the tangent space of the effective deformed
spacetime, 𝜔 is the spin connection 1-form and 𝑒 is the viel-
bein 1-form. Thus, with the extra parametric identifications

𝛾2 = 𝜅24𝜋𝐺 = 4Λ23 , (8)

where 𝐺 is the Newtonian constant and Λ2 is the renormal-
ized cosmological constant3. Hence, the action equation (7)
generates the following effective gravity action:

𝑆Grav = 116𝜋𝐺 ∫{ 32Λ2𝑅a
b ⋆ 𝑅a

b − 12𝜖abcd𝑅ab𝑒c𝑒d + 𝑇a

⋆ 𝑇a + Λ212 𝜖abcd𝑒a𝑒b𝑒c𝑒d} ,
(9)

where 𝑅a
b = 𝑑𝜔a

b + 𝜔a
c𝜔c

b and 𝑇a = 𝑑𝑒a + 𝜔a
b𝑒b are,

respectively, the curvature and torsion 2-forms. The symbol⋆ stands for the Hodge dual operator in M4 (the deformed
spacetime).

3. Running Parameters and 1-Loop Estimates

Now4, we return to the original action (1) and we take only
its quadratic part5, considering also the Gribov-Zwanziger
quadratic term6 [27],

𝑆quad = ∫𝑑4𝑥 {14 (𝜕𝜇𝑌𝐴] − 𝜕]𝑌𝐴𝜇 )
2 + 12𝛼 (𝜕𝜇𝑌𝐴𝜇 )

2

+ 𝜑𝐴𝐵𝜇 𝜕2𝜑𝐴𝐵𝜇 + −𝜆2𝜅 (𝑓𝐴𝐵𝐶𝑌𝐴𝜇 𝜑𝐵𝐶𝜇 + 𝑓𝐴𝐵𝐶𝑌𝐴𝜇 𝜑𝐵𝐶𝜇 )
− 𝜆4𝑑 [𝑁 (𝑁 − 1)2 ]} ,

(10)

where (𝜑𝐴𝐵𝜇 , 𝜑𝐴𝐵𝜇 ) is a pair of complex conjugate bosonic fields
and 𝜆 is, essentially, the Gribov parameter. Here we will use𝑁 = 5 since we are building a Yang-Mills for the 𝑆𝑂(5)
group. In the future we will employ this value, but, for now,
we continue using 𝑁 in general. The parameter 𝛼 is the
gauge parameter associated with the gauge fixing. Herein,
the limit 𝛼 → 0 must be employed in order to enforce the
Landau gauge condition; that is, 𝜕𝜇𝑌𝐴𝜇 = 0. The choice of
the gauge is, in principle, arbitrary as long as the gauge is
renormalizable. However, most of the developments in the
Gribov problem were made in the Landau gauge [25, 27, 30,
34]. Moreover, the Landau gauge is a very simple gauge to
work with. Nevertheless, there are recent evidences that the
Gribov parameter is a gauge invariant parameter [40, 41, 43,
56, 57], a very welcome feature for the model.

At 1-loop, the effective action7 is defined through

𝑒−Γ(1) = ∫ [𝐷Φ] 𝑒−𝑆quad , (11)

which, in 𝑑 dimensions, yields

Γ(1) = −𝜆4𝑑 [𝑁 (𝑁 − 1)2 ] + (𝑑 − 1)2 [𝑁 (𝑁 − 1)2 ]
⋅ ∫ 𝑑𝑑𝑝

(2𝜋)𝑑 [ln (𝑝4 + 2𝑁𝜅2𝜆4)] .
(12)

To control the divergences of the quantum action we employ
the MS renormalization scheme to obtain

Γ(1)𝑟 = −𝜆4𝑑 [𝑁 (𝑁 − 1)2 ] − (𝑑 − 1)32𝜋2 [𝑁 (𝑁 − 1)2 ]
⋅ (𝑁𝜅2𝜆4) [ln(2𝑁𝜅2𝜆4𝜇4 ) − 83] ,

(13)

where

𝛾4 ≡ 2𝜅2𝜆4 (14)

is amore convenientmass parameter. At first sight, this choice
is a mere algebraic ansatz to simplify future computations
with this parameter. In Appendix B we demonstrate why this
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choice is actually better than 𝜆 for our purposes. Thus, for𝑑 = 4, (13) turns to
Γ(1)𝑟 = − 𝛾42𝑘2 4 [𝑁 (𝑁 − 1)2 ]

− 332𝜋2 [𝑁 (𝑁 − 1)2 ] 𝑁𝛾42 [ln(𝑁𝛾4𝜇4 ) − 83] .
(15)

Following the Gribov-Zwanziger prescription [28], the Gri-
bov parameter can be determined by minimizing the quan-
tum action; that is, 𝜕Γ(1)𝑟 /𝜕𝛾2 = 0. The result is

𝑁𝜅216𝜋2 [58 − 38 ln(
𝑁𝛾4
𝜇4 )] = 1. (16)

Or, equivalently,

𝛾2 = 𝑒5/6√𝑁𝜇2𝑒−(4/3)(16𝜋
2/𝑁𝜅2). (17)

Moreover, the 1-loop coupling parameter is found to be [52]

𝑁𝜅216𝜋2 = 1
(11/3) ln (𝜇2/Λ2) , (18)

where Λ is the renormalization group cut-off. By inserting
(18) into (17) for𝑁 = 5 we find

𝛾2 = 𝑒5/6√5 Λ
2 ( 𝜇2Λ2)

−35/9 . (19)

Thus, the higher the energy scale is, the smaller the Gribov
parameter would be. This behaviour is plotted in Figure 1.

As we have mentioned in Section 2, the ratio between
the two quantum parameters, after we combine (18) and (19),
namely,

𝛾2
𝜅2 = 𝛼Λ

2 ( 𝜇2Λ2)
−35/9

ln( 𝜇2Λ2) , (20)

with 𝛼 = 55𝑒5/6/(48𝜋2√5), is crucial for the present model.
The behaviour of this ratio is illustrated in Figure 2. It is clear
that the expected behaviour 𝛾2/𝜅2 → 0 is attained at 𝜇2 = Λ2.

The simple inversion of (20) gives

𝜅2𝛾2 = 1
𝛼Λ2 (

𝜇2
Λ2)
35/9 [

[
1

ln (𝜇2/Λ2)]]
, (21)

which shows the running behaviour of the ratio 𝜅2/𝛾2
which is displayed in Figure 3. We remark that there is a
discontinuity (Landau pole) at 𝜇 = Λ. We interpret this
discontinuity as an indication of the transition between the
quantum and classical regimes of the model. For 𝜇 < Λ we
expect a geometrical regime while for 𝜇 > Λ, the theory is at
the quantum region.
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𝛾
2

4 6 8 102
𝜇2

Figure 1: The running of the Gribov parameter as function of the
energy scale squared. The energy squared 𝜇2 is in units of Λ2 and
the Gribov parameter is normalized in units of (𝑒5/6/√5)Λ2.

𝛾
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0
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51
𝜇2

Figure 2:The running of the ratio 𝛾2/𝜅2 as function of energy scale
squared.The energy scale 𝜇2 is in units ofΛ2 and the ratio is in units
of 𝛼Λ2.

To estimate theNewtonian constant and the renormaliza-
tion group cut-offwe emphasize that we are not assigning any
running behaviour to the Newtonian constant. According to
(8), our aim consists in identifying the ratio 𝛾2/𝜅2 with𝐺 only
after an energy scale is chosen. So the Newtonian constant is
fixed as an effective quantity.

It is also important to realize that the deep infrared
behaviour of Figures 1, 2, and 3 does not reproduce the
expected behaviour at zero momenta, as known by QCD
lattice simulations [58–63]. In the deep infrared regime the
coupling parameter 𝜅 goes to a finite value, that is, an infrared
fixed point. However, this extreme behaviour is not relevant
for the purposes of the present work.

3.1. Numerical Estimates at 1-Loop. We first follow the pro-
cedure performed in [50] where the strategy was not to
solve the gap equation by fixing Λ and 𝜇, which is the
traditional way, but to fix the Newtonian constant and find
if this is a consistent solution. Nevertheless, for the sake of
consistency, we need a coupling constant as small as possible.
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Figure 3: The ratio 𝜅2/𝛾2 as a function of the energy scale squared.
The energy scale is in units ofΛ2 and the ratio is in units of 1/(𝛼Λ2).

Furthermore, wemust have 𝜇2 > Λ2. Accordingly, we possess
a certain range to work with; namely,

0 < 𝑁𝜅216𝜋2 < 1,
0 < ln( 𝜇2Λ2) < 1.

(22)

Let us take, for instance, 𝜇2 = 2Λ2 in (21), which provides
ln(𝜇2/Λ2) = 0.6931, satisfying Ineq. (22). One way to
obtain the scale Λ is setting the Newtonian constant to its
experimental value; that is, 𝐺 = 6.707 × 10−33 TeV−2 in (21),
providing

Λ2 ≈ 2.122 × 1033 TeV2. (23)

This result allows us to estimate the renormalized cosmolog-
ical constant. Combining (8), (19), and (23) we obtain

Λ2 ≈ 1.106 × 1032 TeV2. (24)

We notice that the cut-off value (23) is just right above the
Planck scale, given by 𝐸2𝑝 = 1.491 × 1032 TeV2.
3.1.1. Methods of Enhancement at 1 Loop. Themain goal here
is to calculate the best values for𝑁𝜅2/16𝜋2 and ln(𝜇2/Λ2) in
accordance with Ineq. (22). To handle this task we apply three
methods, labelled by𝑀1,𝑀2, and𝑀3, as follows.
𝑀1: Taylor Series Method. Let us rewrite (18) as

1𝑎 = 113 ln 𝑏, (25)

where

𝑎 = 𝑁𝜅216𝜋2 ,
𝑏 = 𝜇2

Λ2 ,
(26)

for mere simplification. Next, we expand the right hand side
of (25) as a Taylor series at the critical point 𝜇 = Λ, that is,𝑏 = 1, as follows:

ln (𝑏) = ∞∑
𝑛=1

1𝑛 (−1)𝑛−1 (𝑏 − 1)𝑛 , (27)

with 0 < ln 𝑏 < 1 as stated by Ineq. (22). We investigate the
series (27) under two perspectives as follows.

Perspective (i): The Endpoint Extremum. The series expansion
of ln(𝑏) has radius of convergence equal to 1. Precisely,
the alternating series test ensures that the series does not
converge at 𝑏 = 0 and converges at 𝑏 = 2. Hence, the
series is convergent for 0 < 𝑏 ⩽ 2. Therefore, the endpoint
extremum occurs at 𝑏 = 2 which happens also to be a global
maximum. A curious fact about that series occurs when we
truncate the series expansion at even 𝑛th order: any of these
truncations have a maximum at 𝑏 = 2. Again such maximum
is a global one and it happens at the endpoint. From (25), it is
clear that, by fixing a global maximum for ln(𝑏), a minimum
value for 𝑁𝜅2/16𝜋2 is set. Thus, with 𝑏 = 2, we obtain
ln(𝜇2/Λ2) = 0.6931 and𝑁𝜅2/16𝜋2 = 0.3935, which are both
in accordance with the intervals described in Ineq. (22).

Perspective (ii): A Bound on the Taylor Series for ln(𝑏). At
this point, we are looking for a certain bound for the series
expansion (27). Hence, since 𝑎 < 1, we have

ln (𝑏) > 311 ⇐⇒
∞∑
𝑛=1

1𝑛 (−1)𝑛−1 (𝑏 − 1)𝑛 > 311 .
(28)

In this range we solve the Ineq. (28) for several 𝑛 values. We
notice that the choices of 𝑏 values are restricted to 1.314 < 𝑏 <𝑏sup while 𝑛 is even and where 𝑏sup values decrease while even𝑛 values increase. The 𝑏sup values are displayed in Table 1.

Still looking at Table 1, for instance, 𝑛 = 8 ⇒ 𝑏sup ≈ 2.305,𝑛 = 10 ⇒ 𝑏sup ≈ 2.261, and—as actually we would expect—𝑛 → ∞ ⇒ 𝑏sup → 2.000. However, if 𝑛 is odd we obtain for
all intervals 𝑏 > 1.313, of course, and no upper bound.Hence,
we have a confirmation of our first choice for ln(𝜇2/Λ2) given
by 𝜇2 = 2Λ2.

Besides the best choice that we can perform, we still have
freedom to choose any value consistent with Ineq. (22). If we
pick, for instance, 𝑎 = 0.4300, we have 𝑏 = 1.886 ⇒ ln(𝑏) ≡
ln(𝜇2Λ2) ≈ 0.6342, which provides, from (21) and (8),

Λ2 ≈ 1.845 × 1033 TeV2, (29)

Λ2 ≈ 1.208 × 1032 TeV2. (30)

These results can be interpreted as a numerical verification of
the values equations (23) and (24) due to the fact that their
order of magnitude are maintained. In this sense we confirm
the first insight presented in [50].
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Table 1: The superior bound for 𝑏 range using only even values for𝑛.
𝑛 𝑏sup2 2.674
4 2.476
8 2.305
10 2.261
20 2.158
50 2.079
100 2.046
1000 2.007
5000 2.002
10000 2.000

𝑀2: Equilibrium Value Method. Now we use a simple method
of enhancement which we called equilibrium value between
two functions at certain point. First, in order to simplify, we
take (18) as

𝑓 (𝜅2) ℎ (𝜇2, Λ2) = 311 , (31)

where

𝑓 (𝜅2) = 𝑁𝜅216𝜋2 ,
ℎ (𝜇2, Λ2) = ln( 𝜇2Λ2) .

(32)

To obtain small values for ℎ(𝜇2, Λ2) and 𝑓(𝜅2), we made an
equilibrium choice; that is, ℎ(𝜇2, Λ2) = 𝑓(𝜅2). Consequently,
it provides

ℎ (𝜇2, Λ2) = ( 311)
1/2 ⇒

ln( 𝜇2Λ2) ≈ 0.5222 ⇒
𝜇2
Λ2 ≈ 1.686.

(33)

Thus, from (21) and (8), we find

Λ2 ≈ 1.449 × 1033 TeV2, (34)

Λ2 ≈ 1.468 × 1032 TeV2. (35)

We conclude that (34) and (35) do not show any significant
improvement with respect to (23) and (24).

𝑀3: Method by Geometrical Series. Here we employ a geomet-
rical series to treat the logarithm that will be used. Due to
Ineq. (22), we can treat the logarithm in (18) as a geometrical
series. First, we define

𝑟 = 1 − ln
𝜇2
Λ2 . (36)

Table 2: The superior bound 𝑟sup for the range of values for 𝑟 as a
function of the of 𝑛th-degree polynomial.

𝑛 𝑟sup5 0.7974
8 0.7470
10 0.7367
20 0.7276
30 0.7273
40 0.7273
100 0.7273
1000 0.7273

Hence, we can use8

11 − 𝑟 =
∞∑
𝑛=0
𝑟𝑛 (37)

in (18), providing

𝑁𝜅216𝜋2 = 311 ( 11 − 𝑟) = 311
∞∑
𝑛=0
𝑟𝑛. (38)

Second, we use Ineq. (22) and (38) to write

∞∑
𝑛=0
𝑟𝑛 < 113 . (39)

Now, we test several truncations of expression equation
(39) to deal with an 𝑛th-degree polynomial inequality. Such
procedure permits us to find 𝑟 ∈ (0, 0.7273) as an optimum
valid range. To clarify this point, for instance, we mount
Table 2 displaying the evolution of this range, which directly
determines the value of the logarithm.

We notice that 𝑛 > 30 does not bring any significant
improvement for the superior bound of 𝑟. In this way, we
choose 𝑟 ≈ 0.7273 as an optimal extreme valid value, which
implies that ln(𝜇2/Λ2) ≈ 0.2727 and 𝑁𝜅2/16𝜋2 ≈ 0.3803.
With these values and using (21) and (8) we find the following
results:

Λ2 ≈ 1.052 × 1032 TeV2,
Λ2 ≈ 2.810 × 1032 TeV2. (40)

Then, Λ2 decreases by one order of magnitude when com-
pared to (23), (29), and (34). It is straightforward to see how
these values can be obtained directly from (38). We stress out
that the superior bound for 𝑛 < 30 leaves us with an invalid
range for𝑁𝜅2/16𝜋2.

For the other extreme we choose 𝑟 = 1.000 × 10−4,
providing ln(𝜇2/Λ2) ≈ 0.9999 and 𝑁𝜅2/16𝜋2 ≈ 0.2728. We
use these values to find

Λ2 ≈ 4.851 × 1033 TeV2, (41)

Λ2 ≈ 7.666 × 1031 TeV2. (42)
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Table 3: The cut-off and renormalized cosmological constant obtained in each method. The column 𝐼 lists our initial estimates. The other
columns𝑀1,𝑀2,𝑀3𝑎, and𝑀3𝑏 are related to the values obtained by Taylor series, equilibrium value, and geometric series, respectively. The
column Pr exhibits the physical predictions, that is, the Planck energy squared and the absolute value predicted by the quantum field theory
for the cosmological constant [47].

𝐼 𝑀1 𝑀2 𝑀3𝑎 𝑀3𝑏 Pr
Λ2 (TeV2) 2.122 × 1033 1.845 × 1033 1.449 × 1033 1.052 × 1032 4.851 × 1033 1.491 × 1032
Λ2 (TeV2) 1.106 × 1032 1.208 × 1032 1.468 × 1032 2.810 × 1032 7.666 × 1031 3.710 × 1028

Table 4: Newtonian constant and cosmological constant values based on the logarithm computed in each method in Section 3.1 with the
cut-off equal to the Planck energy.

𝐼 𝑀1 𝑀2 𝑀3𝑎 𝑀3𝑏𝐺𝑝 (TeV−2) 9.551 × 10−32 8.301 × 10−32 6.521 × 10−32 5.254 × 10−32 2.183 × 10−31
Λ 𝑝 (TeV) 7.766 × 1030 9.765 × 1030 1.510 × 1031 6.271 × 1031 2.355 × 1030

In this case a better value for the renormalized cosmological
constant is found. However, the renormalization group cut-
off is theworst found until this point. To summarize all results
that we found in each method we built Table 3.

Comparing the numerical values for the cut-off and the
renormalized cosmological constant which were obtained
through the three methods 𝑀1, 𝑀2, and 𝑀3 and listed in
Table 3, we observe that the orders of magnitude of those
results are almost unchanged. A unique exception occurs to
the cut-off in the column𝑀3𝑏, which is caused by the extreme
high value to the logarithm ln(𝜇2/Λ2).
3.1.2. Fixing Λ as the Planck Energy. We introduce here a
different path to find values for the Newtonian constant and
the renormalized cosmological constant. In this manner we
made all slightly different since we fit the cut-off Λ2 equal to
energy Planck; that is,Λ2 = 𝐸2𝑝 = 1.491×1016 TeV. Previously,
in Section 3.1, we found an optimum logarithm to fix the
cut-off and the renormalized cosmological constant.With the
help of fixed logarithms and (21) we compute the Newtonian
constant 𝐺𝑝 for each method as displayed in Table 4.

We observe that all values for 𝐺𝑝 are in 1 order of
magnitude above 𝐺. After confrontation with the values
presented in Table 2 we notice a better estimate usingmethod𝑀3𝑏, that is, while we apply the logarithm obtained with the
geometrical series for 𝜅2. The method 𝑀3𝑎 ensures the best
value for𝐺 = 6.707×10−33 TeV2. As a consequence, the price
to pay is a renormalized cosmological constant with a higher
value than one encountered in themethod𝑀3𝑏. However, the
order of magnitude is the same while we compare the values
for Λ2 found through the methods𝑀3𝑎 and𝑀3𝑏.
4. Numerical Estimates at 2 Loops

For 2 loops, an explicit analytical computation is a virtually
impossible task. To work out this equation, sophisticated
algebraic programs were built. For instance, FORM and
QGraph programs are frequently used as well as the recent
developments about such computational packages [64–69].

0.2 0.4 0.6 0.8 1.0
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Figure 4: The behaviour of the coupling parameter related to the
energy scale.

In this section we borrow the main results of 2-loop compu-
tations from [65].

4.1. 2-Loop 𝛽-Function. First, recalling that the 𝛽-function at
2 loops [65, 70] is given by

𝛽 (𝜅2) = −11𝑁3 ( 𝜅216𝜋2)
2 − 343 𝑁2 ( 𝜅216𝜋2)

3 , (43)

the 2-loop running coupling constant is

𝑁𝜅216𝜋2 = 1
(11/3) ln (𝜇2/Λ2)

− 102121
{{{{{
ln [ln (𝜇2/Λ2)]
[ln (𝜇2/Λ2)]2

}}}}}
,

(44)

whereΛ is the cut-off of the energy scale.The evolution of the
coupling 𝜅, related to energy scale 𝜇, is displayed in Figure 4.

4.2. 2-Loop Gap Equation. From [65], the main result is the
2-loop Gribov gap equation in the MS with massive quarks.
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Here, we are dealing with a theory without fermions. Hence,
from [65], the 2-loop gap equation reduces to the simpler
form:

1 = ( 𝑁𝜅216𝜋2)[58 − 38 ln(
𝑁𝛾4
𝜇4 )] + ( 𝑁𝜅

2

16𝜋2)
2

⋅ {38931536 + 8254096√3𝜋2 + 29768𝜋2 − 6548 ln(
𝑁𝛾4
𝜇4 )

+ 35128 ln2 (
𝑁𝛾4
𝜇4 ) + 1372048√5𝜋2 − 13174096𝜋2} .

(45)

First of all, we compute the system formed by (44) and (45)
to analyze the behaviour of the Gribov parameter related
to energy scale. Such procedure gives us the following two
functions, where we have now the mass parameter related to
logarithm:

𝛾2𝑚 = 1√5𝜇2 [ℎ (𝜇)]
−H(𝜇) 𝑒W𝑚(𝜇),

𝛾2𝑝 = 1√5𝜇2 [ℎ (𝜇)]
−H(𝜇) 𝑒W𝑝(𝜇),

(46)

where

ℎ (𝜇) = ln( 𝜇2Λ2) ,

H (𝜇) = 1496105
P (𝜇)
Q (𝜇) ,

P (𝜇) = ℎ (𝜇) [33ℎ (𝜇) + 65] ,
Q (𝜇) = {11ℎ (𝜇) − 34 ln [ℎ (𝜇)]}2 ,

W𝑚 (𝜇) = 1
1680Q (𝜇) [S (𝜇) − √2T (𝜇)] ,

W𝑝 (𝜇) = 1
1680Q (𝜇) [S (𝜇) + √2T (𝜇)] ,

S (𝜇) = 𝑎1ℎ3 (𝜇) + 𝑎2ℎ2 (𝜇) + 𝑎3 ln2 [ℎ (𝜇)] ,
T (𝜇) = √Q (𝜇) {𝑏1ℎ4 (𝜇) + 𝑏2ℎ3 (𝜇) − 𝑏3ℎ2 (𝜇) − 𝑏4 ln2 [ℎ (𝜇)] + 𝑏5 ln [ℎ (𝜇)] ℎ (𝜇) − 𝑏6 ln [ℎ (𝜇)] ℎ2 (𝜇)},

(47)

where 𝑎1 = 255,552, 𝑎2 = 251,680, 𝑎3 = 2,404,480, 𝑏1 =
2,368,796,672, 𝑏2 = 173,775,360, 𝑏3 = 605𝑑0, 𝑏4 = 5780𝑑0,𝑏5 = 3740𝑑0, 𝑏6 = 537,123,840, 𝑑0 = 221,384 + 𝑏0, and𝑏0 = 21(−3,487 + 2,475√3 + 822√5)𝜋2.

The behaviour of 𝛾2𝑚 and 𝛾2𝑝 in (46) can be clearly seen
in Figures 5 and 6, respectively. The behaviour of 𝛾2𝑝 and𝛾2𝑚 indicates uniquely 𝛾2𝑚 as the one that has the expected
typical running behaviour of amass parameter in theGribov-
Zwanziger scenario.Thus, we necessarily keep 𝛾2𝑚 for the next
computations.

4.3. Methods of Enhancement at 2 Loops. Following similar
steps that we have made in Section 3.1.1, we are looking for
the best logarithm for the sake of better estimates of the
renormalized cosmological constant Λ2 and the energy cut-
off Λ̃2. Before we advance in applying these methods, we
refer to the definitions (32). Moreover, we skip the initial
choice, as made at 1 loop, 𝜇2/Λ2 = 2, because it provides𝑁𝜅2/16𝜋2 = 1.036, which is outside the acceptable range for
the coupling parameter; see Ineq. (22). Hence, we proceed

with the methods of enhancement as we have done in
Section 3.1.1.

𝑀1: Taylor SeriesMethod.We are looking for small logarithms
through a Taylor expansion of (44), which can be written as

𝑓 (𝜅) = 311 − 135121 (ℎ (𝜇) − 1) + 288121 (ℎ (𝜇) − 1)2

− 475121 (ℎ (𝜇) − 1)3 + 12522 (ℎ (𝜇) − 1)4

− 4602605 (ℎ (𝜇) − 1)5 + O ((ℎ (𝜇) − 1)6) ,
(48)

where, for simplicity, the expansion above is displayed up
to fifth order. However, we must keep in mind that we can
truncate such expansion at any arbitrary order. If we truncate
the above expansion of 𝑓(𝜅) at fourth order and consider0 < 𝑓(𝜅) < 1, then we find ℎ(𝜇) > 0.6938. Therefore, we
obtain 0.6938 < ℎ(𝜇) < 1.000. All truncations beyond the
fourth order do not imply significant improvements in the
inferior limit ℎinf , in the interval ℎinf < ℎ(𝜇) < 1, of the
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Figure 5: Gribov parameter 𝛾2𝑚 as a function of the energy scale 𝜇2.
Both 𝛾2𝑚 and 𝜇2 are in units of Λ2.
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Figure 6: Gribov parameter 𝛾2𝑝 as a function of the energy scale 𝜇2.
Both 𝛾2𝑝 and 𝜇2 are in units of Λ2.

intervals for ℎ(𝜇), since each order of truncation modifies
such limit (see Table 5).

Since we are dealing with a perturbation expansion, we
need to get to small values for ℎ(𝜇). Nevertheless, because
of the second term in (44), which is resulting from the
contribution at 2 loops in the computation, a choice for the
logarithm close to any ℎinf results in high numerical values of
the renormalized cosmological constant Λ2. Hence, the best
choice for the logarithm is ln(𝜇2/Λ2) = 0.9999. Employing
this logarithm value and combining (44), (45), and (8), we
obtain

Λ2 ≈ 2.269 × 1032 TeV2, (49)

Λ2 ≈ 7.665 × 1031 TeV2. (50)

The value (49) is very close to the order of magnitude of the
Planck energy𝐸2𝑝.The result (41) is almost better than that we
found in Section 3.1.1 at 1-loop approximation.The result (50)
certifies the 1-loop result for Λ2.

Table 5: The inferior limit ℎinf for the range of values for ℎ(𝜇)
according to 𝑛𝑡, which is the order of truncation of the expansion
for 𝑓(𝜅).
𝑛𝑡 ℎinf2 0.6340
3 0.6806
4 0.6938
5 0.6983
6 0.6998
7 0.7004
8 0.7006
10 0.7007
50 0.7007
100 0.7007
500 0.7007
1000 0.7007

Table 6: The superior limit 𝑟sup according to 𝑛𝑡, which is the order
of truncation of the expansion for 𝑓(𝜅).
𝑛𝑡 𝑟sup3 0.3054
4 0.3011
5 0.2998
6 0.2995
7 0.2994
8 0.2994
9 0.2993
10 0.2993

𝑀2: Equilibrium Value Method. If we apply 𝑓(𝜅) = ℎ(𝜇) in
(44), we obtain the result ℎ(𝜇) = 0.7599. However, this value,
even though it obeys Ineq. (22), it does not provide a real
value for the Gribov parameter 𝛾2𝑚, according to (45).
𝑀3: Method by Geometric Series. In this case, we will treat the
logarithmas a geometric series. For such aim,we employ once
again (36) and (37) by treating 𝑟 as the ratio of a geometric
series. In this way, we combine (36), (37), and (44) to find

𝑓 (𝜅) = 311
𝑛𝑡∑
𝑛=0
𝑟𝑛 + 102121 (

𝑛𝑡∑
𝑛=0
𝑟𝑛)
2

ln( 𝑛𝑡∑
𝑛=0
𝑟𝑛) , (51)

where 𝑛𝑡 is the truncation order. Now, we must solve the
inequality 0 < 𝑓(𝜅) < 1 to find the range for valid logarithms.
Each 𝑛𝑡 results in an inequality in the form 0 < 𝑟 < 𝑟sup. To
clarify this point, the superior limit 𝑟sup as a function of 𝑛𝑡 is
displayed in Table 6.

The truncation at fourth order works just as good as the
1-loop case because the values for the superior limit for 𝑟 do
not reveal any significant changes. At first sight, we could
work with the interval 0 < 𝑟 < 0.2993; however there
is another constraint due to the Gribov parameter function𝛾2𝑚, according to (46) and (47). The square root in 𝛾2𝑚 only
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has a real solution if 0.7882 < ℎ(𝜇) < 1 or, equivalently,0 < 𝑟 < 0.2117. This interval is actually more restrictive
than the 1-loop treatment.Therefore, we are satisfied with the
value 𝑟 = 0.2117. Hence, using ℎ(𝜇) = 0.7883 in the equation
system formed by (44), (45), and (8), we get

Λ2 ≈ 4.593 × 1031 TeV2,
Λ2 ≈ 1.879 × 1032 TeV2. (52)

On the other hand, for the other extremes, we choose 𝑟 =1.000×10−4 and the same equation system (see (44), (45), and
(8)), we find

Λ2 ≈ 2.269 × 1032 TeV2,
Λ2 ≈ 7.665 × 1031 TeV2. (53)

The values (53) match the first ones that we found using𝑀1.
4.4. The Logarithmic Elimination Option. A straight and
simple manner to simplify the gap equation (45) consists in
setting up all logarithms to zero. For this purpose we can set

𝛾2
𝜇2 = 1√5 . (54)

Thus, (45) can easily be solved, providing 𝑁𝜅2/16𝜋2 ≈
0.4013 and ln(𝜇2/Λ2) ≈ 0.9067. These results leave us with
the following 2-loop values for the energy cut-off and the
renormalized cosmological constant:

Λ2 ≈ 1.066 × 1030 TeV2,
Λ2 ≈ 3.589 × 1031 TeV2. (55)

We remark that, at 1 loop, this strategy is not permitted
because the value for the coupling parameter is found to be
higher than 1; namely,𝑁𝜅2/16𝜋2 = 1.600.
5. Conclusions

TheGribov mass parameter in our theory is the central point
in the development of the induced gravity discussed in [24].
It is responsible for addressing the deformation of the Yang-
Mills theory in the infrared regime to a geometrical theory of
gravity. In this model, the Gribov parameter and the Yang-
Mills coupling constant combine in order to provide the
value of Newtonian constant. In the present work we have
developed 1- and 2-loop estimates to accommodate reliable
values for the prediction of Newtonian constant. Moreover,
the renormalization group scale could also be determined.
Furthermore, a discussion about the cosmological constant
was performed.

Our results show that the experimental value of the
Newtonian constant is a solution of the theory and that the
renormalization group scale always lie around Planck scale, a
good feature for a quantum gravitymodel candidate.We have

also improved the estimates in order to attain the best values
for these constants, at 1 and 2 loops.

Concerning the cosmological constant problem, our
model provides an inherent gravitational cosmological con-
stant. Following [48, 49], it would be nice that the sum of
such constant with the one predicted byQFT for the Standard
Model vacuum [47] would compensate each other and
provide a very small value for the observational cosmological
constant. However, although very high, our cosmological
constant differs from the QFT prediction by a few orders in
magnitude.

Of course,much has to be investigated. For instance, since
the emergence of gravity relies on the Gribov parameter and
the soft BRST breaking [31, 32, 36], the Gribov-Zwanziger
refinement [34, 42, 43] should also be considered with all
the extra mass parameters. These extra masses should also
refine the values we have computed in the present work. One
interesting feature that should be mentioned of the theory is
about the renormalized cosmological constant: first of all, at
the quantum level, it is related to theGribov parameter, so it is
a running mass parameter; second, at classical level, its value
does not run anymore. Its huge fixed value takes place at the
classical sector of the theory. This is very important because
it suppresses the quadratic curvature term in (9), at classical
level, ensuring the general relativity limit of the theory, at least
for a torsionless regime.

Appendix

A. The Gribov-Zwanziger Action

We will present here a brief description on the Gribov-
Zwanziger scenario. For the details of technicalities and
fundamental concepts we refer to [25–30, 71, 72].

Quantization of Yang-Mills theories is a hard work.
Initially, the procedure established by Faddeev and Popov
[73] succeeded well in the perturbative regime during the
process of quantizing the gauge fields. However, the Faddeev-
Popov method is not accurate at low energies, where the
system becomes highly nonperturbative. In essence, a gauge
symmetry survives and is manifest at the infrared region.
This is the so-called Gribov ambiguities problem. The way
to treat such ambiguities, as proposed by Gribov, is to look
for a region in the gauge field space without ambiguities and
truncate the Faddeev-Popov path integral to such region.
Such a region is called fundamental modular region. However
the implementation of such region in the Faddeev-Popov
path integral is a highly nontrivial problem with no solution
so far. Nevertheless, the problem can be partially solved by
restricting the path integral to the so-called Gribov region,
which is well defined for only a few gauges such as the Landau
gauge. At the Landau gauge, the Gribov region can be defined
as

Ω = {𝑌𝐴𝜇 , 𝜕𝜇𝑌𝐴𝜇 = 0,𝑀𝐴𝐵 > 0} (A.1)

with 𝐷𝐴𝐵𝜇 = 𝛿𝐴𝐵𝜕𝜇 − 𝑔𝑓𝐴𝐵𝐶𝑌𝐵𝑌𝐶 and𝑀𝐴𝐵 = −𝜕𝜇𝐷𝐴𝐵𝜇 is the
Faddeev-Popov operator. Following, for instance, [28, 29, 71,
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72], the improved gauge fixed Faddeev-Popov action is given
by the Gribov-Zwanziger action:

𝑆GZ = 𝑆𝑌𝑀 + 𝑆𝑔𝑓 + ∫𝑑4𝑥𝛾4𝑔2𝑓𝐴𝐵𝐶𝑌𝐵𝜇𝑀𝐴𝐵𝑓𝐷𝐸𝐶𝑌𝐸𝜇
+ ∫𝑑4𝑥4𝛾4 (𝑁2 − 1) ,

(A.2)

where𝑀𝐴𝐵(𝑥)𝑀𝐵𝐶(𝑥, 𝑦) = 𝛿4(𝑥 − 𝑦)𝛿𝐴𝐶. The nonlocal term
is known as the horizon function and, together with the gap
equation,

𝛿Γ𝛿𝛾2 = 0, (A.3)

ensures that the path integral is inside the Gribov region. In
(A.3), Γ is the quantum action, determined by

𝑒−Γ = ∫ [𝑑Ψ] 𝑒−𝑆GZ . (A.4)

Remarkably, the nonlocal term can be written in local
form with the help of auxiliary fields by means of

𝑒−𝑆ℎ = ∫ [𝑑Φ] 𝑒−𝑆loc , (A.5)

with [𝑑Φ] ≡ [𝑑𝜑][𝑑𝜑][𝑑𝜔][𝑑𝜔] and
𝑆loc = ∫𝑑4𝑥 [−𝜑𝐴𝐶𝜇 𝑀𝐴𝐵𝜑𝐵𝐶𝜇 + 𝜔𝐴𝐶𝜇 𝑀𝐴𝐵𝜔𝐵𝐶𝜇
− 𝛾2𝑔𝑓𝐴𝐵𝐶𝑌𝐴𝜇 (𝜑𝐵𝐶𝜇 + 𝜑𝐵𝐶𝜇 )] ,

(A.6)

where the conjugate complex pair (𝜑𝐴𝐶𝜇 , 𝜑𝐵𝐶𝜇 ) are bosonic
fields and (𝜔𝐴𝐶𝜇 , 𝜔𝐵𝐶𝜇 ) are fermionic fields. Hence, the local
version of the Gribov-Zwanziger path integral is

Z = ∫ [𝑑Ψ] 𝑒−𝑆𝑌𝑀−𝑆𝑔𝑓−𝑆loc−∫𝑑4𝑥4𝛾4(𝑁2−1), (A.7)

with [𝑑Ψ] ≡ [𝑑𝑌][𝑑𝜑][𝑑𝜑][𝑑𝜔][𝑑𝜔][𝑑𝑏][𝑑𝑐][𝑑𝑐].
The quadratic action (10), as mentioned in Section 3, is

obtained from the free part of (A.7). We can straightfor-
wardly observe that the fermionic fields do not contribute
to the quadratic action. It is worth mentioning that many
contributions from condensates [34, 39] also appear in a
refined version of (A.7); however, they are not relevant for the
purposes of this work.

B. The Choice of the Mass Parameter

Although we are satisfied with the results obtained in this
work, one can argue if another parameter could describe
the Newtonian constant and the cosmological constant in a
better way. Since we are not considering any condensation
effect, the other possibility would be 𝜆 rather than 𝛾. Let
us reconsider (14) and rewrite the gap equation taking into
account 𝜆 instead of 𝛾:

𝜆2 = 𝑒5/6 𝜇2
(2𝑁𝜅2)1/2 𝑒

−(4/3)(16𝜋2/𝑁𝜅2). (B.1)

𝜆
2

2 51
𝜇2

Figure 7: Gribov parameter as function of energy scale. The energy
is in units of Λ and the 𝜆2 parameter is in units of 𝜉Λ2.
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2
/𝜅
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Figure 8: The ratio 𝜆2/𝜅2 ≡ (4𝜋𝐺)−1 as function of energy scale 𝜇.
The energy scale is in units of Λ2 and 𝜆2/𝜅2 is in units of 𝜌Λ2.

Manipulating (18) and (B.1) we get

𝜆2 = 𝜉Λ2 ( 𝜇2Λ2)
−35/9

ln1/2 ( 𝜇2Λ2) , (B.2)

with 𝜉 = 𝑒5/6√11/96𝜋2. And (B.2) points again that the
smaller the Gribov parameter, the higher the energy scale.
We can note in Figure 7 the behaviour of the mass parameter𝜆2 when the energy scale rises. Here, we obtain 𝜆2 = 0
when 𝜇 = Λ. There is another troublesome here because the
mass parameter 𝜆2 shows itself with the local maximum at𝜇 = 𝑒9/140Λwhich indicates—before this point—a decreasing
of the mass parameter while the energy scale decreases too.
It is completely antagonistic to its physical behaviour at low
energy regime where we expect a monotonous rising of the
mass parameter while the energy decreases.

From (14), (18), and (19) we get

𝜆2𝜅2 = 𝜌Λ
2 ( 𝜇2Λ2)

−35/9

ln3/2 ( 𝜇2Λ2) , (B.3)

with 𝜌 = (55/192𝜋3)𝑒5/6√11/6. The behaviour of the ratio
given by (B.3) can be illustrated in Figure 8. Figure 8 clearly



12 Advances in High Energy Physics

shows a nonexistence of a transition because an Inonu-
Wigner contraction cannot happen. The vanishing limit of𝜆2/𝜅2 only occurs at the origin; hence, no geometric sector
would appear. Then, we made the right choice to employ the
Gribov parameter 𝛾 in order to fit with our theory.
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Endnotes

1. Even though most of the material in this section can
be found in previous articles [24, 45, 46], some new
aspects are not fully discussed there.

2. Although we did not specify the gauge fixing con-
straint, the Gribov problem is a pathological issue
plaguing all covariant gauges [26].Nevertheless, we can
anticipate for the reader thatwewill employ the Landau
gauge fixing in this entire work.

3. The renormalized cosmological constant has associ-
ated with the ansatz of the theory; that is,Λ2obs = Λ2qft+Λ2.

4. From now on, for the sake of simplicity, we use tenso-
rial notation with Greek indices indicating spacetime
coordinates and Latin indices to gauge group.

5. See Appendix A and the references therein for details.

6. At this level, we are not considering the refinedGribov-
Zwanziger action [30].

7. Strictly speaking, (11) does not define the effective
action since there are no source terms. In fact, Γ(1) is
rather a field-independent shift of the actual 1-loop
effective action. This is sufficient for our purposes but
does not constitute the full effective action. Neverthe-
less, since there is no formal term for it, we will call
it simply as effective action in this work. We expect no
confusion for the reader.

8. We notice that 𝑟 < 1 due to Ineq. (22).
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