Hoeffding spaces and Specht modules

Giovanni PECCATI* and Jean-Renaud PYCKE ${ }^{\dagger}$

April 20, 2009

Abstract

It is proved that each Hoeffding space associated with a random permutation (or, equivalently, with extractions without replacement from a finite population) carries an irreducible representation of the symmetric group, equivalent to a two-block Specht module.

Key words - Exchangeability; Finite Population Statistics; Hoeffding Decompositions; Irreducible Representations; Random Permutations; Specht Modules; Symmetric Group.
MSC Classification - 05E10; 60C05

1 Introduction

Let $X_{(m)}=\left(X_{1}, \ldots, X_{m}\right)(m \geq 2)$ be a sample of random observations. According e.g. to [10], we say that $X_{(m)}$ is Hoeffding-decomposable if every symmetric statistic of $X_{(m)}$ can be written as an orthogonal sum of symmetric U-statistics with degenerated kernels of increasing orders. In the case where $X_{(m)}$ is composed of i.i.d. random variables, Hoeffding decompositions are a classic and very powerful tool for obtaining limit theorems, as $m \rightarrow \infty$, for sequences of general symmetric statistics of the vectors $X_{(m)}$. See e.g. [13], or the references indicated in the introduction to [10], for further discussions in this direction.

In recent years, several efforts have been made in order to provide a characterization of Hoeffding decompositions associated with exchangeable (and not necessarily independent) vectors of observations. See El-Dakkak and Peccati [8] and Peccati [10] for some general statements; see Bloznelis [2], Bloznelis and Götze [3, 4] and Zhao and Chen [15] for a comprehensive analysis of Hoeffding decompositions associated with extractions without replacement from a finite population.

In the present note, we are interested in building a new explicit connection between the results of [3, 4, (15] and the irreducible representations of the symmetric groups $\mathfrak{S}_{n}, n \geq 2$. In particular, our main result is the following.

Theorem 1 Let $1 \leq m \leq n / 2$, and let $X_{(m)}=(X(1), \ldots, X(m))$ be a random vector obtained as the first m extractions without replacement from a population of n individuals. For $l=1, \ldots, m$, let $S H_{l}$ be the lth symmetric Hoeffding space associated with $X_{(m)}$ (that is, $S H_{l}$ is the vector space of all symmetric U-statistics with a completely degenerated kernel of order l). Then, for every $l=1, \ldots, m$, there exists an action of \mathfrak{S}_{n} on $S H_{l}$, such that $S H_{l}$ is an irreducible representation of \mathfrak{S}_{n}. This representation is equivalent to a Specht module of shape $(n-l, l)$.

[^0]We refer the reader to the forthcoming Section 2 for some basic results on the representations of the symmetric group and two-block Specht modules. We will see that Theorem 1 provides de facto a new probabilistic characterization of two-block Specht modules, as well as some original insights into the combinatorial structure of Hoeffding spaces. Observe that the case where $n / 2<m \leq n$ can be reduced to the framework of present paper by standard arguments (see for instance [3, Proposition 1]). One should note that a connection between decompositions of symmetric statistics and representations of \mathfrak{S}_{n} is already sketched in Diaconis' celebrated monograph [5: in particular, the results of the present paper can be regarded as a probabilistic counterpart to the spectral analysis on homogeneous spaces developed in Chapters 7 and 8 of [5].

The rest of this note is organized as follows. In Section 2 we provide some background on the representations of the symmetric group. Sections 3 and 4 focus, respectively, on uniform random permutations and Hoeffding spaces. Section 5 contains the statements and proofs of our main results.

2 Background

For future reference, we recall that a k-block partition of the integer $n \geq 2$ is a k-dimensional vector of the type $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, such that: (i) each λ_{i} is a strictly positive integer, (ii) $\lambda_{i} \geq \lambda_{i+1}$, and (iii) $\lambda_{1}+\cdots+\lambda_{k}=n$. One sometimes writes $\lambda \vdash n$ to indicate that λ is a partition of n.

We also write $[n]=\{1, \ldots, n\}$ to indicate the set of the first n positive integers. Finally, given a finite set A, we denote by \mathfrak{S}_{A} the group of all permutations of A, and we use the shorthand notation $\mathfrak{S}_{[n]}=\mathfrak{S}_{n}, n \geq 1$. In other words, when writing $x \in \mathfrak{S}_{A}$, we mean that

$$
x: A \rightarrow A: a \mapsto x(a)
$$

is a bijection from A to itself.

2.1 Some structures associated with two-block partitions

We now introduce some classic definitions and notation related to tableaux and tabloids; see Sagan [12, Chapter 2] (from which we borrow most of our terminology and notational conventions) for any unexplained concept or result. For the rest of the section, we fix two integers n and m, such that $1 \leq m \leq n / 2$. Observe that $n-m \geq m$, and therefore the vector ($n-m, m$) is a two-block partition of the integer n.

Remark. It is sometimes useful to adopt a graphical representation of tableaux and tabloids by means of Ferrer diagrams. Since we uniquely deal with two-block tableaux and tabloids, and for the sake of brevity, in what follows we shall not make use of this representation. See e.g. [12, Section 2.1] for a complete discussion of this point.

The following objects will be needed in the sequel.

- A (Young) tableau t of shape $(n-m, m)$ is a pair $t=\left(i_{(n-m)} ; j_{(m)}\right)$ of ordered vectors of the type $i_{(n-m)}=\left(i_{1}, \ldots, i_{n-m}\right), j_{(m)}=\left(j_{n-m+1}, \ldots, j_{n}\right)$ such that $\left\{i_{1}, \ldots, i_{n-m}, j_{n-m+1}, \ldots, j_{n}\right\}=$ [n], that is, the union of the entries of $i_{(n-m)}$ and $j_{(m)}$ coincides with the first n integers (with no repetitions).
- The set of the columns of the tableau $t=\left(i_{(n-m)} ; j_{(m)}\right)$, noted $\left\{C_{1}, \ldots, C_{n-m}\right\}$, is the collection of (i) the ordered pairs

$$
\begin{equation*}
C_{1}=\left(i_{1}, j_{n-m+1}\right), \ldots, C_{m}=\left(i_{m}, j_{n}\right) \tag{1}
\end{equation*}
$$

(that is, the pairs composed of the first m entries of $i_{(n-m)}$ and the entries of $\left.j_{(m)}\right)$, and (ii) the remaining singletons of $i_{(n-m)}$, that is,

$$
\begin{equation*}
C_{m+1}=i_{m+1}, \ldots, C_{n-m}=i_{n-m} . \tag{2}
\end{equation*}
$$

- For $l=1, \ldots, n$, we write $V^{(n-l, l)}$ to indicate the class of the $\binom{n}{l}$ subsets of $[n]$ of size equal to l. This slightly unusual notation has been chosen in order to stress the connection between the set $V^{(n-l, l)}$ and the \mathfrak{S}_{n}-modules $M^{(n-l, l)}(l \leq m)$ to be defined below. The elements of $V^{(n-l, l)}$ are denoted by $\mathbf{a}_{(l)}, \mathbf{b}_{(l)}, \mathbf{i}_{(l)}, \mathbf{j}_{(l)}, \ldots$, and so on.
- A tabloid of shape $(n-m, m)$ is a two-block partition of the set [n], of the type

$$
\begin{equation*}
\gamma=\left\{\mathbf{a}_{(n-m)} ; \mathbf{b}_{(m)}\right\}=\left\{\left\{a_{1}, \ldots, a_{n-m}\right\} ;\left\{b_{n-m+1}, \ldots, b_{n}\right\}\right\} \tag{3}
\end{equation*}
$$

Of course, a tabloid γ of shape $(n-m, m)$ as in (3) is completely determined by the specification of set $\mathbf{b}_{(m)}=\left\{b_{n-m+1}, \ldots, b_{n}\right\} \in V^{(n-m, m)}$; to emphasize this dependence, we shall sometimes write $\gamma=\gamma\left(\mathbf{b}_{(m)}\right)$. Note that the mapping $\mathbf{b}_{(m)} \mapsto \gamma\left(\mathbf{b}_{(m)}\right)$ is a bijection between $V^{(n-m, m)}$ and the class of all tabloids of shape $(n-m, m)$.

- Given a tableau $t=\left(i_{(n-m)} ; j_{(m)}\right)$ of shape $(n-m, m)$, we write $\{t\}=\left\{\mathbf{i}_{(n-m)} ; \mathbf{j}_{(m)}\right\}$ (observe the boldface!) to indicate the tabloid defined by $\mathbf{i}_{(n-m)}=\left\{i_{1}, \ldots, i_{n-m}\right\}$ and $\mathbf{j}_{(m)}=$ $\left\{j_{n-m+1}, \ldots, j_{n}\right\}$. In other words, $\{t\}$ is obtained as the two-block partition composed of the collection of the entries of $i_{(n-m)}$ and the collection of the entries of $j_{(m)}$. With the notation introduced at the previous point, one has that $\{t\}=\gamma\left(\mathbf{j}_{(m)}\right)$.

Example. Let $n=5$ and $m=2$. Then, a tableau of shape (3,2) is $t=\left(i_{(3)} ; j_{(2)}\right)$, where $i_{(3)}=(2,1,3)$ and $j_{(2)}=(5,4)$. The columns of t are $C_{1}=(2,5), C_{2}=(1,4)$ and $C_{3}=3$. The associated tabloid is $\{t\}=\left\{\mathbf{i}_{(3)} ; \mathbf{j}_{(2)}\right\}$, where $\mathbf{i}_{(3)}=\{1,2,3\} \in V^{(2,3)}$ and $\mathbf{j}_{(2)}=\{4,5\} \in V^{(3,2)}$.

2.2 Actions of \mathfrak{S}_{n}

Fix as before $n \geq 2$ and $1 \leq m \leq n / 2$.
 t is defined as follows:

$$
\begin{equation*}
x t=\left(x i_{(n-m)} ; x j_{(m)}\right), \tag{4}
\end{equation*}
$$

where $x i_{(n-m)}=\left(x\left(i_{1}\right), \ldots, x\left(i_{n-m}\right)\right)$ and $x j_{(m)}=\left(x\left(j_{n-m+1}\right), \ldots, x\left(j_{n}\right)\right)$.
Actions on tabloids. For every $x \in \mathfrak{S}_{n}$ and every tabloid $\gamma\left(\mathbf{b}_{(m)}\right)=\left\{\mathbf{a}_{(n-m)} ; \mathbf{b}_{(m)}\right\}$, we set

$$
\begin{align*}
x \gamma\left(\mathbf{b}_{(m)}\right) & =x\left\{\left\{a_{1}, \ldots, a_{n-m}\right\} ;\left\{b_{n-m+1}, \ldots, b_{n}\right\}\right\} \tag{5}\\
& =\left\{\left\{x\left(a_{1}\right), \ldots, x\left(a_{n-m}\right)\right\} ;\left\{x\left(b_{n-m+1}\right), \ldots, x\left(b_{n}\right)\right\}\right\}
\end{align*}
$$

In particular, for every tableau t, one has $x\{t\}=\{x t\}$.
 $x \in \mathfrak{S}_{n}$ and for every $\mathbf{j}_{(m)}=\left\{j_{1}, \ldots, j_{m}\right\} \in V^{(n-m, m)}$,

$$
\begin{equation*}
x \mathbf{j}_{(m)}=\left\{x\left(j_{1}\right), \ldots, x\left(j_{m}\right)\right\} . \tag{6}
\end{equation*}
$$

Remark. By combining the above introduced notational conventions, one sees that, for every $x \in \mathfrak{S}_{n}$ and for every $\mathbf{j}_{(m)}=V^{(n-m, m)}$,

$$
x \gamma\left(\mathbf{j}_{(m)}\right)=\gamma\left(x \mathbf{j}_{(m)}\right),
$$

that is, x transforms the tabloid generated by $\mathbf{j}_{(m)}$ into the tabloid generated by $x \mathbf{j}_{(m)}$. Also, if $t=\left(i_{(n-m)} ; j_{(m)}\right)$, then, for every $x \in \mathfrak{S}_{n}$,

$$
x\{t\}=\{x t\}=x \gamma\left(\mathbf{j}_{(m)}\right)=\gamma\left(x \mathbf{j}_{(m)}\right) .
$$

The complex vector space of all complex-valued functions on $V^{(n-m, m)}$ is written $L\left(V^{(n-m, m)}\right)$. Plainly, the space $L\left(V^{(n-m, m)}\right)$ has dimension $\binom{n}{m}$, and a basis of $L\left(V^{(n-m, m)}\right)$ is given by the collection $\left\{\mathbf{1}_{\mathbf{j}_{(m)}}: \mathbf{j}_{(m)} \in V^{(n-m, m)}\right\}$, where $\mathbf{1}_{\mathbf{j}_{(m)}}\left(\mathbf{k}_{(m)}\right)=1$ if $\mathbf{k}_{(m)}=\mathbf{j}_{(m)}$ and $\mathbf{1}_{\mathbf{j}_{(m)}}\left(\mathbf{k}_{(m)}\right)=0$ otherwise. The group \mathfrak{S}_{n} acts on $L\left(V^{(n-m, m)}\right)$ as follows: for $x \in \mathfrak{S}_{n}, \mathbf{k}_{(m)} \in V^{(n-m, m)}$ and $f \in L\left(V^{(n-m, m)}\right)$,

$$
\begin{align*}
x f\left(\mathbf{k}_{(m)}\right) & =f\left(x^{-1} \mathbf{k}_{(m)}\right), \text { so that, in particular, } \tag{7}\\
x \mathbf{1}_{\mathbf{j}_{(m)}} & =\mathbf{1}_{x \mathbf{j}_{(m)}}, \quad \mathbf{j}_{(m)} \in V^{(n-m, m)} .
\end{align*}
$$

When endowed with the action (17), the set $L\left(V^{(n-m, m)}\right)$ carries a representation of \mathfrak{S}_{n}. In this case, we say that $L\left(V^{(n-m, m)}\right)$ is the permutation module associated with $(n-m, m)$, and we use the customary notation $L\left(V^{(n-m, m)}\right)=M^{(n-m, m)}$ (see [12, Section 2.1]).

Remark. Our definition of the permutation modules $M^{(n-m, m)}$ slightly differs from the one given e.g. in [12, Definition 2.1.5]. Indeed, we define $M^{(n-m, m)}$ as the vector space spanned by all indicators of the type $\mathbf{1}_{\mathbf{j}_{(m)}}, \mathbf{j}_{(m)} \in V^{(n-m, m)}$, endowed with the action (77), whereas in the above quoted reference $M^{(n-m, m)}$ is the space of all formal linear combinations of tabloids of shape ($n-m, m$), endowed with the canonical extension of the action (5). The two definitions are equivalent, in the sense that they give rise to two isomorphic \mathfrak{S}_{n}-modules. We will see that the definition of $M^{(n-m, m)}$ chosen in this paper allows a more transparent connection with the theory of U-statistics based on random permutations.

2.3 A decomposition of $M^{(n-m, m)}$

We recall that the dual of \mathfrak{S}_{n} coincides with the set $\left\{\left[S^{\lambda}\right]: \lambda \vdash n\right\}$, where $\left[S^{\lambda}\right]$ is the equivalence class of all irreducible representations of \mathfrak{S}_{n} that are equivalent to a Specht module of index λ (see again [12, Section 2.1]). For every $\lambda \vdash n$, we will denote by χ^{λ} the character associated with the class $\left[S^{\lambda}\right]$, whereas D_{λ} is the associate dimension. Observe that $\chi^{\lambda} \in \mathbb{Z}$ for every λ
(see e.g. [14, Section 13.1]), and D_{λ} equals the number of standard tableaux (that is, tableaux with increasing rows and columns) of shape λ. In particular $D_{(n-1,1)}=n-1$ (see [12, Section 2.5]).

The next result ensures that the module $M^{(n-m, m)}$ is reducible. This fact is well-known (see e.g. [9, Example 14.4, p. 52] or [5, pp. 134-139]), and a proof is added here for the sake of completeness.

Proposition 2 There exists a unique decomposition of $M^{(n-m, m)}$ of the type

$$
\begin{equation*}
M^{(n-m, m)}=K_{0}^{(n-m, m)} \oplus K_{1}^{(n-m, m)} \oplus \cdots \oplus K_{m}^{(n-m, m)} \tag{8}
\end{equation*}
$$

Where the vector spaces (endowed with the action of \mathfrak{S}_{n} described in (7)) $K_{l}^{(n-m, m)}$ are such that $K_{0}^{(n-m, m)} \in\left[S^{(n)}\right]$, and $K_{l}^{(n-m, m)} \in\left[S^{(n-l, l)}\right], l=1, \ldots, m$.

Proof. It is sufficient to prove that

$$
M^{(n-m, m)} \cong S^{(n)} \oplus \bigoplus_{l=1}^{m} S^{(n-l, l)},
$$

where " \cong " indicates equivalence between representations of \mathfrak{S}_{n}. According Young's Rule (see e.g. [12, Th. 2.11.2]), we know that

$$
M^{(n-m, m)} \cong S^{(n)} \oplus \bigoplus_{l=1}^{m} K_{n, l, m} S^{(n-l, l)}
$$

where the integers $K_{n, l, m}$ (known as Kostka numbers) count the number of generalized semistandard tableaux of shape $(n-l, l)$ and type $(n-m, m)$. This is equivalent to saying $K_{n, l, m}$ counts the ways of arranging $n-m$ copies of 1 and m copies of 2 in a Ferrer diagram of shape ($n-l, l$), in such a way that the rows of the diagram are weakly increasing and the columns are strictly increasing. Since there is just one way of doing this, one infers that $K_{n, l, m}=1$, and the proof is concluded.

Remarks. (i) (Definition of two-block Specht modules) For the sake of completeness, we recall here the definition of the modules $S^{(n)}$ and $S^{(n-m, m)}, 1 \leq m \leq n / 2$. First of all, one has that $S^{(n)}=\mathbb{C}$, and therefore $\left[S^{(n)}\right]$ is the class of representations of \mathfrak{S}_{n} that are equivalent to the trivial representation. Now fix $1 \leq m \leq n / 2$. For every tableau $t=\left(i_{(n-m)} ; j_{(m)}\right)$, define the columns C_{1}, \ldots, C_{n-m} according to (11) and (2). Then, (a) for every $l=1, \ldots, m$, write $\kappa_{C_{l}}$ for the formal operator

$$
\kappa_{C_{l}}=\text { Id. }-\left(i_{l} \rightarrow j_{l}\right),
$$

where $\left(i_{l} \rightarrow j_{l}\right)$ indicates the element of \mathfrak{S}_{n} given by the translation sending i_{l} to j_{l}, and (b) define the composed operator $\kappa_{t}=\kappa_{C_{1}} \kappa_{C_{2}} \cdots \kappa_{C_{m}}$. Then, the Specht module of shape ($n-m, m$) is the \mathfrak{S}_{n}-invariant subspace of $M^{(n-m, m)}$ spanned by the elements of the type

$$
\begin{equation*}
\kappa_{t} \mathbf{1}_{\mathbf{j}_{(m)}} \text {, where } t=\left(i_{(n-m)} ; j_{(m)}\right) \text { is a tableau; } \tag{9}
\end{equation*}
$$

note that, in the formula (9), t and $\mathbf{j}_{(m)}$ are related by the fact that $t=\left(i_{(n-m)} ; j_{(m)}\right)$, and $\{t\}=\left\{\mathbf{i}_{(n-m)} ; \mathbf{j}_{(m)}\right\}$.
(ii) Consider for instance the case $n=6$ and $m=2$, and select the tableau $t=\{(1,2,3,4) ;(5,6)\}$. One has that $\mathbf{j}_{(2)}=\{5,6\}$,

$$
\kappa_{t}=(\text { Id. }-(1 \rightarrow 5))(\text { Id. }-(2 \rightarrow 6)),
$$

and one deduces that an element of $S^{(4,2)}$ is given by

$$
\kappa_{t} \mathbf{1}_{\mathbf{j}_{(2)}}=\mathbf{1}_{\{5,6\}}-\mathbf{1}_{\{1,6\}}-\mathbf{1}_{\{5,2\}}+\mathbf{1}_{\{1,2\}} .
$$

(iii) By recurrence, one deduces from Proposition 2 that the dimension of $K_{l}^{(n-m, m)}$, and therefore of $S^{(n-l, l)}$, is $D_{(n-l, l)}=\binom{n}{l}-\binom{n}{l-1}, l \leq n / 2$.
(iv) From the previous discussion, we infer that $K_{0}^{(n-m, m)}=S^{(n)}=\mathbb{C}$.

3 Uniform random permutations

Fix $n \geq 2$. We consider a uniform random permutation X of $[n]$. This means that $X=X(\omega)$ is a random element with values in \mathfrak{S}_{n}, defined on some finite probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and such that, $\forall x \in \mathfrak{S}_{n}, \mathbf{P}(X=x)=(n!)^{-1}$. For $1 \leq m \leq n / 2$ as before, we will write $X_{(m)}(\omega)=(X(1), \ldots, X(m))(\omega)$, and also, for every $y \in \mathfrak{S}_{n},(X y)_{(m)}=\{X y(1), \ldots, X y(m)\}$. Observe that $X y$ indicates the product of the deterministic permutation y with the random permutation X. It is clear that $X_{(m)}$ is an exchangeable vector, having the law of the first m extractions without replacement from the set $[n]$ (see e.g. Aldous [1 for any unexplained notion about exchangeability). A random variable T is called a (complex-valued) symmetric statistic of $X_{(m)}$ if T has the form

$$
T=f(\{X(1), \ldots, X(m)\}), \quad \text { for some } f \in L\left(V^{(n-m, m)}\right)
$$

In other words, a symmetric statistic is a random variable deterministically depending on the realization of $X_{(m)}$ as a non-ordered set. Note that, by a slight abuse of notation, in what follows we will write $f(\{X(1), \ldots, X(m)\})=f\left(X_{(m)}\right)$ (other analogous conventions will be tacitly adopted).

We also write $L_{s}^{2}\left(X_{(m)}\right)$ to indicate the Hilbert space of symmetric statistics of $X_{(m)}$, endowed with the inner product

$$
\begin{align*}
\left\langle f_{1}\left(X_{(m)}\right), f_{2}\left(X_{(m)}\right)\right\rangle_{\mathbf{P}} & =\mathbf{E}\left[f_{1}\left(X_{(m)}\right) \overline{f_{2}\left(X_{(m)}\right)}\right] \tag{10}\\
& =\frac{1}{n!} \sum_{x \in \mathfrak{S}_{n}} f_{1}(x\{1, \ldots, m\}) \overline{f_{2}(x\{1, \ldots, m\})} \tag{11}\\
& =\binom{n}{m}^{-1} \sum_{\mathbf{k}_{(m)} \in V^{(n-m, m)}} f_{1}\left(\mathbf{k}_{(m)}\right) \overline{f_{2}\left(\mathbf{k}_{(m)}\right)} .
\end{align*}
$$

Since the sum in (11) runs over the whole set \mathfrak{S}_{n}, it is clear that $\langle\cdot, \cdot\rangle_{\mathbf{P}}$ induces a \mathfrak{S}_{n}-invariant inner product on $M^{(n-m, m)}$ given by

$$
\begin{equation*}
\left\langle f_{1}, f_{2}\right\rangle_{(n-m, m)}=\left\langle f_{1}\left(X_{(m)}\right), f_{2}\left(X_{(m)}\right)\right\rangle_{\mathbf{P}}, \quad f_{1}, f_{2} \in M^{(n-m, m)} ; \tag{12}
\end{equation*}
$$

in particular, the \mathfrak{S}_{n}-invariance of $\langle\cdot, \cdot\rangle_{(n-m, m)}$ yields that the spaces $K_{i}^{(n-m, m)}$ and $K_{j}^{(n-m, m)}$ are orthogonal with respect to $\langle\cdot, \cdot\rangle_{(n-m, m)}$ for every $0 \leq i \neq j \leq m$.

With every $f \in M^{(n-m, m)}$, we associate the \mathfrak{S}_{n}-indexed stochastic process

$$
Z_{f}(x, \omega)=Z_{f}(x):=f\left(x X_{(m)}\right), \quad x \in \mathfrak{S}_{n},
$$

and, for every $\lambda \vdash n$, we define

$$
\begin{align*}
Z_{f}^{\lambda}(x, \omega) & =Z_{f}^{\lambda}(x):=\frac{D_{\lambda}}{n!} \sum_{g \in \mathfrak{S}_{n}} \chi^{\lambda}(g) f\left(\left(g^{-1} x\right) X_{(m)}\right) \tag{13}\\
f^{\lambda}\left(\mathbf{l}_{(m)}\right) & =\frac{D_{\lambda}}{n!} \sum_{x \in \mathfrak{S}_{n}} \chi^{\lambda}(x) f\left(x^{-1} \mathbf{l}_{(m)}\right), \quad \mathbf{l}_{(m)} \in V^{(n-m, m)},
\end{align*}
$$

so that $f^{\lambda}\left(X_{(m)}\right)=Z_{f}^{\lambda}(e)$, where e is the identity element in \mathfrak{S}_{n}.
The following facts will be used in the subsequent analysis. The proofs are standard and omitted - see e.g. the results from [11] and [14] evoked below for further details.
(a) Since (8) holds, $f^{\lambda}=0$ for every $f \in M^{(n-m, m)}$ if and only if λ is different from $(n-l, l)$, $l=0, \ldots, m$ (see e.g. [14, Theorem 8, Section 2.6]) and moreover: $f^{(n)} \in K_{0}^{(n-m, m)}$ and, for every $l=1, \ldots, m, f^{(n-l, l)} \in K_{l}^{(n-m, m)}$ (as defined in (8l)).
(b) Thanks to exchangeability, for every $f \in M^{(n-m, m)}$ the class

$$
\left\{Z_{f}, Z_{f}^{(n-l, l)}: l=0, \ldots, m\right\},
$$

has a \mathfrak{S}_{n}-invariant law, with respect to the canonical action of \mathfrak{S}_{n} on itself (i.e., $x \cdot y=x y$, $x, y \in \mathfrak{S}_{n}$).
(c) Due to the orthogonality of isotypical spaces (see e.g. (see [7, Theorem 4.4.5], and also [11, Theorem 4-3]), for every $x, y \in \mathfrak{S}_{n}, f, h \in M^{(n-m, m)}$ and $0 \leq i \neq j \leq m$,

$$
\begin{align*}
& \mathbf{E}\left[Z_{f}^{(n-i, i)}(x) \overline{Z_{h}^{(n-j, j)}(y)}\right]=\mathbf{E}\left[f^{(n-i, i)}\left(x X_{(m)}\right) \overline{h^{(n-j, j)}\left(y X_{(m)}\right)}\right] \tag{14}\\
& \mathbf{E}\left[f^{(n-i, i)}\left((X x)_{(m)}\right) \overline{h^{(n-j, j)}\left((X y)_{(m)}\right)}\right]=0, \tag{15}
\end{align*}
$$

where, here and in the sequel (by a slight abuse of notation) we use the convention ($n-$ $0,0)=(n)$.
(d) Due to [11, Theorem 4-4] and point (a) above, for every $x \in \mathfrak{S}_{n}$ and every $f \in M^{(n-m, m)}$,

$$
\begin{equation*}
Z_{f}(x)=Z_{f}^{(n)}(x)+\sum_{l=1}^{m} Z_{f}^{(n-l, l)}(x) \tag{16}
\end{equation*}
$$

where $Z_{f}^{(n)}(x)=\mathbf{E}\left[Z_{f}(x)\right]=\mathbf{E}\left[f\left(X_{(m)}\right)\right]$. In particular,

$$
\begin{equation*}
f\left(X_{(m)}\right)=\mathbf{E}\left[f\left(X_{(m)}\right)\right]+\sum_{l=1}^{m} f^{(n-l, l)}\left(X_{(m)}\right) \tag{17}
\end{equation*}
$$

and therefore, for every $f, h \in M^{(n-m, m)}$,

$$
\begin{equation*}
\mathbf{E}\left[f\left(X_{(m)}\right) \overline{h\left(X_{(m)}\right)}\right]=\mathbf{E}\left[f\left(X_{(m)}\right)\right] \overline{\mathbf{E}\left[h\left(X_{(m)}\right)\right]}+\sum_{l=1}^{m} \mathbf{E}\left[f^{(n-l, l)}\left(X_{(m)}\right) \overline{h^{(n-l, l)}\left(X_{(m)}\right)}\right] \tag{18}
\end{equation*}
$$

(e) Due to [11, Theorem 5-1], for every $0 \leq i \neq j \leq m$ and $f, h \in M^{(n-m, m)}$,

$$
\begin{equation*}
\sum_{x \in \mathfrak{S}_{n}} Z_{f}^{(n-i, i)}(x, \omega) \overline{Z_{h}^{(n-j, j)}(x, \omega)}=\sum_{x \in \mathfrak{S}_{n}} f^{(n-i, i)}\left(x X_{(m)}\right) \overline{h^{(n-j, j)}\left(x X_{(m)}\right)}=0 \tag{19}
\end{equation*}
$$

4 Hoeffding spaces

We now define a class of subspaces of $L_{s}^{2}\left(X_{(m)}\right)$ (the notation is the same as in [8, 10]): $S U_{0}=\mathbb{C}$, and, for $l=1, \ldots, m, S U_{l}$ is the vector subspace generated by the functionals of $X_{(m)}$ of the type

$$
\begin{equation*}
T_{\phi}\left(X_{(m)}\right)=\sum_{\left\{k_{1}, \ldots, k_{l}\right\} \in V^{(m-l, l)}} \phi\left(X\left(k_{1}\right), \ldots, X\left(k_{l}\right)\right), \tag{20}
\end{equation*}
$$

for some $\phi \in L\left(V^{(n-l, l)}\right)$. A random variable such as (20) is called a U-statistic based on $X_{(m)}$, with a symmetric kernel ϕ of order l. One has that $S U_{l} \subset S U_{l+1}$ (see e.g. [10]) and $S U_{m}=L_{s}^{2}\left(X_{(m)}\right)$. The collection of the symmetric Hoeffding spaces associated to $X_{(m)}$, noted $\left\{S H_{l}: l=0, \ldots, m\right\}$ is defined as follows: $S H_{0}=S U_{0}$, and

$$
S H_{l}=S U_{l} \cap S U_{l-1}^{\perp},
$$

where the symbol \perp means orthogonality with respect to the inner product $\langle\cdot, \cdot\rangle_{\mathbf{P}}$ defined in (10), so that

$$
L_{s}^{2}\left(X_{(m)}\right)=\bigoplus_{l=0}^{m} S H_{l}
$$

where the direct sum \bigoplus is again in the sense of $\langle\cdot, \cdot\rangle_{\mathbf{P}}$.
Following [3, Section 2], we define the real coefficients

$$
\begin{align*}
d_{l, j} & =\prod_{r=j}^{l-1} \frac{n-r}{n-r-j}, \quad l=2,3, \ldots, m, 1 \leq j \leq l-1 \tag{21}\\
d_{l, l} & =N_{l, l}=1, \quad l=1, \ldots, m \\
N_{l, j} & =-\sum_{i=j}^{l-1}\binom{l-j}{i-j} d_{l, i} N_{i, j}, \quad l=2,3, \ldots, m, \quad 1 \leq j \leq l-1 .
\end{align*}
$$

The following result can be proved by using the content of [3, Section 2], or as a special case of [10, Theorem 11].

Proposition 3 Keep the assumptions and notation of this section. Then, for $l=1, \ldots, m$, the following assertions are equivalent:
(i) $f\left(X_{(m)}\right) \in S H_{l}$;
(ii) there exists $\phi \in L\left(V^{(n-l, l)}\right)$ such that

$$
\begin{equation*}
f\left(X_{(m)}\right)=\sum_{\left\{k_{1}, \ldots, k_{l}\right\} \in V^{(m-l, l)}} \phi\left(X\left(k_{1}\right), \ldots, X\left(k_{l}\right)\right), \tag{22}
\end{equation*}
$$

and

$$
\mathbf{E}[\phi(X(1), \ldots, X(l)) \mid X(1), \ldots, X(l-1)]=0 .
$$

Moreover, for every $h\left(X_{(m)}\right) \in L_{s}^{2}\left(X_{(m)}\right)$, the orthogonal projection of $h\left(X_{(m)}\right)$ on $S H_{l}$, $l=1, \ldots, m$, is given by

$$
\operatorname{proj}\left(h\left(X_{(m)}\right) \mid S H_{l}\right)=\sum_{\left\{k_{1}, \ldots, k_{l}\right\} \in V^{(m-l, l)}} \phi_{h}^{(l)}\left(X\left(k_{1}\right), \ldots, X\left(k_{l}\right)\right),
$$

where, for every $\left\{j_{1}, \ldots, j_{l}\right\} \in V^{(n-l, l)}$,

$$
\begin{align*}
& \phi_{h}^{(l)}\left(j_{1}, . ., j_{l}\right) \tag{23}\\
&= d_{m, l} \sum_{a=1}^{l} N_{l, a} \sum_{1 \leq i_{1}<\ldots<i_{a} \leq l} \\
& \mathbf{E}\left[h\left(X_{(m)}\right)-\mathbf{E}\left(h\left(X_{(m)}\right)\right) \mid X(1)=j_{i_{1}}, \ldots, X(a)=j_{i_{a}}\right] .
\end{align*}
$$

The kernel ϕ of the U-statistic $f\left(X_{(m)}\right)$ appearing in (22) is said to be completely degenerated. Completely degenerated kernels are related to the notion of weak independence in 10 , Theorem 6]. Note that, in the above quoted references, the content of Proposition 3 is proved for real valued symmetric statistics (the extension of such results to complex random variables is immediate: just consider separately the real and the imaginary parts of each statistic). Formula (23) completely characterizes the symmetric Hoeffding spaces associated to $X_{(m)}$: it can be obtained by recursively applying an appropriate version of the Möbius inversion formula (see e.g. [12, Exercise 18, Section 5.6]), on the lattice of the subsets of [n] (see also [10, Theorem 11], for a generalization of (23) to the case of Generalized Urn Sequences). In the next section we state and prove the main result of this note, that is, that the spaces $S H_{l}, l=1, \ldots, m$, admit a further algebraic characterization in terms of Specht modules.

5 Hoeffding spaces and two-blocks Specht modules

5.1 Main results and some consequences

The main achievement of this note is the following statement, which is a more precise reformulation of Theorem 1, as stated in the Introduction. The proof is deferred to Section 5.2 ,

Theorem 4 Under the above notation and assumptions, for every $f\left(X_{(m)}\right) \in L_{s}^{2}\left(X_{(m)}\right)$ and every $l=0,1, \ldots, m$, the following assertions are equivalent:

1. $f\left(X_{(m)}\right) \in S H_{l}$;
2. $f \in K_{l}^{(n-m, m)}$, where the \mathfrak{S}_{n}-module $K_{l}^{(n-m, m)}$ is defined through formula (8) (in particular, $\left.K_{l}^{(n-m, m)} \in\left[S^{(n-l, l)}\right]\right)$.

We now list some consequences of Theorem 4. They can be obtained by properly combining Proposition 3 with the five facts (a)-(e), as listed at the end of Section 3 .

Corollary 5 Under the above notation and assumptions,

1. for every $l=1, \ldots, m, f \in M^{(n-m, m)}$ and $\mathbf{i}_{(m)}=\left\{i_{1}, \ldots, i_{m}\right\} \in V^{(n-m, m)}$,

$$
\begin{align*}
& f^{(n-l, l)}\left(\mathbf{i}_{(m)}\right) \tag{24}\\
& =\frac{D_{(n-l, l)}}{n!} \sum_{x \in \mathfrak{S}_{n}} \chi^{(n-l, l)}(x) f\left(x^{-1} \mathbf{i}_{(m)}\right) \tag{25}\\
& =\sum_{\left\{i_{1}, \ldots, i_{l}\right\} \subseteq \mathbf{i}_{(m)}} d_{m, l} \sum_{a=1}^{l} N_{l, a} \times \\
& \quad \sum_{1 \leq s_{1}<\ldots<s_{a} \leq l} \mathbf{E}\left[f\left(X_{(m)}\right)-\mathbf{E}\left(f\left(X_{(m)}\right)\right) \mid X(1)=i_{s_{1}}, \ldots, X(a)=i_{s_{a}}\right],
\end{align*}
$$

where $D_{(n-l, l)}=\binom{n}{l}-\binom{n}{l-1}$.
2. for every $l=1, \ldots, m$, every symmetric U-statistic, based on $X_{(m)}$ and with a completely degenerated kernel of order l, has the form (24) for some $f \in M^{(n-m, m)}$. It follows that $S H_{l}$ is an irreducible \mathfrak{S}_{n}-module, carrying a representation in $\left[S^{(n-l, l)}\right]$.

For instance, by using [12, Exercice 5.d, p. 87], we deduce from (24) that for every $\mathbf{i}_{(m)}=$ $\left\{i_{1}, \ldots, i_{m}\right\} \in V^{(n-m, m)}$ and $f \in M^{(n-m, m)}$,

$$
\begin{aligned}
& \frac{n-1}{n!} \sum_{x \in \mathfrak{S}_{n}}\{(\text { number of fixed points of } x)-1\} \times f\left(x \mathbf{i}_{(m)}\right) \\
= & \prod_{r=1}^{m-1} \frac{n-r}{n-r-1} \sum_{s=1}^{m} \mathbf{E}\left[f\left(X_{(m)}\right)-\mathbf{E}\left(f\left(X_{(m)}\right)\right) \mid X(1)=i_{s}\right] .
\end{aligned}
$$

The next result gives an algebraic explanation of a property of degenerated U-statistics, already pointed out - in the more general framework of Generalized Urn Sequences - in [10, Corollary 9]. Basically, it states that the orthogonality, between two completely degenerated U-statistics of different orders, is preserved after shifting one of the two arguments. It can be useful when determining the covariance between two U-statistics based on two urn sequences of different lenghts.

Corollary 6 Let $f, h \in M^{(n-m, m)}$ be such that $f\left(X_{(m)}\right) \in S H_{j}$ and $h\left(X_{(m)}\right) \in S H_{l}$ for some $1 \leq j \neq l \leq m$. Consider moreover an element $\mathbf{k}_{(m)}=\left\{k_{1}, \ldots, k_{m}\right\} \in V^{(n-m, m)}$ such that, for some $r=0, \ldots, m$, Card $\left(\mathbf{k}_{(m)} \cap\{1, \ldots, m\}\right)=r$, and note $X_{(m)}^{\prime}=\left(X\left(k_{1}\right), \ldots, X\left(k_{m}\right)\right)$. Then,

$$
\mathbf{E}\left(f\left(X_{(m)}\right) \overline{h\left(X_{(m)}^{\prime}\right)}\right)=0
$$

Proof. Due to the exchangeability of the vector $(X(1), \ldots, X(n))$, we can assume, without loss of generality, that

$$
\mathbf{k}_{(m)}=\{1, \ldots, r, m+1, \ldots, 2 m-r\} .
$$

Now introduce the permutation (written as a product of translations)

$$
\begin{equation*}
y=(r+1 \rightarrow m+1)(r+2 \rightarrow m+2) \cdots(m \rightarrow 2 m-r), \tag{26}
\end{equation*}
$$

and note that

$$
\mathbf{E}\left(f\left(X_{(m)}\right) \overline{h\left(X_{(m)}^{\prime}\right)}\right)=\mathbf{E}\left(f\left(X_{(m)}\right) \overline{h\left((X y)_{(m)}\right)}\right),
$$

so that the conclusion derives immediately from formula (15), by setting $x=e$ and y as in (26).

5.2 Remaining proofs

The key of the proof of Theorem 4 is nested in the following Lemma.
Lemma 7 Let the previous notation prevail. Then,

1. for each $l=1, \ldots, m$, a basis of $S U_{l}$ is given by the set of random variables

$$
\left\{\eta_{\mathbf{i}_{(l)}}\left(X_{(m)}\right): \mathbf{i}_{(l)} \in V^{(n-l, l)}\right\},
$$

where, for each $\mathbf{k}_{(m)} \in V^{(n-m, m)}$,

$$
\eta_{\mathbf{i}_{(l)}}\left(\mathbf{k}_{(m)}\right)= \begin{cases}1 & \text { if } \mathbf{i}_{(l)} \subseteq \mathbf{k}_{(m)} \tag{27}\\ 0 & \text { otherwise } ;\end{cases}
$$

2. for each $l=1, \ldots, m$, the restriction of the action (7) of \mathfrak{S}_{n} to the vector subspace of $M^{(n-m, m)}$ generated by the set $\left\{\eta_{\mathbf{i}_{(l)}}: \mathbf{i}_{(l)} \in V^{(n-l, l)}\right\}$, defined in (27), is equivalent to the action carried by the \mathfrak{S}_{n}-module $M^{(n-l, l)}$.

Proof. Fix $l=1, \ldots, m$, and observe that, for every $\mathbf{i}_{(l)} \in V^{(n-l, l)}$,

$$
\eta_{\mathbf{i}_{(l)}}\left(X_{(m)}\right)=\sum_{\left\{k_{1}, \ldots, k_{l}\right\} \in V^{(m-l, l)}} \mathbf{1}_{\mathbf{i}_{(l)}}\left(\left\{X\left(k_{1}\right), \ldots, X\left(k_{l}\right)\right\}\right),
$$

so that the first part of the statement follows from the definition of $S U_{l}$, and the fact that every $\phi \in V^{(m-l, l)}$ is a linear combination of functions of the type $\mathbf{1}_{\mathbf{i}_{(l)}}(\cdot)$. To prove the second part, first recall that a basis of the \mathfrak{S}_{n}-module $M^{(n-l, l)}$ is given by the set $\left\{\mathbf{1}_{\mathbf{i}_{(l)}}(\cdot): \mathbf{i}_{(l)} \in V^{(n-l, l)}\right\}$, and that the action of \mathfrak{S}_{n} on $M^{(n-l, l)}$ is completely described by the action

$$
x \mathbf{1}_{\mathbf{i}_{(l)}}=\mathbf{1}_{x \mathbf{i}_{(l)}} .
$$

We can therefore construct a \mathfrak{S}_{n}-isomorphism between $\left\{\eta_{\mathbf{i}_{(l)}}: \mathbf{i}_{(l)} \in V^{(n-l, l)}\right\}$ and $M^{(n-l, l)}$ by linearly extending the mapping

$$
\tau\left(\eta_{\mathbf{i}_{(l)}}\right)=\mathbf{1}_{\mathbf{i}_{(l)}}, \quad \mathbf{i}_{(l)} \in V^{(n-l, l)}
$$

and by observing that, for every $\mathbf{k}_{(m)} \in V^{(n-m, m)}, \mathbf{i}_{(l)} \in V^{(n-l, l)}$ and $x \in \mathfrak{S}_{n}$,

$$
x \eta_{\mathbf{i}_{(l)}}\left(\mathbf{k}_{(m)}\right)=\eta_{\mathbf{i}_{(l)}}\left(x^{-1} \mathbf{k}_{(m)}\right)=\eta_{x \mathbf{i}_{(l)}}\left(\mathbf{k}_{(m)}\right) .
$$

This concludes the proof.
End of the proof of Theorem 4. Since $S U_{0}=S H_{0}=K_{0}^{(n-m, m)}=\mathbb{C}$, the relation between representations

$$
M^{(n-l, l)} \cong S^{(n)} \oplus S^{(n-1,1)} \oplus \cdots \oplus S^{(n-l, l)}, \quad \forall l=1, \ldots, m
$$

along with Lemma 7, implies that the restriction of the action (7) of \mathfrak{S}_{n} to those $f \in L\left(V^{(n-m, m)}\right)$ such that $f\left(X_{(m)}\right) \in S H_{l}$ is an element of $\left[S^{(n-l, l)}\right]$. This yields that each one of the $m+1$ summands in the decomposition

$$
M^{(n-m, m)}=\mathbb{C} \oplus \bigoplus_{l=1}^{m}\left\{f: f\left(X_{(m)}\right) \in S H_{l}\right\}
$$

is an irreducible \mathfrak{S}_{n}-submodule of $M^{(n-m, m)}$. Since the decomposition (8) of $M^{(n-m, m)}$ is unique, this gives

$$
\left\{f: f\left(X_{(m)}\right) \in S H_{l}\right\}=K_{l}^{(n-m, m)}
$$

as required.
Acknowledgement. We are grateful to Omar El-Dakkak for useful comments.

References

[1] D.J. Aldous (1983). Exchangeability and related topics. École d'été de Probabilités de SaintFlour XIII. LNM 1117. Springer, New York.
[2] M. Bloznelis (2005). Orthogonal decomposition of symmetric functions defined on random permutations. Combinatorics, Probability and Computing, 14, 249-268.
[3] M. Bloznelis and F. Götze (2001). Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics. The Annals of Statistics 29 (3), 353-365
[4] M. Bloznelis and F. Götze (2002). An Edgeworth expansion for finite population statistics. The Annals of Probability, 30, 1238-1265
[5] P. Diaconis (1988). Group Representations in Probability and Statistics. IMS Lecture Notes - Monograph Series 11. Hayward, California
[6] R. Dudley (2001). Real analysis and probability (2nd edition). Wadsworth and Brooks/Cole, Pacific Grove, CA.
[7] Duistermaat J.J. and Kolk J.A.C. (1997). Lie groups. Springer-Verlag, Berlin-HeidelbergNew York.
[8] O. El-Dakkak and G. Peccati (2008). Hoeffding decompositions and urn sequences. The Annals of Probability 36(6), 2280-2310.
[9] G.D. James (1978) The representation theory of the symmetric groups, Lecture Notes in Mathematics 682. Springer-Verlag. Berlin Heidelberg New York.
[10] G. Peccati (2004). Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations. The Annals of Probability 32(3A), 1796-1829.
[11] G. Peccati and J.-R. Pycke (2008). Decomposition of stochastic processes based on irreducible group representations. To appear in: Theory of Probability and its Applications.
[12] Sagan B.E. (2001). The Symmetric Group. Representations, Combinatorial Algorithms and Symmetric Functions (2nd edition). Springer, New York.
[13] R.J. Serfling (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.
[14] Serre J.-P. (1977). Linear representations of finite groups. Graduate Texts in Mathematics 42. Springer, New York.
[15] L. Zhao and X. Chen (1990). Normal approximation for finite-population U-statistics. Acta Mathematicae Applicatae Sinica 6 (3), 263-272

[^0]: *Équipe Modal'X. Université Paris Ouest - Nanterre La Défense. 200, Avenue de la République, 92000 Nanterre France. E-mail: giovanni.peccati@gmail.com
 ${ }^{\dagger}$ Department of mathematics, University of Évry, France. E-mail: jrpycke@maths.univ-evry.fr

