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ABSTRACT: 

Spatiotemporal computation implements a variety of different algorithms. When big data are involved, desktop computer or 

standalone application may not be able to complete the computation task due to limited memory and computing power. Now that a 

variety of hardware accelerators and computing platforms are available to improve the performance of geocomputation, different 

algorithms may have different behavior on different computing infrastructure and platforms. Some are perfect for implementation on 

a cluster of graphics processing units (GPUs), while GPUs may not be useful on certain kind of spatiotemporal computation. This is 

the same situation in utilizing a cluster of Intel's many-integrated-core (MIC) or Xeon Phi, as well as Hadoop or Spark platforms, to 

handle big spatiotemporal data. Furthermore, considering the energy efficiency requirement in general computation, Field 

Programmable Gate Array (FPGA) may be a better solution for better energy efficiency when the performance of computation could 

be similar or better than GPUs and MICs. It is expected that an elastic cloud computing architecture and system that integrates all of 

GPUs, MICs, and FPGAs could be developed and deployed to support spatiotemporal computing over heterogeneous data types and 

computational problems.  

1. SPATIOTEMPORAL COMPUTING IN THE ERA OF

BIG DATA SCIENCE 

Data originated from sensors aboard satellites and platforms 

such as airplane, UAV and mobile systems have generated high 

spectral, spatial, vertical and temporal resolution data. There is 

greater potential and challenge to extract more accurate and 

significant geospatial information with these high resolution 

data at the level that was not possible before. For example, high 

spectral resolution  (hyperspectral) data characterized by 

hundreds of relatively narrow (<10 nm) and contiguous bands 

are useful not only for the general purpose land cover 

classification, but also for extracting the mineral composition of 

rocks and identifying crop or tree species (Martin et al. 1998, 

Xiao et al. 2004, Thenkabail et al. 2004, Clark et al. 2005, 

Buddenbaum et al. 2006, Boschetti et al. 2007). High spatial 

resolution (HSR) sensors (Greenberg et al. 2009, Sridharan and 

Qiu 2013), such as IKONOS, QuickBird, and WorldView-2,3, 

can provide sub-meter pixel image products, with sufficient 

detail to allow the delineation of individual geographic objects 

such as buildings, trees, roads, and grassland (often referred to 

as feature extraction). Light Detection and Ranging (LiDAR) 

sendor can offer high vertical resolution of geometry and allows 

the direct collection of x, y, and z coordinates of ground 

objects, which makes possible automatic detection of elevated 

features and construction of 3 dimensional (3D) models of 

ground surface (Rottensteiner et al. 2005). The temporal 

resolution are increased not only because of the shortening of 

revisit frequency, but the simultaneous available of mutiple 

sensors such as IKNOS, WolderView 1,2,and 3. Traditional 

statistics based per pixel image processing methods and 

algorithms have been designed primarily for 2D coarse and 

moderate spatial resolution multispectral imagery, not 

appropriate or optimal for the high resolution sensor data.  

Inevitably, the volume, velocity, and variety of hyperspectral, 

HSR and 3D data, along with other socioeconomic, 

demographic, environmental, and social media data, pose great 

challenge to existing geospatial software when analyzing such 

big heterogeneous datasets, because the scale of data and 

computation are well beyond the capacity of PC-based software 

due to PC’s limited storage, memory, and computing power. 

For example, DigitalGlobal alone acquires 1 billion km2 of HSR 

imagery annually with its 6-satellite constellation, resulting in 

63 petabypes data achive in 2013, second only to Facebook 

among all private companies. New computing infrastructure 

and system are required in response to such big data challenge. 

2. HYBRID COMPUTING ARCHITECTURE AND

SYSTEMS 

Heterogeneous spatial data integration, processing, and analysis 

have been a challenging task as spatial computation has been 

playing an essential part in a variety of significant areas of 

science, engineering and decision-making. Such areas include 

geospatial-related natural and social sciences, public safety and 

emergency response, spatial intelligence analytics and military 

operations, ecological and environmental science and 

engineering, and public health. Geospatial data represents real-

world geographic features or objects in either vector or raster 

data models. In the vector model, features are captured as 

discrete geometric objects and represented as points, lines or 

polygons with non-spatial attributes. In the raster model, 

features are represented on a grid, or as a multidimensional 

matrix, including satellite imagery and other remotely sensed 

data. While many algorithms were developed to process vector, 

raster or imagery data, handling heterogeneous data is required 

in a variety of spatiotemporal computing tasks. 

High-resolution geospatial data has become increasingly 

available along with an accelerating increase in data volume. 

Consequently spatial data may be stored as separate tiles for 

efficient data exchange, integration, processing, analysis and 

visualization. Distributed or separated data has raised a variety 

of challenges and complexities in spatial computation for 

knowledge discovery. Traditional software may only work on 

one tile of data for computation or analysis. If all tiles are 

merged or mosaicked into a single piece, its size may become 
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too huge to be processed on a desktop computer. If the whole 

data is maintained as separate tiles, however, the analytic result 

may not be correct or consistent among multiple separated tiles. 

In the problem-solving and decision-making processes, the 

performance of geospatial computation is severely limited when 

massive datasets are processed. Heterogeneous geospatial data 

integration and analytics obviously magnify the complexity and 

operational time frame. Many large-scale geospatial problems 

may be not processable at all if the computer system does not 

have sufficient memory or computational power.  

Designing novel algorithms and deploying the solutions in 

massively parallel computing environment to achieve the 

capability for scalable data processing and analytics over peta-

scale, complex, and heterogeneous spatial data with consistent 

quality and high-performance is the central theme of 

spatiotemporal computing. Emerging computer architecture and 

system that combine multi-core CPUs and accelerator 

technologies, like many-core GPUs and Intel MIC coprocessors, 

would provide substantial computing power for many time-

consuming spatial-temporal computation and applications. New 

multi-core architectures combined with application accelerators 

hold the promise to achieve scalability and high performance by 

exploiting task and data levels of parallelism that are not 

supported by the conventional systems. Such a distributed 

computing environment is particularly suitable for large-scale 

spatiotemporal computation over distributed or separated spatial 

data, while the potential of such advanced Cyberinfrastructure 

remains unexplored in this domain. For example, ESRI’s 

commercial product ArcGIS has an estimated 615 stand-alone 

tools in 18 categories (Gao and Goodchild 2013), plus hundreds 

of other interactive tools under the ArcMap interface. Very few 

of these more than 1,000 functional modules in ArcGIS are 

parallelized into applicable solutions on GPUs or MICs. 

In the chapters on “GPGPU in GIS” (Shi and Huang 2016a) 

and “MIC in GIS” (Shi and Huang 2016b) included in the 

Encyclopaedia of GIS, details about GPU and MIC were 

introduced. As representative accelerators, GPUs and MICs 

have been utilized to construct hybrid computer architecture 

and systems that integrate multicore processors, manycore 

coprocessors. For example, Keeneland is a hybrid 

supercomputer that has 528 CPUs and 792 GPUs funded by 

NSF. The Keeneland Full Scale (KFS) system consists of 264 

HP SL250G8 compute nodes, each with 2 eight-core Intel 

Sandy Bridge (Xeon E5) processors, 3 NVIDIA M2090 GPU 

accelerators. Beacon is a Cray CS300-AC Cluster 

Supercomputer that offers access to 48 compute nodes and 6 

I/O nodes joined by FDR InfiniBand interconnect. Each 

compute node is equipped with 2 Intel Xeon 8-core processors, 

4 Intel Xeon Phi (MIC) coprocessors, 256 GB of RAM, and 

960 GB of storage. Each Xeon Phi coprocessor contains 60 

MIC cores and 8 GB on-board memory. Beacon provides 768 

conventional cores and 11,520 accelerator cores that offer over 

210 TFLOP/s of combined computational performance, 12 TB 

of system memory, 1.5 TB of coprocessor memory, and over 73 

TB of storage, in aggregate. Both Keeneland and Beacon were 

used to enable many large scale spatiotemporal computation 

and simulation (Shi and Xue 2016a, 2016b, Lai et al. 2016, 

Guan et al. 2016, Shi et al. 2014a, Shi et al. 2014b). 

Besides conventional hybrid computer clusters, Hadoop and 

Spark are the new distributed computing architecture and 

platforms that can be applied for spatiotemporal computing. 

Hadoop is an Apache open source framework written in java 

that allows distributed processing of large datasets across 

clusters of computers using simple programming models. A 

Hadoop frame-worked application works in an environment that 

provides distributed storage and computation across clusters of 

computers. Hadoop is designed to scale up from single server to 

thousands of machines, each offering local computation and 

storage. Hadoop MapReduce is a software framework for easily 

writing applications which process big amounts of data in-

parallel on large clusters of commodity hardware in a reliable, 

fault-tolerant manner. MapReduce refers to the following two 

different tasks that Hadoop programs perform: 1) map is the 

first task, which takes input data and converts it into a set of 

data, where individual elements are broken down into tuples 

(key/value pairs). 2) reduce takes the output from a map task as 

input and combines those data tuples into a smaller set of 

tuples. The reduce task is always performed after the map task. 

In comparison to Hadoop that has heavy I/O and file 

transactions, Apache Spark is a new distributed computing 

platform for general-purpose scientific computation. Spark 

extends the popular MapReduce model to efficiently support 

more types of computations, including interactive queries and 

stream processing. Furthermore, Spark provides ability to run 

computations in memory, and the system is more efficient than 

MapReduce for complex applications running on disk. Spark is 

designed to cover a wide range of workloads applicable on 

distributed systems, including batch applications, iterative 

algorithms, interactive queries, streaming and graph based 

network calculation through its rich built-in libraries, including 

Spark SQL, streaming, MLlib and GraphX. By supporting these 

workloads in the distributed engine, Spark makes it easy and 

inexpensive to combine different processing types, which is 

often necessary in production data analysis pipelines. Spark is 

also highly accessible, offering simple APIs in Python, Java, 

Scala, and SQL. Very few of these more than 1,000 functional 

modules in ArcGIS are transformed into MapReduce solutions 

applicable on Hadoop or Spark platforms. 

At last, an emerging new hybrid architecture integrates FPGAs 

as coprocessors along with traditional multicore or manycore 

processors. FPGA has the advantage for its energy-efficient 

manner, while it can be reconfigured based on different 

applications. There are growing interest to deploy FPGAs in 

cloud computing and data center systems. For example, in 

Microsoft’s Catapult project, FPGAs were integrated into a data 

center to accelerate the Bing search engine. By using FPGAs to 

implement the document ranking algorithm, the performance 

was doubled at only a 30% increase in energy (Putnam et al. 

2015). Intel acquired Altera (one major provider of FPGAs) for 

16.7 billion dollars as Intel also would like to integrate FPGAs 

with Xeon multicore processors to build data and computing 

centers (Morgan 2014). FPGAs have the potential to build 

energy efficient next generation computing systems, if several 

challenging problems can be resolved to enable reconfigurable 

computing to become mainstream solutions. 

3. HETEROGENEOUS SPATIOTEMPORAL

COMPUTING ON HYBRID COMPUTING SYSTEMS 

In recent years, my research team has been working on parallel 

and high performance spatiotemporal computation on 

supercomputers KraKen (a cluster of CPUs), Keeneland (a 

cluster of GPUs), and Beacon (a cluster of MICs) over different 

spatiotemporal problems, including ISODATA for unsupervised 

image classification, MLC for supervised image classification, 

Kriging interpolation, Cellular Automata based urban sprawl 
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simulation, agent-based modelling on information diffusion, 

affinity propagation (AP), near-repeat calculation, and so on. In 

2016, the 2nd place award was given by ACM SIGSPATIAL 

International Student Research Competition for the research 

entitled Accelerating the Calculation of Minimum Set of 

Viewpoints for Maximum Coverage over Digital Elevation 

Model Data by Hybrid Computer Architecture and Systems. 

This research introduces how to accelerate the calculation of 

minimum set of viewpoints for maximum coverage over digital 

elevation model data using Intel’s Xeon Phi on supercomputer 

Beacon equipped with Intel’s Many-Integrated-Core (MIC) 

coprocessors. This data and computation intensive process 

consists of a series of geospatial computation tasks, including 1) 

the automatic generation of control viewpoints through map 

algebra calculation and hydrological modeling approaches; 2) 

the creation of the joint viewshed derived from the viewshed of 

all viewpoints to establish the maximum viewshed coverage of 

the given digital elevation model (DEM) data; and 3) the 

identification of a minimum set of viewpoints that cover the 

maximum terrain area of the joint viewshed. The parallel 

implementation on Beacon achieved more than 100x speedup in 

comparison to the sequential implementation. The outcome of 

the computation has broad societal impacts since the solutions 

can be applied to real-world applications and decision-making 

practice, including civil engineering, infrastructure optimization 

and management, and military operations. 

 

Throughout the course of such extensive development on 

different spatiotemporal themes, it can be concluded that 

different kind of hybrid computer architecture and systems may 

be more suitable to different kind of problems. GPU has been 

utilized in a variety of our prior works (Shi and Xue 2016b, 

Guan et al. 2016, Shi et al. 2014, Shi et al. 2014). Particularly 

when many spatiotemporal modules would process matrix data, 

GPU could be a perfect accelerator to improve the performance. 

On the other hand, some spatiotemporal computation and 

simulation would contain randomized procedures, which may 

devaluate the functionality of GPU. A typical CUDA-capable 

GPU is organized into an array of highly threaded streaming 

multiprocessors (SMs). Within the SM, computing threads are 

grouped into block, which is then managed by a grid structure. 

Within a block of threads, the threads are executed in groups of 

32 called a warp. In the case of the random procedures, if 

different threads in a warp need to do different things, all 

threads will compute a logical predicate and several predicated 

instructions. This is called warp divergence. When all threads 

execute conditional branches differently, the execution cost 

could be the sum of both branches. Warp divergence can lead to 

a big loss of parallel efficiency. In comparison to such a 

problem in the utilization of GPUs, MIC exemplifies its 

advantage in dealing with randomized procedures in 

spatiotemporal computation. Each MIC has a total of 240 

threads on 60 processing cores. The vector processing unit on 

the Intel MIC processor is very efficient and can deal with 

operations involving many independent operands. 

 

Although hardware accelerators have been widely used in 

computer clusters, there are limitations as well. For example, 

the extra communication overhead between the coprocessor and 

the host can easily offset the performance benefit from the 

parallel processing on GPUs. Originally, all the kernels running 

on GPUs have to be created by host processors. This limitation 

makes it impossible or inconvenient to implement some 

algorithms with dynamic behavior. The communication cost 

between the host processors and the coprocessors has been a 

traditional drawback since the on-board memory on the 

accelerators is separate from the host main memory. Therefore, 

the source data and the results have to be transferred between 

these two pieces of memory. Data transfer between two GPUs 

crossing two different nodes has to go through host memory, 

introducing unnecessary overhead. NVIDIA Kepler GPU 

architecture supports a “dynamic parallelism” feature in which 

kernels (i.e., tasks) can generate new kernels while running on 

GPU. This feature makes it possible to implement algorithms 

with dynamic behavior completely on the GPU. Furthermore, 

the “GPUDirect” feature could be explored to carry out data 

communication directly when multiple GPUs are used.  

 

In the case of MICs, both the native model and the offload 

model only utilize the Xeon Phi coprocessor, while the host 

(Xeon) CPU is not efficiently used, or not used, in the 

calculation. Hybrid solutions were explored to optimally utilize 

both the Xeon CPU and MIC coprocessors (Lai et al. 2016). 

For example, to extend the native model, we create MPI ranks 

that reside on the host CPU and the MIC coprocessors. If m 

MIC (Xeon Phi) coprocessors and n host CPU processors are 

used, m × 60 + n MPI processes are created in the parallel 

implementation. In the case of offload model, the workload is 

first distributed to CPUs through MPI. Then a host CPU will 

offload part of the job to a MIC card using OpenMP. On the 

host CPU, we also use OpenMP to spawn multiple threads for 

parallel processing. Asynchronous offload allows overlap of 

data transfer and compute. The host initiates an offload to be 

performed asynchronously and can proceed to next statement 

after starting this computation. In general, the hybrid-offload 

solution could be more flexible and efficient (Lai et al. 2016). 

 

Although FPGAs have been increasingly integrated into cloud 

computing systems and data centers, very few geographers and 

GIScientists would have worked on FPGAs. In a pilot study, we 

implemented a generic Cellular Automata (CA) algorithm using 

a cluster of FPGAs. In (Shi et al. 2014a), in comparison to the 

use cases of embarrassingly parallelism and geospatial 

computing with loose communication and data exchange, CA 

was the most complicated use cases due to its intensive data 

partition and exchange among distributed computing nodes. In 

(Shi et al. 2014a), we applied MPI’s SEND and RECV 

commands to enable data communication and exchange to 

complete Game of Life (GOL). In the latest pilot study, we re-

designed the solution by transforming the GOL into a pipeline 

style that is applicable on a cluster of FPGAs. 

 
 

# 

Size of the grid: 8,192 x 8,192 Size of the grid: 16,384 x 16,384 

MPI + 

CPU 

MPI + 

GPU 

MPI + 

MIC 
FPGA 

MPI + 

CPU 

MPI + 

GPU 

MPI + 

MIC 
FPGA 

1    38.9    287.4 

2 78.2 24.9 7.3 19.6 312.7 122.2 29.0 143.6 

4 39.2 12.8 4.3 9.9 155.6 59.1 14.7 42.3 

8 21.8 6.3 3.3 5.5 78.1 29.7 8.5 21.8 

16 10.4 4.2 3.8 3.2 39.4 17.2 6.6 11.7 

 
Table 1. Scalability and performance (by second) comparison for 
GOL computation on clusters of CPUs, GPUs, MICs, and FPGAs 

 

Table 1 displays the result of scalability and performance 

comparison for GOL computation using clusters of CPUs, 

GPUs, MICs, and FPGAs. The size of GOL is 8,192 x 8,192 

and 16,384 x 16,384. In this pilot study, 100 iterations were 

implemented over different numbers (#) of processors. In all 

cases, FPGA displays superiority than CPU and GPU. In the 

case of MIC, each MIC utilized 60 cores. When the size of 

GOL is 8,192 x 8,192, FPGA achieved a better performance 

than MIC. Based on the trajectory of time used on GOL 

simulation when the size is 16,384 x 16,384, it is expected 
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when 32 or more FPGAs are used, the performance of FPGA 

could be better than that for the same number of MICs. When 

energy efficiency is considered, FPGA is superior in all cases. 

Considering many spatiotemporal computation are raster based 

while such convolutional calculation is commonly applied, this 

pilot study on clusters of FPGAs will have broader impact in 

the future in the GIScience community. 

Partially sponsored by NSF SMA-1416509, we also developed 

pilot study to utilize Spark cloud computing platform for 

geocomputation and data mining over big geospatial and social 

media Data. Geospatial computation is special because both 

spatial geometry and non-spatial attributes have to be processed 

and analyzed. Hadoop/Spark is specifically advantageous in 

handling text data. In the pilot study to complete geocoding 

procedures based on twitter user profile, both the source data 

(i.e. hundreds of tweets) and the matching data (e.g. Gazetteer 

data that have 11 millions of records) will generate huge 

amount of comparison. Even if conventional parallel computing 

solution could be developed to resolve this problem, 

implementing Scala script on Spark could be the most efficient 

approach to complete the task. Figure 1 displays the workflow 

and algorithm to complete the geocoding procedure based on 

twitter user profile and gazetteer data. 

Figure 1. Workflow and algorithm to complete the geocoding 
procedure based on twitter user profile and gazetteer data 

4. VISION AND CONCLUSION

Spatiotemporal computing would have to deal with different 

types of data and varied algorithms. As exemplified in the prior 

works, different kind of hardware infrastructure could be more 

appropriate and efficient to a certain kind of spatiotemporal 

computing problems. Existing supercomputing infrastructure, 

however, may have been equipped with a major type of 

hardware, such as a cluster of MICs or GPUs. This means such 

kind of computing infrastructure may not be flexible or elastic 

to cope with the needs of spatiotemporal computing.  

Cloud computing, on the other hand, has one key concept of 

Infrastructure as a service (IaaS) that supports large numbers of 

virtual machines to imitate dedicated hardware. Within the 

virtual environment, it is possible for researchers to select the 

most appropriate and efficient processors and accelerators to 

complete the spatiotemporal computing tasks. It is expected that 

an elastic cloud computing architecture and system could 

integrate CPUs, GPUs, MICs, and FPGAs in response to the 

needs for heterogeneous spatiotemporal computing. Such an 

elastic computing infrastructure will be fundamental to the next 

generation of geographic information system and science in the 

era of big data science. 
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