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Robust Resilience: Metaphor and Meaning in Assessing System
Performance Ranges

Barrett S. Caldwell, PhD

School of Industrial Engineering, Purdue University, West Lafayette, IN, USA

Abstract

The current emphasis on Resilience Week and the International Symposium on Resilient Cognitive Systems highlights a growing
awareness of the importance of designing and operating engineering systems under a variety of environmental conditions and in response
to dynamic events. Although there has been considerable confusion and drift in the use of the term, ‘‘resilience’’ as a concept dates back to
dynamic systems study of complex ecological systems in the 1970s. This original definition relates clearly to quantitative metrics that link
also to statistical process control techniques describing system performance as affected by external, ‘‘assignable’’ causes. This paper
discusses important elements in the consideration of resilience as a quantitative metric to improve consistency and clarity of evaluation in
engineering systems. Rather than simply a binary attribute of systems, resilience should be considered in terms of system performance
measures as affected by environmental conditions or events, energy flow couplings, and statistical process control limits. Our estimations
of system resilience are seriously compromised when process control estimates are extrapolated beyond linear ranges of environmental
conditions or when including discontinuous performance/event outliers exceeding appropriate forecasting estimates.

Introduction

The concepts of resilience in systems engineering, and the requirements for designing and operating resilient systems,
have taken on increased importance in recent years. Images of flooded Manhattan buildings and snowdrifts engulfing cars
on Chicago highways help to remind us that large fractions of the public can be at risk when environmental, situational, or
other system dynamic factors prevent our infrastructures and normal operating processes from functioning as designed.

As communities as diverse as human factors and cognitive engineering; electrical and control systems engineering; and
civil and infrastructure management attempt to work together on improving resilience of critical engineering and societal
resources, there are inevitable needs for effective communication and coordination of tasks across research domains.

However, if resilience is to move from simply an area of concern and societal awareness to an implementation criterion
for improving engineering design and operations, considerations of additional systematic detail and technical definitions are
required. One of the most fundamental of these considerations is that of operationalization—what is the current state? How
do we know whether we have made something better, and if so, by how much? How do we compare one system to another
on some parameter of general interest?

By addressing these operationalization questions, it will be easier for us to determine answers to questions such as ‘‘How
much resilience can we expect?’’ ‘‘Resilience with respect to which disturbances, and to what extent?’’ ‘‘What price and risk
are we willing to accept to obtain a particular level of resilience?’’ The purpose of this paper is to examine some of the
issues associated with developing, utilizing, integrating, and sharing common language and understanding.

Finding and Losing Resilience

One significant challenge is that a large number of definitions and applications of the resilience concept have been
developed since the term was originally suggested by Holling in the 1970s (Bhamra, Dani, & Burnard, 2011; Holling, 1973;
Walker, Holling, Carpenter, & Kinzig, 2004). More importantly, the original Holling definition draws quite directly from a set
of established mathematical definitions of stability and system performance. These references to the mathematical descriptions
of dynamic systems are in common with other cybernetic and ‘‘systems thinking’’ concepts applied to biological and
ecological systems (Caldwell, 2009; von Bertalanffy, 1968; Wiener, 1961). Unfortunately, many of the subsequent uses of the
term ‘‘resilience’’ did not maintain consistency with the original, systems-level definition. Multiple disciplines have tried to
utilize the concept of resilience ranging from individuals (reflecting their ability to continue in the face of perceived or real
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adversity) to organizations, and examining both engineered
and naturally occurring systems. In addition, it appears that
most authors capitalized on the conceptual aspects of the
term, while keeping little or no definitional, operational, or
quantitative consistency with the original technical defini-
tions (Bhamra et al., 2011). This trend is in line with other
descriptions of the use of originally technical, quantitative
mathematical or engineering descriptions in metaphoric,
rather than quantitatively consistent, terms (Caldwell, 1994).

Some examples presented in Bharma et al.’s (2011)
literature review do seem to define resilience in terms of
other system dynamics and differential equations measures
of system performance. For instance, an example presented
on p. 5388 shows three images of a ball within a bounded
trajectory of ‘‘V’’, ‘‘U’’, or ‘‘W’’ shapes. The width of the
trajectory shape is described in these examples as ‘‘resi-
lience’’ due to the range of values for which the ball will
return to the bottom of the trajectory shape. While this is a
conceptually compelling idea, the mathematical principles
described are actually defined as stability and equilibrium:
the sizes of perturbation that will allow the system to return
to an initial state without additional input energy (Boyce &
DiPrima, 1969; Kolmanovskii & Nosov, 1986).

Another critical issue is that stability and equilibrium are
defined in terms of a context, and are not binary (yes/no)
considerations. In the example presented in Bharma et al. (2011),
‘‘resilience’’ is defined as the ability to withstand a disturbance of
a particular size or energy level, over an operating condition or
trajectory of a particular range, and return to a particular local
minimum energy equilibrium state. Resilience thus must be
measured with respect to a set of dynamic environmental
conditions or events. Systems that are capable of performing
adequately in some ranges of situational conditions (and thus
would be resilient to events of some energy disturbance
‘‘magnitude’’) are unable to respond to more extreme conditions
(and thus would not be resilient to disturbances beyond that
magnitude) (Caldwell & Garrett, 2011).

Thus, it does appear that while the concept of resilience
does have its origins in a quantitative system dynamics
framework, the use of the term has been subject to
conceptual slippage—in essence (and ironically), the
resilience concept has not been resilient to changes in
definition by scholars across disciplines. How do we apply
additional control to increase the stability of the quanti-
tative measures of resilience? While this question could
seem like a sarcastic meta-question about resilience, it does
suggest that additional focus on statistical analysis and
measures of process variability will help place an emphasis
on what is required to define and evaluate resilience in an
organizational or sociotechnical context.

Resilience and Statistical Control

Relatively independently of this systems dynamics
history, there also exists a statistical approach to defining

process stability and effective process control of ongoing
production systems. Statistical process control (SPC), such
as control charts and run charts, has been in existence for
nearly 100 years, dating back to the ‘‘efficiency manage-
ment’’ roots of the industrial engineering discipline in the
1920s and 1930s (Shewhart, 1925, 1926). First developed
in the 1980s, ‘‘robust process control’’ (RPC) represents a
breakthrough method in the definition, measurement, and
improvement of the ability to efficiently improve the
quality of process outcomes (Devore, 2012; Rocke, 1989).

Dating from Shewhart’s original configurations, the goal
of statistical process analysis is to determine systematic
(‘‘assignable’’) causes for variation, and to distinguish them
from random (‘‘unassignable’’) causes. SPC, as well as the
later RPC, is used to determine when a process is ‘‘in
control’’ (i.e., whether observed variance in a performance
parameter is due solely or primarily to unassignable causes)
or ‘‘out of control’’ (subject to systematic causes affecting
output). The normal variation in process outputs, as
indicated by the range between expected upper and
lower limits of the variance due to unassignable causes,
would generate the ‘‘resilience’’ of the process (where an
assignable cause does not create a systematic decrement to
process quality and reliability).

There are four required steps important in determining
whether a process is in control (Shewhart, 1926). The first
is to collect appropriate data from a variety of observations
with variations based on the parameter of interest. After
that step, issues of estimation, distribution, and fit of the
observations compared to some estimated distribution of
‘‘acceptable’’ random variation are based on the compar-
ison of statistical theory to the observed variability.
Shewhart points out that this task is infeasible based on a
single observation—there must be some sequence of
observations upon which our estimations of control (and
subsequently resilience) must be based. As Shewhart
(1926) indicates, such statistical ‘‘[e]vidence of lack of
control calls for immediate attention,’’ but the search for
process variation is unwarranted if the ‘‘variations are not
large enough to indicate lack of control’’ (p. 603).

Both the original SPC and later RPC tools recognize that
maintaining a process within control limits is an important
production systems and organizational goal, but it cannot
be achieved in the absence of other considerations such as
cost, magnitude of exogenous inputs, or speed of desired
recovery response. Conversely, as our analysis and process
management capabilities improve, RPC suggests that we
can determine smaller levels of variance that we are willing
to tolerate. This statistical approach suggests that resilience
is not simply the range of acceptable conditions, but the
ability to maintain productivity within those conditions
over time, and the ability to return to acceptable conditions
once the process control has been exceeded.

The existence of outliers, and forecasting of future
assignable causes, creates both statistical and conceptual
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challenges to RPC. The existence of outliers in the data due
to assignable causes expands the control range of the
process, and thus reduces the sensitivity of the statistical
analysis (Rocke, 1992). It is unlikely that previously
unacceptable outputs will become more acceptable as our
ability to exercise robust control increases. Owing to either
one-time causes or systematic drift, outliers beyond the
desired performance control range cause a continued
degrading effect on control. Further, the use of historical
data of new or only poorly understood control systems is of
limited effect in generating forecasts of large or discontin-
uous changes (Armstrong, 2001). Forecasts that rely on
extrapolations well beyond the existing range of data are
especially subject to substantial qualitative errors in state
estimation, and not simply quantitative errors in control
limit estimation (Nelson & Savin, 1990). In fact, some
authors treat the cases of outliers as problems to be
eliminated from forecast models, due to the effects of such
outliers on forecasting accuracy (Armstrong, 2001). Thus,
SPC and RPC tools that suggest future situational
conditions and resilience capability based on extended
forecasts through discontinuous or nonlinear extrapolations
of current conditions must be considered carefully.

Describing Resilience as a Performance Measure

Humans live in a contextualized, dynamic, situationally
variable, and uncertain world. While our hope may be to
create systems and sociotechnical entities that are infinitely
robust (can operate in all environmental conditions) or
infinitely resilient (can recover from all environmental
disturbances), this is neither thermodynamically nor
economically possible. A truism of SPC is that it is
infinitely expensive to keep a process in perfect control
(zero variance), or maintain control against all possible
assignable causes. Thus, a perfectly robust system is not
achievable. Further, system recovery from any out-of-range
environmental conditions would require energy to return to
the original process design. Major and irreparable cata-
strophic system failures would require an extreme (if not
infinite) energy requirement to recover previously achieved
system performance. A perfectly resilient system (one
capable of recovery from all disruptions) is therefore also
impossible.

Nonetheless, it is reasonable to consider design resilience
and operational resilience as performance measures that can
be explicitly quantified. In order to do so, engineers must be
able to specify which performance measure(s) will be of
interest to designers, users, and other stakeholders; the type
and magnitude of environmental change or system dynamics
events that are tolerable as control limits for system
performance; and which operational conditions/trajectories
are considered achievable and reasonably reachable for a
particular system. (This third condition is important in the
sense that, while global response to an event may result in a

distinct ‘‘local minimum’’ system state, the processes of
achieving that state may be considered unacceptable. As
an example, new U.S. Atlantic coast beaches may be
considered an environmentally and aesthetically positive
condition. However, creating those beaches out of pre-
viously inhabited towns, such as what has occurred in the
aftermath of Superstorm Sandy and the resulting winter
season storms, would be seen as an undesirable trajectory to
that new condition.)

Statistical control examples of resilience analyses

If the search for effective quantification of resilience is to
be successful, there should be available examples of how
these quantification processes would be applied in both
prospective and retrospective statistical control analyses.
Our goals, for the purposes of this discussion, would be to
look at a system that demonstrates limited resilience, and
then identify the appropriate control range beyond which
standard RPC or SPC tools might be suspect.

Three examples will be addressed in this paper: the fatal
accidents of the Space Shuttles Challenger (in 1986) and
Columbia (in 2003), and effects of the Fukushima earth-
quake (in 2011) affecting the local nuclear plant. Woods
(2004) has commented in some detail regarding resilience
in both Shuttle accidents. Woods’ discussion of ‘‘drift into
failure’’ (Dekker, 2011) addresses (although conceptually
and qualitatively) various types of dangerous shifts of
process control analysis and extrapolation. Thus, this
appears to be a reasonable starting point for this discussion.

It is important to recognize that it is difficult to define the
resilience of a space vehicle, or a nuclear power plant, in
the absence of three distinct considerations: the perfor-
mance measure of system components or the system as a
whole; the effects of various environmental conditions on
that system performance measure; and the role of prior
analyses and forecasts in the understanding of particular
assignable causes. Interestingly, all three of these cases
include a considerable flaw in statistical extrapolation of
condition/event effects on system performance, as well as
coupling between system components (indicating extra-
polation of acceptable SPC limits and coupling as fourth
and fifth issues of note).

In the case of the Challenger explosion, the primary
engineering cause was the failure of multiple O-rings after
launch causing rocket degradation and explosion (Lavine,
1991). The launch decision had been made based on a
review of O-ring deterioration (the performance measure)
as a function of pre-launch temperature (the environmental
condition). However, as shown in subsequent analysis, the
elastic behavior of the O-rings demonstrated a significant,
distinct, and previously known discontinuity in perfor-
mance as O-ring temperatures fall from the linear SPC
range of 53 F̊ (12 C̊) to a nonlinear range of 31 F̊ (0 C̊).
From an SPC perspective, extrapolating system resilience
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from the linear control range through the region of
discontinuity invalidates the previously developed (and
historically based) concept of the control limits. The failure
of the solid rocket booster then created an explosion that
cascaded through to the liquid tank—system components
that are highly coupled in physical, aerodynamic, and
thermodynamic senses, with energy flows too fast to permit
any response by crew or ground control. (Had the solid
rocket booster failure occurred after separation, of course,
no coupling would have existed, and thus the explosive
cascade would not have occurred.)

Similar statistical extrapolations have been described in
the analysis of erroneous SPC analyses prior to the Columbia
accident. The primary engineering cause in this case was a
loss of a large piece of insulating foam that struck the leading
edge of the orbiter wing, where re-entry temperatures are
highest (CAIB, 2003). Although multiple prior cases of foam
damage had been observed throughout the entire Shuttle
program, smaller areas of damage had been due to smaller
foam pieces (the environmental condition) in areas where re-
entry temperatures were lower (the performance measure).
The foam debris affecting Columbia’s leading edge was
perhaps two to three orders of magnitude larger than the
pieces used to model the SPC range of acceptable foam
damage. Finally, the leading edge damage resulted in
extremely rapid heating and destruction of critical vehicle
subsystems in a vehicle without the aerodynamic flexibility
to limit exposure of leading edges to additional heating
(physical, aerodynamic, and thermodynamic coupling pre-
venting any possible response by the crew).

In the case of the Fukushima nuclear power plant, the
response of the plant to the original magnitude 9.0
earthquake (environmental condition) was acceptable, and
the cooling systems and plant power continued to operate
(performance measure). However, due to the resulting
tsunami, seawater flooded the plant and damaged the
operating systems, backup generators, and containment
vessels. Earthquakes near shore do generate significant
tsunamis, and so these should be certainly considered
coupled energy flows. While plant designers had accurately
modeled effects on the plant by ground movement, they did
not estimate the potential size of the tsunami wave. The
statistical extrapolation in this case can be identified by an
examination of expected sizes of fault ruptures as a
function of earthquake magnitude (Darragh & Bolt,
1987). This analysis indicated that source fault rupture
lengths can be considerably longer than surface fault
lengths, and that these effects can have a nonlinear growth
with earthquake magnitude size. Physical and statistical
limits in those authors’ study limited the ability to project
fault rupture lengths for earthquakes above magnitude 6.7.
Extrapolations through two more orders of magnitude, with
resulting projections of seafloor rather than sea level
movement, further call into question the understanding of
possible SPC resilience designs.

In retrospect, the power plant designers may not have
known the limitations of the seafloor movement and
resulting tsunami height model projections. An important
consideration in such complex systems designs is that
modelers should specifically indicate the range of environ-
mental conditions their models have assumed, and the risks
of extrapolating beyond those ranges. While ignoring or
downplaying the role of outliers may be a reasonable
statistical technique in some cases, it is an unacceptable
violation of our ability to understand system performance
due to exceptional assignable causes.

Extending an assumed linear control relationship beyond
the range of linear system performance potentially
invalidates the control model, and compromises the
assumptions of the system’s capability to recover system
function. Errors of this type are not simply limited to the
original model, but propagate to all models using the
original assumption (perhaps unknowingly) to design
system behavior outside of its range of environmental
responsiveness.

In summary, each of the above examples demonstrates
the role of system performance and response to ranges of
environmental demand. Resilience can be described with
respect to environmental shifts or events. SPC techniques
have been used to estimate system behavior in all of these
examples. Invalid extrapolations of resilient and recover-
able system performance can be an outcome of poor
communication of assumptions regarding the range of
model validity. Design or operation decisions based on
poor use of SPC or RPC projections may be addressed by
the following question: Do designers and operators
understand the available behavior of the system throughout
the range of conditions where such performance is
expected and required?

System Models for Resilience Estimates

When addressing the range of conditions for which a
system may be considered resilient (capable of ongoing
functioning), designers and modelers must recognize that
system performance is not identical to that of their models.
Models of environmental conditions and changes are
distinct from models of system behavior. How these
models of environments and system behavior differ from
actual environmental dynamics and the performance of the
system-in-environment are critical, especially if linear
models are projected into nonlinear ranges of real-world
behavior.

Caldwell and Onken (2011), in their discussion of real-
time adjustment of ‘‘dynamic functional autonomy,’’
discuss how designers and operators need to respond to
both initial system designs of task requirements and
environmental ranges, and how prior events or current
operational plans may require adjustments of achievable
levels of autonomy and function allocation. As discussed
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above, engineering system designs include implicit models
of what levels of system performance are achievable over
what range of environmental conditions. Thus, environ-
mental conditions represent a potential SPC parameter to
estimate, forecast, or at least communicate between
designers.

A traditional view of system optimization may suggest
defining a region of ‘‘best achievable’’ system performance,
assuming a particular value of environmental conditions
(e.g., temperature, external winds, relative humidity).
However, this ‘‘optimal’’ performance may be quite brittle
to changes in conditions. While uniformity may be a
primary output goal in controlled engineering systems,
such uniformity of input conditions cannot be safely
assumed. Thus, environmental range conditions as esti-
mated from prior data or expert estimates can also be
described in terms of process control charting. Robust
control statistics such as interquartile range (Rocke, 1992)
can be used to more sensitively identify ‘‘out of control’’
range statistics (in this case, environmental conditions that
may violate assumed system performance models of
environmental range). Delphi methods of aggregating
forecasts among experts and extrapolations from prior data
are well known in the forecasting area (Caldwell, Wang,
Ghosh, Kim, & Rayalu, 2005), and may be used to generate
environmental conditions estimates for interquartile range
estimators.

Once the set of range data have been acquired, Rocke
suggests that upper and lower control limits be calculated
based on estimated interquartile range statistics

UCL~D
Q
4 Mean(IQR); LCL~D

Q
3 Mean(IQR) ð1Þ

where DQ
3 and DQ

4 are calculated from standard statistical
constants d2 and d3 found in SPC tables (Montgomery &
Runger, 2011; Rocke, 1992).

Even if we determine that our range of reasonable or
achieved environmental conditions does not exceed our
system models’ assumptions, there are still ‘‘cognitive’’
factors that affect our risk of moving systems into
extinction (rather than persistence, in Holling’s (1973)
terminology). Our control actions are subject to delays in
information availability about the current state of the
system being controlled, and delays in the delivery of a
control action command once it has been made. If those
parameters are described as k1 and k2, these delays (and
designers’ and operators’ correct modeling of them) will
significantly affect the effectiveness of any control actions
attempted.

As described above, there are multiple sources of
deviation between system designers’ models of the system-
in-environment performance, as well as system operators’
models of system-in-environment performance. When the
system is performing in a well-understood, appropriately
modeled linear input–output range, control actions are likely
to have clearly understood and well-managed effects on the

system. However, the critical source of information about the
potential ‘‘drift into failure’’ is the gap between the system
behavior change for a given input, and the modelers’ or
operators’ models for that behavior change. These two
functions might be considered axes of a phase space
description of system performance. When models and reality
are highly coupled and correlated, such phase spaces would
take the form of stable limit cycles (even if resulting system
behavior is not static). Discontinuities in system response or
underlying nonlinearities in input–output relations that are
not appropriately modeled would result in diverging errors
and thus unbounded limit cycles. This too is a potential
metric to address in the search for impacts on system
resilience originating from designers and operators of
complex systems.

Of course, assumptions of independent, non-correlated
events may also be invalid when considering system
behavior over time. Caldwell and Garrett (2011) discuss
issues of uncertainties regarding event magnitude and
dynamics when responders are required to effectively
coordinate resources, information, and tasks. Not only
single, but multiple events need to be considered. Many
recovery processes have, but do not explicitly address, a
characteristic time required to recover fully from one event
(tr) to the system control limit. When multiple events affect
the system, we must also consider time available between
events (ta). As the ratio tr /ta increases past 1.0, the
likelihood that effective system response and continued
resilience can be maintained decreases.

Conclusion

Despite an apparent lack of development or standardiza-
tion of the concept of resilience, the term has been in use,
with a firm and quantitative systems dynamics foundation,
for 40 years. The widespread conceptual appeal of the
concept has had the unexpected and negative result of the
creation of multiple, less well specified, and sometimes
inconsistent definitions that have served to increase confu-
sion and reduce mathematical consistency of application.

Progress is limited if the field continues to describe
resilience and robustness in purely qualitative terms, or as
static binary attributes (a system is either resilient/robust, or
it is not). Statistical tools in use for nearly 90 years, by
contrast, provide a clear description of process control
performance. SPC (and later RPC) tools describe system
‘‘control’’ in terms of a system performance measure;
assignable causes due to environmental or other conditions;
determinations of acceptable control ranges (as a tradeoff
among cost, feasibility, and other performance criteria);
ranges of acceptable statistical extrapolation; and energy
flow couplings that link environmental conditions or events
to system performance outcomes. Each of these properties
can quantitatively describe a system that performs in an
environmental context over time.
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In the attempt to design safe, reliable, robust, and
resilient systems, we as designers, operators, and users
must take care to understand the limits of our control
systems and performance capabilities. Additional efforts
are needed to help move discussions beyond justifying the
need for resilience to actual implementations. This is not an
abstracted or context-free discussion of system resilience,
but tied closely to our understanding of dynamic coupling
between societal, sociotechnical, and systems engineering
components.
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