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Improving decisions efficiency is one of the major concerns of the decision support systems. Specially in the uncertain
environment, decision support systems could be implemented efficiently to simplify decision making process. In this paper
stochastic economic order quantity (EOQ) problem is investigated in which decision variables and objective function are uncertain
in nature and optimum probability distribution functions of them are calculated through a geometric programming model.
Obtained probability distribution functions of the decision variables and the objective function are used as optimum knowledge
to design a new probabilistic rule base (PRB) as a decision support system for EOQ model. The developed PRB is a new type of
the stochastic rule bases that can be used to infer optimum or near optimum values of the decision variables and the objective
function of the EOQ model without solving the geometric programming problem directly. Comparison between the results of the
developed PRB and the optimum solutions which is provided in the numerical example illustrates the efficiency of the developed

PRB.

1. Introduction

Economic order quantity (EOQ) problem has been inves-
tigated by many researchers during the past decades. Most
of the presented inventory models are developed in the
deterministic environment. Pentico and Drake [1] and Khan
et al. [2] reviewed deterministic economic order quantity
models. But, some of the researchers considered variations in
the real world situations and presented inventory models in
the uncertain environments. These uncertain EOQ models
can be classified into three general categories: fuzzy EOQ
models, stochastic EOQ models, and hybrid EOQ models.
In the fuzzy environment, Park [3] investigated the EOQ
model in which the order and the inventory costs are con-
sidered as trapezoidal fuzzy numbers. The author suggested
rules to transform the fuzzy cost information in precise
inputs for the EOQ model. Samanta and Al-Araimi [4]
developed an inventory model based on the fuzzy logic in
which the periodic review model of inventory control with
variable order quantity is considered. The control module
combines fuzzy logic with proportional-integral-derivative

(PID) control algorithm. This model simulates the decision
support system to maintain the inventory of the finished
product at the desired level subject to the demand variations
and the uncertainties of the production system. Roy and
Maiti [5] presented a fuzzy EOQ model with limited storage
capacity. In the presented model fuzziness is introduced in
both objective function and storage area. Authors considered
demand is related to the unit price and the setup cost
varies with the quantity produced/purchased. Mondal and
Maiti [6] presented a soft computing approach using genetic
algorithm to solve multi-item fuzzy EOQ models under fuzzy
objective goal of cost minimization and imprecise constraints
on the warehouse space and the number of production runs
with crisp/imprecise inventory costs.

Second class of the uncertain EOQ models is stochastic
economic order quantity models. In this category Friedman
[7] developed classical EOQ model with finite replenish-
ment rate under stochastic lead time assumption. Eynan
and Kropp [8] presented a periodic review system under
stochastic demand with variable stock out costs. Hayya et al.
[9] considered demand and lead time as random variables
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and formulated a stochastic model to obtain optimum values
of reorder point and order quantity. Hojati [10] evaluated the
probabilistic-parameter EOQ model of Lowe and Schwarz
[11] and the fuzzy parameter EOQ model of Vujosevi¢ et al.
[12]. The author used simulation to compare the results.
In the other work, a stochastic economic order quantity
model over a finite time horizon is presented by Sana [13]
in which the customer demand is assumed to be stochastic
with predetermined probability distribution function. In this
model replenishment period is considered price dependent
and selling price is assumed to be a random variable that
follows a probability density function. Wang [14] introduced
a solution approach to obtain optimal values of the order
quantity and the reorder point when the supplier capacity
and the lead time demand are probabilistic. Yan and Kulkarni
[15] considered a single stage production-inventory system
in which production and the demand rates are stochastic
with predetermined probability distribution function. De
and Goswami [16] presented a probabilistic inventory model
for items that deteriorate at a constant rate and the demand
is a random variable. Lee and Wu [17] considered the
EOQ model for inventory of item that deteriorates follows
a Weibull distributed rate.

The last category of the uncertain EOQ models is which
developed in the hybrid environment. Panda et al. [18]
developed a multi-item economic order quantity model in
which the cost parameters and the resources are estimated
as fuzzy/hybrid values. They formulated this model as a
geometric programming problem in which unit cost is a
function of the demand rate. Wang et al. [19] proposed
an economic order quantity (EOQ) problem with imperfect
quality items, where the percentage of the imperfect quality
items in each lot is characterized as a random fuzzy variable.
They considered the setup cost per lot, the holding cost of
each unit item per day, and the inspection cost of each unit
item as fuzzy variables. Dutta et al. [20] proposed an inven-
tory model in the fuzzy-stochastic environment in which
demand is estimated as fuzzy random variable and order
quantity must be obtained through an optimization problem
as decision variable. In another research, Dutta et al. [21]
presented continuous review inventory system in the mixed
environment. In this study customer demand is considered as
fuzzy random variable and order quantity and reorder point
are considered as decision variables which should be calcu-
lated so that the total expected annual cost be minimized.

The developed models in the EOQ literature can be
viewed from two distinct mathematical and managerial
viewpoints. Form the mathematical viewpoint it should be
emphasized that in the aforesaid uncertain economic order
quantity models, parameters and coefficients of the deci-
sion variables have probability/possibility/hybrid distribu-
tion functions whereas the decision variables are considered
to be crisp. This means that, in an uncertain environment,
a crisp decision is made to meet some decision criteria.
Therefore, obtained decisions may not support decision
maker in all situations. From the managerial viewpoint, it
should be said that, most of the presented EOQ models
and solution approaches in the literature are focused on
the mathematical programming methods. Although the
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optimization methods can formulate inventory problems
efficiently and they give global optimum decisions, but in the
some real word situations may not be applicable. It is a real
fact that managers trust on the decisions which their making
process be understandable. Optimization models and their
solution approaches are very complex for practitioners and
obtained decisions may not be acceptable for them at all time.

In this paper, an EOQ model is developed in the
stochastic environment in which the holding cost, setup cost,
and inventory space have probability distribution functions.
Obviously, when the parameters of the EOQ model are
estimated using probability distribution functions, optimum
values of the order quantity, and other decision variables
cannot be deterministic. In the other words, each of the
uncertain parameters might be realized in the different values
and optimum values of the decision variables are calculated
based on these parameters. So, the decision variables of the
EOQ model may have different values. Therefore, deriving a
probability distribution function for each decision variable
(such as order quantity) seems to be rational. For this end,
we present an algorithm to obtain the optimum probability
distribution functions of the decision variables and the
objective function of the stochastic EOQ model. Obtained
optimum probability distribution functions gathers all pos-
sible optimum values of the decision variables and the
objective function regarding the future realization of the
uncertain parameters. It can give a wide vision of the possible
situations and solutions of the problem to the decision maker
and improve his/her knowledge over the problem. Due
to the complexity of the proposed probabilistic geometric
programming model for the practitioners such as managers
and could be a bit hard to solve for real world problems,
a new probabilistic rule base (PRB) is developed as a
decision support system to infer optimum or near optimum
values of the decision variables without solving presented
stochastic EOQ model directly. The organization of this
paper is as follows. In Section 2, notations and assumptions
are presented. The stochastic EOQ problem is formulated in
Section 3. Section 4 consists of the developed probabilistic
rule base and its designing approach. Performance of the
presented PRB to obtain the optimum or near optimum
solutions is illustrated via a numerical example in Section 5.
Finally, in Section 6, conclusions and future researches are
remarked.

2. Assumptions and Notations

Stochastic economic order quantity model is developed
under following notations and assumptions.

Notations

Q: Order quantity

D: Product demand

¢: Holding cost per unit per time
A: Setup cost

~

Ay: Setup cost per unit product
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P: Unit production cost
S: The storage space for unit item
I: Available inventory space

K: Predetermined constants.

Assumptions

I: Setup cost is uncertain and its probability distribu-
tion function is predetermined.

II: Inventory holding cost is uncertain and its probabil-
ity distribution function is predetermined.

III: Inventory capacity is uncertain and its probability
distribution function is predetermined.

IV: Setup cost is related to the order quantity via follow-
ing function:
ZzgonV; O<y<l (1)
V: Production cost has inverse relation with the demand
as follows:

P=KDF B>l (2)

Based on the above notations and assumptions, the stochas-
tic economic order quantity model is developed in the next
section.

3. Stochastic Economic Order Quantity Model

In this section economic order quantity problem under
assumption explained in the previous section is developed
in the stochastic environment. As mentioned before, the
inventory holding cost, the setup cost, and the inventory
space are stochastic in nature and estimated via proper
probability distribution functions. Therefore the decision
variables must be driven as uncertain decisions in the
stochastic environment. In other words, we are interested in
deriving the probability distributions of the objective func-
tion and the decision variables through the following model:

min Z = %+PD+%F

S.t. 3)
SQ <1,
D,Q >0,

where in the objective function, the first term is the total
setup cost, production cost is considered in the second term,
and the third term is the total holding cost. The constraint
of the model (3) represents the storage space limitation.
Stochastic parameters K, I§, and ¢ could have any type of
probability distribution function subject to the problem
situations.

Replacing A and P in the model (3) by (1), and (2)
respectively, yields

min Z=AxQ"'D+KD'"F+ %E
S.t.
(4)
sQ=T
D,Q >0.

Model (4) is a probabilistic geometric programming prob-
lem which can be solved using conventional stochastic
programming approaches such as expected value method.
These methods convert the stochastic model into a crisp
equivalent and solve the crisp version instead of the original
uncertain problem and present crisp values for the decision
variables. As mentioned before, according to this fact, in
model (4), parameters are stochastic in nature, optimum
values of the decision variables must be uncertain too.
So the purpose of solving model (4) with the stochastic
parameters is to derive optimum probability distributions
of the decision variables to minimize the objective function.
Proper probability distribution functions of the decision
variables and the objective function could be derived using
the following algorithm.

Step 1. Randomly generate a, ¢ and i respect to the proba-
bility distribution functions of the stochastic parameters A,

¢, and T respectively and convert stochastic model (4) to the
following deterministic equivalent:

min Z=axQ 'D+KD'F+ %c
S.t.
(5)
SQ<i
D,Q >0.

Step 2. Model (5) is a deterministic posynomial geomet-
ric programming problem. This model can be solved
easily using standard geometric programming solution
approaches. By solving model (5), optimum values of the
decision variables D* and Q* and also the objective function
Z* will be obtained.

Step 3. Repeat steps 1 and 2 for N times where N is a
sufficiently large number.

Step 4. Fit a proper probability distribution function to D¥,
Q*, and Z* data and name them as D, Q, and Z.

Probability distribution functions of the stochastic
parameters gather all possible situations of the problem and
also probability distribution functions of the decision vari-
ables provide all possible optimum solutions for the decision
maker. It can give a wide vision to the decision maker over
the problem and improve his/her knowledge about uncertain



environment of the problem. Due to the complexity of the
proposed stochastic geometric programming model for the
practitioners such as managers, in the next section, a new
probabilistic rule based decision support system is developed
based on the obtained probability distribution functions
of the decision variables. Presented DSS can help decision
makers to determine optimum or near optimum value of
the economic order quantity without solving geometric
programming model of the EOQ problem directly.

4. Probabilistic Rule Base (PRB)

Rule bases are the powerful tools to design a decision support
system to help decision makers to make a decision in differ-
ent situations. The rule bases have been used in many practi-
cal studies so far. Most of these works have used stochastic
rule bases as inference engine in the developed decision
support system in which each crisp rule has a probability
degree of the accuracy. In this paper, we develop a stochastic
rule base in which the antecedents and consequents have
probability distribution functions. Developed rule base is
called “probabilistic rule base (PRB).” The developed PRB
is used to infer the optimum or near optimum values of
the variables D and Q and the objective function Z without
solving the geometric programming model of EOQ problem
directly. The design stages of the PRB are as follows:

(1) Determine probability distribution functions of the
stochastic input parameters: In the stochastic eco-
nomic order quantity problem, define the probability
distribution functions of the stochastic parameters A,
¢'and I. Stochastic parameters A, ¢ and I could have
any type of probability distribution function subject
to the problem situations. For example A may have an
exponential probability distribution and ¢ and T have
normal probability distribution functions as shown
in Figure 1.

(2) Calculate consequents: In the probabilistic rule
base designed for the stochastic EOQ problem, the
decision variables of model (4) are considered as
consequents. Use presented algorithm in the previous
section to obtain the probability distribution func-
tions of the consequents.

(3) Rule base construction: Design three distinct proba-
bilistic rule base (PRB) to infer the decision variables
D and Q and also the objective function Z. To
do this, use stochastic parameters A, ¢ and T as
the antecedents of the each probabilistic rule base.
Consider D, Q, and Z as the consequent of the
probabilistic rule bases 1, 2, and 3 respectively.

(4) Implication method: Here, a new implication
method is developed named Correlation Coefficient
based Implication (CCI) method. The steps of the
proposed method are as follows.

Step 1. Calculate correlation coefficient between each
antecedent parameters A, ¢, and I and consequent. For
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FIGURE 1: Probability distribution functions of one set of the
stochastic input parameters A, ¢, and I.

example, in the first probabilistic rule base, calculate pg , PP,
and p}) , respectively, as the correlation coefficients between
the antecedent parameters K, ¢, and T and the consequent D,
with respect to their probability distribution functions.

Step 2. Determine the most correlated parameters with the
consequent. For instance, in the first probabilistic rule base
put pP = max{| pf l, 1pP1, 1 p}) |} and name related parameter
as ¢. ¢ is the most correlated parameter with the consequent
D.

Step 3. Calculate the state probability. In the first rule base,

if xo be the input of the candidate antecedent parameter ¢,
then calculate o as the state probability as follows:

a= Eyw) = Plo<w) = flghdp.  (©)
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F1GURE 2: (a) Representation of a probabilistic rule base (PRB) to infer decision variable D; (b) the CCI method.

In the above equation, f(-) is the probability distribution
function of the related antecedent parameter.

Step 4. Base on the correlation sign (negative or positive)
between the most correlated antecedent and the consequent
and the state probability value &, determine the consequent
value. For example, in the first rule base, considering
the correlation sign (negative or positive) between ¢ and
consequent D, one of the cases 1 or 2 will be fired to derive
value of the decision variable D.

(i) Case 1: If Correlation (¢, D) >0, then D = Fgl(a).
(ii) Case2: If Correlation (¢, D) < 0, then D = 1%1(1 —a).

For more explanations, the developed CCI algorithm is
shown in Figure 2.

In the next section, we give a numerical example which
shows the application of the developed PRB.

5. Numerical Example

In this section, to illustrate the efficiency of the developed
probabilistic rule base a numerical example is presented and
its reliability is explained subject to the obtained results. For
a new product, consider several parameters as follows:

K=100, y=05 p=15 §S=10,

~

A~Gamma(200, 0.05),

N (7)
c~Gamma(100,0.01),

T~Gamma(3000, 0.02),

where Gamma(«, ) introduce gamma distribution function
with parameters a« and . Gamma distribution function is

a more flexible distribution so that presents a wide range
of distributions. Because of this property, in this example
gamma distribution function is considered for all parameters
to show that the developed PRB could be implemented for
any type of distribution functions.

Using above parameters, the following possibilistic GP
can be formulated for this problem:

min  Z =AQ %D+ 100D %5 + %E
S.t.
(8)
10Q =T
D,Q >0.

As mentioned before, the purpose of solving the model
(8) is deriving optimum probability distribution func-
tions of the decision variables and the objective function.
Using proposed algorithm in the previous section, the
proper probability distribution functions of the decision
variables and the objective function can be estimated as
follows:

D~Gamma(418.14,0.0128),
Q~Gamma(2824.12,0.002), (9)
Z~Gamma(1778.27,0.038)

Based on the probabilistic parameters X, ¢, and T and the

above decision variables and objective function, following if-
then rule bases could be structured.
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TaBLE 1: Some samples solved using the developed PRBs.

Eg A c I DPRB QPRB ZPRB z* Deviation (%)
1 11.49 0.92 59.92 4.82 5.99 71.27 70.92 0.49
2 12.12 0.95 60.09 4.63 6 72.61 72.24 0.52
3 11.13 1.01 60.44 4.94 6.04 70.48 70.42 0.10
4 9.83 0.92 60.18 5.39 6.02 67.58 67.45 0.21
5 9.56 0.80 60.49 5.49 6.05 66.97 66.45 0.79
6 10.44 0.88 59.94 5.17 5.99 68.96 68.67 0.43
7 10.67 1.17 60.46 5.09 6.04 69.47 69.96 0.69
8 10.74 1.04 58.79 5.07 5.87 69.64 69.93 0.41
9 9.61 0.89 59.27 5.47 5.92 67.08 66.99 0.13
10 9.13 0.92 59.35 5.67 5.93 65.95 65.99 0.05
11 9.99 1.05 58.54 5.33 5.85 67.96 68.42 0.67
12 9.97 1.12 61.32 5.34 6.13 67.91 68.22 0.45
13 10.77 1.03 59.00 5.06 5.9 69.71 69.94 0.32
14 11.75 1.09 59.53 4.74 5.95 71.83 72.01 0.25
15 10.70 0.95 60.26 5.081 6.03 69.56 69.39 0.25

TaBLE 2: Results of comparison between the developed PRB outputs and the optimum solutions.

Deviation from optimum solution (%) Q VA
Minimum deviation 0.002 0 0
Maximum deviation 2.9767 0.1943 1.8618
Average deviation 0.5573 0.0414 0.4094

If A~Gamma(200,0.5) and ¢~Gamma(100,0.01), and T~Gamma(3000,0.02) Then D~Gamma(418.14,0.0128)

If A~Gamma(200,0.5) and c~Gamma(100,0.01), and I~Gamma(3000,0.02) Then Q~Gamma(2824.12,0.002)  (10)

If A~Gamma(200,0.5) and E~Gamma(100,0.01), and I~Gamma(3000,0.02) Then Z~Gamma(1778.27,0.038).

The first rule is used to infer the decision variable D and
the second one is implemented for reasoning the decision
variable Q. Also the objective function can be obtained using
third rule.

Designed probabilistic rule bases can efficiently solve
problems in the form of model (8) with deterministic param-
eters. 1,000 samples are generated randomly and solved
by the developed PRBs and also outputs are compared with
the optimum solutions. Some of these examples are pre-
sented in Table 1.

Table 2 shows results of the comparison between the
decision variables and the objective function values obtained
from the developed PRBs and optimum values for 1,000
randomly generated samples.

As Table 2 shows, average deviations for D, Q, and Z
are 0.56%, 0.041%, and 0.41%, respectively. To demonstrate
how much the value of the average deviation for 1,000
different samples is robust and also to show the pattern of
the deviations dispersion, the cumulative proportion curve
of the D, Q, and Z deviations are provided as Figure 3.

As it depicted in Figure 3, over than 97% of deviations
between PRB outputs and optimum solutions for the
decision variable D are less than 1.5% and for decision
variable Q over than 96% of deviations are less than 0.1%.
Also, Figure 3(c) shows the most efficiency of the developed
approach to calculate the objective function, so that the over
than 99% of deviations between PRB solution and optimum
solution are less than 1.4%. Thereupon, it can be concluded
that the developed PRB is so reliable and can be used as a
powerful Decision Support System for decision makers.

6. Conclusions

In this paper an economic order quantity problem with
stochastic parameters and decision variables has been for-
mulated as a stochastic geometric programming model.
Because of the complexity of the proposed model, specially
for the practitioners such as managers, a probabilistic rule
base is developed to reach the optimum or near optimum
values of the decision variables and the objective function



Advances in Fuzzy Systems 7

07k
0.6
05Ff
04f

Cumulative proportion
Cumulative proportion

03}
4 02}

1 1 1 1 1 1 O 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 0 0.02 0.04 0.06 008 0.1 0.12 0.14 0.16 0.18
Deviation (%) Deviation (%)

(a) (b)

Cumulative proportion

0 1 1 1 1 1 1 1 1 1
0 0.02 0.04 006 008 0.1 0.12 0.14 0.16 0.18

Deviation (%)

(c)

FiGure 3: (a) Cumulative proportion curve of the D deviations. (b) Cumulative proportion curve of the Q deviations. (¢) Cumulative
proportion curve of the Z deviations, for 1,000 samples.
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