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We present an exact treatment of the modulus stabilization condition with the general boundary conditions of the bulk scalar field
in the Randall-Sundrum model. We find analytical expressions for the value of the modulus and the mass of the radion.

1. Introduction

The hierarchy problem is one of the most attractive open
problems in themodern physics. Roughly speaking, the prob-
lem is the large discrepancy between the weak and the Planck
scale. The problem was addressed by several theories, like
supersymmetry, and higher dimensional theories; however, it
has remained unsolved in the literature. Through the efforts
in this direction, an impressive work is Randall-Sundrum
(RS) model [1] which introduces a small extra dimension.
The model has two branes which are called “Planck” and
“TeV” branes; also it is assumed that a slice of AdS5 spacetime
exists between the branes. A five-dimensional solution to the
Einstein field equations in RS model is given by𝑑𝑠2 = 𝑒−2𝑘𝑟𝑐|𝜙|𝜂𝜇]𝑑𝑥𝜇𝑑𝑥] − 𝑟2𝑐𝑑𝜙2, (1)

where −𝜋 ≤ 𝜙 ≤ 𝜋 is the extra dimension coordinate,
the coefficient 𝑟𝑐 is the compactification radius, and the
parameter 𝑘 is related to the 5-D Planck mass,𝑀.

It would be interesting to check out the stability of the
extra dimension, 𝜙, in the RS model. Such an investigation
was addressed by Goldberger and Wise (GW) [2]. The GW
model contains a massive scalar field with usual kinetic term
in the bulk and quartic interactions localized on the branes.
The original work of [2] has several deficiencies, namely:

(1) The bulk mass term breaks the conformal invariance
of the theory.

(2) In the limit of infinite quartic coupling considered in
[2], it is not possible to unravel the complete structure
of the critical points of the theory; hence theymiss the
source of instability as indicated by the existence of a
closely spaced maximum.

(3) The boundary conditions of the model are comprised
of a pair of coupled cubic algebraic equations. In [2]
these boundary conditions are not solved; instead
they merely choose a specific configuration.

(4) In addition they only consider the leading order term
in their calculations. Hence their treatment of the
subject matter is an approximate one.

Therefore, many studies were done on this subject [3–12].
In [3–5], the authors have considered the stabilization of
the modulus containing a scalar field, which interacts with
the spacetime curvature 𝑅, in the bulk. These theories have
conformal invariance at certain value of the coupling constant
of the curvature and the scalar field; hence they remedy
objection 1, raised above.

An exact analysis of the GW mechanism has been
discussed in [6] and the objections 2–4 have been addressed.
However their treatment of the stabilized modulus is a
numerical one. They also do not address the issue of the
mass of radion at finite values of the quartic coupling
constant. The issue of Goldberger-Wise mechanism with
the general boundary conditions also has been discussed in
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[13]. Recently, the issue of stability of the Randall-Sundrum
model has been discussed in the framework of AdS/CFT
correspondence [14, 15].

The motivation for the present study is to discuss the
relevance of going beyond the infinite quartic coupling
limit, in physical terms, and to explore its phenomenological
implications.The plan of this paper is as follows: in Section 2,
we describe the model and calculate the effective potential,
its extremization condition, and the value of the stabilized
modulus. In Section 3, we study the modulus for the case
where the quartic coupling is finite but very large. We obtain
themass of the radion in this limit as well. Finally in Section 4
we present our conclusions.

2. Review of the GW Mechanism

In this section, mainly based on [6], we present a brief review
of the GWmechanism in the limit of finite quartic coupling.
The action of the model is of the form:

𝑆 = 𝑆gravity + 𝑆vis + 𝑆hid + 𝑆Φ, (2)

where

𝑆gravity = ∫𝑑4𝑥∫𝜋
−𝜋

𝑑𝜙√𝐺 [2𝑀3𝑅 − Λ] , (3)

𝑆vis = ∫𝑑4𝑥√−𝑔𝑠 [𝐿 𝑠 − 𝑉𝑠] ,
𝑆hid = ∫𝑑4𝑥√−𝑔𝑝 [𝐿𝑝 − 𝑉𝑝] , (4)

𝑆Φ = 12 ∫𝑑𝑥4 ∫𝜋
−𝜋

𝑑𝜙√𝐺(𝐺𝑀𝑁𝜕𝑀Φ𝜕𝑁Φ − 𝑚2Φ2)
− ∫𝑑𝑥4√−𝑔𝑠𝜆𝑠 (Φ2 − V2𝑠)2
− ∫𝑑𝑥4√−𝑔𝑝𝜆𝑝 (Φ2 − V2𝑝)2 ,

(5)

whereΛ is the five-dimensional cosmological constant,𝑉𝑠,𝑉𝑝
are the visible and hidden brane tensions, and𝐺 = det[𝐺𝑀𝑁].

The 𝜙-dependent vacuum expectation value Φ(𝜙) is
obtained from the equation of motion:

𝜕𝜙 (𝑒−4𝜎𝜕𝜙Φ) = 𝑚2𝑟2𝑒−4𝜎Φ
+ 4𝑒−4𝜎𝜆𝑠𝑟Φ (Φ2 − V2𝑠) 𝛿 (𝜙 − 𝜋)
+ 4𝑒−4𝜎𝜆𝑝𝑟Φ (Φ2 − V2𝑝) 𝛿 (𝜙) ,

(6)

where 𝜎 = 𝑘𝑟𝑐|𝜙|. Away from the boundaries (𝜙 = 0, 𝜋) the
solution is

Φ(𝜙) = 𝐴𝑒(]+2)𝜎 + 𝐵𝑒(−]+2)𝜎, (7)

where ] = √4 + 𝑚2/𝑘2 ≈ 2 + 𝜖.

If we insert this solution in (5) and integrate over 𝜙 we
obtain the effective 4-dimensional potential for the modulus𝑟, namely, 𝑉Φ(𝑟) which is given by𝑉Φ (𝑟) = 𝑘 (] + 2)𝐴2 (𝑒2]𝑘𝑟𝜋 − 1)

+ 𝑘 (] − 2) 𝐵2 (1 − 𝑒−2]𝑘𝑟𝜋)
+ 𝜆𝑠𝑒−4𝑘𝑟𝜋 (Φ2 (𝜋) − V2𝑠)2
+ 𝜆𝑝 (Φ2 (0) − V2𝑝)2 .

(8)

The coefficients 𝐴 and 𝐵 are determined by imposing appro-
priate boundary conditions on the 3 branes. Putting (7) into
(6) andmatching delta functions, the conditions are obtained
as𝑘 [(2 + ]) 𝐴 + (2 − ]) 𝐵] − 2𝜆𝑝Φ (0) [Φ (0)2 − V2𝑝] = 0,
𝑘𝑒2𝑘𝑟𝜋 [(2 + ]) 𝑒]𝑘𝑟𝜋𝐴 + (2 − ]) 𝑒−]𝑘𝑟𝜋𝐵]

+ 2𝜆𝑠Φ (𝜋) [Φ (𝜋)2 − V2𝑠 ] = 0.
(9)

For arbitrary value of 𝜆 the boundary values of the scalar field
at the two orbifold fixed points are Φ(𝜙 = 0) = 𝑄𝑝(𝑟) andΦ(𝜙 = 𝜋) = 𝑄𝑠(𝑟). Now 𝐴 and 𝐵 can be written, from (7), in
terms of boundary values of the scalar field as follows:

𝐴 = 𝑄𝑠 (𝑟) 𝑒−2𝜎 − 𝑄𝑝 (𝑟) 𝑒−]𝜎2 sinh (]𝜎) ,
𝐵 = 𝑄𝑝 (𝑟) 𝑒]𝜎 − 𝑄𝑠 (𝑟) 𝑒−2𝜎2 sinh (]𝜎) . (10)

Putting above expressions for 𝐴 and 𝐵 into (9), we get

]2 sinh (]𝜎) [𝑒−2𝜎 − (] + 22] 𝑒−]𝜎 + ] − 22] 𝑒]𝜎) 𝑄𝑝𝑄𝑠 ]
= 2𝜆𝑝𝑘 𝑄𝑝𝑄𝑠 (𝑄2𝑝 − V2𝑝) ,

(11)

]2 sinh (]𝜎) [𝑄𝑝𝑄𝑠 − (] + 22] 𝑒(]−2)𝜎 + ] − 22V 𝑒−(]+2)𝜎)]
= 2𝜆𝑠𝑘 (𝑄2𝑠 − V2𝑠) 𝑒−2𝜎.

(12)

Using (10) and (12) into the extremization condition for the
effective potential (𝑑𝑉Φ(𝑟)/𝑑𝑟 = 0), the modulus can be
obtained𝑘𝑟± = 1𝜋 (] − 2)

⋅ ln[[[
1((2 + ]) /2] + ((] − 2) /2]) 𝑒−2]𝜎) (𝑄𝑝 (𝑟)𝑄𝑠 (𝑟) )

⋅ ( 11 ± 𝐶√𝜆𝑠𝑄2𝑠 (𝑟) / (1 + 𝜆𝑠𝑄2𝑠 (𝑟)))]]] ,
(13)
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where

𝐶
= √1 − 4 [(] + 2) 𝑒2(]−2)𝜎 − 𝑒−4𝜎 (4 − ]2) + (2 − ]) 𝑒−2(]+2)𝜎][(2 + ]) 𝑒(]−2)𝜎 + (] − 2) 𝑒−(]+2)𝜎]2 . (14)

For 𝑘𝑟+, 𝑑2𝑉/𝑑𝑟2 > 0, and for 𝑘𝑟−, 𝑑2𝑉/𝑑𝑟2 < 0. So, 𝑘𝑟+
and 𝑘𝑟− areminimum andmaximumof the potential, respec-
tively. Clearly, 𝑘𝑟+ and 𝑘𝑟− are, respectively, corresponding
to stability and instability of the modulus field or the radion
field.

3. The Modulus and the Mass of Radion

In this section we consider some observable quantities such
as the modulus and the mass of radion.

3.1. The Modulus. Now we study the stable and unstable
values of the modulus for the original GW mechanism at
finite coupling. The analytic expression for the modulus was
obtained and analyzed in [6], but we want to investigate the
modulus by taking the parameter 𝜖 as a variable. In the large𝑘𝑟 limit, the values of the stable and unstable modulus when𝜆𝑝 → ∞, 𝜆𝑠 → ∞ are

𝑘𝑟± = 1𝜋 (] − 2) ln[ 2]V𝑝(] + 2 ± √]2 − 4) V𝑠] . (15)

In order to consider the value of the stabilized modulus for
the large but finite value of the quartic coupling constant, 1/𝜆
expansion of boundary scalar field should be considered

𝑄𝑝 (𝑟) = V𝑝 + 𝑘𝜆𝑝V𝑝 ]𝑒−2𝜎4 sinh (]𝜎) [ V𝑠
V𝑝

− (2 + ]2] 𝑒(2−])𝜎 + ] − 22] 𝑒(]+2)𝜎)] ,
𝑄𝑠 (𝑟) = V𝑠 + 𝑘𝜆𝑠V𝑠 ]𝑒2𝜎4 sinh (]𝜎) [V𝑝V𝑠

− (2 + ]2] 𝑒(]−2)𝜎 + ] − 22] 𝑒−(]+2)𝜎)] .

(16)

The values of the modulus at finite value of the quartic
coupling are [6]

𝑘𝑟± = 1𝜋 (] − 2) ln[ 2]2 + ]

⋅ 𝑛1 ± √(V − 2) / (V + 2) (1 − 𝑞/2) (1 − 𝑡 (] − 2)4
+ 𝑞 (] + 2)4 − 𝑞]𝑛2 𝑒(2−])𝑘𝜋𝑟±)] ,

(17)

where

𝑛 = V𝑝
V𝑠

,
𝑡 = 𝑘𝜆𝑝V2𝑝 ,
𝑞 = 𝑘𝜆𝑠V2𝑠 .

(18)

The values of the stable and unstable modulus 𝑘𝑟± are
obtained by solving (17) which are

𝑘𝑟± = 1𝜋 (] − 2) ln[[[
𝛼 + √𝛼2 − 4𝛽2 ]]] , (19)

where

𝛼 = 𝛾± (1 − 𝑡 (] − 2)4 + 𝑞 (] + 2)4 ) ,
𝛽 = 𝛾±]𝑞𝑛2 ,

with 𝛾± = 2]𝑛
] + 2 11 ± √(V − 2) / (V + 2) (1 − 𝑞/2) .

(20)

Using above equation, we can analyze the modulus 𝑘𝑟± by
taking the parameter 𝜖 as a variable. Figure 1 shows the
variation of the stable modulus 𝑘𝑟+ versus the parameter 𝜖.
In this figure the value of V𝑠 = 1 and V𝑝 = 1.2. The solid
curve corresponds to case of infinite coupling. The dashed
curve corresponds to the case where 𝑡 = 𝑞 = 0.1 and the
dotted curve corresponds to the case where 𝑡 = 𝑞 = 0.2.
As seen above, 𝑘𝑟− is another value of the modulus which,
because of 𝑑2𝑉/𝑑𝑟2 < 0, corresponds to the maximum of
the potential. Due to the maximality, 𝑘𝑟− leads to instability,
that is, for any small perturbation the system will roll down
to the minimum. Figure 2 shows the variation of the unstable
modulus 𝑘𝑟− versus the parameter 𝜖. The value of V𝑠 = 1
and V𝑝 = 1.2. The solid curve corresponds to case of infinite
coupling. The dashed curve corresponds to the case where𝑡 = 𝑞 = 0.1 and the dotted curve corresponds to the case
where 𝑡 = 𝑞 = 0.2. From Figures 1 and 2, we observe that by
increasing the value of the parameters 𝑡 and 𝑞, we obtainmore
deviation from usual Randall-Sundrum case. As we know the
value of 𝑘𝑟+ ∼ 12 may solve hierarchy problem. From this
point of view, Figure 1 shows that the parameter 𝜖 in the finite
coupling case can be smaller in comparison with the infinite
coupling case.

It is appropriate to study the difference of the modulus at
finite and infinite values of the quartic coupling constant; the
result is 4𝜋 [(𝑘𝑟+)∞ − (𝑘𝑟+)𝑓]

= 𝑞√𝜖 + 12 (𝑞 + 2𝑡) + √𝜖𝑞8 + ⋅ ⋅ ⋅ , (21)

where in the series expansion we have kept the linear terms
of the parameters 𝑡 and 𝑞.
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Figure 1: The variation of 𝑘𝑟+ defined by (15) and (19) versus the
parameter 𝜖. The values of the parameters are V𝑠 = 1 and V𝑝 = 1.2.
The solid curve corresponds to limit of infinite coupling (𝑡 = 𝑞 =0.0). For the dashed curve the values of these parameters are 𝑡 = 𝑞 =0.1 and for the dotted curve are 𝑡 = 𝑞 = 0.2.
3.2. Mass of the Radion. The phenomenology of radion has
been addressed in [8, 11, 16]. The canonically normalized
radion field is Φ = 𝑓Φ̂, where 𝑓 = √6𝑀3/𝑘 is another scale
of order of Planck mass and

Φ̂ = 𝑒−𝑘𝜋𝑟. (22)

The radion mass is defined the second derivative of 𝑉Φ with
respect to the canonically normalized radion field evaluated
at its minimum. Hence

𝑚2Φ = 𝑑2𝑉Φ𝑑Φ2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Φ=Φ+ = [( 𝑑𝑟𝑑Φ)2 (𝑑𝑉2Φ (𝑟)𝑑𝑟2 )]󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟+
= 1(𝑓𝑘𝜋)2 [𝑒2𝑘𝑟𝜋 (𝑑𝑉2Φ (𝑟)𝑑𝑟2 )]󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟+ .

(23)

In order to calculate the mass of radion, we calculate the
second derivative of the effective potential and we get

𝑑𝑉2Φ (𝑟)𝑑𝑟2 = −4𝑘𝜋]𝑒−2𝜎
sinh (]𝜎) [𝜆𝑝 (𝑄2𝑝 − V2𝑝)𝑄𝑝𝑄󸀠𝑠

+ 𝜆𝑠 (𝑄2𝑠 − V2𝑠)𝑄𝑠𝑄󸀠𝑝
+ 2𝜋𝜆𝑝𝜆𝑠 (𝑄2𝑠 − V2𝑠) (𝑄2𝑝 − V2𝑝)𝑄𝑝𝑄𝑠] .

(24)

In the limit of 𝜆𝑝 → ∞, 𝜆𝑠 → ∞, 𝑄𝑠 = V𝑠, and 𝑄𝑝 = V𝑝, we
find

(𝑚2Φ)∞ = 8𝑘2V𝑝V𝑠√𝜖3𝑒−]𝜋(𝑘𝑟+)∞3𝑀3 . (25)
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Figure 2: The variation of 𝑘𝑟− defined by (15) and (19) versus the
parameter 𝜖. The values of the parameters are V𝑠 = 1 and V𝑝 = 1.2.
The solid curve corresponds to limit of infinite coupling (𝑡 = 𝑞 =0.0). For the dashed curve the values of these parameters are 𝑡 = 𝑞 =0.1 and for the dotted curve are 𝑡 = 𝑞 = 0.2.
In [16] the scale factor is 𝑓 = √24𝑀3/𝑘; moreover in their
work 𝑒𝜋(]−2)𝑘𝑟 = 𝑛. Now by using these values for the scale
factor 𝑓 and the modulus 𝑘𝑟, from (19) and (20), we obtain

(𝑚2Φ)∞ = 𝑘2V2𝑠 𝜖2𝑒−2𝑘𝜋𝑟3𝑀3 , (26)

which is identical to the result of [16]. This in turn validates
our results for the second derivative of the effective potential
against a similar calculations presented in [6].

Similarly we can calculate the mass of radion in the case
where the quartic coupling constants are finite; the result is

(𝑚2Φ)𝑓 = 8𝑘2𝑄𝑝 (𝑟) 𝑄𝑠 (𝑟)√𝜖3𝑒−]𝜋(𝑘𝑟+)𝑓3𝑀3 . (27)

Since 𝑘 ∼ 𝑀𝑝𝑙 ∼ 𝑀 and 𝑄𝑝(𝑟) ∼ 𝑀3/2
𝑝𝑙

∼ 𝑄𝑠(𝑟), the
radion mass 𝑚Φ at finite coupling is O(TeV) when 𝑘𝑟+ ∼ 12.
This is in agreement with previous works in the context of
radion phenomenology. As seen above, the radion mass has
dependency on the parameter 𝜖 ≡ 𝑚2/4𝑘2 as 𝜖3/2. If one takes
into account backreaction of the stabilizing field Φ on the
background geometry, the radion mass turns out to have 𝜖2
dependence [17]. This discrepancy of 𝜖 dependence between
these two approaches may come from the fact that during all
calculations we have assumed that ] ≈ 2 + 𝜖 (𝜖 ≪ 1) and we
have neglected higher order terms of 𝜖. It would be of interest
to take ] ≈ 2+𝜖−1/4𝜖2 and study similarities and differences
between the effective potential and the exact gravity-scalar
approaches.
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Figure 3: The variation of 𝜒 defined by (28) versus the parameter 𝜖.
The values of the parameters are V𝑠 = 1 and V𝑝 = 1.2. For the dashed
curve the values of the parameters are 𝑡 = 𝑞 = 0.1 and for the dotted
curve are 𝑡 = 𝑞 = 0.2.

It is appropriate to study the logarithmic ratio of these
masses which we denote by 𝜒 defined by

𝜒 = ln[[
(𝑚2Φ)𝑓(𝑚2Φ)∞]] = ]𝜋 [(𝑘𝑟+)∞ − (𝑘𝑟+)𝑓]

= 12 [ 𝑞√𝜖 + 12 (𝑞 + 2𝑡) + 5√𝜖𝑞8 + ⋅ ⋅ ⋅] .
(28)

Figure 3 shows the variation of the 𝜒 versus the parameter𝜖. In this figure the value of Vs = 1 and V𝑝 = 1.2. The dashed
curve corresponds to the case where 𝑡 = 𝑞 = 0.1 and the
dotted curve corresponds to the case where 𝑡 = 𝑞 = 0.2. As
seen in Figure 3, the mass of the radion (𝑚Φ)𝑓 at finite value
of 𝜆 could be much larger than the original value reported
in [16] (the infinite coupling case). From phenomenological
point of view, this is a reasonable result because it shows
that the mass of the radion is governed by the strength of
radion coupling. Moreover, since the radion mass increases
as the finite quartic coupling becomes smaller, it could be
considered in the context of high-mass radion or Higgs-
radion mixed scenarios [18–24].

4. Conclusions

We have made a critical assessment of the GW mechanism
for the stabilization of modulus. We have managed to extend
the work initiated in [6] to the phenomenology of radion.The
limit studied by Goldberger andWise, because the boundary
conditions become very simple in this case, corresponds to
the limit of infinite quartic coupling of the scalar potential
term on the boundary branes. We have succeeded in refining

this aspect of the mechanism. We have found correction for
the value of the modulus and the mass of the radion. Instead
of brane potential with quartic coupling, it is also possible to
consider brane potential of the quadratic form. We plan to
report on these issues in the future. As final note, it is possible
to stabilize the modulus by a massless scalar nonminimally
coupled to gravity. In such work, it would be of interest to
study the limit of finite coupling.
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