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This paper studies a supply chain design problem with the risk of disruptions at facilities. At
any point of time, the facilities are subject to various types of disruptions caused by natural
disasters, man-made defections, and equipment breakdowns. We formulate the problem as a
mixed-integer nonlinear program which maximizes the total profit for the whole system. The
model simultaneously determines the number and location of facilities, the subset of customers
to serve, the assignment of customers to facilities, and the cycle-order quantities at facilities.
In order to obtain near-optimal solutions with reasonable computational requirements for large
problem instances, two solution methods based on Lagrangian relaxation and genetic algorithm
are developed. The effectiveness of the proposed solution approaches is shown using numerical
experiments. The computational results, in addition, demonstrate that the benefits of considering
disruptions in the supply chain design model can be significant.

1. Introduction

Under today’s highly competitive business environment, supply chain network design is
a critical and difficult decision. Many of supply chain design decisions such as facility
location are strategic in nature and very expensive to change. In particular, supply chain
design involves both strategic decisions of facility location and tactical decisions of inventory.
Traditional supply chain designmodels in the literature treat location and inventory decisions
separately. However, ignoring interaction between long-term decisions of location and short-
term decisions of inventory can lead to suboptimality [1–3]. Thus, integrated supply chain
design models incorporating location and inventory decisions have emerged in recent years
[4, 5].
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Daskin et al. [1] and Shen et al. [6] develop a basic integrated location inventory
model that explicitly considers expected inventory costs when making facility location
decisions. The model simultaneously determines facility location and demand assignment
decisions in order to minimize the total cost including location, inventory, and shipment
costs. This basic integrated location-inventory model is extended by researchers [3, 7–12]. For
instance, Snyder et al. [7] propose a stochastic version of integrated location-inventory that
handles uncertainty by describing discrete scenarios. Max Shen and Qi [3], also, add routing
decisions to joint location-inventory model. That is, they examine an integrated model which
determines location, inventory, and routing decisions. Ozsen et al. [8] consider an integrated
location inventory when capacities of facilities are limited. Yao et al. [11] consider a joint
location-inventory problem in which a company allows its retailers to be sourced by more
than one warehouse. Shen [4] and Melo et al. [5] present comprehensive literature reviews
on integrated supply chain design models.

A limitation of the most existing studies on the integrated supply chain design is that
they implicitly assume that facilities are always available and perfectly reliable. However,
facilities in real world are always vulnerable to partial or complete disruptions. In fact,
different factors, such as natural disasters, labor strikes, power outages, parts shortages,
quality rejections, poor communications of customer requirements, transportation damages,
and machine breakdowns, can lead to unreliable performance of facilities and huge losses.
For instance, many companies like Intel, Wal-Mart, Ford, Isuzu Motors, and Suzuki had to
stop production because of cut-off of electricity and water supply at their suppliers in 2008
[13]. Disruption at a Philips Semiconductor plant in 2001 caused shortages of cell phone
components for Ericssonwhich resulted in losing a substantial portion of Ericsson’s market to
its rival, Nokia [14]. Furthermore, smaller-scale disruptions at facilities take place muchmore
frequently. For example, Wal-Mart’s Emergency Operations Center receives a call almost
every day from a store with some sort of crisis [15]. These examples show that disruptions
can significantly impact firm’s operations and highlight the need to account for disruptions
during design of supply chain network.

Facility location models with disruptions consideration have gained much attention
recently [16–21]. Snyder and Daskin [16] present two facility location models based on P-
median problem and incapacitated fixed location problem, in which facilities are disrupted
with the same probabilities. In both models, the objective functions include terms of expected
operational cost and expected failure cost to model a trade-off between these two costs. Their
models rely on the assumption that the disruption probabilities of the facilities are equal. This
assumption is relaxed by [17–19].

Berman et al. [17] study a P-median problem where each facility fails independently
with a certain probability. The objective minimizes the expected P-median cost plus penalty
cost for not being able to serve a customer. Due to intractability of the model, the authors
suggest heuristic to solve the problem. Lim et al. [18] also focus on a facility location
problem in presence of disruptions with the option of hardening selected facilities. Their
model is formulated based on the assumption that disruption probabilities are independent.
Cui et al. [19] propose a continuum approximation model to study incapacitated fixed
charge location problem in which facilities are disrupted with site-dependent probabilities.
Their model seeks to minimize initial setup costs and expected transportation costs in
normal and failure scenarios. Snyder et al. [22] and Snyder and Daskin [23] review the
broad range of facility location models under presence of disruptions. Among the above
works in the area of facility location with disruptions, no model considers inventory
costs.
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Aryanezhad et al. [24] and Chen et al. [25] propose location-inventory models when
facilities are subject to disruptions. They propose integer programmingmodels that minimize
the sum of facility construction costs, expected inventory costs, and expected customer costs
under normal and failure cases. Their models are based on the restrictive assumption that
facilities fail independently with an equal probability. Also, they do not consider partial
disruptions in their models. Qi and Shen [26] concentrate on integrated supply chain design
under yield uncertainty; however, they do not consider disruptions at facilities. Qi et al. [27]
formulate a joint location-inventory model in which facilities can be disrupted. They assume
that all inventory at a facility is destroyed if the facility is disrupted. In fact, none of the above
models consider both partial and complete disruptions at facilities.

This paper investigates an integrated supply chain design problem with multiple
distribution centers subject to various types of disruptions. The problem is formulated
as a nonlinear integer programming model which determines the location of distribution
centers and the assignments of customers to distribution centers. The proposed model in
this study builds upon recent developments of integrated supply chain design models that
simultaneously consider location, inventory, and shipment decisions in the same model. In
order to obtain near-optimal solutions with reasonable computational requirements, two
solution methods based on Lagrangian relaxation and genetic algorithm are developed.
Numerical experiments are conducted to test the performance of solution approaches and
draw managerial insights on the benefits of considering disruptions during design of supply
chain networks.

The proposed model in this paper differs from the earlier works in literature of
integrated supply chain design. Unlike most of joint location-inventory models in the
literature, the model takes into account the different disruptions scenarios at facilities during
decision making. Also, the profit-maximizing model in this study does not restrictively
assume that every potential demand has to be satisfied. Typically, cost-minimizing models
in the literature require every potential demand must be met. However, for a profit-
maximizing business, it may not always be optimal to serve all potential customers, especially
if the additional cost is higher than the additional revenue associated with satisfying some
demands [26, 28]. This article is also different from the literature on facility location problems
with disruptions. First, the model does not ignore nonlinear inventory costs. In addition, it
takes into account the possibility of both partial and complete facility disruptions in the same
model.

The remainder of the paper is organized as follows. In Section 2, the problem is
described and the formulation model for the problem is presented. Section 3 proposes two
solution approaches based on Lagrangian relaxation and genetic algorithm. In Section 4,
numerical experiments are conducted to evaluate the performance of solution methods and
to study the benefits of considering disruptions in the supply chain design model. Finally,
Section 5 concludes the paper along with directions for future research.

2. Model Formulation

2.1. Problem Description and Assumptions

This paper addresses a supply chain design network problem under random facility
disruptions. As typically considered in the supply chain design literature, a three-tiered
supply chain consisting of a single supplier, distribution centers (DCs), and customers is
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Figure 1: Strategy of the present article for determining the supply chain design decisions.

studied. The supplier ships one type of product to a set of customers in order to satisfy their
demands. The supply chain is flexible in determining which customers to serve. In other
words, if the cost of serving some customers is prohibitive, they are not served at all. DCs
function as the direct intermediary between the plant and customers for shipment of the
product. That is, DCs combine the orders from different customers and then order to the
supplier. Similar to [17–19, 21, 25, 27], we assume that the lead time for order delivery is
negligible and the demand rate is fixed. Also, the capacities of DCs are assumed to be infinite
as assumed in [1–3, 6, 7, 17–19, 26–28].

The key problem is that DCs may face different amounts of disruptions from time to
time. If a customer is assigned to a DC but the DC is disrupted and cannot meet all of the
customer’s demands, the unmet demands are lost. In this case, the system incurs a lost-sales
cost for each unit of lost demand. The percentage of disruptions at each DC is uncertain.
In other words, each DC may experience different amounts of disruptions with different
probabilities. DCs are not required to be the same in the problem; as a result, the probabilities
of disruptions for each DC can be different from those of others. To formulate the disruptions
at the DCs, a scenario-based modeling approach is used, in which each scenario specifies the
percentage of disruptions for each DC. For instance, if a DC experiences complete disruptions
in a scenario, the percentage of the disruptions is considered hundred for that DC. Note that
the scenario-based modeling framework is flexible enough to consider both complete and
partial disruptions. Also, it allows us to model the complex situation in which the probability
failures of DCs are dependent.

The problem lies in simultaneously determining (1) how many DCs are opened, and
where to locate them; (2)which subset of customers is served; (3)which DCs are assigned to
which customers; (4) how much and how often to order at each DC. Figure 1 demonstrates
the structure of the paper for solving this problem. The problem is formulated as a mixed-
integer nonlinear program which maximizes the expected total profit. That is, the objective
is to maximize the expected difference between total revenue and total cost. The total cost
includes three main components: (1) the fixed cost to locate DCs, (2) the working inventory
cost (including order costs, shipment costs from supplier to DCs, holding costs, and lost-sales
costs) at the located DCs, and (3) shipment cost from located DCs to customers.

2.2. Notation

To develop the integrated model, the following notations are used throughout the paper.
Additional notations will be given out when required.

Parameters

(i) I: set of customers indexed by i;

(ii) J : set of candidate DC locations indexed by j;
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(iii) S: set of disruption scenarios indexed by s;

(iv) λi: demand rate at customer i, for each i ∈ I;

(v) Ri: selling price at customer i, per unit of demand for each i ∈ I;

(vi) fj : fixed cost of locating a DC at j, for each j ∈ J ;

(vii) aj : fixed cost of placing an order at j, for each j ∈ J ;

(viii) bj : fixed cost per shipment from the supplier to DC at j, for each j ∈ J ;

(ix) cj : per-unit shipment cost from the supplier to DC at j, for each j ∈ J ;

(x) h: inventory holding cost per unit of product per year;

(xi) dij : per-unit cost to ship from distribution center j to customer i, for each i ∈ I and
for each j ∈ J ;

(xii) β: weight factor associated with the shipment cost;

(xiii) θ: weight factor associated with the inventory cost;

(xiv) rsj : percentage of supply at distribution center j which is disrupted in scenario s,
for each s ∈ S and for each j ∈ J ;

(xv) πj : penalty cost for not being able to satisfy customers’ demands due to disruptions
at j, per unit of demand, for each j ∈ J (it may be a lost-sales cost during
disruptions, or the cost of filling the supply by purchasing product from a
competitor on an emergency basis to compensate the disrupted supply at j);

(xvi) qs: probability that scenario s occurs, for each s ∈ S.

Decision Variables

(i) Xj = 1, if j is selected as a DC location, and 0, otherwise, for each j ∈ J ;

(ii) Yij = 1, if customer i is assigned to a DC based at j, and 0 otherwise, for each i ∈ I
and j ∈ J ;

(iii) Zi = 1, if customer i is not selected to be served, and 0 otherwise, for each i ∈ I.

The total demand which is assigned to a distribution center is unknown in advance.
However, the assigned demand to each distribution center j can be obtained by the
assignment decisions (Y ) as follows:

Dj =
∑

i∈I
λiYij , (2.1)

where Dj denotes the total demand that is assigned to the DC at j.

2.3. Working Inventory Cost

This subsection formulates the working inventory cost including costs of ordering, shipment
from supplier to DCs, holding, and lost-sales. For the moment, let Dj denote the unknown
total demand that is assigned to the DC at j (it is obvious that Dj =

∑
i∈I λiYij). Also, let n be

the unknown number of orders per year.



6 Mathematical Problems in Engineering

Then, the expected shipment size per shipment from the supplier to DC at j is equal
to Dj/n and the working inventory cost at distribution center j can be obtained by

ajn + β

(
bj +

cjDj

n

)
n +
∑

s

qs

((
1 − rsj

)
Dj

2n
θh

)
+
∑

s

qs

(
rsjDj

2n
πj

)
. (2.2)

The first term of (2.2) is the fixed cost of placing n orders. The second term indicates
the cost of shipping n orders of size Dj/n, assuming the shipment cost from the supplier
to the distribution center j has a fixed cost bj and volume-dependent cost cj . The third term
represents the cost of holding average of

∑
s qs((1−rsj)Dj/2n) units. To explain this amount of

average inventory, we note that if the DC at j was not subject to any disruptions, the average
units to hold would be Dj/2n [29]. Also, recall that if scenario swas occurred with certainty,
rsj% of supply at distribution center j would be disrupted and the average inventory would
be (1 − rsj)Dj/2n. Thus, knowing that each scenario s is occurred with probability of qs, the
average units to hold will be

∑
s qs((1 − rsj)Dj/2n). Also, the average disrupted supply at

distribution center j will be
∑

s qs(rsjDj/2n). Therefore, the last term in (2.2) indicates the
lost-sales cost due to disruptions at distribution center j, where the penalty cost for losing a
unit of supply due to disruptions is denoted by πj . In order to determine the optimal number
of orders, we take derivative of (2.2) with respect to n and set the derivative to zero:

aj + βbj −
∑

s

qs

((
1 − rsj

)
Dj

(2n)2
θh

)
−
∑

s

qs

(
rsjDj

(2n)2
πj

)
= 0. (2.3)

Solving (2.3) for n, we obtain n =
√∑

s qs(rsjπj + (1 − rsj)θh)Dj/2(aj + βbj). Plugging
this into (2.2), working inventory cost at distribution center j can be calculated as follows:

√
2
(
aj + βbj

)∑

s

qs
(
rsjπj +

(
1 − rsj

)
θh
)
Dj + βcjDj . (2.4)

Since Dj =
∑

i∈I λiYij , (2.4) can be rewritten as follows:

√
2
(
aj + βbj

)∑

s

qs
(
rsjπj +

(
1 − rsj

)
θh
)∑

i∈I
λiYij + βcj

∑

i∈I
λiYij . (2.5)

2.4. Integrated Model

The problem is formulated as follows:

Max
∑

i∈I
Riλi(1 − Zi) −

⎛

⎝
∑

j∈J
fjXj

⎞

⎠ − β
∑

j∈J

∑

i∈I
dijλiYij

−
∑

j∈J

⎛

⎝
√
2
(
aj + βbj

)∑

s

qs
(
rsjπj +

(
1 − rsj

)
θh
)∑

i∈I
λiYij + βcj

∑

i∈I
λiYij

⎞

⎠

(2.6)
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subject to

∑

j∈J
Yij + Zi = 1 ∀i ∈ I, (2.7)

Yij ≤ Xj ∀i ∈ I, ∀j ∈ J, (2.8)

Xj ∈ {0, 1} ∀j ∈ J, (2.9)

Yij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J. (2.10)

The objective function (2.6) is composed of four components. The first component
indicates the sales revenue which is gained by serving the customers. The second component
represents the fixed cost of locating DCs. The third component indicates the expected
shipment cost from the DCs to customers. Finally, the fourth component represents the
working inventory cost. Constraints (2.7) require each customer to be assigned to exactly
one DC, or not to be served at all. Constraints (2.8) state that customers can only be assigned
to candidate sites that are selected as DCs. Constraints (2.9) and (2.10) are binary constraints.

3. Solution Methods

In order to solve the model formulated in Section 2, two solution methods are developed.
The first solution approach is based on Lagrangian relaxation which has been largely applied
in the literature of integrated supply chain design models [1, 3, 7–9, 18, 19, 25, 27]. Also, a
solution method based on genetic algorithm is developed, to obtain near-optimal solutions
in relatively short time. Genetic algorithm has been successfully used to solve various supply
chain design problems and has proven to be a very effective heuristic procedure to solve these
problems, particularly problems of large scale [21, 30–34]. It can overcome computational
complexity caused by the nonlinear and stochastic objective functions to solve the model
[34, 35].

3.1. Lagrangian Relaxation

Here, a Lagrangian relaxation is developed to solve the model due to its proven effectiveness
for solving integrated supply chain design models [1, 3, 7–9, 18, 19, 25, 27]. Lagrangian
relaxation approach provides both upper and lower bounds on the optimal value of the
objective function. In other words, it allows the decision maker to know how far from the
optimality the best found feasible solution is [36]. Figure 2 outlines the steps of the developed
Lagrangian relaxation. In the following subsections, the steps of the proposed Lagrangian
relaxation are explained with more details.

3.1.1. Finding a Lower Bound

First, the model formulated in Section 2 is converted into a standard model for which an
effective Lagrangian relaxation approach exists in the literature [1, 27]. Replacing Zi in (2.6)
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with 1 −∑j∈J Yij according to (2.7), the original model formulated in Section 2 can be written
as follows:

Max
∑

j∈J

∑

i∈I
RiλiYij −

⎛

⎝
∑

j∈J
fjXj

⎞

⎠ − β
∑

j∈J

∑

i∈I
dijλiYij

−
∑

j∈J

⎛

⎝
√
2
(
aj + βbj

)∑

s

qs
(
rsjπj +

(
1 − rsj

)
θh
)∑

i∈I
λiYij + βcj

∑

i∈I
λiYij

⎞

⎠

(3.1)

subject to

∑

j∈J
Yij ≤ 1 ∀i ∈ I, (3.2)

Yij ≤ Xj ∀i ∈ I, ∀j ∈ J, (3.3)

Xj ∈ {0, 1} ∀j ∈ J, (3.4)

Yij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J. (3.5)

By changing the sign of (3.1) and rearranging the terms, the problem can be converted
into a minimizing model with the following objective:

Min
∑

j∈J
fjXj + β

∑

j∈J

∑

i∈I
dijλiYij

+
∑

j∈J

⎛

⎝
√
2
(
aj + βbj

)∑

s

qs
(
rsjπj +

(
1 − rsj

)
θh
)∑

i∈I
λiYij + βcj

∑

i∈I
λiYij

⎞

⎠ −
∑

j∈J

∑

i∈I
RiλiYij
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=
∑

j∈J

⎛

⎝fjXj+
∑

i∈I

(
βdij+βcj−Ri

)
λiYij+

√
2
(
aj + βbj

)∑

s

qs
(
rsjπj+

(
1−rsj

)
θh
)∑

i∈I
λiYij

⎞

⎠

=
∑

j∈J

⎛

⎝fjXj +
∑

i∈I
uiYij +

√∑

i∈I
viYij

⎞

⎠,

(3.6)

where

uij =
(
βdij + βcj − Ri

)
λi,

vij = 2
(
aj + βbj

)
λi
∑

s

qs
(
rsjπj +

(
1 − rsj

)
θh
)
. (3.7)

Obviously the upper and lower bounds for (3.6) can easily be used as the lower and
upper bounds for (3.5) by changing their signs.

Relaxing constraints (3.2) with Lagrange multipliers, ωi, leads to the following
Lagrangian dual problem:

Max
ω

Min
X,Y

∑

j∈J

⎧
⎨

⎩fjXj +
∑

i∈I
uijYij +

√∑

i∈I
vijYij

⎫
⎬

⎭ +
∑

i∈I
ωi

⎛

⎝1 −
∑

j∈J
Yij

⎞

⎠

=
∑

j∈J

⎧
⎨

⎩fjXj +
∑

i∈I

(
uij −ωi

)
Yij +

√∑

i∈I
vijYij

⎫
⎬

⎭ +
∑

i∈I
ωi

(3.8)

subject to

Yij ≤ Xj ∀i ∈ I, ∀j ∈ J, (3.9)

Xj ∈ {0, 1} ∀j ∈ J, (3.10)

Yij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J. (3.11)

For given values of the Lagrange multipliers,ωi, the objective is to minimize (3.8) over
the decision variables Xj and Yij . This problem is decomposed by j; as a result, we need to
solve the following sub-problem for each candidate location j ∈ J :

SPj : Ṽj = Min
∑

i∈I

(
uij −ωi

)
Pi +

√∑

i∈I
vijPi (3.12)

subject to

Pi ∈ {0, 1} ∀i ∈ I. (3.13)



10 Mathematical Problems in Engineering

In (3.12)-(3.13), the assignment variables Yij have been replaced by Pi to simplify
the notation, as SPj is specific to distribution j. Note that the facility location cost, fj , is
not included in Ṽj and will be added later. Subproblem SPj can be solved using the exact
algorithm developed by Shen et al. [6]. Modified to our problem, their algorithm is given as
follows.

(1) Define I0 = {i : (uij −ωi) < 0 and vij = 0} and I− = {i : (uij −ωi) < 0 and vij > 0}.
(2) Sort the elements of I− in increasing order of (uij − ωi)/vij and represent the

elements by 1−, 2−, . . . ,n−, respectively, where n = |I−|.
(3) Find the value of m that minimizes

∑

i∈I0

(
uij −ωi

)
Pi +

√∑

i∈I0
vijPi +

m∑

i=1,i∈I−

(
uij −ωi

)
Pi +

√√√√
m∑

i=1,i∈I−
vijPi. (3.14)

(4) The optimal solution to subproblem SPj is obtained by Pi = 1 for i ∈ I0, P1− = P2− =
· · · = Pm− = 1 for i ∈ I− and Pi = 0 for all other i ∈ I.

After solving subproblem SPj for each j, fj is added to the optimal objective value of
Ṽj . If Ṽj + fj < 0, then we select the candidate distribution center j and set Xj = 1; otherwise,
we set Xj = 0. For each selected distribution center j (those for which Xj = 1), the assignment
variables Yij are the same as the optimal Pi values in subproblem SPj ; for each unselected
distribution center j (those for which Xj = 0), Yij = 0, ∀i ∈ I.

Having solved the Lagrangian problem, the optimal Lagrange multipliers are found
using a standard subgradient optimization procedure [37, 38]. The optimal objective value of
the Lagrangian dual problem (3.8) provides a lower bound on the optimal objective value of
(3.6).

3.1.2. Finding an Upper Bound

The lower bound solution obtained in each iteration of Lagrangian relaxation can violate
constraints (3.2). In other words, some customers can be assigned to more than one DC in the
obtained lower bound solution. Thus, in each iteration of Lagrangian relaxation, the obtained
lower bound solution is converted into feasible upper bound solution using the procedure
adapted from Shen et al. [6], as follows.

(1) If a customer is assigned to more than one DC, we find the DC which assigning it
to the customer leads to the least objective (3.6). If the resulted objective (3.6) is less
than the case that the customer is not served at all, we assign the customer to that
DC. Otherwise, the customer is not assigned to any DC and is not served at all.

(2) The unnecessary DCs, those which no longer serve any customers after performing
step 1, are closed.

If the obtained feasible solution results in a less value for (3.6) than the best known
upper bound, it will be taken as the new upper bound solution. Also, it will be improved
using customer reassignment algorithm.
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3.1.3. Customer Reassignment

Each obtained upper bound is improved using following algorithm.

(1) For each customer, we check whether the objective value (3.6) is improved if the
customer is assigned, instead to another located DC, or if it is not served at all. The
best improving swap is performed.

(2) The unnecessary DCs, those which no longer serve any customers after performing
step 1, are closed.

3.1.4. Variable Fixing

At the end of Lagrangian procedure, a variable fixing technique is employed. This method
uses two following rules whose detailed proofs of the validity are presented by Shu et al. [2].

(1) Let LB and UB denote the current lower and upper bounds on the solution,
respectively. If no DC is located at candidate site location j ∈ J in the Lagrangian
solution (i.e., Xj = 0 in the optimal solution to (3.8) at some iteration), and if
LB + fj + Ṽj > UB, then no DC will be located at j in any optimal solution for
(3.6). Thus, we fix Xj = 0.

(2) If a DC is located at candidate site location j ∈ J in the Lagrangian solution (i.e.,
Xj = 1 in the optimal solution to (3.8) at some iteration), and if LB − (fj + Ṽj) > UB,
then a DC will be located at j in any optimal solution for (3.6). Thus, we fix Xj = 1.

3.2. Genetic Algorithm

In order to find near-optimal solutions for the model in relatively short time, here a solution
approach based on genetic algorithm (GA) is developed. GA is a stochastic search and
heuristic optimization technique based on the mechanism of natural genetics which has
proven to be a very effective heuristic procedure to solve supply chain design problems,
particularly problems of large scale [21, 30–34].

GA starts with an initial set of random solution called population. Each solution in
the population is called chromosome and each component of chromosome is designated
by gene. The chromosomes evolve through successive iterations, called generations. During
each generation, the chromosomes are evaluated, using some measures of fitness. To create
next generation, new chromosomes (called offspring) are formed by crossover or mutation
operators. Crossover operator combines two chromosomes from current generation, while
mutation operator modifies a chromosome to form offspring.

A new generation is created by selecting some of current chromosomes (called
parents) and offspring based on the fitness values. Also, some chromosomes are rejected
so as to keep the population size constant. Fitter chromosomes have higher probabilities of
being selected. After several generations, the algorithms converge to the best chromosome,
whichmay represent the optimum or suboptimal solution to the problem [33, 39, 40]. Figure 3
summarizes the steps of the proposed GA. In the following subsections, the developed GA is
explained with more details.



12 Mathematical Problems in Engineering

Start

Generate initial
population

Evaluate the
population

Stopping
criteria
met?

New
population

Yes

No

Apply crossover
operator

Apply crossover
operator

Stop

Figure 3: Genetic algorithm procedure.

0 1 0 1 4 2 0 4

X1 X2 X3 X4 Y1 Y2 Y3 Y4

Figure 4: Chromosome structure.

3.2.1. Chromosome Representation

In this GA-based approach, each chromosome is indicated as a single-dimensional array. Let n
be the number of candidate DCs andm be the number of customers. Then, each chromosome
C can be indicated by: C = (Xj, Yi) = (X1, X2, . . . ,Xn, Y1, Y2, . . . ,Ym), where Xj correspond
to the location genes and Yi correspond to the assignment genes. Location genes indicate
where DCs are located and assignment genes represent how customers are assigned to the
located DCs, respectively. In particular, if Xj = 1, it means that candidate site j is selected as
a DC location, while if Xj = 0, candidate location j is not chosen as a DC site. Also, Yi = j
represents that customer i is assigned to distribution center j. If customer i is not served at all,
the corresponding assignment gene takes the value of 0 (i.e., Yi = 0). For example, in Figure 4,
distribution centers are located at 2 and 4. It follows that customers 1 and 4 are assigned to
the DC at 4 and customer 2 is allocated to the DC at 2. Also, customer 3 is not served at all.
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X1 X2 X3 X4 Y1 Y2 Y3 Y4 X1 X2 X3 X4 Y1 Y2 Y3 Y4

1 0 1 0 1 3 3 0

X1 X2 X3 X4 Y1 Y2 Y3 Y4

1 0 1 0 3 0 1 3

1 0 1 0 1 0 3 3

Parent 1 Parent 2

Offspring

Figure 5: Sample of crossover.

3.2.2. Chromosomes Fitness

The rank-based evaluation function is defined as the objective function (2.6) for the
chromosomes. In fact, the objective (2.6) is calculated for each of the chromosomes.
Obviously, chromosomes with better values for objective (2.6) will have the better rank.

3.2.3. Crossover Operator

Crossover operator generates offspring by merging parent chromosomes. Let Ck denote the
chromosomes of the population for k = 1, 2, . . . , pop-size. In order to determine which of
the chromosomes are selected as parents for crossover operation, the following procedure is
repeated from k = 1 to pop-size: generating a random number r from the interval [0, 1], the
chromosome Ck will be selected as a parent provided that r < PC, where the parameter PC is
the probability of crossover. Then, randomly we group the selected parents C′

1, C
′
2, C

′
3, . . . to

the pairs (C′
1, C

′
2), (C

′
3, C

′
4), . . .. Without loss of generality, let us explain the crossover operator

on each pair by (C′
1, C

′
2).

Crossover operator assigns each customer i in offspring chromosome either to the DC
which is allocated to customer i in parent chromosome C′

1, or to the DC which is assigned to
customer i in parent chromosome C′

2. This occurs randomly and with probability of 0.5. If a
customer is allocated to an unselected candidate DC site, a DC is located in that candidate
location. A sample of crossover operator is shown in Figure 5.

3.2.4. Mutation Operator

Mutation operator modifies a chromosome to form an offspring. In order to decide which
of chromosomes Ck undergo mutation, the following practice is repeated from k = 1 to
Pop-size: generating a random number r from the interval [0, 1], the chromosome Ck will
be selected as a parent provided that r < PM, where the parameter PM is the probability of
mutation. A selected chromosome is modified by one of the two following types of mutation
for several times. Each type of mutation is occurred with probability 0.5.

The first type of mutation generates offspring by modifying the assignment genes
of parent chromosome. That is, in the first type of mutation, two located DCs are selected
randomly; let s and t denote them. Then, if any customer in the parent chromosome is
assigned to s, that customer will be assigned to t, and if any customer is assigned to t, it will
be allocated to s. The second type of mutation modifies location genes of parent chromosome
to form an offspring. In other words, the second type of mutation randomly selects a location
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X1 X2 X3 X4 Y1 Y2 Y3 Y4

X1 X2 X3 X4 Y1 Y2 Y3 Y4

1 0 1 0 1 5 3 1

1 0 1 0 3 5 1 3

Figure 6: Sample of mutation type 1.

X1 X2 X3 X4 Y1 Y2 Y3 Y4

X1 X2 X3 X4 Y1 Y2 Y3 Y4

1 0 1 0 1 5 3 1

0 1 1 0 2 5 3 2

Figure 7: Sample of mutation type 2.

in which no DC is located; let t denotes it. Next, a DC is selected randomly from the located
DCs and is named s. This type of mutation closes distribution center s and locates a DC at t
instead. Then, all the customers assigned to distribution center s are allocated to distribution
center t. The samples of mutation type 1 and mutation type 2 are illustrated in Figures 6 and
7, respectively.

4. Computational Results

This section summarizes the computational experience with the solution approaches outlined
in the previous section. Two sets of experiments were designed. The objective of the first
set of experiments was to evaluate the performance of the proposed solution methods in
terms of the solution quality and time. The second set of experiments was designed to study
the benefits of considering facility disruptions during the supply chain design phase. The
developed solution approaches were coded in Visual Basic.Net and executed on Pentium 5
computer with 1.00GB RAM and 2.00GHz CPU.

4.1. Experimental Design

The computational experiments were conducted on the 49-node, 88-node, and 150-node
datasets described in Daskin [41]. These datasets have been very popular in the literature
and have been used in lots of studies to validate the new solution methods [1, 3, 6–
8, 24, 27, 28, 30, 34]. The 49-node dataset represents the capitals of the lower 48 United States
plus Washington, DC; the 88-node data set represents the 50 largest cities in the 1990 U.S.
census along with the 49-node dataset minus duplicates; the 150-node dataset contains the
150 largest cities in the 1990 U.S. census.

For all three data sets, the mean of demand was obtained by dividing the population
data given in Daskin [41] by 1000. Fixed costs of locating DCs (fj) were gained by dividing
the fixed cost in Daskin [41] by 10 for the 49-node problem and by 100 for 88-node problem.
For the 150-node problem, fixed locating costs were set to 10,000 for all the candidate DC
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Table 1: Parameters for Lagrangian relaxation.

Parameter Value
Initial value of the scalar used to define step size 2
Minimum value of the scalar 10−12

Maximum number of iterations before halving the scalar 12
Maximum number of iterations 400
Initial Lagrange multiplier value 0

Table 2: Parameters for the genetic algorithm.

Parameter Value
Population size 100
Probability of crossover 0.95
Probability of mutation 0.01
Number of generations 400

locations. We set the per-unit cost to ship from distribution center j to customer i, dij , to the
great-circle distance between these locations. Similar to Daskin et al. [1], the fixed ordering
aj and shipping costs bj were set to 10 and the variable shipping cost cj was set to 5 for all
DCs. Also, we set the inventory holding cost per unit of product to 1 and set the selling price
at each customer to 500. The disruption scenarios were generated randomly. In particular, for
each s ∈ S and for each j ∈ J, rsj randomly was set to 0 with probability of ninety percent, or
to a random number from (0,1]with probability of ten percent. The probability of occurrence
associated with each scenario was drawn uniformly from (0,1] and then normalized such that
the total probability of all the scenarios is equal to 1. Table 1 shows the parameters for the
Lagrangian relaxation approach in the computational experiments. These parameters were
set similar to Qi et al. [27]. The parameters for the genetic algorithm were set based on the
optimal values suggested by Sourirajan et al. [34] and Grefenstette [42]. These parameters
are given in Table 2.

4.2. Performance of the Algorithms

Tables 3, 4, and 5 present the computational results with Lagrangian relaxation on 49-
node, 88-node, and 150-node problems, respectively. In each table, the first column gives the
number of scenarios in the problem. The columns labeled β and θ give the values of β and
θ. The columns marked LB and UB give the lower and upper bounds obtained for the profit
maximizing model. The last column in each table indicates the percentage gap between the
obtained upper and lower bounds and is gained by ((UB−LB)/LB)×100. In all of the cases, the
gap was always less than one percent representing that bounds provided by the Lagrangian
relaxation approach are very tight and can be relied upon to produce good feasible solutions.

Also, the computational results with genetic algorithm are presented in Tables 6–8.
Similarly, in each table, the first column gives the number of scenarios in the problem and
the columns labeled β and θ give the values of β and θ. The column marked GA represents
the objective value obtained by genetic algorithm. The column labeled UB indicates the
upper bound obtained by Lagrangian relaxation for the integrated model. The percentage
gap between this upper bound and the objective value obtained by genetic algorithm is
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Table 3: Computational results with Lagrangian relaxation for 49-node problem.

Number of scenarios β θ LB UB GAP
(1) 20 0.001 0.1 1085370 1085649 0.026
(2) 20 0.005 0.1 931632 932200.3 0.061
(3) 20 0.005 0.5 922288 922881 0.064
(4) 20 0.005 1 913837 914104.9 0.029
(5) 20 0.005 5 736483 737237.7 0.102
(6) 40 0.001 0.1 1083956 1084224 0.025
(7) 40 0.005 0.1 931431 932001.2 0.061
(8) 40 0.005 0.5 922758 923345.3 0.064
(9) 40 0.005 1 914907 915496.2 0.064
(10) 40 0.005 5 741487 742397.6 0.123
(11) 60 0.001 0.1 1079756 1080051 0.027
(12) 60 0.005 0.1 918411 918992.6 0.063
(13) 60 0.005 0.5 909053 909665 0.067
(14) 60 0.005 1 900592 901211.6 0.069
(15) 60 0.005 5 722305 723255.6 0.131

Table 4: Computational results with Lagrangian relaxation for 88-node problem.

Number of scenarios β θ LB UB GAP
(1) 20 0.001 0.1 2216709 2216907 0.009
(2) 20 0.005 0.1 2186046 2191504 0.249
(3) 20 0.005 0.5 2181345 2182632 0.059
(4) 20 0.005 1 2177170 2183424 0.286
(5) 20 0.005 5 2103086 2109739 0.315
(6) 40 0.001 0.1 2217520 2219700 0.098
(7) 40 0.005 0.1 2187909 2193168 0.240
(8) 40 0.005 0.5 2183342 2189198 0.268
(9) 40 0.005 1 2179227 2185382 0.282
(10) 40 0.005 5 2105254 2111011 0.273
(11) 60 0.001 0.1 2216361 2218739 0.107
(12) 60 0.005 0.1 2184004 2186680 0.122
(13) 60 0.005 0.5 2179289 2185444 0.282
(14) 60 0.005 1 2175124 2181677 0.300
(15) 60 0.005 5 2099659 2109405 0.462

given in the column marked GAP. Tables 6–8 show that the gap does not exceed one percent
suggesting that the obtained solutions by genetic algorithm are close to optimal values.

Table 9 summarizes the computational results and compares the performance of
Lagrangian relaxation approachwith that of genetic algorithm in terms of the solution quality
and time. In this table, GAP and CPU time (per second) values are averaged and reported
for different values of β and θ. It follows from Table 9 that typically Lagrangian relaxation
results in lower values of GAP than genetic algorithm. Thus, the performance of Lagrangian
relaxation is better than genetic algorithm from the quality point of view. However, the
computational time of genetic algorithm is consistently lower than that of Lagrangian
relaxation. This suggests that genetic algorithm is faster than Lagrangian relaxation at solving
the model.
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Table 5: Computational results with Lagrangian relaxation for 150-node problem.

Number of scenarios β θ LB UB GAP
(1) 20 0.001 0.1 2894910 2901856 0.239
(2) 20 0.005 0.1 2886064 2888441 0.082
(3) 20 0.005 0.5 2876835 2879014 0.076
(4) 20 0.005 1 2868984 2872850 0.135
(5) 20 0.005 5 2754046 2766775 0.460
(6) 40 0.001 0.1 2894672 2896058 0.048
(7) 40 0.005 0.1 2885945 2888322 0.082
(8) 40 0.005 0.5 2876750 2880020 0.114
(9) 40 0.005 1 2868843 2872907 0.141
(10) 40 0.005 5 2752319 2765049 0.460
(11) 60 0.001 0.1 2893617 2935389 1.423
(12) 60 0.005 0.1 2885666 2888043 0.082
(13) 60 0.005 0.5 2876102 2879471 0.117
(14) 60 0.005 1 2867909 2872072 0.145
(15) 60 0.005 5 2748015 2775004 0.973

Table 6: Computational results with genetic algorithm for 49-node problem.

Number of scenarios β θ GA UB GAP
(1) 20 0.001 0.1 1083809 1085649 0.170
(2) 20 0.005 0.1 925985.3 932200.3 0.667
(3) 20 0.005 0.5 919960.8 922881 0.316
(4) 20 0.005 1 913925.2 914104.9 0.020
(5) 20 0.005 5 730852.1 737237.7 0.866
(6) 40 0.001 0.1 1082130 1084224 0.193
(7) 40 0.005 0.1 931904.4 932001.2 0.010
(8) 40 0.005 0.5 922998.5 923345.3 0.038
(9) 40 0.005 1 915301.9 915496.2 0.021
(10) 40 0.005 5 739498.9 742397.6 0.390
(11) 60 0.001 0.1 1078547 1080051 0.139
(12) 60 0.005 0.1 918801.3 918992.6 0.021
(13) 60 0.005 0.5 906391.2 909665 0.360
(14) 60 0.005 1 901080.2 901211.6 0.015
(15) 60 0.005 5 716398.5 723255.6 0.948

4.3. The Benefits of Considering Disruptions in
the Supply Chain Design Model

This section compares the performance of two different approaches for designing the supply
chain networks. The first approach considers disruptions scenarios during making supply
chain design decisions including location and allocation decisions, as we do in this article.
That is, the first approach uses the presented model in this study to determine the supply
chain design decisions. The second approach, however, makes supply chain design decisions
without taking into consideration the disruptions scenarios. In order to determine the supply
chain design decisions under the second method, the proposed model by Daskin et al. [1] is
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Table 7: Computational results with genetic algorithm for 88-node problem.

Number of scenarios β θ GA UB GAP
(1) 20 0.001 0.1 2207253 2216907 0.435
(2) 20 0.005 0.1 2174020 2191504 0.798
(3) 20 0.005 0.5 2181933 2182632 0.032
(4) 20 0.005 1 2168216 2183424 0.697
(5) 20 0.005 5 2091540 2109739 0.863
(6) 40 0.001 0.1 2219469 2219700 0.010
(7) 40 0.005 0.1 2171824 2193168 0.973
(8) 40 0.005 0.5 2182029 2189198 0.327
(9) 40 0.005 1 2184849 2185382 0.024
(10) 40 0.005 5 2102215 2111011 0.417
(11) 60 0.001 0.1 2199708 2218739 0.858
(12) 60 0.005 0.1 2167173 2186680 0.892
(13) 60 0.005 0.5 2170677 2185444 0.676
(14) 60 0.005 1 2162680 2181677 0.871
(15) 60 0.005 5 2098644 2109405 0.510

Table 8: Computational results with genetic algorithm for 150-node problem.

Number of scenarios β θ GA UB GAP
(1) 20 0.001 0.1 2877662 2901856 0.834
(2) 20 0.005 0.1 2860587 2888441 0.964
(3) 20 0.005 0.5 2876819 2879014 0.076
(4) 20 0.005 1 2861319 2872850 0.401
(5) 20 0.005 5 2741150 2766775 0.926
(6) 40 0.001 0.1 2872745 2896058 0.805
(7) 40 0.005 0.1 2870917 2888322 0.603
(8) 40 0.005 0.5 2878679 2880020 0.047
(9) 40 0.005 1 2859725 2872907 0.459
(10) 40 0.005 5 2747475 2765049 0.636
(11) 60 0.001 0.1 2901035 2935389 1.170
(12) 60 0.005 0.1 2865515 2888043 0.780
(13) 60 0.005 0.5 2862338 2879471 0.595
(14) 60 0.005 1 2850407 2872072 0.754
(15) 60 0.005 5 2747790 2775004 0.981

used. By comparing the total profits under these two approaches, the benefits of considering
disruptions in the supply chain design model are implied.

Tables 10, 11, and 12 demonstrate the total profits of the two approaches for the same
datasets in Section 4.1. The first column marked the number of scenarios, β and θ give the
number of scenarios and the values of β and θ for each instance, respectively. The total profits
under the first and second approaches are denoted by TP1 and TP2, respectively. The last
column in each table represents the percentage difference between the total profit of the first
and that of the second approach. In other words, this column indicates the amount of increase
in total profit by following the first approach instead of the second approach for each instance.

It follows from Tables 10–12 that considering facility disruptions during the supply
chain design phase can lead to increase in total profit. Particularly, the results show that
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Table 9: Performance Comparison between Lagrangian relaxation and genetic algorithm.

Data set β θ
Lagrangian relaxation genetic algorithm

Average GAP Average time (sec.) Average GAP Average time (sec.)

49-node

0.001 0.1 0.025904 5.8 0.167293 1.1
0.005 0.1 0.061807 2.9 0.232634 1.6
0.005 0.5 0.061807 3.1 0.23796 1.2
0.005 1 0.05414 2.6 0.018489 1.4
0.005 5 0.118819 3.2 0.734896 1.3

88-node

0.001 0.1 0.07145 12.6 0.434526 3.4
0.005 0.1 0.203758 10.9 0.887688 3.8
0.005 0.5 0.202721 14.3 0.345074 3.1
0.005 1 0.289501 18.7 0.530557 3.2
0.005 5 0.350059 8.6 0.596479 3.9

150-node

0.001 0.1 0.570109 58.5 0.93636 5.3
0.005 0.1 0.082331 41.1 0.782338 5.6
0.005 0.5 0.102101 42.9 0.239287 5.8
0.005 1 0.140347 39.2 0.538185 5.9
0.005 5 0.631033 52.5 0.847475 5.2

Table 10: The benefits of considering disruptions in the supply chain design model for 49-node problem.

Number of scenarios β θ TP1 TP2 Profit difference (%)
(1) 20 0.001 0.1 1085370 1017859.99 6.22
(2) 20 0.005 0.1 931632 877317.854 5.83
(3) 20 0.005 0.5 922288 868887.525 5.79
(4) 20 0.005 1 913837 864855.337 5.36
(5) 20 0.005 5 736483 714093.917 3.04
(6) 40 0.001 0.1 1083956 975235.213 10.03
(7) 40 0.005 0.1 931431 848347.355 8.92
(8) 40 0.005 0.5 922758 841001.641 8.86
(9) 40 0.005 1 914907 836682.452 8.55
(10) 40 0.005 5 741487 703819.46 5.08
(11) 60 0.001 0.1 1079756 891230.602 17.46
(12) 60 0.005 0.1 918411 778169.64 15.27
(13) 60 0.005 0.5 909053 773513.198 14.91
(14) 60 0.005 1 900592 776400.363 13.79
(15) 60 0.005 5 722305 645162.826 10.68

the benefit of considering disruptions scenarios in the supply chain design model can be
significant up to twenty-eight percent. There are some properties for the presented model in
this study which can explain why considering disruptions in the supply chain design phase
results in higher profits. First, in the optimal solution DCs are more likely to be opened at
locations with lower risks of disruptions to reduce the lost-sales costs due to disruptions.
Likewise, when a DC is more likely to be disrupted, fewer customers will be assigned to this
DC in the optimal solution and lower lost-sales costs will be incurred. Also, when the possible
disruptions are considered during the design of supply chain, fewer customers are selected
to be served. That is, the optimal solution will involve more customers not served by any DC,
in order to reduce the risk of incurring considerable lost-sales costs.
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Table 11: The benefits of considering disruptions in the supply chain design model for 88-node problem.

Number of scenarios β θ TP1 TP2 Profit difference (%)
(1) 20 0.001 0.1 2216709 1996589.8 9.93
(2) 20 0.005 0.1 2186046 1998483.25 8.58
(3) 20 0.005 0.5 2181345 1998984.56 8.36
(4) 20 0.005 1 2177170 2001254.66 8.08
(5) 20 0.005 5 2103086 1992253.37 5.27
(6) 40 0.001 0.1 2217520 1907732.46 13.97
(7) 40 0.005 0.1 2187909 1929298.16 11.82
(8) 40 0.005 0.5 2183342 1931384.33 11.54
(9) 40 0.005 1 2179227 1936025.27 11.16
(10) 40 0.005 5 2105254 1929465.29 8.35
(11) 60 0.001 0.1 2216361 1715241.78 22.61
(12) 60 0.005 0.1 2184004 1735846.38 20.52
(13) 60 0.005 0.5 2179289 1722074.17 20.98
(14) 60 0.005 1 2175124 1730093.63 20.46
(15) 60 0.005 5 2099659 1737047.89 17.27

Table 12: The benefits of considering disruptions in the supply chain design model for 150-node problem.

Number of scenarios β θ TP1 TP2 Profit difference (%)
(1) 20 0.001 0.1 2216709 1939177.03 12.52
(2) 20 0.005 0.1 2186046 1940553.03 11.23
(3) 20 0.005 0.5 2181345 1945541.61 10.81
(4) 20 0.005 1 2177170 1946825.41 10.58
(5) 20 0.005 5 2103086 1914649.49 8.96
(6) 40 0.001 0.1 2217520 1805726.54 18.57
(7) 40 0.005 0.1 2187909 1808963.16 17.32
(8) 40 0.005 0.5 2183342 1811082.19 17.05
(9) 40 0.005 1 2179227 1815078.17 16.71
(10) 40 0.005 5 2105254 1809044.76 14.07
(11) 60 0.001 0.1 2216361 1586471.2 28.42
(12) 60 0.005 0.1 2184004 1589299.71 27.23
(13) 60 0.005 0.5 2179289 1598072.62 26.67
(14) 60 0.005 1 2175124 1606981.61 26.12
(15) 60 0.005 5 2099659 1617787.26 22.95

It can be concluded that not only the facility location costs affect the location decisions,
but also the rates of disruptions at facilities are important factors in determining where to
locate DCs. For instance, despite low facility location cost, it is possible that a DC is not
opened in a candidate site because of high rates of disruptions. Similarly, the number of
customers to be served and the assignments of customers to DCs can be dependent to the
rates of disruptions at the DCs. Therefore, significant increase in total profit can be realized,
if the facility disruptions are considered in the supply chain design model.
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5. Conclusion

This paper has addressed a supply chain design problem where distribution centers are
subject to partial and complete disruptions. The problem has been formulated as a nonlinear
mixed-integer programming which maximizes the total profit for the whole supply chain.
The integrated model simultaneously determines the optimal number and location of DCs,
the subset of customers to serve, the assignment of customers to DCs, and the cycle-order
quantities at DCs. In order to obtain near-optimal solutions with reasonable computational
requirements, two heuristics based on Lagrangian relaxation and genetic algorithm have been
presented. Computational results for different data sets have revealed that the proposed
solution approaches are effective. Also, it has been demonstrated that the benefits of
considering disruptions during supply chain design phase can be significant.

In future, it would be interesting to formulate the problem when suppliers are
unreliable. Also, the model can be extended to consider constraints on the maximum capacity
of DCs, or on themaximum supply that can be filled by suppliers. Finally, considering routing
decisions in the model makes it more useful.
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