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Abstract The asymptotic form of Dirac spinors in the field
of the Reissner–Nordström black hole is derived for the scat-
tering states (with E > mc2) obtaining the phase shifts of
the partial wave analysis of Dirac fermions scattered from
charged black holes. Elastic scattering and absorption are
studied giving analytic formulas for the partial amplitudes
and cross sections. A graphical study is performed for ana-
lyzing the differential cross section (forward/backward scat-
tering) and the polarization degrees as functions of the scat-
tering angle.

1 Introduction

The problem of the quantum fermions scattered from
Schwarzschild black holes was studied either in particular
cases [1,2] or by using combined analytical and numerical
methods [3–7]. Recently we performed an analytic study of
this process proposing a version of partial wave analysis that
allowed us to write down closed formulas for the scatter-
ing amplitudes and cross sections [8]. The analytic approach
improves our understanding of the quantum mechanisms that
governs fermion scattering by black holes.

In the present paper we would like to extend this analytic
study to the problem of the Dirac fermions scattered from
Reissner–Nordström charged black holes since it seems that
this problem was neglected so far. The studies performed
in the existing literature have been concentrating mainly on
scalar field [9–12] and electromagnetic scattering [13–16]
on charged black holes. For these reasons we concentrate on
studying the problem of fermion scattering on a Reissner–
Nordström charged black hole by using analytical and graph-
ical methods. This phenomenon could be interesting since
along with the gravitational interaction we can study the
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effect of the interaction between the charges of the black
hole and the fermion charge upon the scattering process. In
addition the results related to the fermion absorption by the
Schwarzschild black hole will be modified depending on the
electric attraction/repulsion between the black hole charge
and the fermion charge.

We deduce the asymptotic form of the Dirac spinors in
the Reissner–Nordström geometry deriving the phase shifts
and the partial amplitudes of elastic scattering as well as
the absorption cross section. We present the principal ana-
lytic results without extended examples or comments that
exceed the space of this short paper. We use the methods
and notations of Ref. [8] and Planck’s natural units with
G = c = h̄ = 1.

2 Asymptotic spinors in Reissner–Nordström geometry

The Dirac equation in curved spacetimes is defined in frames
{x; e} formed by a local chart of coordinates xμ, labeled by
natural indices, α, . . . , μ, ν, . . . = 0, 1, 2, 3, and an orthog-
onal local frame and coframe defined by the gauge fields (or
tetrads), eα̂ and, respectively, êα̂ , labeled by the local indices
α̂, . . . , μ̂, . . . with the same range. In local-Minkowskian
manifolds (M, g), having as a flat model the Minkowski
spacetime (M0, η) of metric η = diag(1,−1,−1,−1), the

gauge fields satisfy the usual duality conditions, êμ̂
α eα

ν̂
=

δ
μ̂

ν̂
, êμ̂

α eβ

μ̂
= δ

β
α and the orthogonality relations, eμ̂ · eν̂ =

ημ̂ν̂ , êμ̂ · êν̂ = ημ̂ν̂ . The gauge fields define the 1-forms

ωμ̂ = êμ̂
ν dxν giving the line element ds2 = η

α̂β̂
ωα̂ωβ̂ =

gμνdxμdxν .
Let us consider the Dirac equation, iγ α̂Dα̂ψ − mψ = 0

of a free spinor field ψ of mass m, written with our previous
notations [8] in the frame {x; e} defined by the Cartesian
gauge [17,18],

ω0 = w(r)dt , (1)
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ω1 = 1

w(r)
sin θ cos φ dr + r cos θ cos φ dθ

−r sin θ sin φ dφ, (2)

ω2 = 1

w(r)
sin θ sin φ dr + r cos θ sin φ dθ

+r sin θ cos φ dφ, (3)

ω3 = 1

w(r)
cos θ dr − r sin θ dθ, (4)

in the central gravitational and Coulomb field of a charged
black hole of mass M and charge Q > 0 with the Reissner–
Nordström line element

ds2 = η
α̂β̂

ωα̂ωβ̂

= w(r)2dt2 − dr2

w(r)2 − r2(dθ2 + sin2 θ dφ2) , (5)

defined on the radial domain Dr = (r+,∞) where

w(r) =
[

1 − 2M

r
+ Q2

r2

] 1
2

=
(

1 − r+
r

) 1
2
(

1 − r−
r

) 1
2
,

(6)

and r± = M ± √
M2 − Q2 provided Q < M . The corre-

sponding Coulomb potential gives the potential energy,

Q

r
→ V (r) = eQ

r
, (7)

of the fermion carrying the elementary electric charge e =
±√

α.1 In the following we study the scattering solutions of
the Dirac equation in the asymptotic domain where r � r+.

We have shown [17,19] that in the gauge we consider here
the spherical variables of the Dirac equation can be separated
just as in the case of the central problems in Minkowski
spacetime [20]. Consequently, the Dirac equation can be put

in Hamiltonian form, HDψ̃ = i∂t ψ̃ where ψ̃ = rw(r)
1
2 and

the Hamiltonian operator [19]

HD = −i
w(r)2

r2 (γ 0γ i x i )
(

1 + xi∂i
)

− i
w(r)

r2 (γ i x i )K

+w(r)γ 0m + V (r), (8)

depends on the Dirac angular operator K = γ 0 (2S · L + 1),
which is associated with the angular variables. Then the
particle-like solutions of energy E are the common eigen-
spinors of the operators {HD, K , J3} corresponding to the
eigenvalues {E, κ,m j },

UE,κ,m j (x) = UE,κ,m j (t, r, θ, φ) = e−i Et

rw(r)
1
2

×
[
f +
E,κ (r)�+

m j ,κ
(θ, φ) + f −

E,κ (r)�−
m j ,κ

(θ, φ)
]
, (9)

1 In this system α � 1
137 is the fine structure constant while the electron

mass is me = √
αG � 4.178 10−23.

expressed in terms of radial wave functions, f ±
E,κ , and the

usual four-component angular spinors �±
m j ,κ

[20]. These
spinors are orthogonal to each other, and they are labeled
by the angular quantum numbers m j and

κ =
{

j + 1
2 = l for j = l − 1

2 ,

− (
j + 1

2

) = −l − 1 for j = l + 1
2 ,

(10)

which encapsulates the information as regards the quan-
tum numbers l and j = l ± 1

2 as defined in Refs. [20,21]
(while in Ref. [7] κ is of opposite sign). We note that the
antiparticle-like energy eigenspinors can be obtained directly
using charge conjugation as in the flat case [22].

Thus the problem of the angular motion is completely
solved as in special relativity and we can proceed as in Ref.
[20] for deriving the pair of radial equations we need for
determining the radial functions, f ± (denoted from now on
without indices). These can be seen as the components of the
two-component vectors, F = ( f +, f −)T , while the radial
equations can be written as the eigenvalue problem HrF =
EF of the radial Hamiltonian [19],

Hr =
⎛
⎜⎝
m w(r) + V (r) −w(r)2 d

dr + κ
r w(r)

w(r)2 d
dr + κ

r w(r) −m w(r) + V (r)

⎞
⎟⎠ . (11)

Notice that the standard relativistic scalar product of the Dirac
theory [19] now reduces to the radial scalar product

(F ,F ′) = 〈U,U ′〉 =
∫
Dr

dr

w(r)2 F†F ′, (12)

since the angular spinors are orthonormalized with respect
to their own angular scalar product [20].

The resulting radial problem cannot be solved analyti-
cally, such that we are forced to resort to the same method of
approximation as in Ref. [8] by using a convenient Novikov
dimensionless coordinate [23,24]. In the present case we
chose the Novikov coordinate corresponding to the event
horizon of radius r+ defined as

x =
√

r

r+
− 1 ∈ (0,∞). (13)

Then, by changing the variable, multiplying by x−1(1 + x2)

and introducing the notations

μ = r+m, ε = r+E, δ =
√
r−
r+

, (14)
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we rewrite the exact radial problem in the form EF = 0 with
the new matrix operator (15)

E =
⎛
⎝ A B

C D

⎞
⎠ , (15)

with A, B, C, D given by

A = μ
√

1 + x2 − δ2 − ε

(
x + 1

x

)
+ eQ

x
,

B = −1

2

1 + x2 − δ2

1 + x2

d

dx
+ κ

√
1 + x2 − δ2

1 + x2 ,

C = 1

2

1 + x2 − δ2

1 + x2

d

dx
+ κ

√
1 + x2 − δ2

1 + x2 ,

D = −μ
√

1 + x2 − δ2 − ε

(
x + 1

x

)
+ eQ

x
,

suitable for further approximations.
For very large values of x , we can use the Taylor expansion

of these equations with respect to 1
x , neglecting the terms

of the order O(1/x2). We obtain thus the asymptotic radial
problem [8,25], which can be rewritten as E ′F = 0 where
the new matrix operator takes the form

E ′ =
⎛
⎜⎝

1
2

d
dx + κ

x −x(μ + ε) − 1
x (ζ + β)

x(ε − μ) − 1
x (ζ − β) 1

2
d

dx − κ
x

⎞
⎟⎠ ,

(16)

after reversing between themselves the lines and introducing
the notations

ζ = m

2
(r+ − r−) = 1

2
μ(1 − δ2), (17)

β = ε − eQ = ε − eδr+. (18)

As in the Dirac–Coulomb case [21] it is useful to put in
diagonal form the terms proportional to x by using the matrix

T =
(−i

√
μ + ε i

√
μ + ε√

ε − μ
√

ε − μ

)
, (19)

for transforming the radial doublet as F → F̂ = T−1F =
( f̂ +, f̂ −)T . Then we obtain the new system of radial equa-
tions

x

2

d f̂ ±

dx
± i

(
ζμ − βε

ν
− νx2

)
f̂ ± =

(
κ ± i

ζε−βμ

ν

)
f̂ ∓,

(20)

where ν = √
ε2 − μ2. These equations can be solved analyt-

ically for any values of ε, but here we restrict ourselves to the
scattering modes corresponding to the continuous spectrum
ε ∈ [μ,∞). These solutions can be expressed in terms of
Whittaker functions as [8,25]

f̂ +(x) = C+
1

1

x
Mρ+,s(2iνx

2) + C+
2

1

x
Wρ+,s(2iνx

2) , (21)

f̂ −(x) = C−
1

1

x
Mρ−,s(2iνx

2) + C−
2

1

x
Wρ−,s(2iνx

2) , (22)

where we denote

s =
√

κ2 + ζ 2 − β2, ρ± = ∓1

2
− iq, q = βε − ζμ

ν
.

(23)

The integration constants must satisfy [25]

C−
1

C+
1

= s − iq

κ − iλ
,

C−
2

C+
2

= − 1

κ − iλ
, λ = βμ − ζε

ν
. (24)

We observe that the functions Mρ±,s(2iνx2) = (2iνx2)s+ 1
2

[1 + O(x2)] are regular in x = 0, where the functions
Wρ±,s(2iνx2) diverge as x1−2s if s > 1

2 [26]. These solu-
tions will help us to find the scattering amplitudes of the Dirac
particles by charged black holes, after fixing the integration
constants.

3 Partial wave analysis

The scattering of Dirac fermions on a charged black hole
is described by the energy eigenspinor U whose asymptotic
form,

U → Uplane(p) + A(p,n)Usph, (25)

for r → ∞ (where the gravitational and Coulomb fields
vanish) is given by the plane wave spinor of momentum p,
the free spherical spinors of the flat case behaving as

Usph ∝ 1

r
eipr−i Et , p =

√
E2 − m2 = ν

r+
, (26)

since in the asymptotic zone the fermion energy is that of
special relativity, E = √

m2 + p2. Here we fix the geome-
try such that p = pe3, while the direction of the scattered
fermion is given by the scattering angles θ and φ, which are
just the spheric angles of the unit vectorn. Then the scattering
amplitude

A(p,n) = f (θ) + ig(θ)
p ∧ n
|p ∧ n| · σ (27)
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depends on the two scalar amplitudes, f (θ) and g(θ), which
can be studied by using partial wave analysis.

3.1 Phase shifts

The partial wave analysis exploits the asymptotic form of
the exact analytic solutions which satisfy suitable boundary
conditions that in our case might be fixed at the (exterior)
event horizon (where x = 0). Unfortunately, here we have
only the asymptotic solutions (21) and (22) whose integration
constants cannot be related to those of the solutions near the
event horizon without resorting to numerical methods [1–7].
Therefore, we must choose suitable asymptotic conditions
for determining the integration constants.

The arguments presented in Appendix C of Ref. [8] and
briefly summarized here in Appendix A show that for Q = 0
we may obtain elastic collisions, with real phase shifts and a
correct Newtonian limit for large angular momenta, only if
we adopt the general asymptotic condition C+

2 = C−
2 = 0,

eliminating thus the terms that diverge for x → 0. We believe
that it is natural to keep this condition in the most general
case of the Reissner–Nordström metric if we desire to have
a smooth limit for Q → 0.

The asymptotic form of the doublet F = T F̂ can be
obtained as in Ref. [8] observing that now we must replace
νx2 = p(r − r+). Thus we obtain the definitive asymp-
totic form of the radial functions of the scattered fermions by
charged black holes,

F =
(
i
√

ε + μ ( f̂ − − f̂ +)√
ε − μ ( f̂ + + f̂ −)

)

∝
√
E + m sin√
E − m cos

(
pr − πl

2
+ δκ + ϑ(r)

)
, (28)

whose point-independent phase shifts δκ give the quantities

Sκ = e2iδκ =
(

κ − iλ

s − iq

)
�(1 + s − iq)

�(1 + s + iq)
eiπ(l−s). (29)

Notice that the values of κ and l are related as in Eq. (10),
i.e. l = |κ| − 1

2 (1 − sign κ). The remaining point-dependent
phase,

ϑ(r) = −pr+ + q ln[2p(r − r+)] , (30)

which does not depend on angular quantum numbers, may
be ignored as in the Dirac–Coulomb case [7,21].

We arrived thus at the final result (29) depending on the
parameters introduced above that can be expressed in terms of
physical quantities m, M, e, Q . . . etc. In addition, assum-
ing that the inequality |β| ≥ |ζ | holds even for p = 0, it is
convenient to introduce the new real parameter k obeying

k2 = β2 − ζ 2 = q2 − λ2, (31)

which allows us to write simply s = √
κ2 − k2. Then by

using Eq. (26b) we obtain our principal new result, which
holds for massive fermions:

k =
[
(r+E − eQ)2 − m2

4
(r+ − r−)2

] 1
2

, (32)

q = r+ p + M
m2

p
− eQ

E

p
, (33)

λ = mM
E

p
− eQ

m

p
. (34)

Obviously, in the case of the massless neutral fermions (with
m = e = 0) we are left with the unique parameter q = r+ p
since then λ = 0 and k = q. Hereby we see that the parameter
s has a special role to play since it can take either real values
or pure imaginary ones regardless of the fermion mass.

3.2 Elastic scattering

For the real values of s the scattering is elastic since in this
case the identity (31) guarantees that the phase shifts of Eq.
(29) are real numbers such that |Sκ | = 1. Obviously, this
happens only when κ (at given p) satisfies the condition

|κ| ≥ k̃ + 1 , (35)

where k̃ = floor(k) is the greatest integer less than k. Then
the scalar amplitudes of Eq. (27),

f (θ) =
∞∑
l=0

al Pl(cos θ), g(θ) =
∞∑
l=1

bl P
1
l (cos θ), (36)

depend on the following partial amplitudes [7,21]:

al = (2l + 1) fl = 1

2i p

[
(l + 1)(S−l−1 − 1) + l(Sl − 1)

]
,

bl = (2l + 1)gl = 1

2i p
(S−l−1 − Sl) , (37)

and they give rise to the elastic scattering intensity or differ-
ential cross section,

I(θ) = dσ

d�
= | f (θ)|2 + |g(θ)|2 , (38)

and the polarization degree,

P(θ) = −i
f (θ)∗g(θ) − f (θ)g(θ)∗

| f (θ)|2 + |g(θ)|2 . (39)

This last quantity is interesting for the scattering of massive
fermions representing the induced polarization for an unpo-
larized initial beam.
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3.3 Absorption

The absorption is present in the partial waves for which we
have

1 ≤ |κ| ≤ k̃. (40)

Here we meet a branch point in s = 0 and two solutions
s = ±i |s| = ±i

√
k2 − κ2, between them we must chose

s = −i |s| since only in this manner we select the physical
case of |Sκ | < 1. More specific, by substituting s = −i |s| in
Eq. (29) we obtain the simple closed form

|Sκ | = |S−κ | = e−2�δκ = e−π |s|
√

sinh π(q − |s|)
sinh π(q + |s|) , (41)

showing that 0 < |Sκ | < 1 since |s| < q for any (p, κ)

obeying the condition (40). Moreover, we can verify that in
the limit of large momentum (or energy) the absorption tends
to become maximal since

lim
p→∞ |Sκ | = 0 , (42)

regardless of the fermion mass.
Under such circumstances we can calculate the absorption

cross section that reads [7]

σa =
∑
l≥1

σ l
a(p) = 2π

p2

k̃∑
l=1

l(1 − |Sl |2) , (43)

since for s = −i |s| we have |S−κ | = |Sκ | as in Eq. (41). This
cross section can be calculated at any time as a finite sum of
the partial cross sections whose definitive closed form,

σ l
a(p) = θ(k − l)

2πl

p2

×
[

1 − e−2π
√
k2−l2 sinh π(q − √

k2 − l2)

sinh π(q + √
k2 − l2)

]
,

(44)

is derived according to Eqs. (41) and (43), while the condition
(40) introduces the Heaviside step function θ(k − l). Hereby
we understand that absorption arises in the case of the partial
wave l for the values of p (or E) satisfying the condition
k > l. This means that for any fixed value of l there is a
threshold, El , defined as the positive solution of the equation

|r+El − eQ| =
√
l2 + 1

4
m2(r+ − r−)2. (45)

A similar condition with (45) was obtained in Ref. [27] for
absorption on a dilaton black hole. This indicates that the

fermions with |κ| = l can be absorbed by a black hole only
if E ≥ El . The existence of these thresholds is important
since these keep under control the effect of the singularities
in p = 0.

Finally, we observe that in the high-energy limit all these
absorption cross sections tend to the event horizon (apparent)
area, indifferent on the fermion massm ≥ 0, as it results from
Eq. (42), which yields

lim
p→∞ σa = lim

p→∞
2π

p2

k̃∑
l=1

1 = lim
p→∞

π

p2 k̃(k̃ + 1) = πr2+,

(46)

since k̃(k̃ + 1) ∼ k2 ∼ r2+ p2.

4 Graphical discussion of the results

Let us now discuss some physical consequences of our results
encapsulated by the formulas presented in the previous sec-
tions. For a better understanding of the analytical results we
perform a graphical analysis of the differential cross section
in terms of the scattering angle θ .

All the plots are obtained using the methods described in
Ref. [8] where we used a technique proposed some time ago
by Yennie et al. [28], which consists of replacing the series
from Eq. (36) by the mth reduced ones,

f (θ) = 1

(1 − cos θ)m1

∑
l≥0

a(m1)
l Pl(cosθ), (47)

g(θ) = 1

(1 − cos θ)m2

∑
l≥1

b(m2)
l P1

l (cos θ). (48)

The recurrence relations satisfied by the Legendre polynomi-
als Pl(x) , P1

l (x) lead to the iterative rules giving the reduced
coefficients in any order

a(i+1)
l = a(i)

l − l + 1

2l + 3
a(i)
l+1 − l

2l − 1
a(i)
l−1, (49)

b(i+1)
l = b(i)

l − l + 2

2l + 3
b(i)
l+1 − l − 1

2l − 1
b(i)
l−1, (50)

if we start with a(0)
l = al and b(0)

l = bl as defined by Eqs.
(37). As in Ref. [8] using the second iteration for f (m1 = 2)

and the first one for g (m2 = 1) seems to be satisfactory
without distorting the analytical results.

In the following we focus our analysis on scattering from
small or micro black holes (with M ∼ 1015 − 1022 kg) since
in this case the wave length of the fermion (λ = 2πh/p) and
the Schwarszchild radius (rS = 2M) have the same order of
magnitude so that we can observe the presence of glory and
orbiting scattering.
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Fig. 1 Comparison between the scattering cross section of Reissner–
Nordström black hole and the Schwarzschild black hole for p = 0.2m
and mM = 3

Comparing the scattering cross section of a Reissner–
Nordström black hole with that of a Schwarzschild black
hole (see Fig. 1) one can observe several things. First is that
in the case of scattering by the Reissner–Nordström black
hole the differential cross section will increase if the charge
of the black hole and the incoming fermions charge have
the same sign (the dash-dotted line in Fig. 1). Thus we can
say that the electric repulsion increases the scattering cross
section as expected, according to (45), comparatively with
the scattering on Schwarzschild black hole (the solid line in
Fig. 1). In the opposite case, when the black hole charge and
the incoming fermions charge have opposite signs, then the
electric attraction between the two charges will imply that
more fermions are absorbed by the black hole, thus lowering
the scattering cross section comparatively with the scattering
on Schwarzschild black hole (as can be seen from the dotted
line in Fig. 1). Figure 1 also reveals the fact that the width
of the glory peak becomes more pronounced when the sign
of the total black hole charge is the same as the charge of
the fermion, respectively, the glory peak’s width decreases if
the black hole and the fermions have opposite signs. We can
conclude that when the charge of the black hole and fermions
charge have the same sign, the glory scattering will be a phe-
nomenon which becomes important comparatively with the
Schwarzschild case.

In Figs. 2 and 3 we present the differential cross section
in terms of the scattering angle for the Reissner–Nordström
black hole. The effects of electric interaction (between the
black hole and fermion charges) on the glory and orbit-
ing scattering can also be observed. We have found that
if the black hole has opposite charge than the incoming
fermion then, as we increase the charge on the black hole,
the glory (i.e. backward scattering at angles close to π ) starts
to decrease up to a point when it will disappear completely
(see Fig. 2). The same is true for the orbiting scattering (i.e.
scattering for θ < π ) for which we observe a decrease in
oscillations as the black hole charge increases. This should
not come as a surprise since in this case the opposite signs

Fig. 2 Reissner–Nordström black hole scattering cross section for p =
0.15m,mM = 2.5 and different negative values of eQ. In all plots
α ≈ 1/137 represents the fine structure constant

Fig. 3 Reissner–Nordström black hole scattering cross section for p =
0.3m,mM = 1.5 and different positive values of eQ

of the charges will increase the absorption in the black hole.
On the contrary if the black hole and fermion’s charges have
the same sign (see Fig. 3), then the glory peak will increase
as the black hole becomes more charged. The same is true
for the orbiting scattering for which the oscillatory behavior
becomes more pronounced as we add more charge on the
black hole. Regarding the forward scattering, we have found
it to be divergent for θ → 0 as can be seen from Fig. 2. This
is in fact an effect of the long range nature of the gravitational
and electric potentials, which both behave as 1/r .

Regarding the effects of the black hole’s charge on the
induced polarization after the scattering of an initially unpo-
larized beam we can say according to Fig. 4 the following:
(i) compared with the Schwarzschild polarization (dotted
line) the Reissner–Nordström polarization is a less oscillat-
ing function if the black hole has opposite charge that the
incoming fermions (dashed line), respectively, the oscilla-
tions become more fervent if the black hole charge has the
same sign as the incoming fermions (solid line); (ii) the oscil-
lations appearing in the polarization can be seen as resulting
from the oscillatory behavior of glory/orbiting scattering as
well as from the forward/backward one.

The dependence of the absorption cross section in terms
of energy (E/m) is given in Fig. 5, where the plots were
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Fig. 4 Comparison of the Schwarzschild polarization (dotted line)
with Reissner–Nordström polarization (dashed line for positive charge
on the black hole, respectively solid line for negative charge on the black
hole) for p = 0.6m and mM = 1

Fig. 5 Partial absorption cross section as a function of E/m for the
Reissner–Nordström black hole with eQ = 0.25α and mM = 0.25, for
given values of angular momentum l = 1, 2, 3, 4

obtained for l = 1, 2, 3, 4. We observe that the modes with
small angular momenta have the most important contribu-
tion to the absorption, because as we increase l the maxima
observed in Fig. 5 becomes smaller. Also we observe that the
maxima are shifted to the right as we increase the value of l.
Our graphical result for the absorption cross section is simi-
lar to those obtained in [27], where the absorption of scalar
particles on a dilaton black hole was studied.

5 Concluding remarks

This is the basic framework of the relativistic partial wave
analysis of the Dirac fermions scattered by charged black
holes in which we consider exclusively the contribution of
the scattering modes. Our results are in accordance with the
Newtonian limit since in the large-l limits and for very small
momentum we can take s ∼ |κ| ∼ l and λ ∼ q so that our
phase shifts (29) become just the Newtonian ones [1,2].

The above results encapsulate a new interesting particu-
lar case, namely, Dirac–Coulomb scattering in the presence
of the gravitational field of the charged target that gives rise

to a Schwarzschild gravitational field instead of a Reissner–
Nordström one. In this situation we must take δ → 0 every-
where apart from the Coulomb term so that r+ → 2M and
r− → 0. Thus we are left with the partial waves given by Eq.
(29) but with the new parameters

k →
[
(2ME − eQ)2 − m2M2

] 1
2

(51)

q → 2Mp + M
m2

p
− eQ

E

p
(52)

λ → mM
E

p
− eQ

m

p
. (53)

Now we observe that for Q = 0 we recover the results of Ref.
[8] concerning the collision between a Dirac fermion and a
Schwarzschild (neutral) black hole. Moreover, if we keep
Q �= 0 taking M → 0 we recover the well-known Dirac–
Coulomb scattering in Minkowski spacetime [21] with the
parameters

k → |eQ|, q → −eQ
E

p
, λ → −eQ

m

p
. (54)

The conclusion is that here we derived the most general
results of the Dirac–Coulomb scattering in central gravita-
tional fields.
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Appendix A: Condition of elastic scattering

Let us briefly present the main arguments for choosing the
asymptotic conditions C+

2 = C−
2 = 0 in deriving the phase

shifts (29). It is convenient to introduce the new notations
(up to a real arbitrary common factor)

C+
1 = eiθ1 , C+

2 = Ceiθ2 , (A.1)

C−
1 = eθ1

s − iq

κ − iλ
, C−

2 = − C

κ − iλ
eiθ2 ,

whereC , θ1, and θ2 are real-valued parameters. Then, accord-
ing to Eq. C2 from Appendix C in Ref. [8], the general expres-
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sion of the phase shifts reads

e2iδκ = κ − iλ

s + iq

�(1+2s)
�(s+iq)

eiπ(l−s)

�(1+2s)
�(s−iq)

− Ceiθe−iπ(s+iq)
. (A.2)

We observe that the phase shifts depend only on two real
integration constants, C , and the relative phase θ = θ1 − θ2.

The elastic scattering can arise only when we have∣∣e2iδκ
∣∣ = 1. There are two cases. In the first one, when s = |s|

is a pure real number, the equation
∣∣e2iδκ

∣∣ = 1 has two real
solutions, C = 0 and

C = e−πq �(1 + 2s)

|�(s + iq)|2
×

[
ei(πs−θ)�(s + iq) + e−i(πs−θ)�(s − iq)

]
. (A.3)

In the second case when s = ±i |s| is a pure imaginary num-
ber, the equation

∣∣e2iδκ
∣∣ = 1 has no real solutions.

It can easily be showed (for details see Ref. [8]) that for
Q = 0 and large values of l the phase shifts A.2 have a
correct Newtonian limit

e2iδNl = �(1 + l − iq)

�(1 + l + iq)
, q = 2Mp + Mm2

p
(A.4)

only if we chose the asymptotic condition C = 0 (i.e. C+
2 =

C−
2 = 0). Otherwise, if we consider the solution (A.3) we

obtain non-determinate phase shifts

e2iδκ = −κ − iλ

s + iq
ei(πl+πs−2θ), (A.5)

which still depend on the arbitrary phase θ . Obviously, in this
case we cannot talk about the Newtonian limit.
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