Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2014, Article ID 791240, 12 pages
http://dx.doi.org/10.1155/2014/791240

Research Article

Hindawi

Periodic Boundary Value Problems for First-Order Impulsive
Functional Integrodifferential Equations with Integral-Jump

Conditions

Chatthai Thaiprayoon,l’2 Decha Samana,"? and Jessada Tariboon>®

! Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
2 Centre of Excellence in Mathematics, CHE, Sri Ayutthaya Road, Bangkok 10400, Thailand
? Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok,

Bangkok 10800, Thailand

Correspondence should be addressed to Jessada Tariboon; jessadat@kmutnb.ac.th

Received 6 January 2014; Accepted 11 February 2014; Published 23 March 2014

Academic Editor: Kanishka Perera

Copyright © 2014 Chatthai Thaiprayoon et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

By developing a new comparison result and using the monotone iterative technique, we are able to obtain existence of minimal
and maximal solutions of periodic boundary value problems for first-order impulsive functional integrodifferential equations with
integral-jump conditions. An example is also given to illustrate our results.

1. Introduction

The theory of impulsive differential equations is now being
recognized as not only being richer than the corresponding
theory of differential equations without impulses, but also
representing a more natural framework for mathematical
modelling of many real world phenomena and applications;
see [1-5] and the references therein. Monotone iterative
technique coupled with the method of upper and lower
solutions has provided an effective mechanism to prove
constructive existence results for initial and boundary value
problems for nonlinear differential equations; see [6]. How-
ever, many papers have studied applications of the monotone
iterative technique to impulsive problems; see, for example,
[7-15]. In those articles, the authors assumed that Ax(t;) =
I.(x(t;)), that is, a short-term rapid change of the state (jump
condition) at impulse point ¢;, depends on the left side of the
limit of x(t;,).

In [16-18] the authors discussed some classes of first-
order impulsive problems with the impulsive integral condi-
tions:

[

Ax (t) = I (L_Tk x(s)ds - J-

tr1

110k

x(s) ds) , (D

where 0 < 0, < (t —t1)/2and 0 < 1, < (t; —
tr_1)/2, k = 1,2,...,m. Furthermore, Thaiprayoon et al. [19]
have used such technique to investigate the existence criteria
of extremal solutions of multipoint impulsive problems to
include multipoint jump conditions

Ax(t,) = I, (Zplkx (115‘)) , g e{l,2,..}, (@

I=1

for t,_; < ;1’1‘ < r]]; < e < nfk <tk = 1,2,...,m
Recently, Thiramanus and Tariboon [20] have given some
results on impulsive differential inequalities with integral-
jump conditions of the form:

()< pt)ym(t)+qt), t#t,

L0y
x(s)ds+b, k=12,...,

3)

where 0 < 0, < 1 <t —t;_;. Wenote thatifd, = 1,04 < 7,
k =1,2,..., then the above inequalities mean that the bound
of jump condition at f, is a functional of past states on the
interval (t; — 73, t;. — 03] before the impulse point t,.

x(6]) < dx (6) + . |

LT



In spirit of the results from [20], this paper considers the
periodic boundary value problem for first-order impulsive
functional integrodifferential equation (PBVP) with integral-
jump conditions:

x'(1) = f(6x(),%(0(2), (Kx) (£),(5%) (1)) ,
te]=[0,T], t+t,
(4)

Le=0y

Ax(tk)=1k(J x(s)ds), k=1,2,...,m,
x(0)=x(T),

where 0 =t) <t; <t, < <t <--<t, <t, =T, f¢€
C(]XR4) R)30 € C(]) ]): Ik € C(R) R)a Ax(tk) = X(t;)—x(t;),
OSUkSTkStk—tk_p

(Kx) (t) = _Lt k(t,s) x(s)ds,

T

(Sx) (t) = J h(t,s)x(s)ds,

0

k(t,s) € C(D,R"), h(t,s) € C(J x J,R*), D = {(t,s) € R?,
0<s<t<T},and R" = [0, +00).

We first introduce a new concept of lower and upper
solutions, then establish a new comparison principle, and
discuss the existence and uniqueness of the solutions for first-
order impulsive functional integrodifferential equations with
integral-jump conditions. By using the method of upper and
lower solutions and monotone iterative technique, we obtain
the existence of extreme solution of PBVP (4). Finally, we give
an example to illustrate the obtained results.

2. Preliminaries

Let J, = J\ {t;,t5,..-»t,} kg = max{k(t,s);(t,s) € D},
hy = maxi{h(t,s); (t,s) € J xJ}, and PC(J,R) = {x :
J — R; x(t) be continuous everywhere except for some
t, at which x(t;) and x(t;) exist and x(t,) = x(t), k =
1,2,...,m}, and let PC'(J,R) = {x € PC(J,R); x'(t) be
continuous everywhere except for some t; at which x'(t])
and x'(t,;) exist and x/(t,;) = x'(tk), k=1,2,...,m}. Clearly,
PC(], R) is a Banach space with the norm ||x||pc = sup{x(¢) :
t € J}.LetE = PC(J, R)NPC'(J, R). A function x € Eis called
a solution of PBVP (4) if it satisfies (4).

Definition 1. We say that the functions «, § € E are lower
and upper solutions of PBVP (4) if there exist M > 0, W > 0,
N>0,L>0,L, >0,and 0 < 0y < 73, <t} —t;_; such that

o (1) < f (Lo (t),a(8(1), (Ka) (1), (Sa) (1) - a, (£),

t €y

ty—o

Aa (t;) sIk<J.t koc(s)ds) -by, k=12,...,m,
(6)

KTk
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where

(0, if a(0) <a(T),
(M(T—1) +W

x(T=0(t)+1)x(T)™*

a, (t) = 4 Nth (t,s) (T - s)ds
0

+

;T
LJ h(t,s)(T —s)ds
0

T

+

(X [ (0) - (T], if a(0) > a(T),

0, if (0) <a(T),
Ly (1 - 0y)

btxk = 2T
X (2(T —t) + 1. + 03)

x [« (0) —a(T)],

B ()= f (1), B0 W), (KB) (1), (SB) (1)) +ag (1),

if a(0) > a(T),

t€Jp
AB(1) = I, (Jtm B (s) ds) +bge k=12...,m,
k™ 'k (7)
where
0, if B(0) 2 B(T),
M((T-t)+W
X(T-0(@)+1)x(T)"
t
ag(t) = NJ k(t,s)(T -s)ds
40
- T
LJ h(t,s)(T —s)ds
420
T
(X [B(T) - B0)], if B(0) < B(T),
0, if B(0) = B(1),
_ Ly (5 - 0y)
bgi = 2T
x(2(T-t) + 1 + 0%)
x [B(T) - B(0)], it B(0) < B(T).
(8)

Denote | = max{k : t > t;,k = 1,2,...}. We prove
the comparison principle by using the following lemma (see
[20]).
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Lemma 2. Letr € {to,t),...,t,,} ¢ = 0,and 0 < 0, < 1 <
te =t Yo k = 1,...,m, be constants and let g € PC(J,R),
x € PC'(J,R). If

Xt =q@),

Ax (t) = ¢ J

b= Tk

te(rT), tt,
)

ty—a

kx(s)ds+yk, tye(rT),

then, fort € (r,T],

x (1) 2x(r+)( H [1+Ck(Tk‘Uk)]>

r<t<t

.y [ [ (oo (r-0)
r<te<t | te<ti<t

LTk

x<[1+ck (1 — 03] L q(s)ds

k-1

te—0%
+Jt [1+¢ (tx—0r—5)]q(s)ds

KTk

t t
+L7 q(s)d5+yk>]+th(s)ds.
(10)

Now we are in the position to establish a new comparison
principle, which plays an important role in monotone itera-
tive technique.

Lemma 3. Assume that x € E satisfies
t
K (02 Mx(©+ Wx@©) + N | k(t.9)x()ds
0

T
+LI hts)x(s)ds+a, (), tef,
0

ty—o

Ax (t;) Zij kx(s)ds+Exk, k=12,...,m,

fe—Tk

where constants M > 0, W > 0, N 2 0,L >0, L, > 0, and
OSO‘kSTkStk—tkfl,kz 1,2,...,m.[f

<I+ in+JTr(s)ds> ﬁAk <1, (12)
k=1 0 k=1

where@, (t), t € J,, and b, are given by Definition 1with 8 = x
and

L= max{L; (5 —0});k=12,...,m},

. T
r(t)=M+W+NJ k(t,s)ds+LJ h(t,s)ds,
0 0

Ak= 1+Lk(Tk—O'k),

3
LT
B, - AkJ r(s)ds
751
t—0p
+J [1+ L, (ty —op—5)]r(s)ds
T
Ik
+ J r(s)ds,
t—0p
(13)

then x(t) < 0,t € J.
Proof.

Case 1. One has x(0) > x(T). Suppose that there exists t* € J
such that x(¢*) > 0 and distinguish two cases.

Case (a). x(t) = 0 forallt € J, x # 0; then

X (t) = Mx(t) + Wx (0 () + N Jt k(t,s)x(s)ds
0

T
+LJ h(t,s)x(s)ds=0, te],

0 (14)
t—0;

x(t,:)Zx(tk)+LkJ kx(s)dst(tk),

=Tk
k=1,2,...,m,
so that x is nondecreasing in J, and then x(T") > x(0). Since

x(0) > x(T), then x is a constant function x(t) = C > 0,
which implies that

t
x'(t):OzMC+WC+NCJ k(t,s)ds
0
. (15)
+LCJ h(t,s)ds > MC > 0,
0

getting a contradiction.

Case (b). x(t) < 0 for some t € J. Let inf,;x(t) = -A < 0;

then there exists t € (¢;,t;,,], for some i such that x(f) = -A

or x(t7) = —A. Without loss of generality, we only consider

x(f) = —A, and for the case x(¢;) = —A the proof is similar.
From (11), it is easy to see that

t
x'(t)z—A<M+W+NJ k(t,s) ds
0

, (16)
+LJ h(t,s)ds), t e,
0
We consider the inequalities
()2 -Ar(t), te],
— 17)
Ax(tk)szJ x(s)ds, k=1,2,...,m.
=T



From Lemma 2, we have

x (t) > x(0) l_[ Ay

0<t <t
t
-A Z H A By +J r(s)ds|, (18)
0<ty<t \ t;<t;<t t
te].
Lett = f in (18); then
x(f)zx(0) [] Ax
0<ty <t
. (19)
-1 Z HA.Bk +Jr(s)ds ,
|:0<tk<t<tk<tj<t ! > fi
so that
x(0) []Ar<-A
0<ty <t

t
+A Z HA-Bk +jr(s)ds .
|:0<tk<t<tk<tj<t ! > ti

(20)
If x(0) > 0, then (20) with A, > 1, B, > 0 for all k implies

t
1< Z HAjBk +Jr(s)d5
0<ty <t <tk<tj<t fi

< i( H AjBk> + LTr(s)ds.

This contradicts the condition (1_2).
Suppose that x(0) < 0. Ift* < ¢ fort* € (t,,t,,,], then
Lemma 2 provides that

x()zx(t,) [] A

by <ti<t

(21)

t (22)
-A z HAjBk +| r(s)ds|,
tyar <te<t \ te<t;<t f
t>t.
Since
+ Lyp1= 0041
x(twl) 2 x(tv+1) +L,, J x(s)ds
b1 Ty41 (23)
Z X (tv+1) - ALWI (Tv+1 - 0v+1) >
and integrating (11) from ¢ into £, ,, we obtain
tv+1
x(tv+1)2x(t*)—/\J r(s) ds. (24)
o

Hence,

x (t)
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2 x(t*) ( H Ak) - /\Lv+1 (Tv+1 - Gv+1)
by <ti<t
tw—l
><< 1_[ Ak>—)t< l_[ Ak)J- r(s)ds
£,y <ti<t £, <tp<t t*
t
-A Z HAjBk +Jr(s)ds
typr <tg<t \ te<t;<t t

2 x(t*) < H Ak) - /\Lv+1 (Tw-l - Uv+1) <
by <te<t t

_Al 5

t,<ti<t

[1 Ak)

w1 <t <t

( H AJ»Bk>+Jtr(s)d$], t>t"

te<t;<t

(25)

We note theit ift € (t,,t,,], thent; =¢t".
Lett =t in (25); then

x(f)

2 x(t*) < 1_[ Ak> - ALv+1 (Tw-l - Gv+1) ( H Ak)
by <te<t by <te<t

Az

< I AjBk> + J:r(s)ds] )

t,<ti<t \ tx<t;<t
(26)
From (26), we have
0< x(t*)< H Ak)
b1 <t <t
<A+ ALV+1 (Tv+1 - 0v+1) ( 1_[ Ak> (27)
b1 <te<t

t
+A Z HAjBk +Jr(5)ds ,
t,<ti<t \ tp<t;<t b

which gives

1<I:ﬁAk+ >

k=1

T
< 11 AjBk> +J0 r©)ds,  (28)

0<ty<T \ t;<t;<T
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contradicting condition (12). For the case f < t*, the proof is
similar.

Case 2. One has x(0) < x(T). Set v(t) = x(t) + (T -
t)/T)(x(T) — x(0)). It follows that v(0) = x(T) = v(T), and
fort € J,,

v () = Mx () + Wx (B (1)) +Nth(t, s)x(s)ds
0
r 1
+LJ h(t,s)x(s)ds+a, (t) — = (x(T) — x(0))
0 T

=Mv(t)+Wv(O(t)) + Nrk(t,s)v(s)ds
0

T
+LJ h(t,s)v(s)ds+a,(t)
0

CM(T-H+W(T-0()+1

[x(T) = x(0)]

T
—wﬂk(t,S)(T—S)ds
_wﬂh(t,s)qﬂ)m

>Mv(t)+Wv((t)+ Nth(t,s)v(s)ds
0

T
+LJ h(t,s)v(s)ds,

0

(29)
andfort =t,,k=1,2,...,m,
[k=0k
Av (te) = Ax (t) 2ij x(s)ds
I
L (e = 0) [2(T - ti)) + 7 + 0] (30)

2T

L0y

x (x (T) — x(0)) =LkJ v(s)ds.

LT

In view of Case 1, we see that v(t) < 0 on J, and therefore
x(¢) < 0 on J. This completes the proof. O

Corollary 4. Assume that x € E satisfies
t

x () = Mx (t) + Wx (0 (1)) + NJ k(t,s)x(s)ds
0

T
+LI h(t,s)x(s)ds, te],,
0 (31)
t—0p
Ax(tk)szJ x(s)ds, k=1,2,....,m,

Le=Tg

x(0) > x(T),

where constants M > 0, W > 0, N 20, L >0, L, > 0, and
OSO'kSTkStk—tk_l,k: 1,2,...,m.If

m m
(f + ZB,‘Z + r0T> HAk <1, (32)
k=1

k=1

where
ro=M+W +k)NT + hyLT,
te—T
Bz = rOAk J; dS

k-1

bk

tr—0;
+r0Jk k[1+Lk(tk—0k—s)]ds+rOJ ds
t

K~ Tk =0y

(7 = %)

L
40 [(tk — )+ 7](

X (2 (- tia) = (e + ) |,

(33)
and L, A, are given by Lemma 3, then x(t) < 0, fort € J.
Corollary 5. Assume that x € E satisfies
x' ()
> Mx (t) + Wx (0 (1))
t T
+NJ k(t,s)x(s)ds+LJ h(t,s)x(s)ds
0 0
+(M(T—t)+W(T—6(t))+1
T
koN (2Tt - %)
+ —
2T (34)
hoLT
+ 02 )[X(T)—x(o)], t€Jo
=0k
Ax () > ij x(s)ds
=Tk

. Li (5 = 0p) [2(T = ;) + 1 + 0]

2T
X (x(T)-x(0), k=12,...,m,
x(0) < x(T),

where constants M > 0, W > 0, N > 0,L > 0, L, > 0, and
0o <7 <t -t k=12,...,m, and condition (32)
holds. Then x(t) < 0, fort € J.



Let us consider the following linear problem of PBVP (4):

x (t)=Mx () =Wx @)+ N r k(t,s)x (s)ds
0

T
+LJ h(t,s)x(s)ds+g(t), te],
0

L0y te=0y

Ax(tk)szJt B x(s)ds+Ik<J't B n(s)ds)

=0k
—LkJ n(s)ds, k=12,...,m,
b=
x(0) =x(T),
(35)

where M > 0,W >0,N >0,L>0,L;, >0,0< 0, <73 <
tk_tkfl)eE (])]))Ik € C(])R)a k: 1)2)~-')m)g GPC(])R))
and 5 € PC'(J, R).

Lemma 6. A function x € E is a solution of (35) if and only
if x € PC(J, R) is a solution of the following impulsive integral
equation:

T m
x(t) = —J G(t,)R(s)ds— Y G(t:t;)

0 k=1

X [Lk th_Gk x(s)ds + I, (th_ak n(s) d5> (36)

KTk kK~ Tk

t—0%
—ij r](s)ds], te],
t

KTk

where R(t) =  Wx(6(t)) + N[ k(t,s)x(s)ds +
L JOT h(t, s)x(s)ds + g(t) and

Gts) = M=), 0<s<t<T,
S TeMT _q | MTH D 0<t<s<T

(37)

Proof. If x(t) is a solution of (35), by directly integrating, we
obtain

T m
x(t) = —J G(ts)R(s)ds— Y G(t:t)

0 k=1

X [Lk J'tkiak x(s)ds + I, (thiak n(s) ds) (38)

KTk KTk

t—0%
—ij n(s)ds], tel].
t,

KTk
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If x(t) is a solution of the above-mentioned integral
equation, then

, t eM(t—s) T eM(T+t—s)
X (t) =M {— JO mR (S)dS - J; mR(S) ds

Z eM(t—tk) [ te—0y
- — |L J x(s)ds
0<tk<teMT -1 ‘ =T
=0k
+1; <J n(s) ds)
=Tk
=0k
—-L; J- 1 (s) ds]
=Tk
Z M(T+t=t) [ te—0y
- — | L, J x(s)ds
t<t <t eM -1 [Tk
=0k
+ I <J- 1 (s) ds)
=Tk
=0k
-L, J n(s) ds] }
LTk

+ R (1)

T
:M{—J G(t,s)R(s)ds

0

. iG (t.te) [Lk J:kiak x(s)ds

k=1 KTk

t—0p
+ I (J n(s) ds>
=Tk

L, Lk_ kn(s)ds”» FR()

KTk

= Mx (t) + R(t),

Ax (1) = x () = x (£)

MT

e t—0y% t—0y
= T [Lk L x(s)ds+1k(Jt r](s)ds)

KTk KTk

-L; Lk_ ‘ n(s) ds]

kK~ Tk

1 t—0p
_T—l[LkL x(s)ds

€ kK~ Tk

te—0p
+ I (J n(s) ds)
te—Tk

te—0
-L; J n(s) ds] ,
t

KTk
T M(T-s) m  M(T-t;)
4 4
x(0) = - ——— R (s dS+ —
© J eMT 1 © kgieMT—l
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te—0% t—0y
X [Lk L x(s)ds +Ik<L q(s)ds)

kK~ Tk kK~ Tk

te—0p
—L, J; n(s)ds] =x(T).

KTk

(39)

The proof is complete. O

Lemma 7. Let M > O0W > 0, N > 0,L > 0,L, >0,
O<o <t <tp—tp_,0€(,)), L, €eC(,R),k=12,...,m,
g € PC(J,R), and n € PC'(J, R) and assume that

JTG(t,s) <W+NJSk(s,r)dr

sup {
te] 0 0
T
L j h(sr) dr> ds} (40)
0

1

m
+ l—e—’NITkZLk (Tk - O'k) < 1.
=1

Then problem (35) has a unique solution in PC(], R).

Proof. We define the mapping F : PC(J,R) — PC(J,R) by

T

(Fx) (t) = — I G(ts) (Wx ©@)+ N L k(s,r) x (r) dr

0

T
+LJ h(s,r)x(r)dr+g(s)>d5
0
- ZG(t’ ti) (Lk
k=1 BTk

te—0p
+ I (J n(s) ds>
te—Tk

—
L n(s)ds>, tel,
t

KTk

L=0y

x(s)ds

(41)

for any x € PC(J, R) and G is given by Lemma 6. Then

|1Fx = Ey|lpc
T
=sup |- J G(t,s) <W [x(B(s) -y (O(s)]
te] 0

+ NL k(s,r)[x(r)—y(r)]dr

T
+ LJ h(s,r)[x(r) = y(r)] dr> ds

0

$6 (1) <Lk fm [x(s) = y(5)] ds)

k=1 KTk

T
j G(t,s)(wlx(e(s»—y(6<s>)|

Ssup{
0

te]

+ NL k(s,r)|x(r) = y(r)|dr

T
+ LI h(s,r)|x(r) - y(r)|dr> ds
0

+ ZG (t.t) <Lk J o |x (r) - y(r)| ds>}
k=1 Le—Tk
< e = ylpe

JTG (t,s)

0

X [sup {
te]

s T
X <W+NJ k(s,r)dr+LJ h(s,r)dr)ds}
0 0

1 m
+1—e—_MTkZLk (Tk - Uk)] .
=1

(42)

The above result and condition (40) imply that F is a
contractive mapping, which completes the proof. O

Corollary 8. Let M > 0, W >0, N > 0,L >0, L, > 0,
0 S O-k S Tk S tk—tk71,6 € (]’])’Ik € C(],R),k = 1,2,...,m,
g € PC(J,R), and n € PC'(J, R) and assume that

W+(k N+hL)T 1 m
0M : +1_e—MTkZLk(Tk—0k)<l. (43)
=1

Then problem (35) has a unique solution in PC'(J, R).

3. Main Results

In this section, we establish existence criteria for solutions of
the PBVP (4) by the method of lower and upper solutions and
monotone iterative technique. For o, f € E, we write § < «
if B(t) < a(t) for all t € J. In such a case, we denote [f,a] =
{x e E: B(t) < x(t) <aft), t €]}

Theorem 9. Assume the existence of lower and upper solutions
for PBVP (4) and also suppose that the following conditions
hold.

(H,) The function f € C(J x R*,R) satisfies

f (62120 23,24) = f (6 Y15 Y2 V35 Va)
<M (z, = y) +W(z, - )
+N (25— y3) + L(z4 = y4)

&y 2 y3 ya) = f (605 %5, %3, x4)



SM(y,—x)+W(y,—x,)

+ N (y; = x3) + L(ys —%x4)5
(44)

where B(t) < x; <y, < z; < aft), fO(1)) < x, <y, <z, <
a(0(t), (KP)(t) < x3 < y;3 < z3 < (Ka)(t), and (SP)(t) <
Xy <Y, <z, <(Sx)(t), t €], where M >0, W >0, N >0,
L>0,and8 € C(J,)).

(H,) The functions I, € C(R, R) satisfy

A(SEEORYNETD

<L, rk_ak a(s)—y(s)ds,
BT (45)

(77 ) ([ 00

<L [y () - B)ds,

L0y Le=0y L0y
where b, B(s)ds < Lk_rk y(s)ds < Lk_rk o(s)ds, k =
1,2,...,m, where L, > 0and0 < 0, < 1, <t — )y,

k=1,2,...,m.
If inequalities (12) and (40) hold, then there exists a
solution x of PBVP (4) such that 5(t) < x(t) < «(t), fort € ].

Proof. We consider the following modified problem relative
to PBVP (4):

x (1) = Mx (t) = Wx (0 (1)) + N (Kx) (£)

+ L (Sx) (t) + g ®), tely
Ax (t;) = Ly th_ak x(s)ds
=Tk
+ I <th_ak q(s,x(s)) ds>

t,.—0
—ijk kq(s,x(s))ds, k=1,2,...,m,
t

kT

x(0) = x(T),
(46)

where g,(t) = f(t,q(t),q(6(r)), (Kq)(£), (Sq)(t)) — Mq(t) -
Wq(6(t)) - N(Kq)(t) — L(Sq)(¢) and

q(t,x (t)) = max {B (¢), min {x (£), & (£)}}

ﬁ(t)’ if x < ﬁ(ﬂ: (47)
=3x(), ifp{#)<x<alt),
a(t), ifx>al(t).

If x € E is such that § < x < « on J, then x is a solution of
PBVP (4) if and only if x is a solution of (46). We will show
that (46) is solvable and that every solution of (46) satisfies
B < x < aon . Suppose that x € E is a solution of (46). We
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will show that 8 < x. Let p = 3 — x. Then, we have p(0) -
p(T) = B(0) — B(T) since x(0) = x(T') and

pPr®=p®-x0
> f(t,B1),BO®),(KB)®),(SB) 1)
+ag — | Mx (£) + Wx (0.() + N (Kx) (¢)
+L(Sx) (1)
+f(tq(®),q0 1), (Kq) (1), (Sq) (1))
- Mq (t) - Wq (0 (1))
~N (Kq) (t) - L(Sq) (1)
> Mp (t) + Wp (8 (t)) + N (Kp) (t)
+L(Sp) (t) +a, (¢),
Ap (t) = AP (t) — Ax (t)

Lx—0% _
>, <L B(s) ds> +B

tej.

KTk
=0y =0
—[ij x(s)ds+Ik<J q(s,x(s))ds)
b =Tk te—Tx

te—0%
-L, J; q(s,x(s)) ds]

KTk

te=0y _
21 [ p@dst by k=120m
LTy

(48)

By Lemma 3, we get p(t) < 0 on J; that is, # < x. Similar
arguments show that x < a.

It remains to prove that (46) possesses at least one solu-
tion. By Lemma 6, PBVP (46) is equivalent to the following
impulsive integral equation:

T
x(t) = —JO G (t,s)

« [Wx 0(s)) + N (Kx) (s) + L (Sx) (5)
(49)
+9, (5) ] ds

m =0y
—ZG(t,tk) [ijt x(s)ds+ek], te],

k=1 KTk

_ =0k t=0%
where ¢, = Ik(Lk—rk q(s, x(s))ds) — Ly, Itk—rk q(s, x(s))ds. For
any x € E, define a continuous compact operator F by

T
(Fx)(t) = - L G(t,s)

« [Wx (0(s)) + N (Kx) (s) + L (Sx) (5)
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+9, (5) ] ds
m =0y
—ZG(t,tk)[ij x(s)ds+e.|, te].
k=1 b=k
(50)

Let § > 0, such that |a(t)| < 6, |B(t)| < §,t € ], and take the
compact sets B = {(t, y;, V5, V3, ¥4) € R 1t € J, B(t) < y, <
a(t), BOW) < y, < a0, (KP)®) < y, < (Ka)(t), and
(SP)(t) < y, < (Sa)(t)}. Since f is continuous, then we can
choose a constant p > 0, such that | f(¢, 1, ¥, V3 Ya)| < ps
(t, ¥1> ¥2> V3, ¥4) € B. For A € (0, 1), we see that any solution
of

x = AFx (51)
satisfies
[xlpc = AllFx| pc

T
< Asup J G(t,s)

te] JO

< [w 1% (0.(s)] + N [(Kx) (5)
+L|(Sx) (5)] +|g, ()] ] s

m tx—0y
+)LZG(t,tk) [LkJ. |x ()| ds + |ek|]
k=1 b

kK~ Tk

JTG(t, s)

Ssup{
0

te]

X [W+NJ k(s,r)dr
0

T
+LJ h(s, 1) dr] dS} %/l pc
0

+p+M8
M

+ supZG(t, )
t€] k=1

X [Ly (1 = o) Ixllpc + lex]]

JTG(t, s)

+sup{
0

te]

X [W+NJ k(s,r)dr
0

T
+LJ h(s, 1) dr] ds} 6.

0
(52)

From the continuity of I}, k = 1,2,...,m, and (f) <
q(t, x(t)) < «(t) on J, we can choose some w > 0 such that
le] < w, k=1,2,...,m. Then we have

1 [p+MS
Ixllpc < [ =
T
+ sup {J G(t,s)
tej Lo
x [W+NJ k(s,r)dr (53)
0
T
+LJ h(s,r) dr] ds} 6
0
wm
1—eMT|°
where
T
Y = sup {J. G(t,s)
tej Lo

X [W+NJsk(s,r)dr
0
: (54)
+LJ h(s,7) dr] ds}

0
1 m
+ l—e—_WkZ:Lk (Tk - O'k) < 1.
=1
Hence, by Schaefer’s theorem [21], we get that F has at least a
fixed point x € E, which is a solution of (46). Such a solution
lies between f3 and « and, consequently, is a solution of (4).
Thus, the proof is complete. O

Theorem 10. Assume that there exist lower and upper solu-
tions for PBVP (4) and assume the following.
(Hj) The function f € C(J x R*, R) satisfies
f(tz120.25.24) = f (21,22, 23, 24)
<M(z,-2)+W(z, - Z,) (55)
+N (23 -%;3) + L(2, - Z,)»

where B(t) < z; < z; < «(t), B(O(t)) < z, < z, < «(O(1)),
(KB)(t) < z3 < z3 < (Ka)(t), and (SP)(t) < z, < z, <
(Sx)(t), t € ], where M > O, W > 0, N = 0, L > 0, and
0<C(,)).

(Hy) The functions I, € C(R, R) satisfy

I (J'::Uk x(s) ds) - I <J::Uk y(s) ds)

(56)
t —_
<L, L:,Tik x(s)—y(s)ds,
where J:‘:Zk Bls)yds < Li:gkk y(s)ds < Lik:;k x(s)ds <
jtik:;k a(s)ds, k = 1,2,...,m, where L;, > 0and 0 < 03 <

TkStk_tk—l’k: 1,2,...,m.
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Suppose that inequalities (12) and (40) hold. Then there
exist monotone sequences {,}, {,} with oy = o, 5 = S,
which converge uniformly on ] to the extremal solutions of the
periodic boundary value problem (4) in [, «].

Proof. For any 11 € [, «], consider PBVP (35) with

gty =f(tn®),n@O®),(Kn)®),(Sy) ®)

- Mn (t) - Wn (0 (t)) - N (Kn) () = L(Sn) (t).
(57)

By Lemmas 6 and 7, PBVP (35) possesses a unique solution
x € E. We define an operator A by u = Ay; then the operator
A has the following properties:

(i) B<AB, Aa < o
(ii) Ay < An, foranyn,,n, € [B,a] withy, <#,.

First we prove (i). Let p = 3, — f3;, where 8, = Af3;. Then, we
have p(0) — p(T) = B,(0) — B,(T) since 3,(0) = B,(T) and

P=B®-BO
> Mp () + Wp (0 (1) + N (Kp) (¢)
+L(Sp)(t)+a,(t), te],

Ap (t) = Ay (t) — Ay ()

(58)

t—0y _
ZLkL pG)ds+by, k=1,2,...m.

kK~ Tk

By Lemma 3, we get p(t) < 0 on J; that is, § < AB.
Analogously, we have Ax < a.

Now, we claim (ii). Set u; = A#,, u, = An,, where 7,

n, € [B,a] with i, < #,. Let p = uy — u,; by (H;)-(H,), we

have
P8 =y ()~ uy (1)
= Mp (t) + Wp (6 (1)) + N (Kp) (t)
+L(Sp) (@),

Ap () = duy (1) - Au (1) (59)

t€Jo

te—0%
:ij p(s)ds, k=1,2,...m,
t

k™ Tk
p(0)=p(T).
By Lemma 3, we have p(t) < 0 on J and so ©; < u,. Thus we

may define the sequences {w,}, {,} by o,,,; = A«,, B,.1 =
AB,, ay = a, and f, = . From (i), (ii), we obtain

Bo<Pi<Py< <P, <

<«a, <

(60)

<oy <a <a;  on,
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and each o, 8, € E (Vn € N) satisfies
T
a, (t) = - L G(t,s) [We, (0(s)) + N (Ka,,) (s)
+L (Sa,) (s) + g,y (s)] ds

- iG (t.t) [Lk J'ttkigk a, (s)ds

k=1 Kk Tk

t—0%
+ I (J &, (8) ds)
te— Tk

Y
_Lk-[ Oy (s)ds], te],
t

T
B, (1) = - L G (t,5) [WB, (0(s)) + N (KB,) (s)

+L(SB,) (s) +g,_, ()] ds

- iG (1) [Lk J;trg}c B (s)ds

k=1 Tk

+ 1 <Lk: ' B-1 (s) d$>

te—0
—ij B (s)ds], te],
t

KTk

(61)
where
Gn1 (1)
= f(ta,y (1), 0, O 1), (Ka,y) (1), (Sex,y) (1))
- Mo, (t) - Wa,_, (0(1))
= N (Ka,_) () = L(Set,._y) (£),
Gy (B)

= f (t’ ﬁn—l (t) > ﬁnfl (9 (t)) > (K:Bn—l) (t) > (Sﬁn—l) (t))
- MB,_, (t) - WB,_, (6(r)

-N (KIB”—I) t)-L (Sﬁn—l) (t).
(62)

Hence, there exist £, v such that lim, , (e, (f) = y(¢) and
lim,_, 3,(t) = &(t) uniformly on J. Clearly, &, v satisfy
PBVP (4). We will prove that &, y are extreme solutions of
PBVP (4). Let x(t) be any solution of PBVP (4), which satisfies
B(t) < x(t) < aft), t € J. Also suppose there exists a positive
integer n such that for t € J, 8,(tf) < x(t) < «,(t). Setting
pt) = B, (t) — x(t), then for t € ],

P ) =By () -x" (1)
> Mp (t) + Wp (0 (1)) + N (Kp) (t) + L(Sp) (t),

tej,
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Ap (ti) = APy (t) — Ax (t)

te—0
> L Lk kp(s)ds,

kK~ Tk

k=1,2,...m, p(0)=p(T).

(63)

According to Lemma 3, we get that p(t) < 0 on J. Similarly,
we obtain x(f) < «,, () on J. Since 3, < x(t) < oy(t) on
J, by induction, we have f3,(t) < x(t) < «,(t) on ] for all n.
Therefore, &(t) < x(t) < y(t) on ] by taking limitasn — oco.
The proof is complete. O

4. An Example

In this section, in order to illustrate our results, we consider
an example.

Example 11. Consider the following periodic boundary value
problem:

3
u' () = étz 1 +u()+ %tu <%t> + %[J: t53u(s)ds]

+LHlt3 ()d]2 feT=10,1], t#+
24 . suls)as| , = > > 2’
1 1 1/4
Au<5>=zjl/6u(s)d5, k=1, u(0)=u(1),
(64)

where k(t,s) = ts°, h(t,s) = s, m = 1, t, = 1/2,00 = 1/4,
7,=1/3,and T = 1.

Obviously, &y = 0, 3, = —5 are lower and upper solutions
for (64), respectively, and f3, < «.

Let
1, 1 1 3 1,
t,21,29,243,24) = =t (1+2,)+ —tz, + —2, + —Z.
f(1234)6(1)162363244
(65)

We have

ftz1,25,25.24) = (621,25, 23, 24)
1
6

Z4) >
(66)

_ 1 _ 1 _ 1
< (Zl_zl)+E(ZZ_Z2)+§(ZS_ZS)+Z(Z4_

where B(t) < z; < z; < «t), B((1/2)t) < Z, < z,
a((1/2)t), (KB)(t) < z5 < z3 < (Ka)(t), and (SB)(t) < Z,
z4 < (Sa)(t), t € J. It is easy to see that

1/4 1/4
I (j x(s) ds) -1, (J y(s) ds)
1/6 1/6

1 1/4
:—J x(s)—y(s)ds,
2 Jiss

(67)

where f;:::kk B(s)ds < f;":;k y(s)ds < jik:ik x(s)ds <
Ltk_ak o(s)ds, k = 1.
KTk
Taking L, = 1/2, M = 1/6, W = 1/16, N = 1/3, and
L = 1/4, it follows that

~ 1
L:Lk(’fk—"k)zﬂ’

t T
r(t):M+W+NJ k(t,s)ds+LJ Bt s) ds
0 0
t 1
+i+lj t53ds+lj t3sds,
3 4

1/1 1 25
hem oo -1s (D)2
k k(k k) 2\3 4 24

I Tk
B, = A, J r(s)ds
78]
t—0% (68)
+j [1+ Ly (ty —0p—9)]r(s)ds
t,

KTk

123
+ J r(s)ds,
t,

k0%

(1/2)-(1/3)
= A, J r(s)ds
0

(1/2)-(1/4) 1/1 1
+J- [1+—<————s)]r(s)ds
(1/2-(1/3) 2

1/2
+ J r(s)ds.
(1/2)-(1/4)

Thus,
= m T m
(L + Y B+ J r(s) ds) [ JAx = 04528309326 < 1,
k=1 0 k=1

JTG(t,s)<W+Nrk(s,r)dr

0 0

T
+L J h(s,r) dr> ds}
0

sup {
te]

1 m
+ l—e——MTksz (T = %)
=1

1 1 1 s
=sup{J G(t,s)<—+—J srdr
tej Lo 16 3 Jo

0.9256866285 < 1.
(69)

+

—

|

N‘ —

=

o)

N | —

—~

[SSH=
|

e

~——
a2
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Therefore, (64) satisfies all conditions of Theorem 10. So
PBVP (64) has minimal and maximal solutions in the
segment [f3;, o ].
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