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We prove that a normalized sequence of multiple Wigner inte-
grals (in a fixed order of free Wigner chaos) converges in law to the
standard semicircular distribution if and only if the corresponding
sequence of fourth moments converges to 2, the fourth moment of
the semicircular law. This extends to the free probabilistic, setting
some recent results by Nualart and Peccati on characterizations of
central limit theorems in a fixed order of Gaussian Wiener chaos.
Our proof is combinatorial, analyzing the relevant noncrossing par-
titions that control the moments of the integrals. We can also use
these techniques to distinguish the first order of chaos from all others
in terms of distributions; we then use tools from the free Malliavin
calculus to give quantitative bounds on a distance between different
orders of chaos. When applied to highly symmetric kernels, our re-
sults yield a new transfer principle, connecting central limit theorems
in free Wigner chaos to those in Gaussian Wiener chaos. We use this
to prove a new free version of an important classical theorem, the
Breuer-Major theorem.

1. Introduction and background. Let (W;);>0 be a standard one-dimen-
sional Brownian motion, and fix an integer n > 1. For every deterministic
(Lebesgue) square-integrable function f on R}, we denote by IV (f) the nth
(multiple) Wiener—It6 stochastic integral of f with respect to W (see, e.g.,
[17, 19, 27, 31] for definitions; here and in the sequel R refers to the nonneg-
ative half-line [0,00)). Random variables such as IV (f) play a fundamental
role in modern stochastic analysis, the key fact being that every square-
integrable functional of W can be uniquely written as an infinite orthogonal
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sum of symmetric Wiener—Ito integrals of increasing orders. This feature,
known as the Wiener—Ité chaos decomposition, yields an explicit represen-
tation of the isomorphism between the space of square-integrable functionals
of W and the symmetric Fock space associated with L?(R). In particular,
the Wiener chaos is the starting point of the powerful Malliavin calculus of
variations and its many applications in theoretical and applied probability
(see again [17, 27] for an introduction to these topics). We recall that the
collection of all random variables of the type IV (f), where n is a fixed in-
teger, is customarily called the nth Wiener chaos associated with W. Note
that the first Wiener chaos is just the Gaussian space spanned by W.

The following result, proved in [29], yields a very surprising condition un-
der which a sequence IV ( f1.) converges in distribution, as k — 0o, to a Gaus-
sian random variable. [In this statement, we assume as given an underlying
probability space (X, F,P), with the symbol E denoting expectation with
respect to PP.]

THEOREM 1.1 (Nualart, Peccati). Letn > 2 be an integer, and let (f)ren
be a sequence of symmetric functions (cf. Definition 1.19 below) in L*(R™),
each with ”!kaHL?(Ri) = 1. The following statements are equivalent:

(1) The fourth moment of the stochastic integrals IV (fi) converge to 3.
lim B(IY (fi)) =3
k—ro0

(2) The random variables I}V (fi) converge in distribution to the standard
normal law N(0,1).

Note that the Wiener chaos of order n > 2 does not contain any Gaus-
sian random variables, cf. [17], Chapter 6. Since the fourth moment of the
normal N (0, 1) distribution is equal to 3, this Central Limit Theorem shows
that, within a fixed order of chaos and as far as normal approximations are
concerned, second and fourth moments alone control all higher moments of
distributions.

REMARK 1.2. The Wiener isometry shows that the second moment
of I)V(f) is equal to n!||f||2,, and so Theorem 1.1 could be stated intrinsi-
cally in terms of random variables in a fixed order of Wiener chaos. Moreover,
it could be stated with the a priori weaker assumption that E(I}V (fz)?) — o2
for some o > 0, with the results then involving N(0,02) and fourth mo-
ment 30, respectively. We choose to rescale to variance 1 throughout most
of this paper.

Theorem 1.1 represents a drastic simplification of the so-called “method
of moments and cumulants” for normal approximations on a Gaussian space,
as described, for example, in [20, 34]; for a detailed in-depth treatement of
these techniques in the arena of Wiener chaos, see the forthcoming book [31].



WIGNER CHAOS AND THE FOURTH MOMENT 3

We refer the reader to the survey [23] and the forthcoming monograph [24]
for an introduction to several applications of Theorem 1.1 and its many ram-
ifications, including power variations of stochastic processes, limit theorems
in homogeneous spaces, random matrices and polymer fluctuations. See in
particular [22, 26, 28] for approaches to Theorem 1.1 based respectively on
Malliavin calculus and Stein’s method, as well as applications to universality
results for nonlinear statistics of independent random variables.

In the recent two decades, a new probability theory known as free probabil-
ity has gained momentum due to its extremely powerful contributions both
to its birth subject of operator algebras and to random matrix theory; see, for
example, [1, 16, 21, 41]. Free probability theory offers a new kind of indepen-
dence between random variables, free independence, that is, modeled on the
free product of groups rather than tensor products; it turns out to succinctly
describe the relationship between eigenvalues of large random matrices with
independent entries. In free probability, the central limit distribution is the
Wigner semicircular law [cf. equation (1.4)], further demonstrating the link
to random matrices. Free Brownian motion, discussed in Section 1.2 below,
is a (noncommutative) stochastic process whose increments are freely inde-
pendent and have semicircular distributions. Essentially, one should think of
free Brownian motion as Hermitian random matrix-valued Brownian motion
in the limit as matrix dimension tends to infinity; see, for example, [7] for
a detailed analysis of the related large deviations.

If (S¢)t>0 is a free Brownian motion, the construction of the Wiener—
Ito6 integral can be mimicked to construct the so-called Wigner stochastic
integral (cf. Section 1.3) I5(f) of a deterministic function f € L2(R7%). The
noncommutativity of S; gives I;f different properties; in particular, it is no
longer sufficient to restrict to the class of symmetric f. Nevertheless, there is
an analogous theory of Wigner chaos detailed in [8], including many of the
powerful tools of Malliavin calculus in free form. The main theorem of the
present paper is the following precise analog of the central limit Theorem 1.1
in the free context.

THEOREM 1.3. Let n>2 be an integer, and let (fr)ren be a sequence
of mirror symmetric functions (cf. Definition 1.19) in L*(R), each with
||fk:HL2(1R1) =1. The following statements are equivalent:

(1) The fourth moments of the Wigner stochastic integrals I3 (fi) con-
verge to 2.

lim B(IS(fi)") =2
k—ro0
(2) The random wvariables I3 (fi.) converge in law to the standard semi-

circular distribution S(0,1) [cf. equation (1.4)] as k — oco.

REMARK 1.4. The expectation E in Theorem 1.3(1) must be properly
interpreted in the free context; in Section 1.1 we will discuss the right frame-
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work (of a trace E = ¢ on the von Neumann algebra generated by the free
Brownian motion). We will also make it clear what is meant by the law of
a noncommutative random variable like 13 (fz).

REMARK 1.5. Since the fourth moment of the standard semicircular dis-
tribution is 2, (2) nominally implies (1) in Theorem 1.3 since convergence in
distribution implies convergence of moments (modulo growth constraints);
the main thrust of this paper is the remarkable reverse implication. The mir-
ror symmetry condition on f is there merely to guarantee that the stochastic
integral I2(f) is indeed a self-adjoint operator; otherwise, it has no law to
speak of (cf. Section 1.1).

Our proof of Theorem 1.3 is through the method of moments which, in the
context of the Wigner chaos, is elegantly formulated in terms of noncrossing
pairings and partitions. While, on some level, the combinatorics of partitions
can be seen to be involved in any central limit theorem, our present proof
is markedly different from the form of the proofs given in [26, 28, 29]. All
relevant technology is discussed in Sections 1.1-1.4 below; further details
on the method of moments in free probability theory can be found in the
book [21].

As a key step toward proving Theorem 1.3, but of independent interest
and also completely analogous to the classical case, we prove the following
characterization of the fourth moment condition in terms of standard in-
tegral contraction operators on the kernels of the stochastic integrals (as
discussed at length in Section 1.3 below).

THEOREM 1.6. Let n be a natural number, and let (fx)ren be a sequence
of functions in L*(R"), each with ka||L2(R1) =1. The following statements
are equivalent:

(1) The fourth absolute moments of the stochastic integrals I (fy) con-
verge to 2.

Jim E(|17 (fi)[*) = 2

(2) All nontrivial contractions (cf. Definition 1.21) of fr converge to 0:
for eachp=1,2,... n—1,

lim fr, A ff=0  in L2(RY"P).
k—o0

While different orders of Wiener chaos have disjoint classes of laws, it is (at
the present time) unknown if the same holds for the Wigner chaos. As a first
result in this direction, the following important corollary to Theorem 1.6
allows us to distinguish the laws of Wigner integrals in the first order of
chaos from all higher orders.
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COROLLARY 1.7. Let n>2 be an integer, and consider a nonzero mir-
ror symmetric function f € L*(R). Then the Wigner integral I3 (f) satis-
fies BIIS(£)Y] > 2E[IZ(f)?)?. In particular, the distribution of the Wigner
integral I (f) cannot be semicircular.

Combining these results with those in [22, 26, 28, 29], we can state the
following Wiener—Wigner transfer principle for translating results between
the classical and free chaoses.

THEOREM 1.8. Let n>2 be an integer, and let (fr)ren be a sequence
of fully symmetric (cf. Definition 1.19) functions in LQ(RQ‘_). Let o >0 be
a finite constant. Then, as k — oo:

(1) EIIV (fx)?] = nlo? if and only if B[IS(f1)?] — o2.

(2) If the asymptotic relations in (1) are verified, then I}V (fi) converges
in law to a normal random variable N (0,n!0?) if and only if IS (f3) converges
in law to a semicircular random variable S(0,0?%).

Theorem 1.8 will be shown by combining Theorems 1.3 and 1.6 with the
findings of [29]; the transfer principle allows us to easily prove yet unknown
free versions of important classical results, such as the Breuer—-Major theo-
rem (Corollary 2.3 below).

REMARK 1.9. It is important to note that the transfer principle The-
orem 1.8 requires the strong assumption that the kernels f; are fully sym-
metric in both the classical and free cases. While this is no loss of generality
in the Wiener chaos, it applies to only a small subspace of the Wigner chaos
of orders 3 or higher.

Corollary 1.7 shows that the semicircular law is not the law of any stochas-
tic integral of order higher than 1. We are also able to prove some sharp
quantitative estimates for the distance to the semicircular law. The key esti-
mate, using Malliavin calculus, is as follows: it is a free probabilistic analog
of [22], Theorem 3.1. We state it here in less generality than we prove it in
Section 4.1.

THEOREM 1.10. Let S be a standard semicircular random variable [cf.
equation (1.4)]. Let F have a finite Wigner chaos expansion; that is, F' =
Sooe1 15 (fn) for some mirror symmetric functions f, € L*(R™) and some
finite N. Let Co and %5 be as in Definition 3.16. Then

de,(F,5) = sup [E[h(F)] —E[h(5)]|
heCa

SH2(h)<1
(1.1)

<

1
“E®QE
g

/OOO Vi(Ny 'F)4(V F)*dt — 1 1‘)
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The Malliavin calculus operators V and Ny and the product f on tensor-
product-valued biprocesses are defined below in Section 3, where we also
describe all the relevant structure, including why the free Cameron—Gross—
Malliavin derivative V;F of a random variable F' takes values in the tensor
product L?(R;)® L?(Ry ). The class Cs is somewhat smaller than the space
of Lipschitz functions, and so the metric d¢, on the left-hand side of equa-
tion (4.1) is, a priori, weaker than the Wasserstein metric. This distance
does metrize convergence in law, however.

REMARK 1.11. The key element in the proof of Theorem 1.10 is to mea-
sure the distance between F' and S by means of a procedure close to the
so-called smart path method, as popular in Spin Glasses; cf. [36]. In this
technique, one assumes that ' and S are independent, and then assesses
the distance between their laws by controlling the variations of the map-
ping t — E[h(v/T —tF +/tS)] (where h is a suitable test function) over the
interval [0, 1]. As shown below, our approach to the smart path method re-
quires that we replace v/tS by a free Brownian motion S; (cf. Section 1.2)
freely independent from F| so that we can use the free stochastic calculus
to proceed with our estimates.

Using Theorem 1.10, we can prove the following sharp quantitative bound
for the distance from any double Wigner integral to the semicircular law.

COROLLARY 1.12.  Let f € L*(R%) be mirror-symmetric and normalized
||f||L2(R1) =1, let S be a standard semicircular random variable and let dec,

be defined as in equation (1.1). Then

(12 i (.9 < 3D B (-2

In principle, equation (1.1) could be used to give quantitative estimates
like equation (1.2) for any order of Wigner chaos. However, the analogous
techniques from the classical literature heavily rely on the full symmetry of
the function f; in the more general mirror symmetric case required in the
Wigner chaos, such estimates are, thus far, beyond our reach.

The remainder of this paper is organized as follows. Sections 1.1 through 1.4
give (concise) background and notation for the free probabilistic setting, free
Brownian motion and its associated stochastic integral the Wigner integral
and the relevant class of partitions (noncrossing pairings) that control mo-
ments of these integrals. Section 2 is devoted to the proofs of Theorems 1.3
and 1.6 along with Corollary 1.7 and Theorem 1.8. In Section 3, we collect
and summarize all of the tools of free stochastic calculus and free Malli-
avin calculus needed to prove the quantitative results of Section 4; this final
section is devoted to the proofs of Theorem 1.10 (in Section 4.1) and Corol-
lary 1.12 (in Section 4.2), along with an abstract list of equivalent forms
of our central limit theorem in the second Wigner chaos. Finally, Appendix
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contains the proof of Theorem 3.20, an important technical approximation
tool needed for the proof of Theorem 1.10 but also of independent interest.

1.1. Free probability. A moncommutative probabilily space is a complex
linear algebra &7 equipped with an involution (like the adjoint operation
X — X* on matrices) and a unital linear functional ¢:.o/ — C. The stan-
dard classical example is &/ = L*°(Q, F,P) where F is a o-field of subset
of Q, and P is a probability measure on JF; in this case the involution is
complex conjugation and ¢ is expectation with respect to P. One can iden-
tify F from o7 through the idempotent elements which are the indicator
functions 1 of events F € F, and so this terminology for a probability
space contains the same information as the usual one. Another relevant ex-
ample that is actually noncommutative is given by random matrices; here
o = L>®(Q,F,P; My(C)), d x d-matrix-valued random variables, where the
involution is matrix adjoint and the natural linear functional ¢ is given by
¢(X) = JETr(X). Both of these examples only deal with bounded random
variables, although this can be extended to random variables with finite
moments without too much effort.

The pair (L*°(€2, F,P),E) has a lot of analytic structure not present in
many noncommutative probability spaces; we will need these analytic tools
in much of the following work. We assume that 7 is a von Neumann algebra,
an algebra of operators on a (separable) Hilbert space, closed under adjoint
and weak convergence. Moreover, we assume that the linear functional ¢ is
weakly continuous, positive [meaning ¢(X) > 0 whenever X is a nonnegative
element of &7; i.e., whenever X =YY™ for some Y € 7], faithful [meaning
that if o(YY™) =0, then Y = 0] and tracial, meaning that ¢(XY) = ¢(Y X)
forall X,Y € o, even though in general XY # Y X. Such a ¢ is called a trace
or tracial state. Both of the above examples (bounded random variables and
bounded random matrices) satisfy these conditions. A von Neumann algebra
equipped with a tracial state is typically called a (tracial) W*-probability
space. Some of the theorems in this paper require the extra structure of a W*-
probability space, while others hold in a general abstract noncommutative
probability space. To be safe, we generally assume the W*-setting in what
follows. Though we do not explicitly specify traciality in the proceeding, we
will always assume ¢ is a trace.

In a W*-probability space, we refer to the self-adjoint elements of the
algebra as random wvariables. Any random variable has a law or distribu-
tion defined as follows: the law of X € & is the unique Borel probability
measure px on R with the same moments as X; that is, such that

/t"ux(dt):go(X"), n=0,1,....
R

The existence and uniqueness of px follow from the positivity of ¢; see [21],
Propositions 3.13. Thus, in general, noncommutative probability, the method
of moments and cumulants plays a central role.
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In this general setting, the notion of independence of events is harder to
pin down. Voiculescu introduced a general noncommutative notion of inde-
pendence in [37] which has, of late, been very important both in operator
algebras and in random matrix theory. Let @,..., %, be unital subalge-
bras of &. Let Xq,...,X,, be elements chosen from among the .<%’s such
that, for 1 <j <m, X; and X,;; do not come from the same .7, and
such that ¢(X;) =0 for each j. The subalgebras ,...,, are said to
be free or freely independent if, in this circumstance, ¢(X;Xs---X,,) =0.
Random variables are called freely independent if the unital algebras they
generate are freely independent. By centering moments it is easy to check
that, in the case that all the indices are distinct, this is the same as classi-
cal independence expressed in terms of moments. For example, if X,Y are
freely independent they satisfy p[(X™ — p(X™))(Y™ — ¢(Y™))] =0, which
reduces to p(X"Y™) = @(X™)p(Y™). But if there are repetitions of indices
among the (generally noncommutative) random variables, freeness is much
more complicated than classical independence; for example, if X,Y are free,
then p(XYXY) = (X2 o(Y)? 4+ p(X)2p(Y?) — o(X)?0(Y)2 Nevertheless,
if X,Y are freely independent, then their joint moments are determined
by the moments of X and Y separately. Indeed, the law of the random
variable X + Y is determined by (and can be calculated using the Stieltjes
transforms of) the laws of X and Y separately. It was later discovered by
Voiculescu [38] and others that pairs of random matrices with independent
entries are (asymptotically) freely independent in terms of expected trace;
this has led to powerful new tools for analyzing the density of eigenvalues
of random matrices.

The notion of conditioning is also available in free probability.

DEFINITION 1.13. Let (&7, ¢) be a W*-probability space, and let # C &7
be a unital W*-subalgebra. There is a conditional expectation map ¢|-| %]
from & onto Z. It is characterized by the property

(1.3) V[ XY = p[ XY |H]] forall X € Y € o/.
Conditional expectation has the following properties:

(1) ¢[-]4] is weakly continuous and completely positive;
(2) ¢[-|4)] is a contraction (in operator norm) and preserves the identity;
(3) Y € o and X, Z € B, then ¢|XYZ|B] = Xg|V|%|Z.

If X € o/, then we denote by ¢[-|X] the conditional expectation onto the
unital von Neumann subalgebra of o7 generated by X.

Such conditional expectations were introduced in [35] [where properties
(1)—(3) were proved]. As one should expect, if X and Y are free, then ¢[Y|X] =
»(Y), as in the classical case. Many analogs of classical probabilistic con-
structions (such as martingales) are well-defined in free probability, using
Definition 1.13. See, for example, [6] for a discussion of free Lévy processes.
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1.2. Free Brownian motion. The (centred) semicirclular distribution (or
Wigner law) S(0,t) is the probability distribution

(1.4) S(0,4)(dx) = 2%\/415 “2dr, |z <2Vi

Since this distribution is symmetric about 0, its odd moments are all 0. Sim-
ple calculation shows that the even moments are given by (scaled) Catalan
numbers: for nonnegative integers m,

2Vt
/ 22 8(0, 1) (dx) = Cot™,
_2\/{
1 2m

where C, = 25 ( . ) In particular, the second moment (and variance) is ¢
while the fourth moment is 2¢2.

A free Brownian motion S = (S¢)s>0 is a noncommutative stochastic pro-
cess; it is a one-parameter family of self-adjoint operators S; in a W*-

probability space (<7, ), with the following defining characteristics:

(0) So=0;

(1) For 0 <ty <t9 < oo, the law of Sy, — Sy, is the semicircular distribu-
tion of variance ty — t1;

(2) Forall mand 0 <t <tg <---<t, < oo, the increments Sy, , Sy, — S,
Sts — Sty -+ -y St,, — St,,_, are freely independent.

The freeness of increments can also be expressed by saying that S, — S,
is free from &;, whenever ty > t; > 0; here &; is the von Neumann algebra
generated by {Ss:0 <s <t}. In particular, it follows easily that ¢[St,|S:,| =
Sy, for tg > t1 >0, so free Brownian motion is a martingale.

There are at least two good ways to construct a free Brownian motion S.
The first involves the free (Boltzman) Fock space F($) constructed on
a Hilbert space $: Zy(9) = @, H®" where the direct-sum and tensor
products are Hilbert space operations, and $H®° is defined to be a one-
dimensional complex space with a distinguished unit basis vector called the
vacuum € (not to be confused with the state space of a probability space).
Given any vector h € §, the creation operator a'(h) on .Fo($) is defined by
left tensor-product with h: af(h)i = h ® . Its adjoint a(h) is the annihila-
tion operator, whose action on an n-tensor is given by a(h)hy @ --- ® h,, =
(hyhi)ha ® -+ ® hy, [and a(h)2 = 0]. The creation and annihilation opera-
tors are thus raising and lowering operators. Their sum X (k) = af(h) + a(h)
is a self-adjoint operator known as the field operator in the direction h.
Let S($) denote the von Neumann algebra generated by {X(h);h € $},
a (small) subset of all bounded operators on the Fock space .%y($)). The
vacuum expectation state p(Y) = (Y, Q) 7 () is a tracial state on S($).
Now, take the special case $ = L?(Ry); then S; = X (1o ) is a free Brown-
ian motion with respect to (S(9), ).
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REMARK 1.14. This construction of Brownian motion can also be done
in the classical case, replacing the free Fock space with the symmetric
(Bosonic) Fock space; for this line of thought see [30]. Although it is abstract,
it is directly related to concrete constructions in the Wigner, and Wiener,
chaos. Note: when $) = L?(Ry), H®" may be identified with L*(R"), and it
is these kernels we will work with throughout most of this paper.

A second, more appealing (if less direct) construction of free Brownian
motion uses random matrices. Let W be a d x d complex Hermitian ma-
trix all of whose entries above the main diagonal are independent complex
standard Brownian motions. Set S¢ = d~1/2W¢. Then the “limit as d — 0c0”
of Std is a free Brownian motion. This limit property holds in the sense of mo-
ments, as follows: equip the algebra S? generated by {S¢;t € R} with the
tracial state g = éE Tr. Then if P = P(X;,X5,..., X)) is any polynomial
in k noncommuting indeterminates, and %1,...,t, € R4, then

Tim @alP(SE, ., 5L = [P (St . 51,))
— 00

where S = (S;)i>0 is a free Brownian motion. So, at least in terms of mo-
ments, we may think of free Brownian motion as “infinite-dimensional matrix-
valued Brownian motion.”

REMARK 1.15. The algebra S% of random matrices described above is
not a von Neumann algebra in the standard sense, since its elements do not
have finite matrix norms in the standard sup metric. The Gaussian tails of
the entries guarantee, however, that mixed matrix moments of all orders are
finite, which is all that is needed to make sense of the standard notion of
convergence in noncommutative probability theory.

1.3. The Wigner integral. In this section we largely follow [8]; related dis-
cussions and extensions can be found in [2-4]. Taking a note from Wiener
and Ito, we define a stochastic integral associated with free Brownian mo-
tion in the usual manner. Let S be a free Brownian motion, and let f €
LQ(]RQ‘_) be an off-diagonal rectangular indicator function, taking the form
J = Lsy 1] xx[sn,ta]» Where the intervals [s1,t1], ..., [sn,tn] are pairwise
disjoint. The Wigner integral 17 (f) is defined to be the product operator
I5(f) = (S, — Sg)---(Sy, — Ss,). Extend I3 linearly over the set of all
off-diagonal step-functions, which is dense in L?(R".). The freeness of the
increments of S yield the simple Wigner isometry

(1.5) el (9) 13 ()] = (f,9) 2(zn)

In other words, If is an isometry from the space of off-diagonal step func-
tions into the Hilbert space of operators generated by the free Brownian mo-
tion S, equipped with the inner product (X,Y), = ¢[Y*X]. This means I
extends to an isometry from the closure, which is the full space L?(R"),
thus fully defining the Wigner integral. If f is any function in L*(R%), we
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may write

/ftl, o tn)dSy, -+ dSy, .

This stands in contrast to the classical Gaussian Wiener integral, which we
shall denote I)V:

/f by ty)dWy, - dW,, .

REMARK 1.16. This construction long post-dates Wigner’s work. The
terminology was invented in [8] as a humorous nod to the fact that Wigner’s
semicircular law plays the Central Limit role here, and the similarity between
the names Wigner and Wiener.

REMARK 1.17. This is the same as It6’s construction of the multiple
Wiener integral in classical Wiener—It6 chaos. Note, however, that the incre-
ments Sy, — Ss,,...,St, —Ss, do not commute. Hence, unlike for the Wigner
integral, permuting the variables of f generally changes the value of I7(f).

The image of the n-fold Wigner integral I on all of LQ(}RQ{) is called the
nth order of Wigner chaos or free chaos. It is easy to calculate that different
orders of chaos are orthogonal from one another (in terms of the trace inner
product); this also follows from contraction and product formulas below.
The noncommutative L2-space generated by (S;):>o is the orthogonal sum
of the orders of Wigner chaos; this is the free analog of the Wiener chaos
decomposition.

REMARK 1.18. The first Wigner chaos, the image of If , is a centred
semicircular family in the sense of [21], Definition 8.15, exactly as the first
Wigner chaos is a centred Gaussian family. In particular, In the first order
of Wigner chaos, the law of any random variable is semicircular S(0,t) for
some variance t > 0.

We are generally interested only in self-adjoint elements of a given order
of chaos. Taking note of Remark 1.17, we have

</ft1, Sotn)dSy - dSm)

(16) = [Tt dsy, - dsy = [ T mds, -+ ds,
_IS f )
where f*(t1,...,tn) = f(tn,...,t1). This prompts a definition.

DEFINITION 1.19. Let n be a natural number, and let f be a function
in L2(R%).
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(1) The adjoint of f is the function f*(t1,...,tn) = f(tn,...,t1).

(2) f is called mirror symmetric if f = f*; that is, if f(t1,...,t,) =
f(tn, ... t1) for almost all t1,...,t, > 0 with respect to the product Lebesgue
measure.

(3) f is called fully symmetric if it is real-valued and, for any permu-
tation o in the symmetric group X,, f(t1,...,tn) = f(toq1)s-- - to@m)) for
almost all £;,...,t, > 0 with respect to the product Lebesge measure.

Thus an element I3 (f) of the nth Wigner chaos is self adjoint iff f is
mirror symmetric. Note, in the classical Gaussian Wiener chaos, it is typical
to consider only kernels that are fully symmetric, since if f is constructed
from f by permuting its arguments, then I}V (f) = I’V (f). This relation does
not hold for I

REMARK 1.20. The calculation in equation (1.6) may seem nonrigorous.
A more pedantic writing would do the calculation first for an off-diagonal
rectangular indicator function f =1, 4 )x...x[s,,t,]- I Which case the adjoint
is merely [(Sy, — Ss,) -+ (St, —Ss,)]* = (S, —Ss,,) -+ (S, — Ss, ) since Sy is
self adjoint; extending (sesqui)linearly and completing yields the full result.
This is how statements like (dSy, --- dSy, )" = dSy, - -+ dSy, should be inter-
preted throughout this paper.

Contractions are an important construction in Wigner and Wiener chaos;
we briefly review them now.

DEFINITION 1.21. Let n,m be natural numbers, and let f € L*(R") and
g € L*(RT). Let p <min{n,m} be a natural number. The pth contraction

f A gof fand gis the L2 (]Rfrmdp ) function defined by nested integration
of the middle p variables in f ® g

p
f f\g(tlv"'vtn+m—2p) :/ f(tlv"'vtn—pvsla"'asp)
R
X

g(spv <y 81, tn—p-f—la s >tn+m—2p) d81 T dsp'
Notice that when p =0, there is no integration, just the products of f
and ¢ with disjoint arguments; in other words, f A g=f®g.

REMARK 1.22. It is easy to check that the operation 2 is not generally
associative.

REMARK 1.23. In [22, 26, 28, 29] as well as standard references like [23,
24, 27|, contractions are usually defined as follows:

f®pf(t17"'7tn+m72p) :/p (t17~"7tn7p7817”’75p)
R

+
X G(tn—ptis---stntm—2p, S1,---,5p)dst - dsp.
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Notice that this operation is related to our nested contraction L as follows:

— P
f ®p g*(tl, sy tn—pa tn+m—2p7 ceey tn—p—f—l) = f — g(tla s 7tn+m—2p)'
In other words, up to reordering of variables, the two operations are the

same. In particular, if f, g are fully symmetric, then f EN g and f ®, g have
the same symmetrizations. This will be relevant to Theorem 1.8 below.

The following lemma records two useful facts about contractions and ad-
joints; the proof is easy calculation.

LEMMA 1.24. Let n,m be natural numbers, and let f € L*(R}) and
g€ L*(RY).

(1) If p<min{n,m} is a natural number, then (f > g)* = g* * f*.
(2) Ifn =m, then the constant f ~ g satisfies f *~g=g -~ f = (f, 9" ) 2 (mn)-

Contractions provide a useful tool for decomposing products of stochastic
integrals, in precise analogy to the classical context. The following is [8],
Proposition 5.3.3.

PROPOSITION 1.25 (Biane-Speicher). Let n,m be natural numbers, and
let f € L*(R") and g € L*(R7"). Then

min{n,m}

(1.7) L) In@= Y, Lymap(f 59
p=0

REMARK 1.26. In the Gaussian Wiener chaos, a similar though more
complicated product formula holds.

T T (0) (") tls 2 0

= p)\p

It is common for formulas from classical probability to have free probabilistic
analogs with simpler forms, usually with binomial coefficients removed. This
can be understood in terms of the relevant (smaller) class of partitions that
control moments in the theory, as we discuss in Section 1.4 below.

1.4. Noncrossing partitions. Proposition 1.25 shows that contractions
are involved in the algebraic structure of the space of stochastic integrals.
Since contractions involve integrals pairing different classes of indices, gen-
eral moments of stochastic integrals are best understood in terms of a more
abstract description of these pairings. For convenience, we write [n] to rep-
resent the set [n] ={1,2,...,n} for any positive integer n. If n is even, then
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Fic. 1. Two pairings of [6] = {1,2,3,4,5,6}. The first (totally-nested) pairing is non-
crossing, while the second is not.

a pairing or matching of [n| is a partition of [n] into n/2 disjoint subsets
each of size 2. For example, {{1,6},{2,5},{3,4}} and {{1,2},{3,5},{4,6}}
are two pairings of [6] = {1,2,3,4,5,6}. It is convenient to represent such
pairings graphically, as in Figure 1.

It will be convenient to allow for more general partitions in the sequel.
A partition of [n] is (as the name suggests) a collection of mutually disjoint
nonempty subsets By, ..., B, of [n] such that By U---U B, = [n]. The subsets
are called the blocks of the partition. By convention we order the blocks by
their least elements; that is, min B; < min Bj iff ¢ < j. The set of all partitions
on [n] is denoted & (n), and the subset of all pairings is F5(n).

DEFINITION 1.27. Let m € &(n) be a partition of [n]. We say 7 has
a crossing if there are two distinct blocks By, By in 7 with elements z1,y; € By
and x9,ys € By such that x1 < x9 <y < y2. (This is demonstrated in Fig-
ure 1.)

If 7€ Z(n) has no crossings, it is said to be a noncrossing partition.
The set of noncrossing partitions of [n] is denoted NC(n). The subset of
noncrossing pairings is denoted NCs(n).

The reader is referred to [21] for an extremely in-depth discussion of
the algebraic and enumerative properties of the lattices NC(n). For our
purposes, we present only those structural features that will be needed in
the analysis of Wigner integrals.

DEFINITION 1.28. Let nq,...,n, be positive integers withn =n; +--- +n,.
The set [n] is then partitioned accordingly as [n] = By U --- U B, where
By ={1,...,n1}, Bo ={n1 +1,...,n1 + no}, and so forth through B, =
{n1+---4+n.—1+1,...,n1+---+n,}. Denote this partition as n; ® - - - @n,..

Say that a pairing m € P5(n) respects ny @ --- @ n,. if no block of 7 con-
tains more than one element from any given block of ny ® --- ® n,. (This
is demonstrated in Figure 2.) The set of such respectful pairings is denoted
P5(n1 ®---@n,). The set of noncrossing pairings that respect n; ® - - - @n,
is denoted NCy(n; ® --- @ n,.).

Partitions n1 ® - -- ® n,- as described in Definition 1.28 are called interval
partitions, since all of their blocks are intervals. Figure 2 gives some examples
of respectful pairings.
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Fic. 2. The partition 4 ®3 ®1®2® 2 is drawn above the dots; below are three pairings
that respect it. The two bottom pairings are in NC2(4®3Q1Q2® 2).

L

REMARK 1.29. The same definition of respectful makes perfect sense for
more general partitions, but we will not have occasion to use it for anything
but pairings. However, see Remark 1.32.

REMARK 1.30. Consider the partition n; ® - -- ®@n, = {By,..., B}, as
well as a pairing m € P2(n), where n = nj+- - - +n,. In the classical literature
about Gaussian subordinated random fields (cf. [31], Chapter 4, and the
references therein) the pair (n; ® - - - ® n,,m) is represented graphically as
follows: (i) draw the blocks By, ..., B, as superposed rows of dots (the ith
row containing exactly n; dots, ¢ =1,...,r), and (ii) join two dots with
an edge if and only if the corresponding two elements constitute a block
of m. The graph thus obtained is customarily called a Gaussian diagram.
Moreover, if 7 respects n; ® --- ® n, according to Definition 1.28, then the
Gaussian diagram is said to be nonflat, in the sense that all its edges join
different horizontal lines, and therefore are not flat, that is, not horizontal.
The noncrossing condition is difficult to discern from the Gaussian diagram
representation, which is why we do not use it here; therefore the nonflat
terminology is less meaningful for us, and we prefer the intuitive notation
from Definition 1.28.

One more property of pairings will be necessary in the proceeding analysis.

DEFINITION 1.31. Let nq,...,n, be positive integers, and let 7 € P5(n; ®
---®mn,). Let By, By be two blocks in n1 ® - - ®n,.. Say that 7 links By and
By if there is a block {i,j} € m such that i € By and j € Bs.

Define a graph C) whose vertices are the blocks of n1 ® - -- ® n,; C; has
an edge between By and Bs iff 7 links By and Bs. Say that 7 is connected
with respect to nq ® --- ®@n, (or that = connects the blocks of n1 ® -+ @mn,.)
if the graph C is connected.

Denote by NC§(n; ® --- @ n,) the set of noncrossing pairings that both
respect and connect n; ® -+ - Q@ ..
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For example, the second partition in Figure 2 is in NC§(4®3®1®2® 2),
while the third is not. The interested reader may like to check that NCq(4®
3®1®2®2) has 5 elements, and all are connected except the third example
in Figure 2.

REMARK 1.32. For a positive integer n, the set NC(n) of noncrossing
partitions on [n] is a lattice whose partial order is given by reverse refine-
ment. The top element 1,, is the partition {{1,...,n}} containing only one
block; the bottom element 0, is {{1},...,{n}} consisting of n singletons.
The conditions of Definitions 1.28 and 1.31 can be described elegantly in
terms of the lattice operations meet A (i.e., inf) and join V (i.e., sup). If
n=mny+ -+ n,, then 7 € NCs(n) respects ny ® --- ® n, if and only if
A (n1®---®n,)=0,; ™ connects the blocks of n; ® - -- @ n, if and only if
TV ®--@n,) =1,

REMARK 1.33. Given ni,...,n, and a respectful noncrossing pairing
m € NCy(n1 ® --- ®n,), there is a unique decomposition of the full index
set [n], where n =mny + --- + n,, into subsets Dy,...,D,, of the blocks of

ny ® -+ ®n,, such that the restriction of 7 to each D; connects the blocks
of D;. These D; are the vertices of the graph C; grouped according to
connected components of the graph. For example, in the third pairing in
Figure 2, the decomposition has two components, D; =4® 3 ® 1 and Dy =
2 ® 2. To be clear, this notation is slightly misleading since the 2 ® 2 in this
case represents indices {9,10},{11,12}, not {1,2},{3,4}; we will be a little
sloppy about this to make the following much more readable.

There is a close connection between respectful noncrossing pairings and
expectations of products of Wigner integrals. To see this, we first introduce
an action of pairings on functions.

DEFINITION 1.34. Let n be an even integer, and let m € P5(n). Let
f:R%} — C be measurable. The pairing integral of f with respect to 7, de-
noted [ [, is defined (when it exists) to be the constant

{i,j}em

For example, given the second pairing 7 = {{1,2},{3,5},{4,6}} in Fig-

ure 1,
/f:/ f(r,r s, t,s,t)drdsdt.
T ]Ri_

REMARK 1.35.  The operation [ _is not well defined on L?(R"}); for ex-
ample, if n =2 and 7 = {{1,2}}, then [ f is finite if and only if f is the
kernel of a trace class Hilbert-Schmidt operator on L?(R, ). However, it is
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FiGc. 3. A partial pairing 7 of [n + m] corresponding to a p-contraction; here n =6,
m=7, and p=4.

easy to see that [ f is well-defined whenever f is a tensor product of func-
tions, and 7 respects the interval partition induced by this tensor product
(cf. Lemma 2.1). (This is one of the reasons why one should interpret mul-
tiple stochastic integrals as integrals on product spaces without diagonals,
since integrals on diagonals are in general not defined.) This is precisely the
case we will deal with in all of the following.

Note that a contraction f A g can be interpreted in terms of a pairing
integral, using a partial pairing, that is, one that pairs only a subset of
the indices. If f € L*(R") and g € L*(R7"), and p <min{n,m} is a natural
number, then

ffp\gz/Tpf®g7

where 7, is the partial pairing {{n,n+1},{n—1,n+2},...,{n—p+1,n+p}}
of [n+m].

The partial contraction pairings 7, provide a useful decomposition of the
set of all respectful noncrossing pairings, in the following sense. Let nq,...,n,
be positive integers. If p < min{n;,ns}, the partial pairing 7, acts (on the
left) on the partition 71 ® ne @ n3 ® - - - ® n,- to produce the partition (nq +
ng —2p) ®n3 ® - -- ®@n,. That is, 7, joins the first two blocks of n1 ®---®@n,.
and deletes the paired indices to produce a new interval partition. This is
demonstrated in Figure 4.

Considered as such a function, we may then compose partial contraction
pairings. For example, following Figure 4, we may act again with 71 on 5 ®

FTEET - | T TTITTT]

8 9 10 11 12 1 2 3 6 7 8 9 10 11 12
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ) [ ] [ ] [ ]

Fic. 4. The partial pairing 71 acts on the left on 4®3® 1R 2® 2, joining the first two
blocks and deleting the middle indices, to produce the partition 51 ® 2 ® 2. The indices
are labeled to make the action clearer.
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6 9 10 11 12 102 11 12
e o6 o6 o o o o o e o o o

T2 T2

T 0T 0T1 0T

Fic. 5. The composition T2 o T2 o T1 o T1 produces a moncrossing pairing that respects
1301Q2Q2.

1®2®2 to yield 4® 2 ® 2; then with 75 to get 2® 2; and finally 75 maps this
partition to the empty partition. Stringing these together gives a respectful
pairing of the original interval partition, which we denote 79 o 79 0 7y o 77.
Figure 5 displays this composition.

To be clear: we start from the left and then do the partial pairing 7,
between the first and second block; after this application, the (rest of the)
first and second blocks are treated as a single block. This is still the case
if p = 0; here there are no paired indices, but the action of 79 records the
fact that, for further discussion, the first two blocks are now connected. An
example is given in Figure 6 below, where the action of 7y is graphically
represented by a dashed line.

With this convention, further 7, may act only on the first two blocks,
which results in a unique decomposition of any respectful pairing into partial
contractions, as the next lemma makes clear.

LEMMA 1.36. Let ny,...,n, be positive integers, and let m € NCy(ny ®
-~ ®@mny). There is a unique sequence of partial contractions Tp,,,...,Tp,_,
such that m =1, _, 0---0Tp,.

PROOF. Any noncrossing pairing must contain an interval {i,i + 1};
cf. [21], Remark 9.2(2). Hence, since 7 respects n1 ® ---®@n, = {By,..., B},
there must be two adjacent blocks linked by m. Let j € [k] be the small-
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Fia. 6. The pairing m = {{1,10},{2,5},{3,4},{6,9},{7,8}} respects the interval parti-
tion 3®2®2® 3. Its decomposition is given by m = T3 0Ty 0 To.

est index for which Bj, Bj,1 are connected by 7; hence all of the blocks
By,...,Bj pair among the blocks Bji1,...,B,. Note that any partition
that satisfies this constraint and also respects the coarser interval parti-
tion (n1+4---+n;) ®nj11 @ @n, is automatically in NCa(n1 ®---@n,).
In other words, we can begin by decomposing 7 =7’ o (19)?~!, where 7’ €
NCy((n1+ -+ nj) ®njp1 ®--- ®@n,) links the first and second blocks of
this interval partition. By construction, this j is unique.

Let no=mni+---+n;, so 7’ links {1,...,no} with {ng+1,...,n0+n;11}.
It follows that {ng,ng+ 1} € 7’ for if ng pairs with some element ng+14 with
12> 2, then ng+1,...,n9 +¢ — 1 cannot pair anywhere without introducing
crossings. Following these lines, an easy induction shows that there is some
p € [min{ng, nj41}] such that the pairs {ng,no+1},{no—1,n0+2},...,{no—
p+1,n9+p} are in 7, while all indices 1,...,ng—pand no+p—+1,...,n0+
nj41 pair outside [ng +n;1]. In other words, 7’ = 7" o 7;, for some noncross-
ing pairing 7" that respects (ng —p) ® (nj+1 —p) ®ng ® --- @ n,. What’s
more, since p was chosen maximally so that there are no further pairings in
the blocks (ng —p) ® (nj+1 — p), these two may be treated as a single block,
and 7 is only constrained to be in NCy(ng + nj11 — 2p,n3,...,n,). Since
p > 0, the lemma now follows by a finite induction; uniqueness results from
the left-most choice of j and maximal choice of p at each stage. [

By carefully tracking the proof of Lemma 1.36, we can give a complete
description of the class of respectful pairings in terms of their decomposi-
tions.

LEMMA 1.37. Let ny,...,n, be positive integers. The class NCa(ny ®
---®@ny) is equal to the set of compositions T, _ o---o1,, where (p1,...,pr—1)
satisfy the inequalities

0 <p1 <min{ng,n1},
(1.8) 0 <pp <min{ngii1,n1+---+np—2p1 — - —2pk_1},
1<k‘<’l”—1,2(p1—i—---—|—p7,_1):n1_|_...+nr'



20 KEMP, NOURDIN, PECCATI AND SPEICHER

Inequalities (1.8) in Lemma 1.37 successively guarantee that the par-
tial contractions 7,, in the decomposition of 7 only contract elements from
within two adjacent blocks; the final equality is to guarantee that all indices
are paired in the end. Since every respectful pairing has a contraction decom-
position, and each contraction decomposition satisfying inequalities (1.8) is
respectful (a fact which follows from an easy induction), these inequalities
define NCy(n; ® ---®n,). This completely combinatorial description would
be the starting point for an enumeration of the class of respectful pairings;
however, even in the case n; =--- =n,, the enumeration appears to be ex-
tremely difficult.

We conclude this section with a proposition that demonstrates the effi-
cacy of pairing integrals and noncrossing pairings in the analysis of Wigner
integrals.

ProprosITION 1.38.  Letny,...,n, be positive integers, and suppose fi,...

fr are functions with f; € LQ(RT) for 1 <i <r. The expectation ¢ of the
product of Wigner integrals Ifl(fl) . "Igr(fr) is given by

L) Pl () I = Y / flo-of.

TENC2(n1®--®@ny) 4

REMARK 1.39. This result has been used in the literature (e.g., to
prove [8], Theorem 5.3.4), but it appears to have a folklore status in that
a proof has not been written down. The following proof is an easy application
of Proposition 1.25, together with Lemma 1.37.

PROOF. By iterating equation (1.7), we arrive at the following unwieldy
expression. (For readability, we have hidden the explicit dependence of the
Wigner integral If on the number of variables n in its argument.)

(L10)  I5(f) - I5(f) =D - D I5(C-- (M P f) B fa) ) 0 o),

Pr—1

where p1,...,p-—1 range over the set specified by the first two inequalities
in equation (1.8). (This is the range of the p; for the same reason that
those inequalities specify the range of the py for contraction decompositions:
the first two inequalities in (1.8) merely guarantee that contractions are
performed, successively, only between two adjacent blocks of ny ® -+ ®@n,..)
Note: following Remark 1.22; the order the contractions are performed in
equation (1.10) is important.

Taking expectation in equation (1.10), note that most terms have ¢ =0
since any nontrivial stochastic integral is centred (as it is orthogonal to
constants in the Oth order of chaos). Hence, the only terms that contribute
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to the sum are those for which the iterated contractions pair all indices of
the functions; that is, the sum is over those p1,...,p,—1 for which 2(p; +
~+4pr_1) =n1+---+n,, so that the stochastic integral I® in the sum is Ig.
Since such a trivial stochastic integral is just the identity on the constant
function inside, this shows that

P ()T =D D (- (A ) P ) ) P50 1),
Pr—1 p1
where the sum is over those p1, ..., p,_1 satisfying the same inequalities men-
tioned above, along with the condition 2(py + -+ pr—1) =n1+ -+ ny;
that is, the py satisfy inequalities (1.8). Each such iterated contraction inte-
gral corresponds to a pairing integral of f; ® ---® f, in the obvious fashion,

<<---<<f1fiﬁ)fifg)---)pwfr):/  heeal

Lemma 1.37 therefore completes the proof. [J

REMARK 1.40. Another proof of Proposition 1.38 can be achieved using
a random matrix approximation to the free Brownian motion, as discussed
in Section 1.2. The starting point is the classical counterpoint to Proposi-
tion 1.38 [17], Theorem 7.33, which states that the expectation of a product
of Wiener integrals is a similar sum of pairing integrals over respectful (i.e.,
nonflat) pairings, but in this case crossing pairings must also be included.
Modifying this formula for matrix-valued Brownian motion, and control-
ling the leading terms in the limit as matrix size tends to infinity using the
so-called “genus expansion,” leads to equation (1.9). The (quite involved)
details are left to the interested reader.

2. Central limit theorems. We begin by proving Theorem 1.6, which we
restate here for convenience.

THEOREM 1.6. Let n be a natural number, and let (fx)ren be a sequence
of functions in L*(R"), each with kaHL?(Ri) =1. The following statements

are equivalent:

(1) The fourth absolute moments of the stochastic integrals I3(fy) con-
verge to 2.

Tim (ISl =2.
—00
(2) All nontrivial contractions of fy converge to 0. For each p=1,2,...,
n—1,
lim fy 2 ff=0 i LARZ).
k—o0

ProoOF. The expression |I7(f)|* is short-hand for [I5(fx) - IS (fx)*]?.
Since [according to equation (1.6)] I3 (fx)* = I3 (f{), this is a product of
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Wigner integrals, to which we will apply Proposition 1.25. First,
(2.1) L (fi) - I3 (F7) ZIQn (i 2~ £)-

The Wigner integrals on the rlght-hand side of equation (2.1) are in differ-
ent orders of chaos, and hence are orthogonal (with respect to the -inner
product). Thus, we can expand

P (fl*) = (L3 (fi) - 13 ()]
= (I3 (fu) - I3 (F), I3 () - I3 (F)) e

= Z(IAZSanp(fk A f]:)ajéganp(fk A f];k)>gp,

p=0

where in the second equality we have used the fact that I3 (fx) 15 (f;) is self
adjoint. Now employing the Wigner isometry [equation (1.5)], this yields

n

(2.2) P17 (f)l*) = Z%m A L8 T B £ paggan-ny-

p:
Consider first the two boundary terms in the sum in equation (2.2). When
p=n, we have

fe ™ fi = oo fu)peny = 1,

according to Lemma 1.24(2) and the assumption that f, is normalized in L.

On the other hand, when p =0, the contraction fj £ fr is just the tensor
product f® f*, and we have

(fe ® fis i @ fi) L2wzny = (oo fio) 2y ) (Fis Ji) 2y = 1

(Both terms in the product are equal to || f¢ |3, = 1, following Definition 1.19
of fi.) Equation (2.2) can therefore be rewritten as

(2.3) P15 (fu)l! _2+Z||fk Fj[e (R2n-20y

Thus, the statement that the limit of ¢(|I2(fx)|?) equals 2 is equivalent
to the statement that the limit of the sum on the right-hand side of equa-
tion (2.3) is 0. This is a sum of nonnegative terms, and so each of the terms
must have limit 0. This completes the proof. [J

Corollary 1.7 now follows quite easily.

COROLLARY 1.7. Let n>2 be an integer, and consider a nonzero mir-
ror symmetric function f € L*(R). Then the Wigner integral IS (f) satis-
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fies QIS ()Y > 20[I5(f)??. In particular, the distribution of the Wigner
integral 17 (f) cannot be semicircular.

PROOF. By rescaling, we may assume that || f]| 2 (r) = 1; in this case,

equation (2.3) shows that ¢[I7(f)*] > 2¢[I5(f)?]%. To achieve a contradic-
tion, we assume that p[I7(f)*] = 2[5 (f)?]? = 2 [which would be the case
if I5(f) were semicircular]. Then the constant sequence f;, = f for all k
satisfies condition (1) of Theorem 1.6; hence, for 1 <p<n —1,

PR = lim =0 in LARYT),

Take, for example, p=n—1. Let g € L*(Ry), so that ¢® g* € L*(R%). Then
we may calculate the inner product

n—1 px *
(f ~ 1999 ) @)

:/[f (s t)lg © o] (s, ) ds dt

:/(/f(s,SQ,...,sn)f*(sn,...,SQ,t)dSQ---dsn>@g(t)dsdt

:/g*(S)f(S,SQ,...,Sn)'g*(t)f(t,sg,...,Sn)detdSQ"'dsn
e 1
=lg /\inQ(Ri—l)'

By assumption, f = f*=0, and so we have g* Y f=0forall g€ L?(R,).
That is, for almost all so,...,s, € Ry,

/Om@f(s,SQ,...,sn)ds:O.

For fixed so,...,s, for which this holds, taking g to be the function g(s) =
f(s,89,...,8,) yields that f(s,sa,...,s,) =0 for almost all s. Hence, f =0
almost surely. This contradicts the normalization || f|| ey =1. 0O

We now proceed towards the proof of Theorem 1.3. First, we state a tech-
nical result that will be of use.

LEMMA 2.1.  Let nq,...,n, be positive integers, and let f; € LQ(RT) for
1<i<r. Let w be a pairing in Py(n1 ®---®mn,.). Then

Lﬁ®m®ﬂ

Proor. This follows by iterated application of the Cauchy—Schwarz in-
equality along the pairs in 7. It is proved as [17], Lemma 7.31. O

< llpa@ry - 1 frll 2@y
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The following proposition shows that contractions control all important
pairing integrals.

PROPOSITION 2.2.  Letn be a positive integer. Consider a sequence ( fx)ren
with fr € L*(R"}) for all k, such that:

(1) fu=fi for all k;
(2) there is a constant M >0 such that kaHLQ(lR’jr) <M for all k;
(3) for each p=1,2,....,n—1,

im fr, A fi=0  in L2(RYP).
k—o0

Let r >3, and let ™ be a connected noncrossing pairing that respects n®":
m € NC§(n®"); c¢f. Definitions 1.28 and 1.31. Then

lim

k—o0 J o

PRrROOF. Begin by decomposing 7 =7, _, 0---o7,, following Lemma 1.36.

There must be some nonzero p;; to simplify notation, we assume that p; > 0.
(Otherwise we may perform a cyclic rotation and relabel indices from the
start.) Note also that, since m connects the blocks of n®" and r > 2, it follows
that p; < n: else the first two blocks {1,...,n} and {n+1,...,2n} would
form a connected component in the graph C; from Definition 1.31, so C;
would not be connected. Set 7’ =7, 0---07p,, so that m =7’ o7p,. Then (as
in the proof of Proposition 1.38) it follows that

(2.4) / / o fi) @ £2C

To make this clear, an example is given in Figure 7, with the corresponding
iterations of the integral in equation (2.5).

/f®4 :/6 fQtrsta,ts) f(ts ta, ta) f(ta, ts,t6) f (te, ts, t1) dia dta dis dts dts die
T RJr

(2.5) :/R4 (f A F)(trta) f(asts,te) £t s, 1) dby dbq dts dt

2
- [t A nes.
ﬂ'/
Employing Lemma 2.1, we therefore have
P e fe
(2.6) e il ggznny - | sl

S ||f]€ /\ kaLQ(]Rin—Qp) . MT—Q’
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HEREEREERRE [T TTT T

T=7"0oTy m

FiG. 7. A pairing 7 € NCS(3%4), with the first step in its contraction decomposition (per
Lemma 1.36).

using assumption (2) in the proposition. But from assumptions (1) and (3),
I fi 22 kaLQ(Rinfgp) — 0. The result follows. O

We can now prove the main theorem of the paper, Theorem 1.3, which
we restate here for convenience.

THEOREM 1.3. Let n>2 be an integer, and let (fr)ren be a sequence
of mirror symmetric functions in L*(R™), each with ka||L2(R1) =1. The
following statements are equivalent:

(1) The fourth moments of the stochastic integrals I3 (fy) converge to 2.
lim (IS (fi)!) =2
k—o0

(2) The random wvariables I3 (fy) converge in law to the standard semi-
circular distribution S(0,1) as k — oo.

PROOF. As pointed out in Remark 1.5, the implication (2) = (1) is
essentially elementary: we need only demonstrate uniform tail estimates. In
fact, the laws sy of I7(fx) are all uniformly compactly-supported: by [8],
Theorem 5.3.4 (which is a version of the Haagerup inequality, cf. [15]), any
Wigner integral satisfies

I (NI < (4 DIl 2 (-

Since all the functions f; are normalized in L2, it follows that supp s C
[-n — 1,n + 1] for all k. Since the semicircle law is also supported in this
interval, we may approximate the function z + 2* by a C.(R) function that
agrees with it on all the supports, and hence convergence in distribution
of pp to the semicircle law implies convergence of the fourth moments by
definition.

We will use Proposition 2.2, together with Proposition 1.38, to prove the
remarkable reverse implication. Since S(0,1) is compactly supported, it is
enough to verify that the moments of I:(f)) converge to the moments of
5(0,1), as described following equation (1.4). Since I7(fy) is orthogonal to
the constant 1 in the first order of chaos, I3 (f;) is centred; the Wigner isom-
etry of equation (1.5) yields that the second moment of I (f;) is constantly 1
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due to normalization. Therefore, take r > 3. Proposition 1.38 yields that

(2.7) A= Y / .

TENC2(n®T)

Following Remark 1.33, any m € NC5(n®") can be (uniquely) decomposed
into a disjoint union of connected pairings 7 = m U --- U 7, with m; €
NC§(n®"i) for some r;’s with 71 + --- + r,;, = r. Since the decomposition
respects the partition n®", the pairing integrals decompose as products.

(2.8) = ﬁ / S

Assumption (1) in this theorem implies, by Theorem 1.6, that f EN fi—0
in L? for each p € {1,...,n — 1}. Therefore, from Proposition 2.2, it follows
that for each of the decomposed connected pairings 7; with r; > 3, the cor-
responding pairing integral fm [ converges to 0 in L?. Since the number
of factors m in the product is bounded above by r (which does not grow
with k), this demonstrates that equation (2.7) really expresses the limiting
rth moment as a sum over a small subset of NCs(n®"). Let NC2(n®") de-
note the set of those respectful pairings 7 such that, in the decomposition
Tm=m - Umy,, each r; = 2, in other words, such that the connected com-
ponents of the graph C) each have two vertices. Thus we have shown that

(2.9) lim o[I5(f,)] = Jim / .
k—00
7r€NC’2 n®T

Note: if each r;, =2 and r=7ry 4+ --- + 7,5, then 7 =2m is even. In other
words, if 7 is odd, then NC3(n®") is empty, and we have proved that all
limiting odd moments of I(f) are 0. If r = 2m is even, on the other hand,
then the factors m; in the decomposition of 7 can each be thought of as
m; € NCo(n ®n). The reader may readily check that the only noncrossing
pairing that respects n ®n is the totally nested pairing m; = {{n,n+ 1}, {n—
1,n+2},...,{1,2n}} in Figure 1. Thus, utilizing the mirror symmetry of f,

| feoii= [ oo 5=l =1
T TG
Therefore, equation (2.9) reads

210)  Jm S = Y 1=INCHwe)
TENC3Z(n®2m)

In each tensor factor of n®?™, all edges of each pairing in 7 act as one unit

(since they pair in a uniform nested fashion as described above); this sets
up a bijection NC3(n®?™) = NCy(2m). The set of noncrossing pairings of
[2m] is well known to be enumerated by the Catalan number C,, (cf. [21],
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Lemma 8.9), which is the 2mth moment of S(0,1); see the discussion fol-
lowing equation (1.4). This completes the proof. [

Next we prove the Wigner—Wiener transfer principle, Theorem 1.8, re-
stated below.

THEOREM 1.8. Let n > 2 be an integer, and let (fi)ren be a sequence of
fully symmetric functions in LQ(R’}F). Let 0 >0 be a finite constant. Then,
as k — oo:

(1) EIIY (fx)?] = nlo? if and only if o[I3(fr)?] — o;

(2) if the asymptotic relations in (1) are verified, then I}V (fy) converges
in law to a normal random variable N (0,n!0?) if and only if I3 (f1) converges
in law to a semicircular random variable S(0,02).

PrROOF. Point (1) is a simple consequence of the Wigner isometry of
equation (1.5), stating that for fully symmetric f € L3(R%), o[I5(f)?] =
|1 £113 (since £ is fully symmetric, f = f* in particular), together with the clas-
sical Wiener isometry which states that E[I)V(f)?] = n!||f||2. For point (2),
by renormalizing fx we may apply Theorems 1.3 and 1.6 to see that I(fx)
converges to S(0, 12 in law if and only if the contractions fj, -~ 5= fe N
converge to 0 in L” for p=1,2,...,n — 1. Since f is fully symmetric, these
nested contractions f ~ fi are the same as the contractions f ®, f in [29]
(cf. Remark 1.23), and the main theorems in that paper show that these
contractions tend to 0 in L? if and only if the Wiener integrals IV (fx)
converge in law to a normal random variable, with variance n! due to our
normalization. This completes the proof. [J

As an application, we prove a free analog of the Breuer-Major theorem
for stationary vectors. This classical theorem can be stated as follows.

THEOREM (Breuer-Major theorem). Let (Xi)kez be a doubly-infinite
sequence of (jointly Gaussian) standard normal random variables, and let
p(k) =E(XoX}y) denote the covariance function. Suppose there is an integer
n > 1 such that ) ;. |p(k)[" < oc. Let H, denote the nth Hermite polyno-
mial,

n
Hy(z) = (—1)"e""/? C;‘;—ne—ﬂ:?/?.

({Hy:n > 0} are the monic orthogonal polynomials associated to the law
N(0,1).) Then the sequence

1 m—1 .
Vm:ﬁ kz_(:]Hn(Xk)ﬂN(O,n!UQ) as m — 0o,

where 0% =", p(k)™.
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See, for example, the preprint [25] for extensions and quantitative im-
provements of this theorem. Note that the Hermite polynomial H,, is related
to Wiener integrals as follows: if (W;);>0 is a standard Brownian motion,
then W; is a N(0,1) variable, and

Hy(Wh) = 1Y (g 1jn)-

(See, e.g., [19].) The function 1jg1j» is fully symmetric. On the other hand,
if (S¢)i>0 is a free Brownian motion, then

IS (Lo, 1n) = Un(S1),

where U, is the nth Chebyshev polynomial of the second kind, defined (on

[=2,2]) by
sin((n+1)0)
sin 6 '

(2.11) Un(2cosf) =

({Upn:n >0} are the monic orthogonal polynomials associated to the law
S(0,1); see [8, 41].) Hence, the Wigner—Wiener transfer principle Theo-
rem 1.8 immediately yields the following free Breuer—Major theorem.

COROLLARY 2.3. Let (Xk)kez be a doubly-infinite semicircular system
random wvariables S(0,1), and let p(k) = ¢(XoXy) denote the covariance
function with Xo. Suppose there is an integer n > 1 such that ), |p(k)|" <
0. Then the sequence

-1

3

Un(Xk)m—W>S(O,02) as m— oo,
0

Vin =

Elly
Il

where 0% =3, p(k)™.

3. Free stochastic calculus. In this section, we briefly outline the def-
initions and properties of the main players in the free Malliavin calculus.
We closely follow [8]. The ideas that led to the development of stochastic
analysis in this context can be traced back to [18]; [9] provides an important
application to the theory of free entropy.

3.1. Abstract Wigner space. As in Nualart’s treatise [27], we first set up
the constructs of the Malliavin calculus in an abstract setting, then special-
ize to the case of stochastic integrals. As discussed in Section 1.2, the free
Brownian motion is canonically constructed on the free Fock space .%((9)
over a separable Hilbert space . Refer to the algebra S($)) [generated by the
field variables X (h) for h € $)], endowed with the vacuum expectation state
@, as an abstract Wigner space. While S($)) consists of operators on .%y(9),
it can be identified as a subset of the Fock space due to the following fact.
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ProproSITION 3.1. The function
Y—YQ

(3.1)

s an injective isometry. It extends to an isometric isomorphism from the
noncommutative L*-space L*(S(9),¢) onto Fy($).

In fact, the action of the map in equation (3.1) can be explicitly written in
terms of Chebyshev polynomials [introduced in equation (2.11)]. If {h; }ien
is an orthonormal basis for §, ki, ks, ..., k, are indices with k; # k;41 for
1<j<r,and ny,...,n, are positive integers, then

(32)  Uny(X(hw,)) -+ Un, (X (hy, )2 =B @ - @ B € Fo(9).

[This is the precise analogue of the classical theorem with X (-) an isonor-
mal Gaussian process and the U, replaced by Hermite polynomials H,; in
the classical case the tensor products are all symmetric, hence the disjoint
neighbors condition on the indices ki, ..., k, is unnecessary.] Hence, in order
to define a gradient operator (an analogue of the Cameron—Gross—Malliavin
derivative) on the abstract Wigner space S()), we may begin by defining it
on the Fock space .%y(9).

3.2. Derivations, the gradient operator, and the divergence operator. In
free probability, the notion of a derivative is replaced by a free difference
quotient, which generalizes the following construction. Let :R — C be a C!
function. Then define a function du:R x R — C by

u(z) —u(y)
(3.3) ou(z,y) = r—y TFY,

u,(‘r)7 r=y.

The function du is continuous on R? since u is C'!. This operation is a deriva-
tion in the following sense (as the reader may readily verify): if u,v € C1(R)
then

(3.4) Iw)(x,y) = u(x)dv(x,y) + du(z,y)v(y).

Hence, du € L% (R?) =2 L% (R)® L% (R). In other words, we can think of 9
as a map

(3.5) 9:C'(R) — L, .(R) ® L (R).

If we restrict 0 to polynomials u € C[X] in a single indeterminate, then
OJu € C[X,Y], polynomials in two (commuting) variables, and the same iso-
morphism yields C[X,Y] = C[X] ® C[X]. The action of d can be succinctly
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expressed here as

9:C[X] — C[X] ® C[X],
(3.6)

n
X"y Xt e X
j=1
The operator 9 is called the canonical derivation. In the context of equa-
tion (3.6), the derivation property is properly expressed as follows:

(3.7) O(AB)=(A®1)-9B +0A- (1 B).

It is not hard to check that 0 is, up to scale, the unique such derivation which
maps C[X] into C[X]®C[X] (i.e., the only derivations on R are multiples of
the usual derivative). This uniqueness fails, of course, in higher dimensions.

Free difference quotients are noncommutative multivariate generalizations
of this operator 0 (acting, in particular, on noncommutative polynomials).
The definition follows.

DEFINITION 3.2. Let & be a unital von Neumann algebra, and let
X € of. The free difference quotient Ox in the direction X is the unique
derivation [cf. equation (3.7)] with the property that dx(X)=1®1.

(There is a more general notion of free difference quotients relative to
a subalgebra, but we will not need it in the present paper.) Free difference
quotients are central to the analysis of free entropy and free Fisher infor-
mation (cf. [39, 40]). The operator O plays the role of the derivative in the
version of It6’s formula that holds for the stochastic integrals discussed be-
low in Section 3.3; cf. [8], Proposition 4.3.2. We will use 0 and Jx, and their
associated calculus (cf. [40]), in the calculations in Section 4.1. We mention
them here to point out a counter-intuitive property of derivations in free
probability: their range is a tensor-product space.

Returning to abstract Wigner space, we now proceed to define a free
analog of the Cameron—Gross—Malliavin derivative in this context; it will
be modeled on the behavior (and hence tensor-product range space) of the
derivation 0.

DEFINITION 3.3.  The gradient operator V : Fy(9) — Fo(9H) @H®.F%y(H)
is densely defined as follows: V{2 =0, and for vectors hi,...,h, € 9,
(38) V(m® - @hp)=> (M® - @hj1)@h® (hjy1® @ hy),
j=1
where b ® ---® hj_1 =Q when j=1 and hj11 ®---® hy, = when j =n.
In particular, VA =Q ® h ® ).
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The divergence operator §:.%y(HH) @ H ® Fo(H) = Fo($) is densely de-
fined as follows: if hy,...,h, and ¢1,...,9, and h are in ), then

o) S(M @ Qhy)Oh® (g1 @ D gm))
' =@ QhnQh®g D @ gm.

These actions, on first glance, look trivial; the important point is the
range of V and the domain of § are tensor products, and so the placement
of the parentheses in equations (3.8) and (3.9) is very important. When we
reinterpret V,¢ in terms of their action on stochastic integrals, they will
seem more natural and familiar.

The operator Ny =0V :.%,($) = Fo(9) is the free Ornstein—Uhlenbeck
operator or free number operator; cf. [5]. Its action on an n-tensor is given by
No(h1®---®hy) =nh) ®---® hy,. In particular, the free Ornstein—Uhlenbeck
operator, densely defined on its natural domain, is invertible on the orthog-
onal complement of the vacuum vector. This will be important in Section 4.
It is easy to describe the domains 2(Ny) and 2(Ny'); we will delay these
descriptions until Section 3.6.

Definition 3.3 defines V,d on domains involving the algebraic Fock
space Fo1e($) (consisting of finitely-terminating sums of tensor products
of vectors in ). It is then straightforward to show that they are closable
operators, adjoint to each other. The preimage of .%,,($)) under the isomor-
phism of equation (3.1) is actually contained in S()): Equation (3.2) shows
that it consists of noncommutative polynomials in variables {X (h),h € $}.
Denote this space as Suig($). We will concern ourselves primarily with the
actions of V, § on this polynomial algebra (as is typical in the classical setting
as well). Note, we actually identify S,5($) as a subset of .7 () via Proposi-
tion 3.1, therefore using the same symbols V, § for the conjugated actions of
these Fock space operators. Under this isomorphism, the full domain (V)
is the closure of Se($); similarly, 2(No) and 2(N; ') have Saq($) (minus
constants in the latter case) as a core.

PROPOSITION 3.4. The gradient operator V:S,5($) = Sag(9) ® H ®
Salg($9) is a derivation.

(3.10) V(AB)=A-(VB)+(VA)-B, A, B € Sa(9).
In equation (3.10), the left and right actions of S,is($) are the obvious
ones A-(Uah@V)=(AU)h®@V and (Uh®V)-B=U®h®(VB). This

is the same derivation property as in equation (3.7). In particular, iterating
equation (3.10) yields the formula

(811) V(X (h)-- X (ha))=3_ X (h1) - X (hj_1)@h; @ X (hj1) - X (h).
j=1
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When n =1, equation (3.11) says VX (h) =1® h ® 1, which matches the
classical gradient operator (up to the additional tensor product with 1).

As shown in [8], both operators V and ¢ are densely defined and closable
operators, both with respect to the L?(¢) [or L?(¢ ® ¢)] topology and the
weak operator topology. It is most convenient to work with them on the
dense domains given in terms of S,q.

We now state the standard integration by parts formula. First, we need
an appropriate pairing between the range of V and $), which is given by the
linear extension of the following.

<'7 '>YJ : (Salg(ﬁ) RH Salg(ﬁ)) X$H— Salg(ﬁ) ® Salg(f))a
(A®h ® B, ha)s, = (h1,ha)A® B.

In the special case $§ = L?(Ry) to which we soon restrict, this pairing is
quite natural; see equation (3.17) below. The next proposition appears as [8],
Lemma 5.2.2.

(3.12)

PROPOSITION 3.5 (Biane, Speicher). IfY € Suq($) and h € 9,
(3.13) @ p((VY,h)g) = (Y - X(h)).

REMARK 3.6. Since (VY h)g is in the tensor product Suie(9) @ Saig(9),
its expectation must be taken with respect to the product measure ¢ ® .

3.3. Free stochastic integration and biprocesses. We now specialize to
the case $ = L2(R, ). In this setting, we have already studied well the field
variables X (h).

(3.14) X(h)y=1I(h) = / h(t) dS,.

[Equation (3.14) follows easly from the construction S; = X (1jg,) of free
Brownian motion.] To improve readability, we refer to the polynomial alge-
bra Sag(L*(R4)) simply as Sag; therefore, since Sy = X (1jo,)), Saig contains
all (noncommutative) polynomial functions of free Brownian motion. The
gradient V maps S,y into Sae @ L?(R4) ® S,ie. It is convenient to identify
the range space in the canonical way with vector-valued L2-functions.

Salg & L2 (R-i—) & Salg = L2 (R-I-; Salg @ Salg)'

That is, for Y € S,1, we may think of VY as a function. As usual, for ¢t > 0,
denote (VY)(t) = VY. Thus, VY is a noncommutative stochastic process
taking values in the tensor product Suz ® Sag-

DEFINITION 3.7. Let (47, ) be a W*-probability space. A biprocess is
a stochastic process t — U € o ® 7. For 1 < p < oo, say U is an LP bipro-
cess, U € &, if the norm

(3.15) U2, = / oA
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is finite. (When p = oo the inside norm is just the operator norm of U; in
o &)

Let {7 :t > 0} be a filtration of subalgebras of o7 say that U is adapted
if Uy € o7 ® o for all t > 0.

A biprocess is called simple if it is of the form

n
(3.16) U:ZAj ® Bily, 1),
j=1

where 0 =19 <t; <---<t, and A;, B; are in the algebra /. The simple
biprocess in equation (3.16) is adapted if and only if A;, B; € o4, , for
1 <j <n. The closure of the space of simple biprocesses in %), is denoted %,
the space of LP adapted biprocesses.

REMARK 3.8. Customarily, our algebra &7 will contain a free Brownian
motion S = (S¢)¢>0, and we will consider only filtrations 2% such that Ss € <%
for s <t. Thus, when we say a process or biprocess is adapted, we typically
mean with respect to the free Brownian filtration.

So, if Y € S,1g, then VY is a biprocess. Since S, consists of polynomials
in free Brownian motion, it is not too hard to see that VY € %, for any
p > 1 (cf. [8], Proposition 5.2.3). Note that the pairing of equation (3.12), in
the case $§ = L?(R ), amounts to the following. If U € %, is an L? biprocess
and h € L?(R,), then

(3.17) (U, h) 2,y = /R Ush(t) dt.

We now describe a generalization of the Wigner integral [ h(t) dS; to allow
“random” integrands; moreover, we will allow integrands that are not only
processes but biprocesses. (If X; is a process, then X; ® 1 is a biprocess, so
we develop the theory only for biprocesses.)

DEFINITION 3.9. Let U=3""_, A; ® Bjlj, ;) be a simple biprocess,
and let S = (S;)i>0 be a free Brownian motion. The stochastic integral of U
with respect to S is defined to be

n
(3.18) / UsgdSi =" 45(S,, — Si,,)By.
j=1

REMARK 3.10. The f-sign is used to denote the action of U; on both
the left and the right of the Brownian increment. In general, we use it to
denote the action of & ® & on &/ by (A ® B){C = ACB; more generally,
for any vector space 2, it denotes the action of &/ ® & on &/ ® Z @ & by
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(A B)i(C ® X ® D) =(AC) ® X ® (DB). Since the second tensor factor
of o/ acts on the right rather than the left, it might be more accurate to
describe § as an action of & ® &7°P, where the opposite algebra </°P is equal
to &7 as a set but has the reversed product.

REMARK 3.11. Let U be a simple biprocess as in equation (3.16). If A;
are constant multiples of the identity, and B; =1, then the stochastic in-
tegral in Definition 3.9 reduces to the ngner 1ntegral JUtdS, = I S(h)
where h=3""_) A;1y,

]17)

Let U be an adapted simple biprocess. A standard calculation, utiliz-
ing the freeness of the increments of (S;):>0, yields the general Wigner—Ito

1sometry,
= HUH%’Q :

(3.19) H / Uy dS,
L2( )

This isometry therefore extends the definition of the stochastic integral to
all of #9 by a density argument (since simple biprocesses are dense in %49).

3.4. An Ito formula. There is a rich theory of free stochastic differential
equations based on the stochastic integral of Definition 3.9 (cf. [11-13]) which
mirror classical processes (like the Ornstein—Uhlenbeck process) in the free
world, and [14] which uses free SDEs for an important application to ran-
dom matrix ensembles and operator algebras. The stochastic calculus in this
context is based on a free version of the It6 formula, [8], Proposition 4.3.4. It
involves the derivation 9 in place of the first order term; in order to describe
the appropriate It6 correction term, we need the following definition.

DEFINITION 3.12. Let p be a probability measure on R all of whose
moments are finite. Define the operator A, :C[X] — C[X] on polynomials
as follows:

(3.20) —2—/8h x,y)p(dy).

The It6 formula in our context applies to It6 processes of the form M; =
M —I—fO UstdS, —i—fo K ds. For our purposes, it suffices to take Us = 1 y1®1
so that the stochastic integral [ Us#dS; is just the free Brownian motion Sy,
and so we state the formula only in in this special case.

PROPOSITION 3.13 (Biane, Speicher). Let K = (Ky)i>0 be a self-adjoint
adapted process. Let My be self adjoint in L*(S, ), and let M = (My)y>q be
a process of the form

t
(321) Mt:MO+St+/ KSdS.
0
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Let h € C[X] be a polynomial, and let A, denote the operator Ay = A
cf. equation (3.20). Then

My

(3.22) h(Mt):h(MO)+/Ot6h(Ms)1des+%/OtAsh(Ms)ds.

REMARK 3.14. In equation (3.22), we are viewing the function 0h as
living in C[X|® C[X] directly rather than C[X,Y]. In particular, if h(x) = 2"
then Oh(X) =Y}_, X 1o Xnk

REMARK 3.15.  Of course, given equation (3.21) defining M;, the integral
fot Oh(Ms)tdMy, in equation (3.22) is shorthand for

t t t
/ Oh(Ms)f dM; :/ Oh(Ms)gdS, +/ Oh(M;)8Ksds,
0 0 0
following standard conventions of stochastic calculus.

We will use Proposition 3.13 in the calculations in Section 4.1 below. It
will be convenient to extend the It6 formula beyond polynomial functions h
for this purpose. The canonical derivation 9 of equation (3.4) makes sense
for any C'-function h; we restrict this domain slightly as follows. Suppose
that h is the Fourier transform of a complex measure v on R,

(3.23) h(z)=v(z)= /Remél/(df).

By definition, a complex measure is finite, and so such functions h are con-
tinuous and bounded, h € Cp(R). In order to fit into the Itd framework,
such functions must be L? in the appropriate sense. In the context of equa-
tion (3.23), the relevant normalization is as follows.

DEFINITION 3.16. Let h have a Fourier expansion as in equation (3.23).
Define a seminorm .#5(h) on such functions h by

(3.24) 7w = [ &),
Denote by Cs the set of functions h with #(h) < oco.

REMARE\ 3.17. % is not a norm: if h =a € C is a constant function,
then h = ady, and F(h) = [£2|aldo(d€) = 0. It is easy to check that % is
a seminorm (i.e., nonnegative and satisfies the triangle inequality), and that
its kernel consists exactly of constant functions in Cs. Indeed, the quotient
of Cy by constants is a Banach space in the descended #-norm.

Standard Fourier analysis shows that Co C CZ(R) (bounded twice-contin-
uously-differentiable functions), where #5(h) is like a sup-norm on the sec-
ond derivative h”. In particular, nonconstant polynomials are not in Cy. For
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our purposes, we are only concerned with applying polynomials to bounded
operators, meaning that we only care about their action on a compact subset
of R. In fact, locally any C*° function is in Cs.

LEMMA 3.18. Let r > 0. Given any C* function h:R — C, there is
a function h, € Cy such that h(z) = h,(x) for |z| <r.

PROOF. Let 9, be a C2° function such that ¢, (z) = 1 for |x| <r. Then ¢, h
is equal to h on [—r,r]. This function is C¢°, and hence its inverse Fourier
transform (1),.h)" is in the Schwartz space of rapidly-decaying smooth func-
tions. Set v,.(d€) = (1.-h)Y(€) d€; then v, has finite absolute moments of all

orders, and h, =1, =1, h is in Cy and is equal to h on [—r,r]. O

In particular, polynomials are locally in the class Co. Later we will need
the following result which says that resolvent functions are globally in Cs.

LEMMA 3.19.  For any fized z in the upper half-plane C,., the function

p-(z) = = is in Cs.

PrROOF. Theresolvent p, is the Fourier transform of the measure v, (d) =
—ie‘zzfll(_oo,o] (¢) d¢; a simple calculation shows that #(p.) = 2(32) ™3 when
Sz > 0.

The next theorem is a technical approximation tool which will greatly
simplify some of the more intricate calculations in Section 4.1.

THEOREM 3.20. Let K be a compact interval in R. Denote by CQK’P the
subset of Co consisting of those functions in C]oj that are equal to polynomaials
on K. If h € Cy, there is a sequence h, € CQK’ such that:

(1) H(hyp) — H2(h) as n— oo;
(2) if u is any probability measure supported in K, then f hy dp — f hdpu.

In fact, our proof will actually construct such a sequence h,, that con-
verges to h pointwise as well, although this is not necessary for our intended
applications. The proof of Theorem 3.20 is quite technical, and is delayed
to Appendix.

Since Co C C%(R), the operator d makes perfect sense on Cy (and has L2-
norm appropriately controlled); we can then reinterpret the function 0h €
C'(R?) as an element of L (R) ® L% _(R) so it fits the notation of the
It6 formula equation (3.22). It will be useful to have a more tensor-explicit

representation of the function dh for h € Cy in the sequel. If h =7, then

_ 1
hi@) — hy) = / b (ax + (1 —a)y) da

Oh(x,y) =
(z,y) P ;
1
:/ /iﬁemf‘vei(l_a)fyu(df) dov.
0o Jr

(3.25)
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Under the standard tensor identification, we can rewrite equation (3.25) as

(3.26) On(Y) = / 1 / i€(e Y @ =YY, (dE) da
0 JR

As for the It6 correction term in equation (3.22), two applications of the
Dominated Convergence Theorem show that the operator A, of Defini-
tion 3.12 is well defined on h € Cy whenever p is compactly-supported, and
the resulting function A,h is continuous. As such, all the terms in the Ito
formula equation (3.22) are well defined for h € Co, and standard approxi-
mations show the following.

COROLLARY 3.21. The Ité formula of equation (3.22) holds for h € Cs.

REMARK 3.22. The evaluations of the functions h, 0h, and A;h on
the noncommutative random variables My and M; are given sense through
functional calculus; this is possible (and routine) because My and M; are
self adjoint.

3.5. Chaos expansion for biprocesses. Recall the multiple Wigner inte-
grals I S as discussed in Section 1.3. By de-emphasizing the explicit de-
pendence on n, I® can then act (linearly) on finite sums > fn of func-
tions f, € L? (R”) L?*(R4)®™; that is, I° acts on the algebraic Fock space
Falg = Falg(L? (R+)) Utilizing the ngner isometry, equation (1.5), this
means [~ extends to a map defined on the Fock space,

(3.27) I%: Zo— L2(S, p);

here and in the sequel, %y = %o(L*(R;)) and S = S(L*(R4)). In fact, the
map in equation (3.27) is an isometric isomorphism; this is one way to state
the Wigner chaos decomposition. This extended map I° is the inverse of the
map Y — YQ of Proposition 3.1.

For n,m positive integers, define for f € L?(R") ® L*(RT) = L*(R}™™)
the Wigner bi-integral

(3.28) [IS@I;?L](f):/f(tl,...,tn;sl,...,sm)dStl"-dStn®dSsl~~dSSm.

To be clear: if f =g ® h with g € L>(R?) and h € L*(RT), then [IJ ®
IS1(f) =15 (g) ® I2 (h); in general, IS ® IS is the L?-closed linear extension
of this action. Thus,

I3R15: LA(RT) @ LART) —» LAS® 8,0 @ ¢).

The Wigner isometry [cf. equation (1.5)] in this context then says that if
fe€L*R?)® L*(R7) and g € L*(R} ) @ L*(R"7"), then

v @@Ly ® I (9) I, @ I, )(f))

{ (f.9) 2®myer2®y); if n=n' and m=n/,
0, otherwise.

(3.29)
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This “bisometry” allows us to put the I;lq ® I3 together for different n,m as
in equation (3.27), to yield an isometric isomorphism
(3.30) IPQI%: %0 Fy— LA(SRS,0® ).
What’s more, by taking these Hilbert spaces as the ranges of vector-valued
L?(Ry)-functions, and utilizing the isomorphism L?(R ;A @ B) = A ®
L?(R,) ® B for given Hilbert spaces 2,8, we have an isometric isomor-
phism
(3.31) I I L3Ry ; Fo @ Fo) — Bo.
Here %5 denotes the L? biprocesses (cf. Definition 3.7), in this case taking
values in S® S. If f € L?(R,;.%y ® .%), the bi-integral acts only on com-
ponents: [I° @ I°](f)(t) = [I° @ I°](f;). Equation (3.31) [through the action
defined in equation (3.28)] is the Wigner chaos expansion for L* biprocesses
in the Wigner space.

As in the classical case, adaptedness is easily understood in terms of the
chaos expansion. If U € %, it has a chaos expansion U = [I° @ I°](f) for
some f € L*(R,;.%) ® .%y), which we may write as an orthogonal sum

[t fi= Z e,

n,m=0

where f;""™ € L*(R".) ® L*(R""). Then U is adapted (in the sense of Defini-
tion 3.7) if and only if for each n,m and t¢1,...,t,,51,...,8y, > 0, the ker-
nels f;""(t1,...,tn;51,...,5m) are adapted, meaning they are 0 whenever
max{ti,...,tn,S1,...,5m} > t. In this case, the stochastic integral defined
in equations (3.18) and (3.19) can be succinctly expressed; cf. [8], Proposi-
tion 5.3.7. In particular, if f™™ € L*(Ry; L*(R) ® L*(R?)) is adapted, then

/ 15 & I°)(f,)4 S,
(3.32)
:/ft”’m(tl,...,tn;sl,...,sm)dStl---dStndStdSSI---dSSm.

This is consistent with the notation of equation (3.28); informally, it says that
(dSy, -+- dS;, ®dSs, --- dSs,,)4dSy = dSy,, - -+ dSy, dSydSs, --- dS

as one would expect.

Sm

3.6. Gradient and divergence revisited. Both the gradient and the di-
vergence have simple representations in terms of the chaos expansions in
Section 3.5.

PROPOSITION 3.23 (Propositions 5.3.9 and 5.3.10 in [8]). The gradient
operator is densely-defined and closable in

V:LA(S,p) — Bo.
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Its domain 2(V), expressed in terms of the chaos expansion for L*(S, )
zs as follows. If f =3, fn € Fo with f, € L*(R), and if L*(S,0)3Y =
IS(f), then' Y € 2(V) if and only if
o
(3.33) 2l fallzz ey < oo
n=0
In this case, the quantity in equation (3.33) is equal to the norm

o)

/ HthH%Q(&X)S,@@gD) dt:ZannH%?(Ri)

R+ n=0

Moreover, the action of V on this domain is determined by

Vt</f(t1,...,tn)d5tl dStn>

:Z/f(tl,...,tk_l,t,tk+1,...,tn)d5tl---dStk1®dStk+1---dStn.

(3.34)

REMARK 3.24. It is similarly straightforward to write the domain of the
free Ornstein—Uhlenbeck operator in terms of Wigner chaos expansions. If

Y =1I5(f) where f =13, f, € %o, then Y € Z(Np) iff 3, 2||f”HL2 R7)
0. Likewise, Y € Z(Ny ') iff fo =0 and Y om0 n*ZanH%Q(Ri) < 0o. In par-
ticular, we see that
(3.35) P2(No) C 2(V),  2(V)©image(Iy) C 2(Ny ).

The divergence operator can also be simply described in terms of the

chaos. We could similarly describe its domain, but its action on adapted
processes is already well known, as in the classical case.

PROPOSITION 3.25 (Propositions 5.3.9 and 5.3.11 in [8]).  The divergence
operator is densely defined and closable in
§: By — LS, ).

Using the chaos expansion for biprocesses, the action of ¢ is determined as

follows. If f € L*(Ry; LA2(R") ® L*(R™)), then

</ft tl,.. tn,Sl, ..,Sm)dStl dStm ®dSSl dSSm>
(3.36)
/ft tl, . tnaSh'uytm)dStl"'dStndStdSs1"'dssm-

In particular, comparing with equation (3.32), if U is an adapted biprocess
Ue %, then U € 2(5) and

am:/mm&
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REMARK 3.26. In light of the second part of Proposition 3.25, the diver-
gence operator is also called the free Skorohod integral. To be more precise,
as in the classical case, there is a domain L%? in between %4 and the nat-
ural domain Z(§) on which § is closable and such that for U € L}? the
relation V;(6(U)) = U + 65(VUs) holds true. It is this restriction of ¢ that
is properly called the Skorohod integral.

REMARK 3.27. Given a random variable X € 2(V), using the deriva-
tion properties of the operators dx (cf. Definition 3.2) and V, it is rela-
tively easy to derive the following chain rule. If p € C[X] is a polynomial,
then

(3.37) Vp(X) = 0xp(X)iVX.

We conclude this section with one final result. The space of L? adapted
biprocesses %9 is a closed subspace of the Hilbert space %s; cf. Defini-
tion 3.7. Hence there is an orthogonal projection I': %y — #9. The next
result is a free version of the Clark-Ocone formula. It can be found as [§],
Proposition 5.3.12.

PROPOSITION 3.28. If X € 2(V), then
X =(X)+6(0VX).

4. Quantitative bounds on the distance to the semicircular distribution.
As described in the restricted form of Theorem 1.10 in Section 1, we are pri-
marily concerned in this section with quantitative estimates for the following
distance function on probability distributions.

DEFINITION 4.1. Given two self-adjoint random variables X, Y, define
the distance

de, (X,Y) = sup{[o[h(X)] = ¢[n(Y)]|: h € Co, Fo(h) <1};

the class Cy and the seminorm %5 are discussed in Definition 3.16.

REMARK 4.2. Note that we could write the definition of d¢,(X,Y)

equally well as

sup{ /hdux—/hduy
In this form, it is apparent that de,(X,Y’) only depends on the laws px
and py of the random variables X and Y. In computing it, we are therefore
free to make any simplifying assumption about the correlations of X and Y’
that are convenient; for example, we may assume that X and Y are freely
independent.

:hECQ,fQ(h) < 1}.
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1

Lemma 3.19 shows that resolvent functions p,(z) = (z —z)~" are in Cs

for z € C, and in fact that if Sz =1, then #(p,) = 2. Thus,
1 _ _ 1
de,(X,Y) > §C§up1|90[(z—X) N=pl(z=Y) 1| =5 sup |Gy (2) = Gy (2)];
SZz=

where G, (z) = [3(z — ) 'u(dz) is the Stieltjes transform of the law s It
is a standard theorem that convergence in law is equivalent to convergence
of the Stieltjes transform on any set with an accumulation point, and hence
this latter distance metrizes converge in law; so our stronger distance dg,
also metrizes convergence in law. The class Co is somewhat smaller than
the space of Lipschitz functions, and so this metric is, a priori, weaker than
the Wasserstein distance (as expressed in Kantorovich form; cf. [10, 33]).
However, as Lemma 3.18 shows, all smooth functions are locally in Cs; the
relative strength of d¢, versus the Wasserstein metric is an interesting ques-
tion we leave to future investigation.

4.1. Proof of Theorem 1.10. We begin by restating Theorem 1.10 in the
language and full generality of Section 3.

THEOREM 1.10. Let S be a standard semicircular random variable; cf.
equation (1.4). Let F' be self adjoint in the domain of the gradient, F €
P (V) C L*(S, ), with (F)=0. Then

(4.1)  dey(F,S) < %@@@(‘/VS(NO_IF)ﬁ(VSF)*ds—1®1D.

PrROOF. The main idea is to connect the random variables F' and S
through a free Brownian bridge, and control the differential along the path
using free Malliavin calculus; cf. Section 3. For 0 <t <1, define

(4.2) F=vV1—tF+S5,

where S} is a free Brownian motion. In particular, S7 has the same law as
the random variable S. Since dg, (F, S) depends only on the laws of F' and S
individually, for convenience we will take S; freely independent from F'.
Fix a function h € Cy. In the proceeding calculations, it will be useful to
assume that h is a polynomial; however, polynomials are not in Co. Rather,
fix a compact interval K in R that contains the spectrum of F; for each
t €[0,1]; for example, since ||Fy|| < 2v/t + /1 —t||F||, we could choose K =
[—2—||F||,2+ ||F||]. For the time being, we will assume that h is equal to
a polynomial on K; that is, we take h € CQK’P; cf. Theorem 3.20.

Define g(t) = ¢[h(F})]. The fundamental theorem of calculus yields the
desired quantity,

1
(4.3)  @[h(S)] = @lh(F)] = ¢[h(F1)] = ¢[h(Fo)] = (1) — 9(0) = /O g'(t)dt.
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We can use the free Ité formula of equation (3.22) to calculate the deriva-
tive ¢'(t). In particular, dF; = -3 \/%F dt + dS;, and so applying equa-
tion (3.22) yields

d[h(F,)] = Oh(Fy)3dF; + lAthm) dt
(4.4)

1
= Oh(F, ——Fdt+d —Ah(F}) dt.
a(t)ﬁ{ 2\/— +St}+2t(t)
Linearity (and uniform boundedness of all terms) allows us to exchange ¢
with stochastic integrals; in particular, we may write dg(t) = @(d[h(F})]).
The (stochastic integral of the) term Oh(F;)fdS; has mean 0, and so we are
left with two terms,

45) gt =5{ - elon(FE) + ()

The following lemma allows us to simplify these terms.

LEMMA 4.3. Let X andY be self-adjoint random variables. Let h € 6.

(a) @[OP(Y)EX] = p[h(Y)X].
(b) @lApuy h(Y)] = © p[oh' (Y)].

PROOF OF LEMMA 4.3. By assumption h takes the form h =7 for some
complex measure v with finite second absolute moment.

(a) We use the representation of equation (3.26) for 0, so that

1
V)X = /O da /R icv(de)(e°Y @ 1Y )X

1
= / da / i€ (dg)e’sY X tl-a)eY
0 R

Since ¢ is a trace, @'Y Xe(1=&Y) = [®€Y X]. Taking ¢ of both sides of
equation (4.6), the « integration just yields a constant 1, and so

47 plonvx) = [ ievtagole® x| ( [ 16 via0) ) x].

Since I'(z) = [ i v(dE), this yields the result.
(b) By Deﬁmtlon 312, Ay h(z) =24 d ~ [ Oh(x,y)py (dy). Using the chain

rule, we can express Oh(z,y) = fo R( aa:+ (1—a)y) da. Since h € C? and the
integrand is bounded, we can rewrite A,y h(z) as

(4.6)

1
Awh(:c):2% /R iy (dy) /0 dol (0 + (1 — a)y)



WIGNER CHAOS AND THE FOURTH MOMENT 43

(4.8) 1
— / #Y(dy)/ 2adoh” (ax + (1 — a)y).
R 0

Now h'(z) = [p —&%e®*v(dE), and so

1
Buyhlz) == [ &utde) [ 2ada [ py(dg)ei-sveioss
(4.9) R 0 R

1
:_/§2V(d§)/ 2adaei°‘5x¢[ei(1*a)€Y].
R 0

Evaluating at x =Y and taking the trace, this yields
1
(1.10)  ¢lauh(V)] == [ E0(de) [ 2adaple e Jplei-e],
R 0

On the other hand, following the same identification as in equation (3.26),
we have

1
(4.11) on'(Y) = _/0 da/ﬂ{§2y(d§)eia5y ® et(1-EY

Taking the trace yields

1
@12) el (V)] =~ [ do [ Evlae)plen gl

Subtracting equation (4.11) from equation (4.12) and using Fubini’s theorem
(justified since the modulus of the integrand is < €2 which is in L (v x [0,1]))
yields

@ ® pOR' (Y)] — [Apy h(Y)]
(4.13)

1 ' 4
= / (20— 1)da / Ev(de)ple ™ Jple =],
0 R

Equation (4.13) expresses the difference ¢ ® p[Oh'(Y)] — ¢[A,, h(Y)] as an
integral of the form fol(Qa — 1)k() da, where £ is a function with the sym-
metry k(o) = k(1 — «). The substitution a + 1 — « shows that any such
integral is 0, which yields the result. O

We now apply Lemma 4.3 to equation (4.5) with X = F and Y = F};
note that A¢h(F}) is by definition (cf. Proposition 3.13) equal to A, h(F}).
Equation (4.5) then becomes

a1 0=y f -l EF 4 pmion )
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At this point, we invoke the free Malliavin calculus of variations (cf. Sec-
tion 3) to re-express these two terms. For the first term, we use a standard
trick to introduce conditional expectation; by Definition 1.13, p[h/(F})F] =
O[F - oW (F})|F]]. Since F € 2(V) and ¢(F) = 0, equation (3.35) shows that
Fe2(Ny'), and so F =6(VN, ' F). Hence

(4.15) oI (F)F] = @[Fh (Fy)] = o{6(VNy ' F) - o[W ()| FI}.

The right-hand-side of equation (4.15) is the L?(S,¢)-inner-product of
§(VNy ' F) with o[h/ (F,)|F]* = [l (F;)|F] (since F and F; are self adjoint),
and this random variable is in the domain 2(V). Hence, since § and V are
adjoint to each other, we have

pll (F)F] = (VNy ' F, Vo[l ()| F]) s,
(4.16)

- /R o ® o(Va(Ny  F)H(V ool ()| F))*) ds.

To be clear: § is the product (A; ® B)f(As ® Bg) = (A142) ® (BeBy). It
is easy to check that this product is associative and distributive, as will be
needed in the following.

Recall that F; =+/1 —tF + S; and A/ is equal to a polynomial on a com-
pact interval K which contains the spectrum of F;. Hence, h/(F}) is a (non-
commutative) polynomial in F' and S;. Thus, the conditional expectation
@[W (F})|F) is a polynomial p(F) in F. We may thus employ the chain rule
of equation (3.37) to find that, for each s,

(4.17) Vo[ (F,)|F] = 0pe[W (F,)| FI§V s F.
Taking adjoints yields
(4.18) (VoW (F)|F))* = (Vs F)*0pell (F) | F.

Now we use the intertwining property of the free difference quotient for
the sum of free random variables with respect to conditional expectation
(see, [40], Proposition 2.3) and the simple scaling property d,x = a '0x
(for a € C) to get

Orplh (Fy)|F] = pp[h' (V1 —tF + )| F]
= V1 =10 g=ppll (VI —1F + S)|F]
= V1 -t @0 /r=pys,h (VI —tF + S;)|F]
=V1—tp @ p[oh'(F)|F].

(4.19)

REMARK 4.4. It is here, and only here, that the assumption that S5; is
free from the F' is required.
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Combining equation (4.19) with equations (4.16) and (4.18) yields
o[l (F,) F]
(4.20)
=V1i- ¢®¢</V F)(VoF)” d8ﬁ90®90[3h'(Ft)\F]>

As for the second term in equation (4.14), using property (3) of conditional
expectation (cf. Definition 1.13) and taking expectations, we express

(4.21) @ @Ol (Fi)] = ¢ @ (i @ [ON' (Fy)| F).-
Combining equations (4.14), (4.20) and (4.21) yields
§() =50
90{ [ VLN PTEY dsos olon' (L]
(4.22)

- 90®s0[3h’(Ft)lF]}

=——g0®g0{</v BV F)* ds—1®1>ﬁg0®g0[8h'(Ft)\F]}
Integrating with respect to ¢ and using equation (4.3) gives

p[h(S)] — elh(F)]
1

(4.23) = —3¥

®g0{</VS(N0_1F)jj(VSF)*ds— 1®1>ﬁ/01<p®<p[ah/(Ft)\F] dt}.

Applying the noncommutative L'-~L° Holder inequality (which holds for
the product f on the algebra S since { is really just the natural product on
the algebra S ® S°P; cf. Remark 3.10) gives us

lp[h(F)] = ¢[R(S)]|
(4.24) < %go@ go{‘/vs(No_lF)tt(VsF)* ds—1® 1‘}

1
x /0 o ® QO (F)|Flll s dt-

The norm ||-||sgs is the operator (L>) norm on the doubled abstract Wigner
space. The conditional expectation is an L>°-contraction [cf. property (2) in
Definition 1.13], and so the second term in equation (4.24) satisfies

1 1
(4.25) /O o ® ol (F)|F g dt < /0 |0 () | sws dt.
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Using equation (4.11) with Y = F}, note that

1
1O1 (F) | ses = H/ da/g%(dg)ewéﬂ @ eill—0)EF:
0 R

S®S
(4.26) N

1
S/O da/RfQV(dé)He“‘&FtHsllel(l“)5Ft\ls-

Both of the norm terms in the second line of equation (4.26) are equal to 1
since F; is self adjoint. This shows that ||0h (F})|sgs < #2(h). Combining
this with equations (4.24) and (4.25) yields

[p[h(F)] = @[h(S)]|
(4.27)

< @@@{‘/Vs(NolF)ﬁ(VSF)*ds— 1®1‘} - Io(h).

— ol

Inequality (4.27

he CQK P Now take any h € Co, and fix an approximating sequence h,, € CQK P
as guaranteed by Theorem 3.20. That theorem shows that % (h,,) — #(h),

while
(olln(F)] — plhn(S)]| = ‘ [~ [ s ‘ [ nane [ nas
= [p[h(F)] — @[n(9)]|
as n — oo, since the supports of pup and pg are contained in K. This shows
that inequality (4.27) actually holds for all h € Cy, and this concludes the
proof. [

is close to the desired result, but as proved it only holds for

REMARK 4.5. Inequation (4.15), instead of using the Ornstein-Uhlenbeck
operator, we might have used the Clark—Ocone formula (Proposition 3.28).
Tracking this through the remainder of the proof would yield the related
estimate

(498)  de,(F.5) < %(,0 2 go('/F(VSF)ﬁ(VSF)* ds—1® 1‘)

This estimate is, in many instances, equivalent to equation (4.1) as far as
convergence to the semicircular law is concerned, as we discuss in Section 4.2;
the formulation of equation (4.1) is ideally suited to prove Corollary 1.12,
which is why we have chosen this presentation.

4.2. Distance estimates. We begin by proving Corollary 1.12, which we
restate here for convenience with a little more detail.
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COROLLARY 1.12.  Let f € L*(R%) be mirror-symmetric and normalized
||f||L2(R1) =1, and let S be a standard semicircular random variable. Then

T (.9 < 3305 A Pl = 3y SRS (2

Proor. We will utilize the estimate of Theorem 1.10 applied to the ran-
dom variable F' = I (f) [which is indeed centred and in the domain 2(V)].
Note, from the definition, that Ny lp = %F for a double integral. From
equation (3.34), we have

(129)  ViF=ViI5(f) = [ Sl 0dsi, + [ fltrt)ds, @1,

Using the fact that f = f*, this yields

(4.30) (V,F)* = / Flta, 1)1 @ dS,, + / F(tt)dS, @ 1.

(Note: the adjoint on tensor-product operators is, as one would expect,
(A® B)* = A* ® B, contrary to the convention on page 379 in [8].) When
multiplying equations (4.29) and (4.30), one must keep in mind the product
formula (1.7) for Wigner integrals; in this context of Wigner bi-integrals,
the results are

(/f(t,SQ)l®d552>ﬁ</f(t2,t)1®dst2>

o :/f(t732)f(t2>t)1®d5t2 dSs, —i—/f(t,s)f(s,t) dsl®1,
([ resansas.)s( [ ra.as, o1)

R [ sty ds, ds.,
(/f(sm)dSsl®1>ﬁ</f(t2,t)1®dst2>

(4'33) = / fs1,) f(ta,t) dSs, ® dSy,

. (/f(smt) dSs, ®1>ﬁ</f(t,t1)d8tl ®1>

:/f(81,1t)f(1t,751)d531 dStl®1+/f(8,t)f(t,8)dsl®1.



48 KEMP, NOURDIN, PECCATI AND SPEICHER

Integrating with respect to ¢ and using the identity f(s,t) = f(¢,s), we then
have

2/vt(N()_1F)ﬁ(vtF)*dt://f(t,Sg)f(tg,t)dtl@dStQ dSs,
+//f(t,32)f(t,t1)dtd8tl ® dSs,

(435) +//f(51,t)f(t2,t)dtd551®dSt2
+//f(51,t)f(t,t1)dtdssl ds,, ® 1

+2/\f(s,t)\2dtdsl® 1.

Now using the normalization [ f[|z2®2) =1, and making use of contraction
notation (cf. Definition 1.21), we have

2(/ Vi(Ng ') (V. F)*dt —1® 1)
(4.36) = /?/1\7(82,@)1 ® dSy, dSs, +/?/1\ f(s2,t1)dS;, ®dSs,

+ /f A F(s1,t2) dSs, @ dSh, + /f A F(s1,t1) dSs, dSy, © 1.
We now employ Theorem 1.10. Equation (4.1) states that
(4.37)  dey(F,S) < 5I{V(Ng "F)(VE) Iry ) 2y ) — 1@ Ul 11 (ses,000)-
In any W*-probability space, ||- ||z < || -|/z2; we will estimate the L?(S® S,
© ® ) norm. It is useful to relabel the indices in equation (4.36) and group

them according to different orders of (bi)chaos; the right-hand side of that
equation is equal to

/7/1\?(752at1)1®d5t1 dSi,
+ /[?/1\ f(t27t1) +f /I\T(tth)] dStl ®dSt2
+/fif<t1,t2)dst1 S, @ 1.

A simple calculation using the fact that f = f* shows that f A flta, t1) =
f A f(t1,t2). The three integrals above are in orthogonal orders of chaos;
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employing the Wigner bisometry 3.29, we have
- ¥ 2
(4 ) 4||<v(‘Nv0 lF)ﬁ(VF) 71R+>L2(R+) -1® 1||L2(S®S,go®<p)
.38
- 1= <1 1= 1
= ||f - fH%Q(Ri) + Hf ~f+f~ fH%Q(Ri) + Hf - fH%Q(Ri)'

Another simple calculation, again using the identity f(s,t)= f(¢,s), shows
that

(4.39) [If = Fil oz, = 1T A T3,y = / dt sy dsa|f(t,s1)?|f (t,52) 1%,
+ R?‘r

while

— — —_—2
(4'40) Hf /l\ fH%z(RQ) = ||f /l\ f‘|%2(R+)2 :/ dtdsl dSQf(t,Sl)Qf(t,SQ) .

1 - < 1 1 ) )
Hence [|f = flipz@z2) = If = Fllzzwz) < If ~ flli2gy)- Using the triangle
inequality in equation (4.38) then gives us the estimate

o V(N ' F)S(VE) 1k, ) 2,y — 1 © Ulia(sas pag)

1
<3FA F e

and so equation (4.37) and the ensuing discussion imply

1 /3 1
1) de(P.) = dey150).9) < 121 A Ml
Now, as calculated in equation (2.3) (in this instance with n =2),

1
(4.43) U (1)) =24 11 A Flfages
Equations (4.42) and (4.43) together conclude the proof. [

REMARK 4.6. At first glance it might seem that calculations like those in
the proof of Corollary 1.12 could be employed to prove similar quantitative
results for Wigner integrals I of arbitrary order n > 2. Note, however, that
the mirror symmetry of f was used in different ways at several points in the
above proof. In practice, if one tries to generalize these techniques to I?‘? , in
fact f must be fully symmetric. The range of I on fully symmetric functions
is a very small subspace of the full nth Wigner chaos, and so we do not have
quantitative bounds for generic higher integrals.

REMARK 4.7. As a quick illustration, we use the first inequality in
Corollary 1.12 to refine Corollary 2.3 in the case n =2 and the random
variables X}, are freely independent S(0,1) random variables; in particular,
p(k) = dko. In this case, one can take these random variables to be such that
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Xp = Spi1— Sk, k>0, so that V,,, = I5(f,,), with
1 m—1
fm(,y) = T kZ:O 1 et 1) () L e ety ()

Elementary computations now yield || f, A fmll 2@y =1 /v/m, and there-
fore

1 /3
d ms S a\l a9

which is consistent with usual Berry—Esseen estimates.

In light of Theorem 1.3, the proof of Corollary 1.12 shows that convergence
of the quantity on the right-hand side of equation (4.1) to 0 is equivalent
to convergence of F to S in law, at least in the case of double Wigner inte-
grals. We conclude this paper with a collection of other equivalences, stated
in terms of the gradient operator, in the class of double Wigner integrals;
whether they hold for higher orders, or more generally on the domain 2(V),
is left as an open question for further investigation. To simplify matters, we
restrict to the real case for the following.

THEOREM 4.8. Let (fr)ken be a sequence of fully symmetric functions
in [;LQIE:R?F), each normalized || fi||p2w, )2 =1, and set Fj, = I3 (fx). Then for
eac

F, =8(VNy ' Fy) = 6(TVEFy).
Moreover, the following four conditions are equivalent:
(1) Fy converges in law to the standard semicircular distribution S(0,1);
) [ Vi(Ny "E)4(V i Fy)* dt converges to 1@ 1 in L2(S® S, ¢ ® ¢);

(2
(3) fF(VtFk)tt(VtFk)* dt converges to 1@ 1 in L>(S®S,¢ @ ¢);
(4) [TV Fy, TV Fy)) dt converges to 1 in L*(S, ).

The pairing ((-,-)): (S ® S)? — S is defined by (X,Y)) = (1s ® ¢)[X{Y].
For example,

<</f(t1)1®dStl,/g(t2)1®d5t2>> :/f(tl)g(tg)dStQ dSt1+/f(t)g(t)dt7

where we have used the product formula of equation (1.7). On the other
hand, (1 ® dS;,,dS, ® 1)) =0 since ¢(dS1) = 0.

PRrOOF. Equations (4.38) and (4.43) in the proof of Corollary 1.12 show
that, in the case that f is real-valued,

2
= 3P - 2),

H/Vt(NolF)ﬁ(VtF) dt—1®1 5

L2(S®S,p¢)



WIGNER CHAOS AND THE FOURTH MOMENT 51

where F' = I5(f). In light of Theorem 1.3, this proves the equivalence (1) <=
(2). The bound 4.28 shows that (3) = (1), and so to prove the equivalence
of (1) and (3) it suffices (due to Theorem 1.6) to prove that the condition

i BN fr — 0 implies (3). To that end, we adopt the standard notation zVy =
max{z,y} and x Ay = min{z,y}. The following identity is easily proved:

/0°° (/x: fi(x,t) fi(y,t) dt)dedy
- [ myfk(%t)fk(y,t)dt dedy,
I )

The following equivalence was proved in [29].

(4.44)

fe~fr—0  in L2(R%) iff

oo TN 9
/0 </O yfk(:v,t)fk(y,t)dt> dz dy — 0.

Note that equations (4.44) and (4.45) imply that, if f A f, — 0, then the
three functions

TA\Y [e%¢)
/ Fulwt) fuly £) dt, / Fele ) fi(y, 1) dt,
0 *Vy

(4.45)

(4.46) "
/ Felet) fuly ) dt
zVy

each vanish in the limit. Note also that the action of I' on the biprocess V,F},
is, as in the classical case, to restrict stochastic integrals to the interval [0, ¢].

(4.47) FVtFk.:/fk(t,tg)]lt2<t1®d5t2+/fk(t1,t)11t1<td5t1®1.

The present symmetry assumptions on f, imply that (VFy)* = VF}. Pro-
ceeding with calculations like those in the proof of Corollary 1.12, using the
symmetry and L?-normalization of fj, we then have

/FVtFkﬁ(VtFk)*dt— 1®1:/<

o0

Te(t,t1) fr(t, t2) dt) 1 ® dSy, dSt,
to

+ < wfm,tl)fk(t,mdt) 1S, © dS),
(4.48) N

+/< Oofk(tht)fk(t%t)dt) dSt, ® dS,

t1

+/< oofk(tlyt)f(tzyt)dt> dSy, dSy, @ 1.

t1
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Using Fubini’s theorem, we can calculate that the L? norm of each of the
four terms in equation (4.48) is given by

[, dy( / "t fulty) dt)2
=/OO° dx/ox dy(/gﬁifk@’x)fk(t,y)dt)?
+/0°O dy/oy dx(/vioyfk(t,x)fk(t,y)dt)2.

Hence, if fy A fr — 0, then equation (4.46) shows that each of these two
terms vanishes in the limit. This proves the implication (3) = (1).
For the final equivalence, we use the explicit representation

(CVFy, IV Fy))

:Q/fk(tuv)21v<tdv+/fk(tlyt)fk(tZat)1t1<t]1t2<tdSt1 dSy,.

Integrating with respect to ¢ and using equations (4.44) and (4.45) as above
proves the equivalence (1) <= (4). O

2
+

REMARK 4.9. As demostrated in [8], Theorem 4.12, the quantity
[TV F, TV Fy))dt in condition (4) of Theorem 4.8 can be interpreted
as the “quadratic variation” of an appropriate free Brownian martingale.
Note that quadratic variations play a crucial role in the original proof of
Theorem 1.1, as originally given in [29].

REMARK 4.10. Once again, one might expect that calculations like those
above would show the equivalence of items (1)—(4) in Theorem 4.8 for any
order of chaos (higher than 1), as was proved in the classical case in [29]. In
principle, this may be possible for fully symmetric kernels f, but in orders
> 3 of Wigner chaos, such kernels span only a tiny subspace of all stochastic
integrals. Indeed, it is an interesting open question if a counter-example to
these equivalences can be found in the third chaos; until now, the authors
have not been able to find one, but suspect that Theorem 4.8 does not
generally hold in the free context.

APPENDIX: PROOF OF THEOREM 3.20

We break the proof into four steps. First we show that it is sufficient to
consider only those h € Cy that arise as Fourier transforms of compactly-
supported measures, in Lemma A.11. Next we reduce to those A that are
Fourier transforms of measures with a smooth, compactly-supported density,
in Lemma A.12. In Lemma A.13, we show (following [32], Theorem 7.26)
that there is a polynomial approximate identity on any symmetric compact
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interval. Finally, we use this approximate identity locally to approximate any

smoothly-arising A by local polynomials on the Fourier side in Lemma A.14,

completing the proof. The proof will actually show that a space smaller
K,P . . .

than C; " is appropriately dense: the local polynomials may be assumed to

live in the Schwartz space S(R) of rapidly-decaying smooth functions.

LEMMA A.11. Let h € Cy. There exists a sequence of compactly-supported
complex measures v, such that, setting hy, = Up:

(1) Ha(hn) = F2(h);
(2) if p is any finite measure, then [ hy,dp— [ hdp.

PROOF. Let h =7 where v is a complex measure satisfying [ &2|v|(d¢) <
o0. Let vy (d€) = 1¢<,v(d€), and take hy, =7y,. Then

(A1) o) = [ Ewl(de).

Since h € Cg, the function & — €2 is in L'(|v|); hence, by the dominated con-
vergence theorem, the integrals in equation (A.1) converge to [ &2?|v|(d€) =
F5(h) as desired. Now, for any x € R,

[ e = 1009)| < [ Ugealvl(ac)

The integrand 1¢|-,, converges pointwise to 0 and is bounded, so since |v/|
is a finite measure, the dominated convergence theorem shows that h,, — h
pointwise. Finally, note also that ||hy,|[ze < [|vn] < [|v] < 0o, and so since p
is a finite measure, one more application of the Dominated Convergence
Theorem shows that [ hy, dy— [ hdp as desired. O

(A2)  [ha(w) = hx)| =

LEMMA A.12. Let h € Cy with h=v for some compactly-supported com-
plex measure v. There exists a sequence of smooth C-valued functions 1, €
C2° such that, setting hy =y

(1) SFo(hn) = F2(h);
(2) if p is any finite measure then [ hy,dp— [hdp.

ProoF. Let ¢ € C2° be a nonnegative smooth compactly supported
function, such that [¢(£)dé =1. Let ¢, (&) =ne(E/n). Define ¢, = ¢y, * v;
then v, — v weakly. Note that supp ¢, C supp ¢. Since v is compactly sup-
ported, there is thus a single compact interval K that contains the supports
of 1y, for all n along with the support of v; moreover, the functions 1,, are
all smooth since ¢,, is smooth. Set h,, = ),,. Hence,

(A3)  Sa(h) = /K G /K E2|u|(de) = S (h),

where the convergence follows from the weak convergence of |1, to |v| and
the continuity of & — &2 on the compact set K. For the second required
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convergence, we use Fubini’s theorem,
» [ tntotds) = [ G@ntdn) = [ utde) [ e<onie)ds
A4

= [vnterde [ eutin) = [ aerone) de

where the application of Fubini’s theorem is justified by the fact that the
function (z,€) — e, (€) is in L' (p x d€) since 1, € L*(d€) and 1 is a finite
measure. The function g is continuous and bounded since g is finite, and so
since ¥, — v weakly and supp,, C K for each n,

(A5) / A (€) d = /K A () d — /K AE)V(d).

The function (z,£) — €™ is in L'(u x |v|) since both are finite measures,
and so we may apply Fubini’s theorem again to find that

[ ety = [ [ eutd) = [ ntaa) [ eiag)

~ [ #(e)ntda),

where the first equality uses the fact that suppr C K. Equations (A.4)—(A.6)
combine to show that [ h,du— [ hdu, as required. O

(A.6)

LEMMA A.13. Letr > 0. There is a sequence of real polynomials g, such
that, for any function f continuous on R and equal to 0 outside of [—r,r],

the functions
T

(A7) falz) = [ fl&=t)gn(t) dt = (f * (gnl[—p))(2)

-

are polynomials that converge uniformly to f on [—r,r].

ProOOF. This is proved in [32], Theorem 7.26, in the case r =1 with
polynomials ¢, (1 — 22)" for appropriate normalization constants c,. Rudin
only states (and uses) the uniform convergence on [0,1], but it is easy to
check that the proof yields uniform convergence on [—1,1]. Rescaling the
polynomials

¢ 2 2
(A.8) gn(2) = g (= 2%)"
gives us the desired result. To be clear: the functions f,, in equation (A.7)
are polynomials due to the following change of variables:

r z+r
fu)= [ Fa=w@di= [ fa- a0 d

(A.9) ’
= 3 f(t)Qn(dj + t) dt,
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where the second equality is justified by the fact that f(z —¢) =0 unless
telz—ro+r]. O

LEMMA A.14. Let h € Co with h = @/b\ for some € C. Let K CR be
a compact interval. There exists a sequence vy, of functzons in the Schwartz
space S(R) such that the functions h, = ¢n are in C, ’P, and:

(1) H(hn) = F2(h);
(2) if p is a finite measure supported in K then [ h,dp— [ hdpu.

PRrROOF. Choose r > sup{|z|:x € K}. Let ¢ € C2° be nonnegative, with
support contained in [—7, 7], such that ¢(x) =1 for z € K (which is possible
since K is strictly contained in [—r,7]). For convenience, set p, = ¢,1|_;
where g, is the Bernstein polynomial of equation (A.8). Define

(A.10) Un=0 — [ &) +[[(06) *pu] - 4]
Note: for a Schwartz function v € S(R), the function vY =% denotes the
inverse Fourier transform of +,

Q=6 =57 [ @) de

Since QZgb € C°, the convolution with p,, is well defined and C'*°; cutting off
with ¢ again yields a C2° function, and so the inverse Fourier transform is

a Schwartz function. Similarly, ¢? is C° and veS (R), so their product is
a Schwartz function, as is its inverse Fourier transform. Thus, v, € S(R).
Now we compute

Un =0 =0 ¢ +[(¢) *pa] - 6 =0+ (1= ¢°) + [($6) * pu] - ¢
Since ¢(z)? =1 for = € K, we have Jn(m) = [(ng) * pn)(z) for x € K. Since
the function f = 1//1\q§ is continuous and equal to 0 outside of [—r,7], equa-

tions (A.7) and (A.9) show that ¥y, is a polynomial on K. Moreover, ¢, is

rapidly decaying and smooth, so [ &2|1,,(€)]dé < oo. Thus hy, = Uy € CKP
as required. We must now verify conditions (1) and (2) of the lemma.
First, we compute that

(A1) a(z) — 2) = — / e [()  pal (€) — D(E)HENH(E) d.

27
Following this we make the straightforward estimate
(@) — w(@)] < o / 59) < pal(€) ~ TEOKEH(E) de
T
(A.12)

Qﬂ 3 C11@6) # pal(€) — BESO)I6(E) de.
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Lemma A.13 shows that (ng) * p, converges to e uniformly on [—r,7].
Hence, since the integrand in equation (A.12) converges to 0 uniformly on
the (compact) domain of integration, it follows that v, (z) — w( ) for each x.

We must now show that .#3(h,,) = #(h) (recall that h,, = Uy and h = @b)
This will follow from the stronger claim that .#3(h,, —h) — 0, which we now
show to be true. We compute as follows.

2t =) = [ 16,0~ 0Ol de = [T

where g,,(€) = €2(1 + £2)|1, (&) — 1 (€)|. We make this transformation so we
can use the finite measure ’U(df) =d¢/(1+ €?) in the following estimates.
Since ¥, — ¥ pointwise, it follows that g, — 0 pointwise. In order to use
a uniform integrability condition, we wish to bound the L?(v)-norm of g,.
To that end, we compute

3

(A1) lgalBa = [ 9a(6P00d6) = [ a(©) ~ 0OPE 1+ 1 Frp

Now, referring to equation (A.11), 1, — 1) = 1,, where ¥,, = [(12)\¢) * D) - ¢ —
2. Simplifying equation (A.13) yields

lonlFiaiy = [ 10(©PE 0+ de < [ Du(PE+2 de

= [1e+)in©)P ds.
Since &F49,,(¢) = (— ')k(ﬁ(k))v(ﬁ) for k € N, this simplifies to

lonliEac < [ 1000)71€) + @)V (€) .

That is, [|gnllr2(w) < 1(97)" + (03 lz2@) < 1100)Y lz2 @) + 1(97) Y |22 ) =
|90l 22wy + 1197 | 2(r), where we have used Parseval’s identity in the last
equality. We now must compute some derivatives. Using the fact that (v
p) =~ *p whenever v and p are functions whose convolution is well defined
and v is O, we have

(A14) 9, = ((96) #pa) - 6+ (¥0) ¥ pa) - ¢ — (06°)',
I = ($6)" *pa) - 6+ 3((9)" # pu) - & +3((6) % pn) - ¢
+((08) *pn) - ¢" = (W6%)".
The functions @Zgb and @Zc/bQ are both in C’OO, and so there is a constant A

so that [|(¢)® || 2@y < A and [|[(¥¢*) || 2@y < A for 0 <k < 3. Since

¢ € C2°, there is a constant B so that qu(k)HLoo(R) <B for 0 <k <3. Us-
ing Young’s convolution inequality ||y * pl[z2®) < |7l z2m)lpllzr ), equa-

(A.15)
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tion (A.14) gives us

19| 22 <B||(¢¢) * PollL2r +B||(¢¢)*pn||L2(R +A
< Bl|(p¢) 2@ Pl 1 = +B||(¢¢)||L2 yIpnllrw) + A
< BA+BA+ A,

where we use the normalization ||p,| 1) =1. A similar calculation using
equation (A.15) shows that

HT%/HL?(R) <8BA+ A.
Hence, we have

(A16)  sup|lgnllr2@) < sup(Hi%HLz + ||19'"HL2 y) <10BA +2A < oo.

This allows us to conclude the proof as follows. For any M > 0, we have

fg(hn—h):/gndv:/gn]loggnSMdv—l—/gn]lgn>Mdv.

The first integrand is bounded above by M, and since v is a finite measure,
the constant M is in L!(v). Hence, since we have already shown that g, —
0 pointwise, we conclude that the first integral converges to 0 using the
dominated convergence theorem. For the second integral, notice that on the
domain {g, > M} the function g,,/M is > 1, and so

gn, 1
/gn]lgn>MdU</gn'M gn>M dv < —/gndv< MSUPHgnHLQ

Since this is true for any M, by taking M — oo while n — co we have
Fo(hy, —h) — 0 as desired.
Finally, since p is supported in K and ¢ =1 on K,

[adn= [ Gudu= [ (= ban+ [ (o))
Z/K(%Zcb)*pndu'

By construction (1//1\¢)) * Py — D (uniformly) on K, and also ||(1qu) kD || Lo <
Vo Lo ||pnll1 = |||l L~ < co. Since p is a finite measure, the dominated
convergence theorem therefore shows that

[tndu= [ @o)spudu—s [ Godu= [ Gan= [
K K K
This completes the proof. [
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