
Research Article
Low Latency Network-on-Chip Router Microarchitecture Using
Request Masking Technique

Alireza Monemi,1 Chia Yee Ooi,2 and Muhammad Nadzir Marsono1

1Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
2Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia

Correspondence should be addressed to Muhammad Nadzir Marsono; nadzir@fke.utm.my

Received 30 June 2014; Revised 9 February 2015; Accepted 20 February 2015

Academic Editor: Miriam Leeser

Copyright © 2015 Alireza Monemi et al.This is an open access article distributed under theCreativeCommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Network-on-Chip (NoC) is fast emerging as an on-chip communication alternative for many-core System-on-Chips (SoCs).
However, designing a high performance low latency NoC with low area overhead has remained a challenge. In this paper, we
present a two-clock-cycle latency NoC microarchitecture. An efficient request masking technique is proposed to combine virtual
channel (VC) allocation with switch allocation nonspeculatively. Our proposed NoC architecture is optimized in terms of area
overhead, operating frequency, and quality-of-service (QoS).We evaluate our NoC against CONNECT, an open source low latency
NoC design targeted for field-programmable gate array (FPGA). The experimental results on several FPGA devices show that our
NoC router outperforms CONNECT with 50% reduction of logic cells (LCs) utilization, while it works with 100% and 35%∼20%
higher operating frequency compared to the one- and two-clock-cycle latency CONNECT NoC routers, respectively. Moreover,
the proposed NoC router achieves 2.3 times better performance compared to CONNECT.

1. Introduction

The decreasing semiconductor transistor dimensions make it
possible to integrate more Intellectual Property (IP) blocks
in a single System-on-Chip (SoC). However, this poses new
problems in inter-IP connectivity. Conventional shared bus
interconnection lacks flexibility and scalability in dealing
with a large number of IPs in a single chip. To alleviate these
limitations, network-on-chip (NoC) has been introduced [1].
NoC separates the computation from the communication
parts, while providing a scalable and flexible modular design.

In order to reduce on-chipmemory usage, wormhole flow
control algorithm is widely applied in NoC routers [2–7]. A
wormhole router divides a packet into several smaller flow
control digits (flits) and allows flits to be buffered in a flit-
serial fashion order through several routers along the path.
Moreover, applying several virtual-channels (VCs) on a single
physical channel improves the overall NoCperformance. VCs
preparemultiple escape channels for active packets in the case
of head-of-line (HoL) blocking. These escape channels result
in higher throughput and also allows deadlock avoidance
when the network traffic is high. However, adding these

features leads to more complex router microarchitecture that
requires more processing stages to deliver a packet from an
input port to an output port. The increase in the number of
router stages as well as the multiple number of hops that exist
between a source and a destination IPs has resulted in higher
communication latency compared to the conventional shared
bus.

In order to reduce the communication latency while
maintaining good throughput, a router needs to perform
several stages such as route computation, VC allocation, and
switch allocation in parallel. However, designing a low latency
NoC router is still a challenge for on-chip systems [8]. In this
work, a microarchitecture for a low latency NoC router is
proposed (this work is open source and is publicly released
at http://opencores.org/project,an-fpga-implementation-of-
low-latency-noc-based-mpsoc). The advantages of existing
related works such as look-ahead routing computation [2, 3],
combination of VC/SW allocation [4, 5, 9], and replacing
VC allocator with a queue of free VCs [3, 6, 9] are used.
Meanwhile, several optimization techniques such as efficient
masking of the allocation requests and broadcasting only
two status bits instead of using proxy credit register have

Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2015, Article ID 570836, 13 pages
http://dx.doi.org/10.1155/2015/570836

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/190965017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 International Journal of Reconfigurable Computing

been applied to provide high operating frequency, reasonable
hardware cost, and high utilization of the available buffer
space.

The remainder of this paper is organized as follows. In
Section 2, the conventional NoC router pipeline stages and
its hardware architecture are discussed. Section 3 reviews
existing low latency NoC architectures. Section 4 proposes a
low latency NoC router microarchitecture. In Section 5, the
FPGA implementation results are analyzed and discussed.
This section also discusses several optimization techniques
which are applied to the proposed NoC router on an FPGA
device.

2. Conventional Router Architecture

A conventional NoC router [10] has four consecutive pipeline
stages.

(1) Route computation: this stage determines the output
port that a packet must be sent to.

(2) VC allocation: this stage assigns an empty VC in
the neighboring router connected to the output port.
Since several header flits may send requests for the
same VC, arbitration is required. The routing com-
putation as well as the VC allocation only requires
the header flit. The body and tail flits will follow their
respective header flit.

(3) Switch allocation: if VC allocation is successful, the
third stage sends request to the switch allocator to
allocate the output port.

(4) Switch traversal: if the switch allocation is successful,
the flit will be passed to the crossbar and be delivered
to the output port.

A conventional virtual channelNoC router block diagram
is illustrated in Figure 1. The NoC router consists of input
ports, VC/SW allocators, routing computation module, and
a crossbar. The input ports buffer input flits and send
requests to the allocators. The routing computation module
determines the output port based on the routing algorithm.
After the route computation, a free output VC (OVC) in the
next router is assigned to the input VC (IVC) by sending
request to theVCallocator. If anOVC is successfully assigned,
then another allocation request will be sent to the switch
allocator. The crossbar is then configured to send the desired
flit to the output port if the switch allocation request is
granted. In order to send requests to the switch allocator,
the available space in the next router buffer must be known.
Hence, output port modules maintain a set of credit counters
to keep track of available buffer space for each OVC.

The allocator is the most challenging module to design
since the overall NoC router performance and area overhead
will be dominated by this module. Moreover, allocators are
located in the NoC critical path. An allocation is required
when several agents (IVCs) require access to several resources
(OVCs or output ports) simultaneously. Generally, three
types of allocators are widely used in NoC router microarchi-
tecture design, namely, wavefront [13], separable input-first,
and separable output-first allocators.

Table 1: The number and size of arbiters used in conventional
allocators [10]. 𝑝 represents the number of input ports in an NoC
router and V is the number of VCs per port.

Allocator type First-stage arbiter Second-stage arbiter
Number Size Number Size

VC 𝑝V V : 1 𝑝V (𝑝 − 1)V : 1
SW 𝑝 V : 1 𝑝 (𝑝 − 1) : 1

A comprehensive analysis on the following allocators
[14] shows that separable input-first allocators have the
advantage of lower communication delay, area overhead,
and power consumption compared to other schemes. Hence,
the separable input-first allocator has been chosen to be
implemented in our low latency NoC router. A separable
input-first allocator consists of two levels of arbitrations. In
the first arbitration stage, for each input port, only one request
of all IVC requests is granted. Since several input ports may
request the same output resource, another arbitration stage is
required to resolve this limitation. Table 1 shows the number
of arbiters and the arbiters’ size required for the VC and
switch allocations. VC allocator consumes a large number of
resources compared to SW allocator.

In this work, we assume that no input port sends a packet
back to its own output port. As an example, when router
𝑎 sends a packet to router 𝑏, it is not expected that router
𝑏 sends that packet back to router 𝑎. This condition never
happens in a network having minimal routing. Moreover, it
must be even avoided in nonminimal routing as it results in
a 180∘ turn in channel dependency graph which may lead
to a deadlock condition [15]. This assumption reduces the
hardware complexity and also the critical path delay of NoC
router components such as the crossbar and allocators.

3. Related Works on Low Latency NoC Router

To eliminate the need for a separate pipeline stage for routing
computation, look-ahead routing was proposed [16]. In the
look-ahead routing, the output port is computed one router
in advance and is attached to the header flit. Hence, at
the header flit arrival time, the NoC router can initiate the
sending of the allocation request to the precomputed output
port while computing the next router output port in parallel.

To remove the dependency between VC allocation and
switch allocation, speculative switch allocator was proposed
[17]. In speculative allocation, a header flit is allowed to
send requests to both switch and VC allocators in parallel
by speculating that an OVC will be assigned successfully.
However, in the case when the VC allocation is unsuccessful,
the granted switch allocation is ignored. Since ignoring a
granted request results in an unused time slot, the NoC sets
a higher priority to the switch allocation requests that have
already been assigned OVCs (nonspeculative requests) to the
ones that have not been assigned any OVC. The speculative
allocation performs well when the router carries light traffic.
However, in dealing with heavy traffic, it becomes inefficient
due to the increase in unsuccessful speculations.

International Journal of Reconfigurable Computing 3

Routing computation
OVC

Input VC
VC allocator Flit out

SW allocator
Credit inFlit in

Credit out
VC buffers

Output
Crossbar switch portInput port

...

...

...

...

...

...

Figure 1: Conventional VC router architecture.

Mullins et al. [6] proposed a precomputing arbitration
technique to reduce critical path delay of the separable input-
first VC allocator. In this work the switch allocation stage has
been removed from critical path. However, it is not efficient
when dealing with noncongested traffic, as conflict between
the newly arrived flits may result in unused crossbar time
slots.

Kumar et al. [18] proposed express virtual channels
(EVCs). The EVCs have been added to the normal VC which
allows the packets travelling to long distance core, bypassing
multiple routers along the path. EVCs result in reduction of
the overall communication latency. However, they require
additional area overhead and have no effect on flits that are
sent between neighboring cores.

Dynamic Priority-Based Fast Path NoC router [19] pri-
oritizes flits traveling in frequently used paths to bypass the
switch allocation stage by sending arbitration request one
clock cycle in advance to the next router. The proposed
architecture requires additional hardware modules such as
path frequency analyzer as well as priority-based arbiter.

Lu et al. [5] proposed a low latency NoC router microar-
chitecture for FPGA-based implementation. In order to
design a two-clock-cycle latency router, a parallel switch/VC
allocator is proposed. The main drawback of the design is
that an IVC can only store the flits that belong to the same
packet. Moreover, even when a tail flit of a packet has been
sent out but as long as it remains inside the buffer of next
router, the IVC cannot accept a new packet. As a result,
although the whole packet has been sent out from the router,
as long as the tail flit has not been sent out from a neighboring
router, the assignedOVC cannot be reallocated.This problem
happens because the counters which are supposed to keep
track of credit signals are implemented inside the input
port modules while no mechanism is implemented to pass
the remaining credits to the new input port that wants to
use the OVC. Therefore, the only condition on which an
OVC can be reallocated is when it becomes empty. This
will cause inefficient buffer usage and results in high latency
during heavy traffic (refer to Section 5.4 for experimental
configuration and description). Moreover, the maximum

Table 2: Synthesis results for CONNECT and SOTAmesh network
[7].

4 × 4 mesh w/4 VCs Xilinx LX240T Xilinx LX760
LCs MHz LCs MHz

SOTA [11] (32-bit) 36% 158 12% 181
CONNECT [12] (32-bit) 15% 101 5% 113

operating frequency was not disclosed [5] to estimate the
effect of such approach.

In [3], a combined VC and switch allocation method was
proposed. The VC allocation is replaced by a queue of free
VCs for each destination port. Similar to the speculative
method, the proposed method needs to set a higher priority
for requests from nonheader flits. It is possible that a header
flit which has been granted by the switch allocation may not
be able to be assigned any OVC. It suffers the same problem
as the speculationmethod during heavy traffic.The proposed
NoC is open source [11] and is targeted for ASIC.

CONNECT [7] is an open source reconfigurable soft
core NoC targeted for FPGA devices. CONNECT supports
different numbers of VCs, buffer size, allocation type, and
pipeline stages. The router pipeline stages can be config-
ured to a minimum of one-clock-cycle latency. The authors
compared their router architecture with [3]. The comparison
results (Table 2) show significant reduction in hardware cost.
However, the reported maximum operating frequency is
low since all router stages are cascaded in series. Another
drawback of the design is the implementation of all the input
memory buffers as LCs. Although FPGAs have sufficient
amount of embeddedmemory blocks, this trade-off is critical
to achieve one-clock-cycle latency. Replacingmemory blocks
by LCs causes a high hardware resource usage specifically for
wide buffer sizes.

Our proposed NoC router adapts some of the distinct
features of previous works such as nonspeculation switch/VC
allocation, merging input buffers for FPGA optimization [5],
queuing of free VCs, high operating frequency [3], and low
hardware cost [7]. At the same time, our proposed router

4 International Journal of Reconfigurable Computing

Look-ahead routing
computation

OVC status

Flit out

Switch allocator

Credit in

Flit in
Credit out

Crossbar switch
Input port

Input port

...

Figure 2: The functional block diagram of the proposed NoC router.

microarchitecture overcomes the limitations of previous
works such as memory buffer usage inefficiency [5], high
hardware cost [3], low operating frequency, and imbalanced
usage of memory blocks and LCs [7]. In order to evaluate
our approach,we benchmark ourworkwithCONNECTNoC
router [7].

4. Proposed NoC Router Microarchitecture

In this work, we present a two-clock-cycle latency router
microarchitecture with parallel VC and switch allocator. Our
proposed architecture eliminates the need of setting higher
priority to any IVC requests. In the proposed NoC router
architecture, any request which has been granted service by
the switch allocator is able to pass a flit to the output port
successfully. An efficient masking technique is proposed to
filter all switch allocation requests that are not able to pass
flits to the output port, either due to the lack of free space
in assigned VC or due to the lack of free VC in the output
port for nonassigned VC requests. The masking technique
also provides an efficient usage of VC memory buffers. Our
proposed technique has minimal impact in timing and area
overhead of an NoC router. It is also fully parameterizable in
terms of number of VCs, buffer width, and flit width.

Figure 2 illustrates the functional block diagram of the
proposed router architecture. The main components include
the input switches, look-ahead routing computation module,
OVC status module, SW allocator module, and a crossbar.
Input port module is the first module that receives the
packet flits. Upon receiving a flit, the VC-ID of each flit is
examined in order to allocate it into the respective VC FIFO
buffer. Look-ahead routing is applied in order to relax the
dependencies of the first stage of conventional router, which
is the route computation.

Conventional VC allocator has two main drawbacks in
terms of circuit complexity and high critical path delay.
Using a conventional VC allocator, it is possible to allocate
multiple OVCs inside the same output port in one clock
cycle. However, in any clock cycle, only one flit can be
passed to an output. Hence, multiple simultaneous OVCs

allocations will give no significant improvement in perfor-
mance. A speculative NoC with canonical VC allocator may
outperform a speculative NoC using queues of VCs in terms
of performance, as simultaneous multiple VC allocations on
one port reduce the number of speculative requests and,
thereby, speculation failure. However, it has no advantage
when compared to nonspeculative NoC using queue of VCs.
For instance, consider a situation when two packets of 𝑝

𝑎

and 𝑝
𝑏
are located in different router ports. Both packets are

not yet assigned an output VC and are targeting the same
destination port which has only one available OVC. In this
situation, the use of canonical VC allocator would result in
50% speculation failure because the grant from switch and
VC allocation may not be given to the same packet. On
the contrary, the use of queue of VCs results in the grant
of available OVC to the packet which receives the switch
allocation grant.

Using queue of available VCs has the advantage of less
area overhead and faster execution time as it only requires
one arbitration stage. The second arbitration stage has been
added to the canonical VC allocator to remove conflicts of
assigning oneOVC to several IVCs. By limitingVC allocation
upon successful switch allocation, this conflict is removed by
the switch allocator.

In our design, we replace the VC allocator with the
queue of free OVCs. The OVC will be assigned whenever a
nonassigned VC request (header flit) is granted by the switch
allocator. Since all nonassigned VC requests which were not
able to receive any OVC were masked before sending to the
switch allocator, VC is assigned in a nonspeculative fashion.
The VC status module keeps track of all OVCs, providing
information on available space (credits) in each OVC and
the list of free OVCs for each port. A free OVC is defined
as an OVC which has not been assigned and has at least one
available credit.

The switch allocator grants allocation requests sent from
input ports. As previously mentioned, allocation is located
in the critical path. The NoC critical path delay can be
divided into three phases: masking, allocation, and updating.
Designing an efficient low latency router requires reduction
of these delay components as much as possible.

International Journal of Reconfigurable Computing 5

Output port number
v

Assigned OVC number

1

1

Assigned OVC is full OVCs status
(full, nearly full)Assigned OVC is nearly full

2�

2�

2�� : 1

p − 1

(p − 1) : 1

Figure 3: The status signals transferring from OVCs to an IVC.

OVC is assigned

Assigned OVC
requests

Assigned OVC is
Full reg.full

Assigned OVC is Nearly full
nearly full reg.

IVC request is granted Request reg.

IVC is not empty

Figure 4: The assigned OVC requests masking.

4.1. Masking. One of the challenges to design a low latency
NoC router is to mask all switch allocation requests when
the assigned OVC buffer space is full. To this end, the
conventional router implements (𝑝 − 1)V credit counters
inside output ports to keep track of available space in each
OVC. One way to mask the input requests is to transfer the
status signals of assignedOVCs to the IVCs usingmultiplexer.
However, it increases the critical path due to themultiplexing
delay.

Another way for masking is to locate the credit counters
locally inside input port modules and multiplex the credit-in
signals from output ports to the input ports. This approach
removes the multiplexing delay from critical path. However,
it needs amechanism to initiate the counters with the number
of available credits inside the newly assigned OVC. The
related work in [3] proposed the use of proxy counters inside
the input ports. These proxy counters are initialized in the
first cycle of switch allocation with the credits values inside
the output ports. This approach suffers from additional area
overhead due to the redundant counters implementation
and also large multiplexer width. Note that transferring one
single bit to all IVC requires 𝑝V multiplexers with the size of
(𝑝 − 1)V : 1. Hence, the resource consumption becomes more
critical when the buffer size increases.

In our approach, we propose a feedback of only two
fixed status bits for each IVC. These two bits determine
the condition of assigned OVCs which are full and nearly
full (i.e., has only one empty place). Figure 3 illustrates the
architecture for transferring the assigned OVC status to an
IVC. It consists of two levels of multiplexing, where the
first level selects all OVC status inside the output port and

the second level returns the assigned OVC status bits. This
structure is repeated for each respective IVC. The status
bits are registered at the input ports in order not to add
the multiplexing time to the router critical path. The one-
clock-cycle delay in receiving status bit will be handled by
the masking filter inside each input port. To this end, the
granted IVC request that is delivered to each input port at
the end of allocation stage is stored in a register. Hence, this
register indicates the condition of IVC request in the last
clock cycle. Now, each IVCmasks the requests if (i) the status
registers show the full status for the assigned OVC and (ii)
an assigned OVC status register is nearly full and the request
status register indicates that the previous IVC request has
been granted by the allocator. In the second condition, when
the last request is granted, the real OVC status is full but
will be updated in the next clock cycle. The masking filter is
illustrated in Figure 4.

Another challenge in sending requests to the switch
allocator is the time when the IVC has not been assigned
any OVC. In speculative methods [3, 17, 20], the nonassigned
VC requests are not masked and the validity of granted
signals is checked during the updating time. In our proposed
design, we keep track of all OVCs inside a status module (i.e.,
available space (credits) for each OVC), the list of free OVCs
for each output port, and one registered flag indicating if the
output port has any available OVCs. We use these flags for
masking the nonassignedOVC request in the case when there
is no available VC in the output port. The nonassigned OVC
request masking is illustrated in Figure 5. Allocation requests
will be sent to the switch allocator if any of the nonassigned
or assigned OVC requests are asserted.

6 International Journal of Reconfigurable Computing

OVC available

Output port

Nonassigned OVC
requests

OVC is assigned

IVC is not empty

p − 1

p − 1

p − 1

p − 1 : 1

Figure 5: The nonassigned OVC request masking.

Granted port

Candidate IVC

v

GrantedRequest
arbiter arbiter ports

IVC output ports p Output port
wr en

From other input ports Interface

Interface to the input ports

to the crossbar
arbiter

SW allocator critical path

Any granted

� : 1

� : 1

......

p − 1

p − 1

p − 1 p − 1

p − 1 : 1

p − 1 : 1

p(p − 1)

�(p − 1)

Figure 6: The switch allocator functional block diagram.

The additional masking gates for filtering invalid nonas-
signed OVC requests result in having higher masking delay
when compared to speculative NoC router. However, as will
be discussed in next subsection, speculative NoC router
requires longer allocation time due to priority based switch
allocation.

4.2. Allocation. After masking the IVC requests, these
requests are sent to the switch allocator. The functional block
diagram of the switch allocator is illustrated in Figure 6. The
critical path of the allocation stage is highlighted using the
dotted line. The path starts by passing masked IVCs requests
to a V : 1 arbiter to grant one request for each input port.Then,
a V : 1 multiplexer selects the winner IVC output port among
the rest. Next, the winner output ports will be sent to the
second 𝑝 − 1 : 1 arbiter in order to arbitrate between input
ports that request the same output port. Finally, the results of
the second arbitration stage are sent back to each input port.
The result of the first stage arbitration is also returned to the

input port as a candidate IVC. The candidate outputs will be
used to prepare the updating signal before the granted result
becomes available.

Due to having two levels of arbitrations in the switch
allocator, arbiter delay is an important parameter in defining
the NoC critical path. Hence, to minimize the arbitration
delay, fast arbiter [21] proposed by Dimitrakopoulos et al. is
used.

Speculative switch allocator prioritizes the nonspecula-
tive requests over the speculative one and, hence, it has
longer allocation delay compared to our design. The specu-
lative switch allocator functional block diagram is shown in
Figure 7. Prioritizing nonspeculative requests over the spec-
ulative ones is done by using two parallel switch allocators:
one for handling speculative requests and another one for
nonspeculative ones. Switch allocator architecture is shown
in Figure 6. The switch allocation grants are obtained by
ORing both speculative and nonspeculative grants for the
same input port. However to remove any conflict between

International Journal of Reconfigurable Computing 7

Speculative

Speculative granted

Sw
itc

h-
al

lo
ca

tio
n-

re
qu

es
t-g

ra
nt

ed

N
on

sp
ec

ul
at

iv
e r

eq
ue

sts
Nonspeculative

switch
allocator

switch
allocator

Sp
ec

ul
at

iv
e r

eq
ue

sts

Nonspeculative granted

Speculation failed

Speculation failed

3 : 1

3 : 1

2 : 1

2 : 1

px(p − 1)

px(p − 1)

p(p − 1)

p(p − 1)

(p − 1)

(p − 1)

(p − 1)

(p − 1) (p − 1)

(p − 1)

p − 1 : 1

p − 1 : 1

p − 1 : 1

p − 1 : 1

Figure 7: The speculative switch allocator block diagram.

both allocators, the speculative grants are masked in three
conditions. First is when one input port receives both specu-
lative and nonspeculative grants. Second is when same output
port is granted for both speculative and nonspeculative
requests. Third condition is when the speculation fails due
to unavailability of free OVC in the destination output port.
The first condition is checked by adding 𝑝 number of 𝑝 −
1 : 1 reduction OR gates at the granted nonspeculative output
ports number of each input port. The second condition is
checked by adding𝑝 number of𝑝−1 : 1 reductionORs to sum
all granted nonspeculative signals of all input ports which
point to the same output port.

Since the invalid nonassigned OVC requests are masked
at the beginning of switch allocation stage, our design has
longer masking delay when compared to speculative NoC
router. However, it needs only one switch allocator module
where the granted destination port can be used directly with-
out any speculationmask. As the addedmasking components
in our design are similar to the masking components that are
needed in speculative NoC router, it is expected that both
designs have similar critical path delay.

4.3. Register Updating. The switch allocation results are
broadcasted to the other modules (input ports, VC status
module, and the crossbar) to update the internal registers.The
result of switch allocation is used to update the input ports’
internal registers such as input buffers status registers. Other
registers that must be updated at the end of the allocation
stage are the registers located in OVC status module. Two
registers are allocated for each 𝑝V OVC. A one-bit status
register indicates if the respective OVC has already been
assigned. Meanwhile, another credit counter keeps track of
credits in the output port.

In our proposed design, the VC allocation and switch
allocation are done in parallel when a header flit receives
a grant signal from the switch allocator. At this time, the
assigned OVC status register must be asserted to indicate
that the respective OVC has been assigned. On the other
hand, when a tail flit is granted, the assigned OVC must
be deasserted. Moreover, the credit counters must be decre-
mented by one for each granted IVC request. Hence, the
challenge is to generate the update signals for the status
registers when the OVC has not yet been assigned.

TheOVCupdating functional block diagram is illustrated
in Figure 8. The OVC registers updating process is divided
into four stages. In the first stage, one candidate OVC is
selected for each output port. First, the list of free OVCs is
generated by masking the unallocated OVC which has no
available credits. Then, the candidate OVC is obtained by
passing the list of available OVCs to a V : 1 round-robin arbiter
for each output port and then is broadcasted to all input ports.
In the second stage, each input port selects the OVC which
will be accessed by the candidate IVC. The assigned OVC
for each IVC is stored in an internal register. For header flits
without an assigned OVC, a candidate OVC will be selected.
In the third stage, the granted port signal is received from
allocator. Passing the granted port and the OVCs number to
a decoder will generate a one-hot code depicting OVC credit
counter which must be updated. Masking this signal with the
tail and header flags of the input flit will generate another
two one-hot codes. The first code indicates if the respective
OVC must be allocated when sending the header flit. The
second code specifies if the respective OVC must be released
when the tail flit is passing through. In the forth stage, all
signals from all output ports are ORed to generate the final
updating signals. The OVC update delay path is illustrated

8 International Journal of Reconfigurable Computing

> >

>

>

>

v

v

v

v

Arbiter

Arbiter

From other input ports

Input port

2 : 1

2 : 1

Has at
least

1 credit

OVC status module OVC status module

OVCs
status

OVCs
status

SOr

Or

Or
−1

R

Credit
counters

Granted port
Candidate IVCFrom other

IVCs

IVCs
tail flags

From other IVCs
in the same input port

Assigned
OVC

OVC is
assigned

Output
port

Candidate
OVC

0

1

1

2 3 4

� : 1

� : 1

� : 1

� : 1

� : 1
� × � (p − 1) ∗ �

1 : p − 1

p − 1 : 1

p − 1 : 1

p − 1 : 1

p − 1 : 1

Figure 8: The OVC updating schematic diagram.

>

>

>

>

v

v

v

From other input ports

Input port

2 : 1

OVC status module

OVCs
status

Granted port

Candidate IVC

OVC is
assigned

Has at least
2 credits

One OVC is taken

OVC
available

+

==1

==0 0

1

� : 1

p − 1

p − 1 : 1

Figure 9: Registering the OVC available signal.

using a dotted line in Figure 8. It consists of one AND gate
(inside the demultiplexer), a wide 𝑝 − 1 : 1 OR gate plus a
subtracter which is equal to the IVC update time.

The last OVC register that must be updated at the end
of the switch allocation is the one-bit registers that show the
availability of OVC on the output ports. These signals can
be directly extracted by using a V : 1 OR gate after the list of
available OVCs for each port. However, the extraction delay
would be added to the masking time and this results in a
longer critical path delay. Hence, a circuit shown in Figure 9
registers this signal. In order to send a nonassigned OVC
request to the switch allocator, the destination output port

must have at least one free OVCwith two available credits. To
this end, the number of free OVCs with more than one credit
is counted. The output port is marked as nonavailable OVC
port in two conditions: first if there is no available OVC in
desired port and second when the port has only one available
OVC, but it is to be taken by an IVC. The critical path to
update the available OVCs register is shown using a dotted
line in Figure 9.

4.4. Routing Algorithm. Routing algorithm determines the
output port which a packet must be sent to to reach its
destination. In deterministic routing, for each distinguishable

International Journal of Reconfigurable Computing 9

source and destination pair, there is only one path which
the packets can pass through. Deterministic routings act
well when dealing with uniform traffic where congestion has
been distributed equally across all links in an NoC. However,
the nature of NoC traffic is bursty [22] which results in
imbalanced distribution of traffic across all links. Hence,
deterministic routing results in poor performance for such
traffic. In adaptive routing, multiple paths between a source
and destination nodes can be selected according to some
congestion metrics. Hence, the routing algorithm will select
from possible output port(s) which a packet can be sent to. As
packets can be sent to multiple ports, a port selectionmodule
is required to select the desired output port among them.
In the case of look-ahead deterministic routing algorithm,
only single output port is selected and it can be directly used
in our proposed design. However, for supporting adaptive
routing, our proposed router requires the implementation
of additional port selection module. The architecture of port
selection module varies depending on the network topology
and routing. An example of port selection module for a 2D
mesh topology usingminimal routing can be found in related
works [23, 24]. In a 2D mesh having minimal routing, each
packet can be sent up to two destination ports. The quarter
in which the destination port has been located is added to
the look-ahead routing results. In the case when the packet
can be sent to only one destination port (i.e., the destination
node is located in the same row or column with current
router), another one-bit flag is added to show that the result
of look-ahead routing must not be overwritten. The port
selection module is shown in Figure 10.This module consists
of two-level multiplexers. The first level multiplexer selects
the preferred output port based on the quarter in which the
destination port is located. Anothermultiplexer is required to
select between the preferred output port and originally look-
ahead routing result based on the overwrite flag.

As the destination port is required at the beginning of
switch and VC allocation stages, the delay of port selection
modules will be added to the router critical path. Moreover, it
depends on the NoC topology and routing algorithm, where
the delay increases with the maximum number of permitted
output ports for one packet. While the following technique
can be adapted to our design,we proposed another alternative
[25] to send the precomputed preferred output ports to the
neighbouring routers and make the port selection inside
the look-ahead routing module. The following technique
has no influence in the maximum operating frequency and
has minimal area overhead (<2%). The proposed technique
can improve the performance of the router in dealing with
imbalanced traffic, for example, 10% higher injection ratio in
a 5 × 5 mesh based NoC using partial adaptive routing in
dealing with matrix-transpose traffic.

5. FPGA Implementation

In this section, the optimization techniques for NoC based
FPGA implementation are discussed. The analyses on the
implementation results using both DE2-115 (Cyclone IV)
and DE4 (Stratix IV) Altera FPGA development boards are
discussed.

Po
rt

-p
re

se
le

ct

D
st-

po
rt

-o
utQuarter

Dst-port-in

OverwriteLk
-r

ou
te

-in

>

>

>

>

>

Figure 10: Port selection for 2D mesh.

5.1. Replace One-Hot Multiplexers with Conventional Mul-
tiplexers. One-hot multiplexers have an advantage of low
area overhead and low latency in ASIC [26]. On the other
hand, the output of arbiters is presented as one-hot code
to control one-hot multiplexers. Hence, in an ASIC NoC,
it is preferred to use one-hot multiplexing. However, NoC
realization in FPGA using one-hot multiplexing requires
more logic elements. Since a large portion of the NoC router
consists of multiplexers (e.g., the crossbar switch or for
broadcasting the status signals between different modules),
replacing one-hot multiplexer with conventional multiplexer
can result in a lower hardware resources usage.

5.2. Merging All IVCs Buffers of the Same Input Port in One
Block Memory. The conventional implementation of input
port VC buffers in an ASIC NoC router is done by demuxing
the received flits into designated VCs which are located in
separated memory (either Flip-Flop or SRAM) and then
multiplexing the VCs to the crossbar (Figure 1). However,
implementation of multiplexers is more costly on FPGAs, in
comparison to ASIC. Besides that large multiplexing width
increases the area overhead and power consumption of a VC
router in comparison to other alternatives such as Multiple
Physical (MP) Networks. By partitioning physical channels
across multiple independent networks, the MP NoC is able
to remove the need for having such very wide multiplexers
[27]. In our proposed design, to remove these large-width
multiplexers, as suggested in [5], we implemented all IVCs
buffers of an input port inside a single dual port memory,
where one port of this memory is dedicated for writing the
incoming flits and the other port is used for reading the
desired flit which is going to be passed to the crossbar. The
memory read and write addresses are selected from IVCs
read and write pointers (Figure 12). This approach removes
costly multiplexers/demultiplexers from the input buffers.
Moreover, this approach reduces the overall number of used
block memories in an FPGA device due to the mapping of
each individual dual port memory into one block memory.
However, the input switch needs to keep track of the flit
header information separately. The related work in [5] uses
registers to store these data, which allows only a single

10 International Journal of Reconfigurable Computing

+1

−1

==1

==0

0

1

0

1

0

1

2

3

4

En
>

En
>

En
>

En
>

En
>

Din

En
>

In Dout

Wr

Rd

Wr
Rd

Depth

−2

Figure 11: The block diagram of FWFT FIFO with depth of 6.

packet to be stored on a single VC buffer, which results in
inefficient buffer usage. In our proposed microarchitecture,
we store the flit header information (such as output port
address, look-ahead port address, and tail flag) inside a small
first-word fall-through (FWFT) FIFOs. This architecture
allows multiple packets to be stored depending on the buffer
availability. Since these FWFT FIFOs are used frequently
inside each input port, we design a resource-lean FWFTFIFO
as illustrated in Figure 11.

5.3. Synthesis Results. The NoC code was written in Verilog
HDL and compiled using Quartus II version 13 software. The
code was verified using Modelsim Altera version. Figure 13
shows the comparison of LCs utilization of the proposedNoC
router when it is configured with two and four VCs. In total,
an NoC router with four VCs consumes twice LCs compared
to the one with two VCs. Cyclone IV EP4CE115 FPGA device
has been used in this analysis.

We also generated two CONNECT [7] NoC routers, one
with one- and another with two-clock-cycle latency using
the online CONNECT NoC router generator tools [12]. The
proposed NoC router and the two CONNECT NoC routers
are configured with the same parameter of 4 VCs with
capacity of 4 flits per eachVC and flit payloadwidth of 32 bits.
To obtain the maximum operating frequency, we connect
16 NoC routers to form a 4 × 4 mesh based topology. The
hardware utilization summary and the maximum operating
frequency obtained for Altera Cyclone IV EP4CE115 and
Stratix IV EP4SGX230 FPGA are shown in Table 3. With
the same router parameters, CONNECT is twice costly in
term of LCs utilization due to implementation of input
memory buffers as LCs. Our proposed two-clock-cycle NoC
architecture is able to work with two times faster operating
frequency compared to CONNECT NoC when configured
as one-clock-cycle latency router. When compared to the

two-clock latency CONNECT router, our proposed NoC
router is 35% and 20% faster when implemented in Cyclone
IV and Stratix IV FPGA, respectively.

5.4. Performance Results. In order to compare network
performance results, we generate cycle-accurate behavioral
model of the one-clock-cycle latency CONNECT [12] and
our proposed architecture using Verilator [28]. Both NoC
are configured in a 5 × 5 mesh topology having 4 VCs on
each port with the size of 4 flits per each VC and the flit
payload width of 32 bits. As CONNECT [12] only supports
dimension order routing (DoR), we useDoR for both routers.
All NoC endpoints are connected to the custom traffic
generator modules. The traffic generators are responsible
for injecting network packets into the NoC routers and
collecting performance statistics as the packets are received
by destination cores.

Figures 14 and 15 illustrate the performance analyses of
our proposed NoC router against one-clock-cycle latency
CONNECT router under uniform random traffic. For a
fixed injection ratio, each endpoint injects packets of 5
flits into randomly selected destination router. In Figure 14,
we represent the delay and load in clock cycles and flits
per clock cycle, respectively. Adopting the same operating
frequency, as expected CONNECT-one-clk has lower average
packet latency, since our design is two clk cycles’ latency
router. However our experimental results showed when the
load injection ratio is above 40% our proposed architecture
outperforms CONNECT-one-clk.

Figure 15 illustrates an example when each router is
running at its own maximum frequency (CONNECT with
40MHz and proposed design with 80MHz). In this figure,
the load and the delay are scaled based on Gbit/second
and nanosecond, respectively. Our proposed architecture
offers significantly lower delay as injection ratio increases.

International Journal of Reconfigurable Computing 11

Table 3: Hardware utilization summary of one NoC router on Cyclone IV & Stratix IV Altrea FPGA.

4 VCs/4 flits per VC
EP4CE115 EP4SGX230

Proposed
NoC

CONNECT
two-clock

CONNECT
one-clock

Proposed
NoC

CONNECT
two-clock

CONNECT
one-clock

Logic cells (LCs) 2,890 (2.5%) 5,934 (5.2%) 5,690 (5.0%) 2,722 (1.5%) 5,473 (3%) 5,570 (3%)
Memory blocks (M9K) 5 (1.2%) — — 5 (0.6%) — —
Maximum frequency 88MHz 65MHz 41MHz 177MHz 148MHz 91MHz

� : 1

� : 1
0

0

Flit in
Wr en

Wr VC

Wr ptr

Rd VC

Dual port RAM

Rd ptr

Din a

Wr en a

Wr en b

Addr a

Din b

Addr b

Dou a

Dou b Flit out

Figure 12: The input port buffer block diagram.

SW allocator
Crossbar switch

Input ports
OVC status and routing modules

LC
s

3500

3000

2500

2000

1500

1000

500

0

VC = 2 VC = 4

Figure 13: Logic cost comparison for VCs number of 2 and 4 (ports
number = 5, payload width = 32, and buffer width = 4).

Moreover, the maximum injection ratio which can be fed
to our proposed NoC is 2.3 times higher compared to
CONNECT-one-clk.

In order to observe the influence of VC reallocation
algorithm, we generate two NoC router architectures, one
with nonempty VC reallocation ability and the second with
VC reallocation that requires empty VC. Our experiment
showed when the number of VCs is 4, there is no significant
difference in performance metric. However as illustrated in
Figure 16 for the router with 2 VCs, nonempty VC realloca-
tion provides approximately 40% higher maximum injection
ratio compared to VC reallocation that requires empty VC.

Load (flits/clk) (%)

Av
er

ag
e p

ac
ke

t l
at

en
cy

 (c
lk

s)

Proposed design
CONNECT one clk

35

30

25

20

0 10

0

10

5

15

20 30 40 50 60 70

Figure 14: Load-delay performance, for CONNECT-one-clock and
proposed NoC under uniform random traffic in terms of clk cycles.

6. Conclusion

In this work, a two-clock-cycle pipeline wormhole virtual
channel NoC router microarchitecture was proposed. The
router first pipeline stage is the parallel look-ahead route
computation with a nonspeculative VC/switch allocation.
The second stage is the crossbar switch traversal. The pro-
posed router microarchitecture is optimized in three main
criteria, which are hardware cost, maximum operating fre-
quency, and QoS compared to existing works.

Compared to [3], the proposed nonspeculative allocation
removes the need for prioritizing any IVC request and

12 International Journal of Reconfigurable Computing
Av

er
ag

e p
ac

ke
t l

at
en

cy
 (n

s)
700

600

500

400

300

200

100

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Load per router (GB/s)

Proposed @ 80MHz
CONNECT one clk @ 40MHz

Figure 15: Load-delay performance for CONNECT-one-clock at
40Mhz and proposedNoC router at 80Mhz under uniform random
traffic.

Av
er

ag
e p

ac
ke

t l
at

en
cy

 (c
lk

s)

Empty VC reallocation
Nonempty VC reallocation

60

50

40

30

20

10

0

0 10 20 30 40 50 60

Load (flits/clk) (%)

Figure 16: Nonempty VC reallocation performance versus empty
VC reallocation for NoC router with 2VC, under uniform random
traffic.

reduces unused time slots, which result in better QoS.
Broadcasting only two bits of OVC status to the input ports
instead of applying proxy credit counters results in lesser
hardware cost. Our analysis shows that the proposedmasking
technique has negligible influence on NoC critical path delay.
Compared to CONNECT [7], our NoC router has 50% lesser
LCs utilization. The proposed router works with two times
higher operating frequency when CONNECT is configured
as one-clock-cycle latency and is 35%∼20% faster when
CONNECT is configured as two-clock-cycle latency router.
Our experimental results showed that our proposed two-
clock-cycle NoC architecture outperforms CONNECT-one-
clk by 2.3 times in terms of performance.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work is supported by the Ministry of Education of
Malaysia, Fundamental Research Grant scheme (UTM Vote
no. 4F327).

References

[1] W.Dally andB. Towles, “Route packets, notwires: on-chip inter-
connection networks,” in Proceedings of the Design Automation
Conference, pp. 684–689, 2001.

[2] R. Mullins, A. West, and S. Moore, “The design and implemen-
tation of a low-latency on-chip network,” in Proceedings of the
Asia and South Pacific Design Automation Conference, pp. 164–
169, January 2006.

[3] D. U. Becker, Efficient microarchitecture for network-on-chip
routers [Ph.D. thesis], Stanford University, Stanford, Calif, USA,
2012.

[4] S. T. Nguyen and S. Oyanagi, “The design of on-the-fly virtual
channel allocation for low cost high performance on-chip
routers,” in Proceedings of the 1st International Conference
on Networking and Computing (ICNC ’10), pp. 88–94, IEEE,
November 2010.

[5] Y. Lu, J. McCanny, and S. Sezer, “Exploring virtual-channel
architecture in FPGA based networks-on-chip,” in Proceedings
of the 24th IEEE International System onChipConference (SOCC
’11), pp. 302–307, September 2011.

[6] R. Mullins, A. West, and S. Moore, “Low-latency virtual-
channel routers for on-chip networks,” in Proceedings of the 31st
Annual International Symposium on Computer Architecture, vol.
32, pp. 188–197, ACM, June 2004.

[7] M. K. Papamichael and J. C. Hoe, “CONNECT: re-examining
conventional wisdom for designing nocs in the context of
FPGAs,” in Proceedings of the 2012 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA ’12), pp.
37–46, ACM, February 2012.

[8] J. D. Owens, W. J. Dally, R. Ho, D. N. Jayashima, S. W. Keckler,
and L.-S. Peh, “Research challenges for on-chip interconnection
networks,” IEEE Micro, vol. 27, no. 5, pp. 96–108, 2007.

[9] A. Kumar, P. Kundu, A. P. Singh, L.-S. Peh, and N. K. Jha,
“A 4.6 Tbits/s 3.6GHz single-cycle NoC router with a novel
switch allocator in 65nm CMOS,” in Proceedings of the 25th
IEEE International Conference on Computer Design (ICCD ’07),
pp. 63–70, October 2007.

[10] S. Kumar, A. Jantsch, J.-P. Soininen et al., “A network on chip
architecture and design methodology,” in Proceedings of the
IEEE Computer Society Annual Symposium on VLSI, pp. 105–
112, Pittsburgh, Pa, USA, 2002.

[11] Open source network-on-chip router RTL, 2013, https://nocs
.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/Router.

[12] CONNECT: Configurable network creation tool, 2014, http://
users.ece.cmu.edu/∼mpapamic/connect/.

[13] Y. Tamir and H.-C. Chi, “Symmetric crossbar arbiters for VLSI
communication switches,” IEEE Transactions on Parallel and
Distributed Systems, vol. 4, no. 1, pp. 13–27, 1993.

[14] D. U. Becker and W. J. Dally, “Allocator implementations for
network-on-chip routers,” in Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis
(SC ’09), pp. 52:1–52:12, ACM, November 2009.

[15] G.-M. Chiu, “The odd-even turn model for adaptive routing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 11,
no. 7, pp. 729–738, 2000.

International Journal of Reconfigurable Computing 13

[16] M. Galles, “Spider: a high-speed network interconnect,” IEEE
Micro, vol. 17, no. 1, pp. 34–39, 1997.

[17] L. S. Peh andW. J. Dally, “Delaymodel and speculative architec-
ture for pipelined routers,” inProceedings of the 7th International
Symposium on High-Performance Computer Architecture, pp.
255–266, October 2000.

[18] A. Kumar, L. S. Peh, P. Kundu, and N. K. Jha, “Express
virtual channels: towards the ideal interconnection fabric,” in
Proceedings of the 34th Annual International Symposium on
Computer Architecture (ISCA ’07), pp. 150–161, ACM, June 2007.

[19] D. Park, R. Das, C. Nicopoulos et al., “Design of a dynamic
priority-based fast path architecture for on-chip interconnects,”
in Proceedings of the 15th Annual IEEE Symposium on High-
Performance Interconnects, pp. 15–20, August 2007.

[20] J. Kim, C. Nicopoulos, D. Park, V. Narayanan, M. S. Yousif, and
C. R. Das, “A gracefully degrading and energy-efficientmodular
router architecture for on-chip networks,” in Proceedings of the
33rd International Symposium on Computer Architecture (ISCA
’06), pp. 4–15, IEEE, Boston, Mass, USA, June 2006.

[21] G. Dimitrakopoulos, N. Chrysos, and K. Galanopoulos, “Fast
arbiters for onchip network switches,” in Proceedings of the
International Conference on Computer Design (ICCD’ 08), pp.
664–670, IEEE, 2008.

[22] V. Soteriou, H. Wang, and L.-S. Peh, “A statistical traffic
model for on-chip interconnection networks,” in Proceedings of
the 14th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems
(MASCOTS ’06), pp. 104–116, IEEE, September 2006.

[23] J. Kim, D. Park, T. Theocharides, N. Vijaykrishnan, and C. R.
Das, “A low latency router supporting adaptivity for on-chip
interconnects,” in Proceedings of the 42nd Design Automation
Conference (DAC ’05), pp. 559–564, ACM, June 2005.

[24] P. Gratz, B. Grot, and S. W. Keckler, “Regional congestion
awareness for load balance in networks-on-chip,” in Proceedings
of the IEEE 14th International Symposium on High Performance
Computer Architecture (HPCA ’08), pp. 203–214, IEEE, Salt Lake
City, Utah, USA, February 2008.

[25] N. Najib, A. Monemi, and M. N. Marsono, “Partially adaptive
look-ahead routing for low latency network-on-chip,” in IEEE
Student Conference on Research andDevelopment (SCOReD ’14),
2014.

[26] T. Ahonen and J. Nurmi, “Synthesizable switching logic for
network-on-chip designs on 90 nm technologies,” in Proceed-
ings of the International Conference on IP Based SoC Design (IP-
SOC ’06), pp. 6–7, 2006.

[27] Y. J. Yoon, N. Concer, M. Petracca, and L. P. Carloni, “Virtual
channels and multiple physical networks: two alternatives to
improve NoC performance,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 32, no. 12,
pp. 1906–1919, 2013.

[28] W. Snyder, P. Wasson, and D. Galbi, Verilator—Convert Verilog
code to C++/SystemC, 2014, http://www.veripool.org/wiki/ver-
ilator.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

