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The kynurenine pathway (KP) is the main route of tryptophan degradation whose final product is NAD+. The metabolism of
tryptophan can be altered in ageing andwith neurodegenerative process, leading to decreased biosynthesis of nicotinamide.This fact
is very relevant considering that tryptophan is the major source of body stores of the nicotinamide-containing NAD+ coenzymes,
which is involved in almost all the bioenergetic and biosynthetic metabolism. Recently, it has been proposed that endogenous
tryptophan and its metabolites can interact and/or produce reactive oxygen species in tissues and cells. This subject is of great
importance due to the fact that oxidative stress, alterations in KPmetabolites, energetic deficit, cell death, and inflammatory events
may converge each other to enter into a feedback cycle where each one depends on the other to exert synergistic actions among
them. It is worth mentioning that all these factors have been described in aging and in neurodegenerative processes; however, has
so far no one established any direct link between alterations in KP and these factors. In this review, we describe each kynurenine
remarking their redox properties, their effects in experimental models, their alterations in the aging process.

1. Kynurenine Pathway

The main route of catabolic tryptophan degradation is
through kynurenine pathway (KP) which leads to production
of nicotinamide adenine dinucleotide (NAD+; Figure 1) [1].
This pathway takes placemainly in the liver, kidney, and brain
of humans, primates, rodents, and other small mammals
[2]. It is noteworthy that humans and animals do not
possess the enzymatic machinery to synthesize tryptophan
by themselves, the reason why they get tryptophan from
the diet. The KP is particularly modulated by the regulatory
mechanisms of the immune response and by the redox status.

The metabolites most widely studied are kynurenic acid
(KYNA) and quinolinic acid (QUIN) due to their neuroac-
tive capacities, while indoleamine dioxygenase-1 (IDO-1), 3-
hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid
(3-HA) are studied mostly due to their redox properties and
modulation.

The first step of the KP involves the oxidative opening
of the tryptophan indole ring by tryptophan 2,3-dioxygenase
(TDO; in the liver) or by indoleamine 2,3-dioxygenase-I and
-II (IDO-1 and IDO-2, resp., in the brain) to produce the
instablemetabolite, N-formylkynurenine [3–5].Thenext step
is the conversion of N-formylkynurenine to L-kynurenine
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Figure 1: Kynurenine pathway.

(L-KYN), a metabolite that will serve as substrate for vari-
ous enzymes: kynureninase which produces anthranilic acid
(ANA), kynurenine aminotransferases (KAT I, II, and III),
that catalyze the irreversible transamination from L-KYN to
kynurenic acid (KYNA), and kynurenine 3-monooxygenase
(KMO) that catalyzes the synthesis of 3-hydroxykynurenine
(3-HK). Then 3-HK can be taken by kynurenine amino-
transferase (KAT) to produce xanthurenic acid (XA) or by
the kynureninase to form 3-hydroxyanthranilic acid (3-HA),
which can also be produced by ANA through anthranilate 3-
monooxygenase.

3-Hydroxyanthranilate dioxygenase (3-HAO) opens the
ring of 3-HA to produce 2-amino-3-carboxymuconate semi-
aldehyde, an unstable intermediate which is immediately
transformed into QUIN. Finally, quinolinate phosphoribo-
syltransferase (QPRT) produces NAD+ from QUIN [6].

2. Enzymes Modulated by Redox Status

The flux through the KP in brain is rate limited by IDO,
a cytoplasmic enzyme that converts tryptophan to the
catabolism products collectively known as kynurenines [7].
IDO is a heme enzyme found in the central nervous system
(CNS) which has high affinity for L-tryptophan (Km ∼
0.02mM) and requires oxygen [8, 9] for its activity. However,
IDO-1 kinetically prefers superoxides instead of oxygen [10]
and can use them both as substrate and as cofactor. In fact,
one of the suggested roles for IDO-1 is that it can act as

scavenger of superoxide (Table 1) [11]. This function is due to
the ability of superoxide to reduce inactive ferric IDO-1 to
the active ferrous form [12]; then takes place the oxidation of
the pyrrole ring of tryptophan to form N-formylkynurenine.
IDO-1 becomes more active with increasing oxygen concen-
trations and, in vivo, KYN is 60% higher in brains of HBO-
convulsed rats compared with rats breathing air. The intra-
cellular reducing co-factor(s) of IDO-1 include(s) superoxide
anion, dihydroflavin mononucleotide, tetrahydrobiopterin,
and cytochrome reductases [12, 13]. IDO-1 can be directly
activated by a number of cytokines, including IFN-𝛾 and
TNF-𝛼. This dioxygenase is present in accessory immune
cells, including macrophages and dendritic cells, and it is
expressed in all organs including brain [14, 15]. Hydrogen
peroxide and oxide nitric are inhibitors of IDO-1 [12, 16].
Inhibition of IDO-1 by a competitive or a noncompetitive
inhibitor resulted in a dose-dependent decrease in its activity
which correlated directly with the decreasing intracellular
NAD+, which causes decreased cell viability and CNS func-
tions [17].

Another enzyme that participates in tryptophan (Trp)
degradation through the kynurenine pathway is IDO-2
enzyme that is encoded by a homologous gene of IDO-
1 [18, 19]. In humans, IDO-2 is expressed in placenta,
brain, liver, small intestine, spleen, thymus, lung, kidney,
and colon [19]. It seems that IDO-2 has lower activity than
IDO-1 [18, 19] and its participation in L- Trp oxidation
remains unclear since it has been shown, in some studies,
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Table 1: Kynurenine pathway enzymes and their positive and negative regulators.

Enzyme Reaction catalyzed Positive regulators Negative regulators

Tryptophan 2,3-dioxygenase L-Trp + O2/O2
∙−

→

N-formyl-L-kynurenine
Melatonin, H2O2 [215].

O
2

∙− [216].

3-HK, KYNA, XA, NADH [217].
Cu2+ [218].

Superoxide dismutase (SOD)
[216].

Indolamine 2,3-dioxygenase L-TRYP + O2/O2
∙−

→

N-formyl-L-kynurenine

O
2

∙−

IFN-𝛼/𝛽/𝛾,
lipopolysaccharide, hiperoxia

[12, 219].

SOD [220].
NO [221].

H2O2, IL-4 [12].

Formamidase N-formyl-L-kynurenine +
H2O → formate + L-KYN

H2O, ascorbic acid, arginine,
L-TRYP [222].

ANA [223].
3-HK, Mn2+ [222].

Kynureninase L-KYN + H2O → ANA +
L-alanine H2O, 3-HK [224].

Kynurenine aminotransferases
L-KYN +

2-oxoglutarate/pyruvate →
KYNA + L-glutamate

2-Oxoglutarato, pyruvate,
2-aminoadipate, pyridoxal
5-phosphate [225, 226].

Glutamine, L-cysteine, 3-HK,
L-phenylalanine, L-tryptophan,

L-aspartate [191, 227–229].

Kynurenine 3-monooxygenase L-KYN + NADPH + O2 →

3-HK

NADPH, O2, FAD, NADH,
inflammatory stimulus

[27, 230, 231].

ANA, XA, Cl−, pyridoxal
5-phosphate [28, 232].

3-Hydroxyanthranilic acid
3,4-dioxygenase

3-HA + O2 →

2-amino-3-carboxymuconate-
6-semialdehyde

O2, Fe
2+ [233]. Zn2+ [233].

2-Amino-3-
carboxymuconate-6-
semialdehyde
decarboxylase

2-amino-3-carboxymuconate
-6-semialdehyde →
2-aminomuconic-6-
semialdehyde +

CO2

KYNA, PIC, QUIN [234]. Zn2+, Fe2+ [234, 235].

Quinolinic acid
phosphoribosyltransferase

QUIN +
5-phospho-𝛼-D-ribose

1-diphosphate → NAD+ +
diphosphate + CO2

Mg2+ [236, 237]. ATP, Cu2+ Fe2+, Fe3+, Zn2+ [238].

that there is no detectable kynurenine formation in vivo
associated with IDO-2. However, it has been related to an
increase in KYN levels and IDO-2 expression, but not with
IDO-1, in human carcinoma cells treated with the chemokine
CXCL11 [20]. Additionally, it was described that IDO-2
showed lower Km than IDO-1 in different species (mouse:
Km ≈ 29 𝜇M and 12mM for IDO-1 and IDO-2, resp.) and
both enzymes also differ in other biochemical properties such
as pH and thermal stability [21]. Thus, although that has not
been found a specific physiological role for this enzyme, it is
apparently quite different to IDO-1. This evidence suggests
that IDO-2 is active under specific conditions; therefore it
depends on the presence of specific factors and the cell type
[22].

KMO is another important enzyme; it is a NADPH-
dependent flavin monooxygenase. This monooxygenase is
localized in the outer mitochondrial membrane in the CNS
and is predominantly expressed in microglia [23–26]. KMO
exists as an apoenzyme and interacting with flavin-adenine
dinucleotide (FAD) forms a holoenzyme; the flavin moiety
of the protein acts as an electron donor [27]. The specific
function of KMO is catalyzing the incorporation of one atom
of oxygen into kynurenine, in the presence of NADPH as
electron donor. During the reaction, the prosthetic group

FAD is reduced to FADH
2
by NADPH and subsequently

oxidized by oxygen to FAD. Further kinetic studies have
demonstrated that the enzyme activity could be inhibited by
pyridoxal phosphate and Cl− (Table 1) [28]. The relevance
of KMO activity, in both physiological and pathological
conditions, is that this enzyme possesses a high affinity for
the substrate (Km is in the low micromolar range), thus
suggesting that it metabolizes most of the available kynure-
nine to produce 3-HK [29]. Notably, it has been reported
that KMO expression increases in inflammatory conditions
or after immune stimulation [30]. Due to the alterations
in the KP metabolites in various pathologies, the enzymes
of this pathway represent significant targets for therapeutic
intervention and KMO is one of the main enzymes studied.

Kynureninase is a pyridoxal phosphate-dependent
enzyme, which is mainly located in the cytosol and catalyses
the transformation of KYN into ANA as well as of 3-HK
to 3-HA. It exhibits a 10-fold higher affinity for 3-HK than
for KYN. The optimum pH of the enzyme is 8.25 and it
displays a strong dependence on the buffer ionic strength for
optimum activity [31]. Mn2+ ions activate kynureninase only
in the presence of added pyridoxal phosphate, whereas Ca2+
ions activate it in presence and absence of added pyridoxal
phosphate (Table 1) [32].
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The enzyme that catalyzes the final aromatic ring open-
ing reaction in the KP is the 3-HAO. In this enzymatic
reaction 3-HA produces an unstable compound, 𝛼-amino-
𝛽-carboxymuconic 𝜀-semialdehyde, which is then nonenzy-
matically transformed to QUIN. 3-HAO is present in small
amounts, in mammalian brains [33], mainly in astrocytes
surrounding glutamatergic synapses in the CNS [34]. For its
activity, 3-HAO requires both nonheme Fe2+ to incorporate
atoms of molecular oxygen into 3-HA and sulfhydryl groups
[35, 36]. Recently, it was demonstrated that Fe2+ stimulates 4-
to 6-fold 3-HAO activity, in striatal homogenates of mouse,
rat, and human; this effect is prevented by ferritin [37].

On the other hand, QPRT has been identified in rat
and human CNS [38]. Magnesium ions are required for
QPRT activity and there is evidence that a cysteine residue
at the active site is required for catalysis [39]. Interest-
ingly, QPRT is in a P2 synaptosomal fraction particu-
late component [40]. This enzyme is particularly impor-
tant since it catalyzes the conversion of QUIN to NAD+;
changes in the amount of QPRT protein alter the intra-
cellular ratio between NADH/NAD+ and ATP; in conse-
quence, QUIN is accumulated, promoting the excitotoxic
damage.

The kynurenines aminotransferases (KATs) are key in
the KP since they produce the only endogenous antag-
onist of NMDA receptor, KYNA. In mammalian periph-
eral organs, several rather unspecific pyridoxal-5phosphate-
dependent aminotransferases are able to catalyze the con-
version of KYN to KYNA [41–44]. However, in the brain
of humans, rats, and mice, four proteins (KAT I, II, III,
and IV) seem to be responsible for KYNA production
[35, 44–49], of which KAT I and KAT II are the most
studied. KAT I prefers pyruvate as co-substrate [50] and
it is strongly inhibited by the competing substrates such
as tryptophan, phenylalanine and glutamine. Immunohisto-
chemical studies in rat brain have demonstrated that this
enzyme is located preferentially in astrocytes. KAT II has
a slight preference for oxoglutarate as a cosubstrate and
also displays L-aminoadipate aminotransferase activity. This
enzyme is inhibited by 𝛼-aminoadipate and quisqualate. 3-
HK inhibits both KAT I and KAT III activity but is more
active against KAT II [44]. Currently, there are different
crystallographic structures of KATs deposited in the Protein
Data Bank (PDB), which allows us to give a structural inter-
pretation into catalysis and inhibition mechanism of these
enzymes.

3. Metabolites with Redox and
Neuroactive Properties

3.1. Tryptophan. Trp is an essential amino acid, and its
structure contains a ring that can stabilize radicals through
resonance or delocalization, thus enabling it to break radical
chain reactions [51]. Trp is able to react with hydroxyl
radicals and to trap tert-butoxyl radical (CH

3
)
3
CO∙, with

rate constant values of 𝜅 = 1010M/s and 2.8 × 109M/s,
respectively [52]. Analyses performed with other indolic
structures have shown that ONOO− reacts preferentially with

3 substituted indoles such as Trp derivatives rather than
with unsubstituted indoles; and the most important prod-
ucts observed at physiological pH are 1-nitrosotryptophan
derivatives kynurenines/kynuramines obtained by opening of
the pyrrole ring [53]. Moreover, the administration of Trp
decreased the lipid peroxidation induced in rats under exper-
imental endotoxic shock, suggesting antioxidant properties of
this amino acid [54].This finding is consistent with the report
of Pazos and coworkers [55], who showed that Trp is the
amino acid with the highest antiradical activity. In addition,
tryptophan turned out to be a potent scavenger of radicals
induced by chloramine T or hydrogen peroxide, which was
detected by a chemiluminescence assay [56].

3.2. Kynurenine. A central compound of the KP is KYN,
given that it is a substrate for different enzymes to produce
KYNA, 3-HK, or ANA. Some reports have shown a protective
effect of KYN in toxic experimental models. However, this
effect has been attributedmainly to the production of KYNA,
which has an antagonist effect on both NMDA and 𝛼7-
nicotinic receptors. Nevertheless, KYN per se has scavenging
properties that should be considered to explain the effects
of this metabolite in the toxic models in which has been
tested.

Zsizsik and Hardeland observed KYNA formation from
KYN in light-exposed homogenates of the dinoflagellate
Lingulodinium polyedrum, which was under a prooxidant
environment induced by paraquat and CCCP, suggesting that
oxidative kynurenine deamination leads to KYNA produc-
tion; furthermore, in this process KYN could be acting as an
antioxidant [57]. This finding correlates with the fact that L-
KYN reduces the chemiluminescence induced by hydrogen
peroxide or chloramine T [56] and also with its ability to
trap hydroxyl radical (𝐾

𝑟
1.4 × 10

10M−1s−1; determined by
EPR-spin trapping and pulse radiolysis method) Table 2 [58,
59]. Recently, it has been showed that L-KYN was able to
abolish ROS production induced by 3-nitropropionic acid
andONOO−; this effectwas independent ofKYNA formation
since the samples were obtained from brain homogenates of
KAT II knockout mice (which lack the major enzyme for
the biosynthesis of KYNA) [60]. Altogether, this evidence
strongly suggests that KYN can be considered as a potential
endogenous antioxidant, which can donate an electron and
protect macromolecules in vivo and in vitro against oxidative
modifications [53, 61]. These properties can be independent
of the KYNA formation.

However, KYN has also shown prooxidant effects. It has
been described that aerobic irradiation of KYN produces
superoxide radicals and leads to reduction of cytochrome
c [62, 63]. Additionally, in vitro studies show that KYN
is able to photooxidize cysteine, NADH, and ascorbic acid
and this capacity may be directly relevant to photobiological
processes occurring in the lens in vivo. In particular, these
photooxidation processes can be responsible for the age-
related depletion of reduced glutathione and/or formation
of hydrogen peroxide in lens [64]. On the other hand, KYN
can also cause cell death through ROS pathway in NK cells
[65].
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3.3. Kynurenic Acid. The major KP metabolite considered as
neuroinhibitor is KYNA, which is synthesized and released
by astrocytes and antagonizes NMDAr [66] and 𝛼7-nicotinic
acetylcholine receptor (𝛼7nAChR) [67]. KYNA synthesis
is mediated by KATs. Studies in rodents have shown that
modest increases or reductions in KYNA levels decrease
or facilitate extracellular dopamine and glutamate release,
respectively [68–72]. Accordingly, dysregulation of endoge-
nous KYNAmay contribute to the physiopathology of several
disorders [73–75].

Recently, KYNA was identified as an endogenous ligand
of GPR35 [76]. This fact highlighted the importance of
KP in regulating immune functions because the activation
of GPR35 inhibits TNF-𝛼 release by macrophages under
inflammatory conditions induced by LPS. Upon this con-
text, KYNA might exert an anti-inflammatory effect [76].
Additionally, GPR35 decreases intracellular Ca2+ probably by
inhibiting its entrance [77]; thus, KYNA most likely exerts
an effect on the release of inflammatory mediators and
excitatory amino acids from glial cells. The ligand-activated
transcription factor aryl hydrocarbon (AHR), a nuclear pro-
tein involved in the regulation of gene transcription, is also
activated by KYNA and is able to cause immunosuppression
[78].

On the other hand, various groups have studied the redox
properties of KYNA.This kynurenine is a reducing agent that
might even be able to act as (electron transfer) redox catalyst
in vivo. KYNA has been shown to scavenge hydroxyl radi-
cals; it is able to prevent radicals-induced malondialdehyde
formation from 2-deoxyribose [79–82]. However, KYNA can
behave, under certain circumstances, as a prooxidant since it
has been shown to have a strong potentiation of the prooxi-
dants properties of 𝛿-aminolevulinic acid [83]. The putative
mechanism by which KYNA scavenges free radicals was pro-
posed by Zsizsik and Hardeland [82]; the reaction is initiated
by the hydroxyl radical, and then a decarboxylation should
be the favored process. The resulting decarboxylated cation
radical interacts with another hydroxyl radical, and the next
intermediate interacts with superoxide, leading to the nitric
oxide release. The resulting 2-hydroxychromanone then may
be in equilibrium with its tautomer, 2,4-dihydrochromene.
The balance of the radical scavenging is that three radicals
would be scavenged (two of OH∙ and one of superoxide)
and one would be formed (∙NO) [82]. Additionally, another
study showed that KYNA can also scavenge peroxynitrite. It
also can prevent the lipid peroxidation and ROS production
in rat forebrain homogenates and in Xenopus laevis oocytes
(preparation free of NMDA receptors) induced by FeSO

4
,

suggesting that the protective effect of KYNA is independent
of its activity over receptors. An in vivo study also showed that
KYNA decreases the hydroxyl radical formation induced by
the acute infusion of FeSO

4
in the rat striatum [84]. Further-

more, it has been shown that KYNA significantly increased
oxygen consumption during state IV respiration leading to
an impaired respiratory control index and ADP/oxygen ratio
[85, 86].

All these evidences show that KYNA is an important
neuromodulator but also is an endogenous antioxidant and

its protective effect showed in divers toxic models may be due
to its redox character in addition to its activity on receptors.

3.4. 3-Hydroxykynurenine (3-HK). 3-HK is a controversial
kynurenine since it has shown prooxidants and antioxidants
activities. The structure-toxicity relationship shows that the
o-aminophenol structure common to 3-HK is required to
exert its toxicity. o-Aminophenol compounds are considered
to be subject to several steps of oxidation reactions initiated
by their oxidative conversion to quinoneimines, which is
accompanied by concomitant production of ROS, generating
mostly superoxide anion and H

2
O
2
(Table 2) [87].

The neurotoxicity of 3-HK in primary neuronal cultures
prepared from rat striatum is blocked by catalase and des-
ferrioxamine but not by superoxide dismutase, indicating
that the generation of H

2
O
2
is involved in the toxicity.

The protective effect of desferrioxamine suggests a role for
iron in 3-HK toxicity, either in catalyzing the oxidation
of 3-HK or in promoting the reduction of H

2
O
2
to the

highly reactive hydroxyl radical. Additionally, it has been
proposed that the ROS generation by low concentration of
3-HK (1–10 𝜇M) occurs intracellularly and depends on the 3-
HK uptake activity which is variable in the different brain
regions [88]. This is one of the possible mechanisms by
which 3-HK induces cell death [89]. It has been showed that
the endogenous xanthine oxidase activity is involved in the
H
2
O
2
generation produced by 3-HK and also exacerbates

cell damage generated by this kynurenine. However, the
precise mechanism by which this enzyme is acting in this
process is not clear [89]. 3-HK, besides being considered
as cytotoxic for neuronal cells [90], has also been shown
to cause bladder cancer [91]. Moreover, 3-HK modifies the
respiratory parameters, decreasing respiratory control index
as well as ADP/oxygen ratio of glutamate/malate-respiring
heart mitochondria [87].

On the other hand, it has been demonstrated that
3-HK and 3-HA reduce Cu(II) and both generate superoxide
and H

2
O
2
in a Cu-dependent manner [92]. The incubation

of bovine 𝛼-crystallins with low concentrations of 3-HK
causes protein cross-linking and oxidation ofmethionine and
tryptophan residues [93], indicating that the protein damage
likely results from generation of reactive oxygen species.
In the human lens, these reactions have been associated
with both aging [94] and cataractous processes [95]. Also, it
was shown that 3-HK and 3-HA provoke protein oxidative
damage and induce apoptosis characterized by chromatin
condensation and internucleosomal DNA cleavage in PC12,
GT1-7, and SK-N-SH cells [92, 96–98]. In vivo experiments
have demonstrated that injection of 3-HK into the striatum
causes tissue damage that is prevented byN-acetyl-L-cysteine
coapplication [99].

Conversely, 3-HK has also been proposed to be an antiox-
idant, peroxy radicals scavenger in inflammatory diseases
[100], and superoxide scavenger in the Malpighian tubes
of insects [101]. Since 3-HK is an o-aminophenol, it might
be expected to undergo complex oxidative processes. In
fact, under severe oxidative stress induced via the hydro-
gen peroxide-horseradish peroxidase system, 3-HK forms
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hydroxanthommatin and xanthommatin, products of six-
and eight-electron oxidations, respectively [87]. The initial
stable product of autooxidation of 3-HK does react with O

2

∙−

(lower limit for 𝑘 is 5.6 × 106M−1 s−1), and it is possible
that this autooxidation product could be responsible for
protection from the deleterious effects of O

2

∙− [59]. The
amount of 3-HK is abundant in Malpighian tubes of insects
and was reported to work as a major antioxidant in the tubes
[101, 102].

Besides, 3-HK and 3-HA, like vitamin C and Trolox,
belong to the class of small molecules that react very rapidly
with peroxyl radicals and hence are potentially impor-
tant biological antioxidants. In particular, 3-HK and 3-HA
protected B-phycoerythrin from peroxyl radical-mediated
oxidative damage more effectively than equimolar amounts
of either ascorbate or Trolox [100]. 3-HK was more reac-
tive with the ferryl complex than glutathione, suggesting
that the antioxidative efficiency is better than glutathione.
Additionally, the C6 glioma cells exposed to 3-HK increased
its total antioxidant reactivity values and the TBA-RS levels
were decreased without changing themorphology of the cells
[103].

This redox behavior of 3-HK can be explained by Giles
and coworkers, who propose that 3-HK can initially act as
two-electron donors (antioxidant) but the ortho-quinone-
imine formed oxidatively and the ROS produced in this pro-
cess are responsible for its prooxidant effects [104]. Therefore
the behavior of 3-HK depends on the redox status of the
cell.

3.5. Xanthurenic Acid. Xanthurenic acid (XA), a metabolite
of the KP is synthesized through 3-HK transamination, and
it is closely related structurally to KYNA but possesses dif-
ferent biological roles; actually the biological function of XA
remains obscure. Gobaille and coworkers proposed that XA
can have a role in the neurotransmission/neuromodulation
since it is actively taken up by synaptic vesicles from rat brain,
effect that is inhibited in absence of ATP [105].

Some groups have focused on the study of the redox
properties of this metabolite, which have showed metal-
chelating activities and antioxidant properties [106, 107].
Zsizsik and Hardeland showed that XA turned out to be an
efficient scavenger of hydroxyl radicals andABTS∙+ produced
in the ABTS system. XA was able to inhibit the lipid
peroxidation induced by iron and copper oxidation in low
density lipoprotein, and this metabolite also prevents the
inactivation of NADP-isocitrate dehydrogenase produced by
the oxidation of these metals [106]. XA scavenges superoxide
in a hematoxylin autooxidation system [108]. XA has also
been shown to act as a peroxyl radical scavenger in vitro [100].
A recent study evaluated the antioxidant action of XA using
heme and iron as promoters of radical formation. In this
model, XA proved to be a powerful antioxidant, inhibiting
lipid peroxidation in a pH-dependent manner [109]. The
antioxidant properties of XA could be related to the fact that
all phenolic metabolites show antioxidant activities points
toward the importance of the phenolic moiety as the active
entity [100].

On the contrary, XA sometimes acts as a prooxidant due
to its chelating effect. Recent studies revealed that XA binds
ferric ion at the 8-hydroxyl group and the nitrogen atom of
the quinoline moiety, resulting in the enhancement of the
autooxidation of ferrous ion to ferric ion [110].The formation
of metal-chelate complex modifying the oxidation-reduction
potential of metal ion is responsible for the generation of
reactive oxygen species (ROS) [111]. Oxygenmolecules accept
one electron from ferrous ion to form superoxide radical,
which can also produce anotherROS.Once thatXA forms the
metal complex, inactivates aconitase throughROS generation
mainly hydroxyl radical [112]. Furthermore, XA was demon-
strated to act as an apoptosis-inducing metabolite in vascular
smooth muscle and lens epithelial cells [113, 114]. Addition-
ally, XA acts as a photosensitizer and generates superoxide
and singlet oxygen upon irradiation [115]. The photooxida-
tion and polymerization by XA of lens proteins are related to
the age-dependent cataractogenesis [116, 117]. All these stud-
ies suggest that the cytotoxic action of XA may be explained
by the prooxidant properties of chelate complexes with
metals.

3.6. 3-Hydroxyanthranilic Acid. Many studies considered 3-
HA as free radicals generator [28, 29] because in its autoox-
idation it is able to generate free radicals. This autooxidation
of 3-HA involves first, the generation of semiquinoneimine
(anthraniloyl radical) which oxidizes to the quinoneimine,
followed by condensation and oxidation reactions to yield
a cinnabarinic acid. 3-HA auto-oxidation to cinnabarinate
requires molecular oxygen and generates superoxide radi-
cals and H

2
O
2
. Superoxide dismutase (SOD) accelerates 3-

HA auto-oxidation, probably by preventing back reactions
between superoxide and either the anthraniloyl radical or
the quinoneimine formed during the initial step of auto-
oxidation. Mn2+, Mn3+, and Fe3+-EDTA catalyze cinnabar-
inate formation under aerobic conditions [118].

In experimental models, the pattern of 3-HA in mito-
chondrial processes involves the inhibition of oxygen uptake
by mitochondrial respiring with NAD-dependent substrates,
uncoupling the respiratory chain and the oxidative phos-
phorylation [87, 119]. A marked inhibition (79%) of oxygen
uptake by 1mM 3-HA was observed in an oxoglutarate-
respiring rat liver or rat heart mitochondria [119]. Further-
more, it has been shown that 3-HA induces apoptosis in
monocyte/macrophage cell lines, and the apoptosis response
was enhanced by ferrous or manganese ions, according to a
mechanism that presumably involves production of hydrogen
peroxide, since the effect was attenuated by catalase [120].
Fallarino and coworkers [121] showed that both 3-HA and
QUIN can induce apoptosis of thymocytes of terminally
differentiated T helper cells, in particular, Th1 but not Th2
clones, through Fas-independent mechanisms involving the
activation of caspase-8 and the release of cytochrome c from
mitochondria. It has also been suggested that 3-HA inhibits
NF-𝜅B activation upon T cell antigen receptor engagement
by specifically targeting PDK1 [122]. Additionally, it was
demonstrated that 3-HA induced depletion of intracellular
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glutathione in activated T cells without increased ROS for-
mation [123].

On the contrary, there are also reports that show that
3-HA is a potent antioxidant [124] and downregulates the
inducible nitric oxide synthase expression [125, 126] by
enhancing OH-1 expression in macrophages stimulated with
IFN-𝛾 and lipopolysaccharide, thereby resulting in a further
increase in IDO expression and activity [127]. Additionally,
3-HA reduces 𝛼-tocopheroxyl radical restoring the levels
of 𝛼-tocopherol and preventing LDL lipid peroxidation
[124, 128].

Furthermore, 3-HA and 3-HK inhibited the spontaneous
lipid peroxidation in the brain and this inhibitory property
remained even in the presence of Fe3+, protecting cerebral
cortex against oxidative stress [129]. The GSH spontaneous
oxidation and the peroxyl radicals were significantly pre-
vented by 3-HA [103].

Electrochemical studies suggest that 3-HA can initially
act as antioxidant and next as a prooxidant [104] since the
ortho-quinone-imine formed possesses oxidant properties.
The most likely explanation for the dual effect in vitro of 3-
HA is a concentration-dependent action.

3.7. Anthranilic Acid. Although ANA is generally accepted
to be biologically inactive, it can interact with copper to
form an anti-inflammatory complex. This complex acts as a
hydroxyl radical-inactivating ligand able to remove the highly
injurious hydroxyl radicals at inflammatory sites. However,
the ANA-Cu2+ complex increases the Fenton reactivity of
copper, producing more hydroxyl radicals, which are quickly
removed by the same complex [130, 131]. Due to this property,
the synthetic derivative of ANA, 3-methoxyanthranilate, has
been proposed as a potential anti-inflammatory drug [132].

Nevertheless, in a study in vitro using organotypic cul-
tures of rat hippocampus it was demonstrated that ANA
(at high mM concentration) may cause neurodegeneration
[133]. However, the mechanism of this finding has not
been elicited yet, but it is known that alterations in the
metabolite levels have been observed in some degenerative
diseases [134]. Additionally, the anthranilate was found to
have more pronounced effect on active than on resting rate
of respiration. This metabolite (1.25–5mM) has an effect,
in a dose-dependent way, on the respiratory parameters: it
dropped state III and respiratory control index using 5mM
glutamate/malate as respiratory substrates. On the other
hand, no effect was seen in the presence of succinate or
NADH as substrates [86, 135]. These contradictory effects
found for ANA can be due to its capability to produce
hydroxyl radicals to the 3-HA metabolite, considering that
ANA is a substrate to produce it.

3.8. Picolinic Acid. Picolinic acid (PIC) is a six-member
ring structure and isomer of nicotinic acid, containing five
carbon atoms, a nitrogen, and a carboxyl group at position
2. The most widely studied physical characteristic of PIC
is its efficient chelator properties; it was first described that
this metabolite was an efficient chelating agent for both
copper and iron. Later, Suzuki and coworkers described

that PIC was also able to chelate other bivalent metals
including Ni2+, Zn2+, Cd2+, Pb2+, and Cu2+ [136]. Therefore,
picolinate is an unselective metal ion chelator [137] and
also activates macrophages via induction of macrophage
inhibitory protein- (MIP-) 1𝛼 and MIP-1𝛽, which is potenti-
ated by simultaneous IFN-𝛾 treatment [138]. It also possesses
both extracellular and intramacrophage antimicrobial activ-
ity againstMycobacterium avium [139] and Candida albicans
[140] and antiviral/apoptotic activity against HVI-1 and
Herpes simplex virus-2-infected cells [141]. Additionally, PIC
is able to induce synergistically with IFN-𝛾, the expression of
nitric oxide synthase in macrophages [142].

Moreover, PIC also has been shown to protect the cholin-
ergic neurons of the nucleus basalis magnocellularis and the
nicotinamide adenine dinucleotide diaphorase containing
neurons of rat striatum against QUIN-induced neurotoxicity
[143, 144]. This protection can be related to the fact that
PIC significantly decreases glutamic acid release, evoked by
exposure of striatal slices to 1mM kainate in the presence of
calcium. In the absence of external calcium, PIC (100𝜇M)
failed to influence kainic acid-induced release [145]. Addi-
tionally, it has been proposed that PIC may act as a glycine
agonist at strychnine-sensitive receptors since it was able to
reduce the inhibition of firing by glycine in these receptors
[146].

However, 𝛼-PIC chelates Fe2+ ions and enhances the
hydroxyl radical formation. This effect is attributed to its
structure; the two adjacent atoms in the 2-pyridinecarboxylic
acidmoiety, that is, the nitrogen atom in pyridine ring and the
oxygen atom in the carboxyl group, seem to be participating
in the chelation of Fe2+ ion [147]. Some reports also show
the toxic effect of this metabolite since its systemic admin-
istration produces alterations in neuronal cell bodies. These
alterations developed within selected regions of the brain, as
was demonstrated within the hippocampus, substantia nigra,
and striatum [148]. Additionally, results indicate that PIC
alters cell shape by changing the pattern of distribution of
cytoskeletal elements in culture normal rat kidney (NRK)
and SV40-transformated NRK cells [149]. All these toxic
effects may be related to the hydroxyl radical produced by
PIC.

3.9. Quinolinic Acid. Quinolinic acid (QUIN), a neuroactive
metabolite of the kynurenine pathway, is an agonist of N-
methyl-D-aspartate (NMDA) receptor; it has a high in vivo
potency as an excitotoxin [150]. Free radical generation and
oxidative stress are involved in the toxicity induced byQUIN;
however it is necessary to have in mind that these mecha-
nisms can be or not dependent of QUIN activity on NMDA
receptors. The ROS NMDA receptor-dependent production
is promoted by Ca2+ entry, which induces the NOS activity
and decreases the SOD activity, leading to excess of nitric
oxide and superoxide.The interaction between these radicals
quickly produces peroxynitrite [151, 152]. Additionally, it has
been shown that QUIN can reduce glutathione as well as
copper and zinc-dependent superoxide dismutase activity
(Cu, Zn-SOD) [153] and induce ROS production, lipid
peroxidation, and cell death [154, 155]. Other toxic effects
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Table 3: Changes in kynurenine pathway’s metabolites and enzymes with the age in rats [178, 180, 185, 248].

Metabolite/enzyme Brain Liver Kidney
TRP ↓ ↓ ↓

TDO ↓ ↓ ↓

IDO ↑ ↓ ↓

KYN ↑

↓ at 12 months
No changes at 24 months

↓ at 12 months
↑ at 24 months

KATs ↑ No changes ↑

KYNA ↑ No changes ↑

KMO ↓ ↓

Kynureninase ↓ ↓

3-Hydroxyanthranilate
3,4-dioxygenase ↑ ↑

Aminocarboxymuconate-
semialdehyde decarboxylase
(ACMSD)

↑ ↑

QPRT ↓ ↓ ↑

QUIN ↑ ↑

↓ at 12 months
No changes at 24 months

PIC ↑ ↑

↓ at 12 months
No changes at 24 months

of QUIN through NMDA receptors have been observed like
inflammatory events, energetic deficit, behavioral and mor-
phological alterations [150, 156, 157]. It has been shown that
depending QUIN levels it can change its activity and toxicity.
Several authors have demonstrated the QUIN participation
in apoptosis of different cells like oligodendrocytes, neurons,
and astrocytes via NMDA-dependent ROS formation. Braidy
and coworkers observed that QUIN can act as a substrate
for NAD+ synthesis at very low concentrations (<50 nM) but
can also be a cytotoxic agent at subphysiological concen-
trations (>150 nM) through the NMDA overactivation, NOS
induction, and nitric oxide increase conducing to free-radical
damage in astrocytes and neurons. Also, the increased PARP
activity leads to NAD+ depletion and consequently to cell
death [158, 159].

Additionally, Stipek and coworkers (1997) showed that
QUIN is able to form complexes with Fe2+ and modulate
the lipid peroxidation [160]. In phosphate buffer, the QUIN-
Fe2+ complex enhances the formation of hydroxyl radical via
the Fenton reaction, compared to Fe2+ ions alone, and also
inhibits the auto-oxidation of Fe2+ [161]. Further investigation
has suggested that the QUIN-Fe2+ complex is relatively stable
at physiological pH, and although this initiates the generation
of hydroxyl radicals, a further QUIN derivative is formed,
which enables redox cycling of Fe2+ and Fe3+ ions, thus
maintaining hydroxyl radical formation [162]. The QUIN-
Fe2+ complex was shown to be also responsible for in vitro
DNA chain breakage and lipid peroxidation mediated by
hydroxyl radicals [79]. Therefore, the generation of reactive
oxygen species by QUIN is secondary to the formation and
slow pH-dependent autooxidation of QUIN-Fe2+ complexes
and can be readily prevented by iron chelation [162, 163].

All these evidences suggest that QUIN-Fe2+ complexes dis-
play significant prooxidant characteristics that could be of
concern for QUIN neurotoxicity.

Different ROS scavengers, molecules with antioxidant
properties, inducers of activity of antioxidant enzymes, and
some pharmacological substances have been tested success-
fully against QUIN toxicity, showing protection of nervous
tissue from oxidative damage induced by QUIN in vitro and
in vivo [164–172].

4. Kynurenines Disturbances in Aging and
Neurological Diseases

Alterations at the level of kynurenine pathway metabolites
and enzymes have been observed in the aging (Table 3)
[173, 174] and in several age-associated neuropathological
conditions and diseases involving immune activation [175].
However, few studies have investigated changes in tryptophan
metabolism with aging. Upregulation of tryptophan-KYN
metabolism has been reported in older individuals (72–93
years of age) as comparedwith younger adults (34–60 years of
age) [176]. A study concernedwith the formation ofUVfilters
in the human lens, which are formed from L-tryptophan
through the KP, observed the highest levels of kynurenine
in lenses (postmortem) from young people, below the age
of 20 years, and lowest levels were detected in lenses of 80
years of age or older, suggesting that the protective effect
of the metabolite against UV damage is reduced with the
advancing of age [177]. In a study in rats was found a
significant decrease in liver TDOactivity with age [178], while
another showed anomalous tryptophan catabolism, partly
because of vitamin B6 and nicotinamide deficiency [179].



12 Oxidative Medicine and Cellular Longevity

Table 4: Alterations in kynurenines levels in neurodegenerative diseases.

Disease Metabolite Sample Reference

Alzheimer disease

(i) ↑ TRP/KYN ratio Plasma [249]
(ii) ↑ KYNA levels and KAT I activity Putamen and caudate nucleus [192]
(iii) ↓ KYNA levels CSF and plasma [250, 251]
(iv) ↑ 3-HK Serum [252]

Huntington disease (i) ↑KYNA and 3-HK levels Neostriatum and cortex in
early-stage HD patients

[253]
(ii) ↓ 3-HK and 3-HA [254]

Parkinson disease (i) ↓ KYNA Frontal cortex, putamen,
and SNpc of patients with PD,
CFS

[255, 256]
(ii) ↑ 3-HK

Schizophrenia (i) ↓ KMO and 3-HAO Prefrontal cortex [257, 258]
(ii) ↑ L-KYN and KYNA

Depression
(i) ↓ TRP

Plasma [259–262](ii) ↑ KYN
(iii) ↑ IDO

In this context, Braidy and coworkers [180] showed a sig-
nificant decrease in TDO activity with age progression in
the brain, liver, and kidney of female rats. Additionally, it
was observed a significant increase in IDO brain activity
with age, which is consistent with the observed that there
is age-dependent increase of KYN in brain. This raising in
available KYN is probably enough to explain the described
age-dependent increase in KYNA, PIC, and QUIN. These
observationsmay reflect adaptive changes related to the aging
process in immune activity within the brain [178]. Under
this perspective, aging is associated with the chronic, low
grade, Th-1 type inflammation, in which IFN-𝛾, a potent
proinflammatory cytokine and an inducer of IDO, is involved
[181].

In another study related to enzymatic variations with
age, IDO activity was measured. In the group of rats aged
2-3 months, the highest specific activity was observed in
the small intestine and the lowest in the lungs and kidneys,
whereas at 12 months of age the highest IDO activity was
found in the brain, and kidneys presented the lowest activity.
At 18 months, IDO returned to be more elevated in the
small intestine. At 12 months old the values of IDO in
tissues varied slightly, while at 18 months similar activities
were found between lungs and brain and between the small
intestine and kidneys. In relation to age, IDO specific activity
declined in the small intestine, after 2-3 months of age
[182].

Additionally, Moroni and coworkers [183] described a
similar increase of KYNA levels in the aging rat brain. The
brain concentration of KYNA was extremely low during
the first week of life; then it increased at 3 months and a
high raise was observed at 18 months of age, in accordance
with the data of Finn and coworkers [184] and Gramsbergen
and coworkers [185]. A positive relationship between CSF
KYNA levels in humans and ageing has also been reported
[186]. Elevated KYNA metabolism may be involved in the
hypofunction of the glutamatergic and/or nicotinic choliner-
gic neurotransmission in the CNS of ageing humans [186].

Additionally, the increases of KYNA levels could underlie
cognitive decline found in the aging.

Moreover, QPRTase activity in the brain is reduced with
ageing, in parallel with an age-related increase in QUIN [180,
183]. An excessive accumulation of QUIN in brain tissue can
induce a cytotoxic cascade within the CNS [187]. Increased
QUIN content in the aging rat brain also suggests that the
activity of the enzyme leading to the synthesis of QUIN (3-
HAO) may also increase in the brain with advancing age
[178].

These changes in metabolites and enzymes of KP are
related to reports that show a decline in NAD+ levels and an
increase in oxidative markers [188], suggesting a strong link
between these factors in longevity which allow to propose KP
as a therapeutic target to modulate free radicals and restore
NAD+ levels.

On the other hand, neurodegenerative diseases are related
to disturbances of the mitochondrial function, oxidative
stress, and alterations in kynurenines levels [189, 190]. In this
study we have described the redox activity of the kynurenines
and how the KP can be modulated by the environment;
however, their production in several pathologies can be more
difficult to clarify sincemany factors converge and can change
the cellular environment.

Alterations in the kynurenines metabolism can be due
to alteration of energetic metabolism, oxidative damage, and
inflammation, affecting the cellular function. Its relevance
can be viewed under pathological conditions [86, 134, 135,
189, 191–194]. Table 4 summarizes changes in the KPmetabo-
lites found in different neuropathologies.

5. Modulation of KP and Its Implications in
the Intracellular NAD+ Levels

Recent studies have focused on the possible effects modu-
lating the KP. The main strategies to follow are (1) trypto-
phan supplementation, (2) the use of inhibitors of the KP’s
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enzymes, and (3) the use of analogues of KP metabolites, as
KYNA.The first strategy has been widely studied considering
that Trp, besides from being a precursor of kynurenines, is
also of serotonin and melatonin. Trp supplementation has
been used as a helpful therapy to treat behavior problems
in animals since a low-protein diet supplemented with Trp
helped inmanaging canine aggression problems [195]. Never-
theless the specificmechanismbywhichTrp acts in thisway is
still unclear but might be also due to the neuroactivemetabo-
lites of KP. In this context, Ciji et al. found increased serum
cortisol levels and decreased serum testosterone and estradiol
levels in fish exposed to nitrite; these effects were prevented
by vitamin E and tryptophan diet; however, the benefits effect
of vitamin E were due to its antioxidant characteristics, but
the effect of Trp was unclear. Nonetheless, its protective effect
may be not only the result of its own redox properties but also
due to the metabolites with antioxidant properties produced
by Trp degradation [196]. Moreover, a study showed that in
healthy women under a rich diet in Trp increased the urinary
excretion of KYN, ANA, KYNA, 3-HK, 3-HA, and QUIN
[197], which under certain circumstances can be toxic. In fact,
it has been shown that the excessive Trp supplementation
would aggravate or would induce autoimmune diseases [198]
due to the metabolites produced during its metabolism.
The Trp supplementation can also affect intracellular NAD+
levels.

Braidy and coworkers have recently shown that 3-HA,
3-HK, and QUIN can promote NAD+ synthesis at con-
centrations below 100 nM in human primary astrocytes
and neurons. However, these metabolites at concentrations
>100 nM decreased intracellular NAD+ levels and increased
extracellular LDH activity in both primary human astrocytes
and neurons [158]. The vulnerability showed in human
cerebral neurons may be due to the fact that the neurons
can take up exogenous QUIN but can only catabolize a small
amount [199] since QPRT is rapidly saturated. These events,
depending on the kynurenines concentration, need to be
taken into consideration since the biosynthesis of NAD+ is
vital to the maintenance and ongoing cell viability of all of
them.

The inhibition of IDO, KMO, and QPRT represents an
important pharmacological target, since the kynurenines
are involved in many neurodegenerative diseases. Several
experimental models have been used to test some inhibitors
of specific KP’s enzymes. The inhibition of IDO and QPRT
activities with 1-methyl-L-tryptophan and phthalic acid,
respectively, resulted in reduction of intracellular NAD+ and
cell viability, in both astrocytes and neurons; however, these
effects are higher in neurons than astrocytes, suggesting
that changes in KP metabolism have a greater effect on the
neuronal population compared to glial cells. It is noteworthy
that in a mouse model for multiple sclerosis the IDO
inhibition aggravated the disease progression, denoting that
IDO inhibition exacerbated the disease [200]. This could
be related to the fact that IDO inhibition reduces NAD+
synthesis and therefore promoting cell death.

Following the same line, Blight and coworkers observed
that treatment with 4-chloro-3-hydroxyanthranilate, a syn-
thetic inhibitor of 3-hydroxyanthranilic acid oxidase, was

able to reduce QUIN production and functional deficits
following experimental spinal cord injury in guinea pigs
[201]. More recently, it has been showed that the KMO
inhibitor, 3,4-dimethoxy-N-[4-(3-nitrophenyl)-thiazol-2-yl]
-benzenesulfonamide (Ro61-8048) [202] prevents ataxia and
death in mice infected with the malaria parasite Plasmod-
ium. This protection was associated with the elevated levels
of KYNA and ANA [203]. Additionally, Campesan and
coworkers showed the first evidence that inhibition of KMO
and TDO activity protects against a transgenic Drosophila
melanogaster model of Huntington disease [204, 205].
According to this subject, the oral administration of JM6, a
novel prodrug inhibitor of KMO, avoided behavioral deficits
and synaptic loss and raised KYNA levels in well-established
genetic mouse models of Alzheimer [206]. Actually, whereas
KMO inhibition leads to brain 3-HK and QUIN reduction,
this may provide benefits in neurodegenerative diseases [203,
207–212]; the blockade of KAT II brings about a decrease in
brainKYNAbut can be related to cognition-enhancing effects
[213, 214].

Further studies are necessary to explore whether pro-
longed manipulations of both KP metabolism arms have
diverse consequences and which experimental models could
be the best strategy because KYNA promotion can not only
be an effective target just in some neurotoxic models, those
that display a great excitotoxic damage, but can also promote
NAD+ depletion and in a prolonged time could lead to cell
death.

6. Concluding Remarks

In recent years, different groups and researchers have inves-
tigated the redox properties of KP metabolites; however, due
to the dual effects of these metabolites and the high degree
of modulation of the KP (inflammatory cytokines, metals,
pH, and redox environment), is complex it try to establish
a precise mechanism by which cellular alterations can be
produced. What we do know is that these metabolites must
have a physiological activity and a great impact on aging
and especially in pathological conditions, processes in which
are also altered factors that regulate the production of these
kynurenines. The precise degree of involvement of these
events constitutes a fertile line of research to explore in the
next years.
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