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ABSTRACT 

Label-free, rapid detection of biomolecules in microliter volumes of highly diluted solutions (sub-

femtomolar) is of essential importance for numerous applications in medical diagnostics, food safety, and 

chem-bio sensing for homeland security. At ultra-low concentrations, regardless of the sensitivity of the 

detection approach, the sensor response time is limited by physical diffusion of molecules towards the 

sensor surface. We have developed a fast, low cost, non-faradaic impedance sensing method for detection 

of DNA molecules at attomolar levels by beating the diffusion limit through evaporation of a micro-liter 

droplet of DNA on a nanotextured superhydrophobic electrode array. Continuous monitoring of the 

impedance of individual droplets as a function of evaporation time is exploited to dramatically improve 

the sensitivity and robustness of detection. Formation of the nanostructures on the electrode surface not 

only increases the surface hydrophobicity, but also allows robust pinning of the droplet contact area to the 

sensor surface. These two features are critical for performing highly stable impedance measurements as 

the droplet evaporates. Using this scheme, the detection limit of conventional non-faradaic methods is 

improved by five orders of magnitude. The proposed platform represents a step-forward towards 

realization of ultra-sensitive lab-on-chip biomolecule detectors for real time point-of-care diagnostics. 

KEYWORDS: Multifunctional nanotextured electrodes, Superhydrophobic, attomolar, Impedance 

spectroscopy, Droplet evaporation, DNA 

 

INTRODUCTION 

Detection of ultra-low concentrations of DNA molecules has recently attracted the attention of numerous 

research groups in various fields for its potential applications in clinical diagnostics, food safety, and 

homeland security (1–3). To achieve this goal, different approaches have been proposed, such as Raman 

spectroscopic detection (4, 5) , detection based on surface plasmons (2, 6), bio-barcode assays (7), 

nanowire-based field effect biosensors (8, 9), detection using carbon nanotube-based devices (10, 11), and 
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electrochemical sensors with surface circular strand-replacement polymerization (CSRP) to amplify the 

signal (1). Among these approaches, most optical and barcode-based techniques need labeling which 

increases pre-processing time and cost, and requires a complicated apparatus for subsequent highly 

sensitive detection. In contrast, label-free electrical detection platforms simplify design and detection, and 

can be implemented in a portable format for in-situ diagnostics, and/or combined with integrated circuit 

technology for massive, parallel detection (8–10, 12). Unfortunately, while transistor-based label-free 

sensors offer high sensitivities in the transconductance (~femtomolar, fM) or the impedance mode (~0.1 

fM), the need for a reference electrode and the fluid stability of the gate oxide introduces additional 

challenges (8–10). In contrast, label-free sensing by passive (transistor-less) impedance spectroscopy, 

which can be categorized into faradaic and non-faradaic modes, is inexpensive and can offer robust 

performance in a fluidic environment and can detect the analyte in a bulk solution. In the faradaic mode, 

however, the need for a reference electrode, sophisticated surface functionalization steps, and the 

presence of a redox couple complicates the sensing platform (13–15). These issues can be addressed using 

non-faradaic impedance spectroscopy; however, the sensitivity of this approach has so far been limited to 

~picomolar (pM)  concentration (16, 17). 

The detection of analytes at ultra-low concentrations (fM to aM) poses a fundamental challenge, 

especially for surface-based label-free sensors such as cantilever (18) or field-effect biosensors (8, 9). In 

highly diluted solutions, the sensor response time is limited by physical diffusion of the biomolecules to 

the sensor surface (3, 19, 20). It has been demonstrated that the diffusion limit prevents a planar biosensor 

from being able to detect – within an acceptable time duration – statistically unambiguous signals 

associated with a few copies of the biomolecules dispersed within an electrolyte (18, 19, 21). The 

diffusion limitation can be overcome by a number of approaches. For example, in the magnetic 

biobarcode scheme, the sensing is achieved by release and detection of barcode molecules unique to each 

target species (7, 22). Although an ultra-low concentration of 500 aM can be detected using this approach 

(7), the cost and pre-processing time associated with magnetic labeling remains a concern.  
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In another approach, De Angelis et al. overcame the diffusion limit through evaporation of a droplet on a 

superhydrophobic surface to deliver a few copies of λ–DNA to an integrated Surface-Enhanced Raman 

Scattering (SERS) sensor (2). Although detection at attomolar concentration was achieved (albeit of a 

very large DNA molecule containing ~50k base pairs, bp), the intricate design and nanofabrication of the 

Raman probe, localization of the sessile droplet, complex instrumentation, and scaling to smaller sizes for 

portable applications remain challenging. Moreover, both these approaches rely on single end-point 

detection of ultra-low concentrations; therefore, the statistical robustness of the result at highly diluted 

solutions is unknown.  

Here, we report the use of multifunctional textured superhydrophobic electrodes for label-free impedance 

sensing of an evaporating droplet containing a few copies of DNA molecules. In contrast to the 

previously reported passive (super)hydrophobic surfaces (in the sense that the surface cannot be 

electrically or thermally activated (2–4, 23)), the proposed nanotextured surface acts simultaneously as (i) 

a sensing electrode array, eliminating the need for integrating a separate sensing unit, and (ii) a 

superhydrophobic fluid delivery scheme that beats the diffusion limit and eliminates the need for 

packaging techniques. The nanotextured superhydrophobic electrodes are optimized so that the surface-

energy distribution results in localization (pinning) of the target droplet immediately after deposition on 

the electrode surface, thereby creating a platform to continuously monitor the impedance ( ( )Z t ) of a 

single droplet as a function of time, t . The proposed technique is an attractive candidate for highly 

sensitive, low-cost detection of biomolecules as it offers fast response (unencumbered by diffusion 

limits), a simple fabrication process, the elimination of a reference electrode, and the ability to conduct 

time-multiplexed impedance spectroscopy of the analyte within the solution. In addition, the detection 

time can be further reduced by using the hydrophobic electrodes as an integrated heater to expedite the 

droplet evaporation. The multifaceted role of the same electrodes as a ‘virtual container’, sensor, and 

heater is a distinctive feature of the sensing scheme developed in this paper.  
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CONCEPT AND DEVICE STRUCTURE  

Classical (bulk) impedance spectroscopy involves two planar (or cylindrical) electrodes immersed in a 

milliliter-sized (mL) sample fluid volume (24). Instead, we have designed and fabricated a spatially 

asymmetric superhydrophobic, yet electrically conductive, array grouped into anode and cathode 

electrodes, as schematically illustrated in Fig. 1 (a). A microliter-sized (�L) droplet containing the DNA 

molecules is placed onto the surface of the nickel electrodes, a three-dimensional diagram and optical 

microscope image of which are shown in Fig. 1 (b) and Fig. 2 (a)-(left), respectively.  

After deposition, the droplet immediately reaches an equilibrium shape defined by a rectangular contact 

line, as shown graphically with a red dotted line in Fig. 1 (a). Parallel to the electrodes, the elongated 

droplet is pinned by the sensor edges (dashed black lines) while in the perpendicular direction it is pinned 

by the nanotextured surface of the electrodes, specifically optimized for this specific design goal. The 

Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) images in Fig. 2 (a) 

illustrate the nanoscale roughness of the nickel electrode surface. These nanoscale features are formed as 

a result of the nickel electroplating process and, as will be discussed later, are essential for reliable 

impedance measurements. (See Supplementary Section S1 for the design details, S2 for details of the 

fabrication process, and S3 for additional information regarding the time evolution of an evaporating 

droplet.) 

As the droplet evaporates, its impedance is continuously measured and stored (see Fig. 1 (c) and (d)), so 

that a complete map of ( , , )Z f t�  is available. Here, �  is the initial analyte density, f is the frequency 

of measurement, and t is the time elapsed since the impedance measurement is started. Differential 

analysis of the data with respect to the reference droplet with deionized (DI) water allows determination 

of the concentration of the DNA solutions. 

As shown graphically in Fig. 1 (b), the anode and cathode each consists of 30 electrically-connected, 

rectangular fins with width ( a ) of 10 μm, height ( H ) of 8-9 μm, and length ( L ) of 4 mm. The spacing 
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between adjacent fins ( b ) is 20 μm resulting in a period of a b� � 30 μm, so that the total area of each 

electrode (anode and cathode) is 0.9×4 mm2. An electric signal consisting of a 50 mV DC bias and an AC 

voltage of 10 mV is applied between anode and cathode electrodes.  

The impedance of a droplet depends on the frequency of measurement. As will be discussed in the 

“Impedance Simulation” section, the measurement frequency must exceed 100 Hz so that the 

electrokinetic diffusion is negligible (25) and the low-frequency noise does not contaminate the accuracy 

of impedance measurement. On the other hand, based on the impedance data obtained for the frequency 

range of 120 Hz – 50 kHz, we found empirically (and validated theoretically as described in the 

‘Impedance Simulation’ section) that the measurement sensitivity is maximized at lower frequencies. A 

working frequency of 120 Hz provides a good compromise and has been used for all the measurements 

reported in this paper.  

In all the experiments, 3 μL droplets containing 850 bp synthetic DNA are investigated with impedance 

measurements as the droplets evaporate (see Supplementary Section S4 for details regarding sample 

preparation). The measured DNA concentration covers a dynamic range of almost nine orders of 

magnitude, i.e., from 109 molecule/μL to ~1 molecule/μL, which corresponds to 1.6 nM to 6 aM solution 

concentrations. Measurements obtained with several droplets suggest that the mean evaporation time is 

~20 min (see Supplementary Section S5-A). The cross-sectional and top-view images of a typical droplet 

after 4 and 14 min of its deposition are depicted in Fig. 2 (b) and (c), respectively. Comprehensive 

information on the dynamics of droplet evaporation and its shape evolution are provided in 

Supplementary Section S3. 

As the droplet evaporates, the volume of the elongated droplet decreases, but very importantly, its contact 

line (and equivalently its contact area) does not recede, as the line is pinned both by surface tension and 

the secondary roughness of the Ni-plated electrode surface. The geometric invariance of the contact area 

with respect to the electrodes has significant implications for the robustness/reliability of impedance 
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measurements (24). If the droplet contact line was changing with time, the loss of the area-coverage 

would have increased the electrode impedance in an uncontrolled manner, confounding the measured 

effect of evaporation on decreasing the impedance. With a fixed contact area, the increase in the DNA 

concentration with electrolyte evaporation (DI water) is accurately reflected in a decrease of the droplet 

impedance as a function of time.  

RESULTS AND DISCUSSION 

Experimental Results  

Fig. 3 (a) shows the average of three sets of impedance measurements on DNA-containing droplets as a 

function of time for various initial DNA concentrations, all measured at 120 Hz. As indicated with a 

dashed vertical line in Fig. 3 (a), the impedance measurements start 2 min after deposition of the droplet. 

As the fluid volume decreases with evaporation, the net DNA concentration increases. Therefore, the 

impedance magnitude ( Z ) of the same droplet (with specific initial DNA concentration) decreases over 

time, providing the opportunity for repeated impedance measurements during the course of evaporation. 

The repeated sampling of the same amount of analyte contained within a single droplet enhances the 

statistical robustness of the results. 

The top black curve in Fig. 3 (a) is obtained from impedance-spectroscopy for analyte-free DI water. 

Even at an extremely low concentration of 60 aM, the impedance signal is clearly distinguishable from 

this reference curve (although the differentiation is lost at an even lower concentration of 6 aM). Higher 

concentrations of analyte exhibit lower initial impedance, as expected, but follow the same overall time-

trajectory as the droplet evaporates.  

Fig. 3 (b) and (c) provide additional details of the impedance results as a function of frequency at two 

different times (t = 2 min and t = 18 min) for initial concentrations of 160 pM and 1 fM, respectively. As 

mentioned previously and as is expected from theoretical considerations, the sensitivity is maximized at 
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lower frequency because the impedance magnitude decreases with increasing frequency (17, 26). 

Moreover, the similarity in magnitude of the impedances implies that while the initial concentrations 

differed by five orders of magnitude, the enhancement of concentration during evaporation ensures that 

the effective concentration at t = 18 min for a 1 fM analyte (Fig. 3 (c)) approaches that of the 160 pM 

sample at time t = 2 min (Fig. 3 (b)).  

In Fig. 4 (a), we have plotted the magnitude of average differential admittance (

( ) ( ) ( )avg avg
DIY t Y t Y t�� � � , where 1Y Z� ) with respect to DI water, as a function of the initial DNA 

concentration ( � ) at three different times (t = 2, 10, and 18 min) after droplet deposition. The solution 

concentration of the droplet at t = 2 min is essentially identical (within 10%) to that of the bulk solution 

from which it was drawn. This figure allows us to conclude that the admittance increases due to the 

increase in DNA concentration as a result of evaporation. Furthermore, the change in the differential 

admittance of various concentrations increases with time leading to a continually improving detection 

resolution.  

In addition, the approach provides an opportunity to continually measure the impedance of the same 

droplet as it evaporates and collect a large number of data points in a single impedance measurement 

cycle. To demonstrate the important role of repeated sampling of data points over time, the time-average 

of the relative change in admittance with respect to DI water (defined as � 	 ( )
( )

avg avg
DI

vg
I t

a
D

Y t Y t
Y t

� �
) is plotted 

in Fig. 4 (b). The time-averaged signal is fully resolved to the 60 aM level, which reflects a gain of almost 

five orders of magnitude in sensor sensitivity compared to conventional non-faradaic impedance sensing 

approaches (16, 17). As mentioned previously, the resolution is eventually lost between 6 aM and 60 aM 

concentrations, and therefore, we conclude that the detection limit of the proposed method is 

approximately 60 attomolar for a typical DNA size of 850 bp. This limit is defined by several factors such 

as the statistical fluctuation of the number of molecules in micro-liter droplets and the stability of the 
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reference conductance of DI water. The solid lines in both figures (Fig. 4 (a) and (b)) are merely 

trendlines. 

Phase plots provide additional complementary information for theoretical interpretation of the 

experiments, and are presented in Supplementary Section S5-B.  

Beating the Diffusion Limit: Evaporation on Nanotextured Superhydrophobic Electrodes  

In the present work, we have designed an asymmetric electrode array with hierarchical roughness to trap a 

biomolecule-containing droplet for impedance spectroscopy. The electrodes, as graphically depicted in 

Fig. 1 (b), are parallel fins comprising grooves and ridges with geometrical dimensions a , b , and H  as 

defined previously.  

It is well established that when a droplet is deposited on a symmetric surface, it forms an equilibrium 

spherical-cap shape defined by minimization of the surface energy of the total system (2, 3, 27–29). On 

the other hand, the shape of a droplet on an asymmetric surface consisting of parallel fins is no longer 

spherical but elongated, exhibiting different contact angles parallel ( ||
 ) and perpendicular (
 ) to the 

orientation of the fins. The fluid faces no energy barrier parallel to the fins, and therefore the droplet 

spreads longitudinally until it is pinned by the sensor edge (dashed black lines in Fig. 1 (a)) to form an 

elongated shape (30–32). This pinning of the contact line by surface tension and the secondary roughness 

of the electrodes prevents the droplet from retracting from the sensor-edge as it evaporates. Similarly, in 

the direction perpendicular to the electrodes, the droplet contact line is pinned by energy barriers 

associated with the fin-like geometry of the superhydrophobic surface (33).  

As the droplet evaporates, its parallel contact angle remains constant, while the perpendicular contact 

angle decreases to reflect the decrease in the droplet volume. Using images of an evaporating droplet 

captured using a high-speed camera, we found that the volume of a droplet (V t( ) ) evolves with time as: 
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� 	
3
2

0 1V t V t T� �( ) / , where 0V  is the initial volume of the droplet and T is the total time needed for 

complete evaporation (for our case, 0V = 3 μL and T = 20 min) (34). The experimental and simulation 

data are provided in the Supplementary Section S3. 

Referring to Kusumaatmaja et al. (33), the perpendicular contact angle on an asymmetric surface of 

parallel fins can be related to the parallel contact angle as: 

tan tan
2 2

e


� �



                                                               (1) 

where e is the elongation factor, defined as the ratio of the maximum base lengths of the droplet contact 

line in the parallel and perpendicular directions, L and W, respectively (See Fig. 1 (a)). The elongation 

factor is ~5 in these experiments and remains unchanged during the evaporation period.  

Right after deposition of the droplet on the surface of the textured array, the measured parallel contact 

angle is 45°. Using Eq. (1), the perpendicular contact angle is calculated to be ~130°, which is in 

reasonable agreement with the measured value of 
 ~145°. The enhanced hydrophobicity of our 

nanostructured electrodes (indicated by the difference between the calculated and measured perpendicular 

contact angles) is attributed to the secondary roughness created on the surface of the nickel electrodes, 

which is not accounted for in Eq. (1). While a smooth nickel layer is hydrophilic, an electroplated nickel 

film exhibits superhydrophobic properties due to the creation of secondary structures on the surface. AFM 

measurements (Fig. 2 (a)-far right) show that the electroplated Ni surface has a very large rms roughness 

of ~70 nm, which explains the amplified hydrophobic response of the electrode surface (35). 

Superhydrophobicity of electroplated nickel films, with measured contact angle of ~155°, has been 

previously reported (36). Therefore, the secondary roughness nanostructures add to the micron-scale 

hydrophobicity of the asymmetric design (23) and increase the contact angle. The hierarchical roughness 

is also essential for robust pinning of the droplet contact line. As discussed previously, the contact line 
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pinning and the superhydrophobicity are both critical for the droplet to self-align on the electrodes, and 

this self-alignment allows highly stable impedance spectroscopy. For a detailed discussion, see 

Supplementary Sections S1 and S2. 

Impedance Simulation  

In order to interpret the experimental results in Fig. 4 (a) and to explain how the impedance spectroscopy 

is affected by DNA concentration, we adapted a classical equivalent circuit model for the specific goal of 

droplet spectroscopy (37). Details of the model are discussed in Supplementary Section S5-B. Briefly, the 

net impedance of the circuit is given by � 	electrode sub dropletZ R Z Z� � || , where we define 

2
1

sol
droplet dl

sol sol

RZ Z
j C R�

� �
�

 to be the effective impedance of the droplet (Fig. 5 (a)), subZ the parasitic 

impedance due to the substrate, and electrodeR the resistance of the electrodes. The parasitic components of 

the impedance (i.e., subZ and electrodeR ) are obtained from a droplet-free impedance measurement of the 

sensor surface. Subsequently, dropletZ is obtained by subtracting the parasitic impedance from the total 

impedance ( Z ) measured during the evaporation of the droplet.  

The droplet impedance is composed of five components: the Warburg impedance ( WZ ), the double-layer 

capacitance ( dlC ) and charge-transfer resistance ( ctR ), the dielectric capacitance of the solution ( solC ), 

and the solution resistance ( solR ). All these impedances, in principle, depend on the shape of the droplet 

and the DNA concentration.  

The working frequency of our measurements (120 Hz) is high enough that the electrokinetic diffusion 

(and the corresponding Warburg impedance) can be neglected (25). On the other hand, this frequency is 

sufficiently low so that the parasitic substrate impedance ( subZ ) is maximized and its effect on overall 

impedance is minimized (Supplementary Fig. S5.3). Finally, I-V measurement of DNA-free DI droplet 
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(Supplementary Fig. S5.4) confirms that the charge transfer resistance ( ctR ) approaches Giga-Ohm (G ) 

levels for non-faradaic impedance spectroscopy, allowing the element to be treated effectively as an open 

circuit. The net change in the intrinsic droplet impedance, therefore, can be attributed to three physically 

meaningful parameters, i.e., solR , dlC , and solC . 

Although the permittivity of the solution may change with the DNA concentration due to an induced dipole 

moment in the presence of applied bias (17), we assume that the change is negligible for very low DNA 

concentrations (< 1 nM). Therefore, solC  which is determined exclusively by the permittivity of the 

solution and the geometry of the droplet, is presumed independent of DNA concentration. 

Once the parasitic components are measured and excluded, the remaining two parameters ( solR and dlC ) 

are determined by matching the theoretically predicted impedance at a given frequency (Supplementary 

Table S5.2 summarizes the equations) to the corresponding impedance observed in the experiment. This 

procedure allows determination of solR and dlC as a function of time for different DNA concentrations. In 

Fig. 5 (b) solR and dlC are plotted as a function of DNA concentration at time t = 2 min. While the 

extracted solR decreases with an increase in DNA concentration, dlC shows an opposite trend. The results 

may be interpreted as follows.  

solR is inversely proportional to the conductivity of the solution which in turn is proportional to the 

density of ions in the solution ( 0n ). As the concentration of DNA increases, the number of counter-ions 

(or effectively 0n ) surrounding them increases, and hence, we expect the solution resistance to decrease. 

For the same reason, solR is expected to decrease with time because evaporation increases the DNA 

concentration (See Fig. 5 (c)).  
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The Guoy-Chapman theory (38) suggests that dlC is proportional to 0n  for a system that allows ion 

diffusion in a semi-infinite medium. Even though the droplet is finite, we expect dlC to increase with the 

counter-ion concentration, and hence to increase with increase in DNA concentration. To summarize, the 

explicit dependence of solR and dlC on DNA concentration provides the theoretical foundation of the 

impedance measurement results summarized in Fig. 3 (a).  

CONCLUSIONS 

We have demonstrated highly sensitive detection of DNA molecules at ultra-low concentrations 

suspended in microliter droplets evaporating on an electrically active nanotextured superhydrophobic 

electrode array. Our approach offers implementation of multiple arrays of electrodes which would allow 

simultaneous measurement of multiple samples or droplets. In addition, the time-multiplexing capability 

further enhances the device sensitivity and detection robustness by increasing the number of data points 

obtained in one measurement cycle. Our sensor can be easily integrated with a pre-filtration step to 

achieve the specificity necessary for analyte detection. For example, the target molecules could first be 

dielectrophoretically separated from other molecules that are present in a fluid stream. Subsequently, a 

droplet containing the target molecules can be separated and guided through the integrated microfluidic 

chip to the impedance sensor region (39–42). Another approach would be to perform Polymerase Chain 

Reaction (PCR) or isothermal amplifications in the droplets which would increase the concentration in 

real time for detection by embedded electrodes for impedance spectroscopy (43). Finally, we emphasize 

that our ability to detect ~60 aM DNA concentrations does not define the ultimate limit of the approach; 

the sensitivity can be further improved by using inter-digitated multifunctional electrode configurations 

that would allow higher-resolution measurement of impedance changes associated with even lower DNA 

concentrations. 
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Fig. 1 Schematic diagram of: (a) top view of a pinned elongated droplet containing DNA molecules on the 

asymmetric hydrophobic fin array that forms the anode and cathode electrodes. The black dashed lines indicate the 

sensor edges to which the droplet parallel spread is limited, and the red dotted rectangle shows the droplet contact 

line which does not change with time. (b) Multifunctional electrode array with the design parameters denoted. Also, 

the nanotextured surface of the Ni-electrodes is pointed out by the red oval. (c) Impedance measurement system for 

the droplet at time t1, and (d) impedance measurement of the same droplet at a later time t2 (t2 > t1). Over time, 

droplet evaporation results in an increase in concentration of the DNA molecules in solution, which consequently 

leads to an increase in the solution conductance (equivalently, a decrease in the impedance magnitude). 
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Fig. 2 (a) Left: Optical microscope image of the asymmetric electrode array. Center: an SEM image of a selected 

region of part (a)-left, showing the electroplated nickel stripes of height 8-9 μm. The two figures on the right show a 

SEM image and an AFM profile illustrating magnified views of the nanometer-sized features on the Ni electrodes 

created after the electrodeposition step. (b) An optical image of a droplet on the electrode array 4 min after 

deposition, along with two cross-sectional images (A-A’ and B-B’) captured using a high-speed camera. (c) The 

same set of images of the same droplet in part (c) captured 10 min later. The droplet volume and its 

parallel/perpendicular contact angles (
 /
� ) decrease as it evaporates, while the contact line remains pinned by 

design. 
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Fig. 3 (a) Average impedance magnitude ( Z ) as a function of time for different initial DNA concentrations. At 

each time, the higher the solution concentration, the lower its impedance magnitude. In addition, over time, the 

impedance magnitude decreases as the droplet evaporates. The applied frequency is 120 Hz. The dashed arrow 

indicates the increase of the initial concentration: DI water (black), 6 aM (dark green), 60 aM (blue), 1 fM (red), 50 

fM (light green), 33 pM (magenta), and 160 pM (brown). From this figure it is clear that the sensor does not 

distinguish the 6 aM DNA concentration from the 60 aM concentration, and therefore the detection limit is ~60 aM. 

(b) Experimental data for impedance magnitude versus frequency at 2 min after deposition of a 160 pM droplet on 

to the electrode surface. (c) Measured data for impedance magnitude versus frequency 18 min after deposition of a 1 

fM droplet. In part (b) and (c), the solid lines indicate the simulation results which are in reasonable agreement with 

the experimental results. 

 

a 

b c 

Starting Impedance 
Measurement 

Increasing the initial 
DNA concentration 



 20 

 

Fig. 4 (a) The relative change in admittance (Y) magnitude with respect to DI water ( ( ) ( ) ( )avg avg
DIY t Y t Y t�� � � , 

where 1Y Z� ) as a function of the initial DNA concentration (ρ), after 2 min (open red circles), 10 min (open 

blue circles), and 18 min (open black circles) of droplet deposition on device surface. The average from three 

different impedance measurements is plotted in each case. (b) Time-averaged magnitude of the normalized relative 

admittance with respect to DI water (defined by the given relationship in the plot) as a function of DNA 

concentration. From this plot, it is concluded that the detection limit would be ~60 aM. The solid lines in both 

figures are merely trendlines. This plot is derived from three independent measurements. The error bars correspond 

to the standard deviation of the experimental values. 
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Fig. 5 (a) Equivalent circuit diagram for droplet impedance. (b) Extracted solR (blue circles) and dlC  (red 

circles) as a function of DNA concentration for t = 2 min. With the increase in DNA concentration, solR and dlC

show a steep decrease and increase, respectively. (c) Plot of solR with time at different DNA concentrations for DI 

water (black), 60 aM (blue), 50 fM (light green), and 160 pM (brown). Solid lines in the figures are merely 

trendlines. 
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