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Two numerical models are investigated to model random water waves (RWWs) transformation due to mild depth variation.
Modelling of steady on-shore propagation of small-amplitude RWWs is based on superposition principle of waves of different
heights and directions. Each component is simulated through either the parabolic model (PM) or the elliptic model (EM). PM
simulates weak refraction, diffraction, shoaling, and wave breaking. EM simulates strong refraction, diffraction, and shoaling.
Both models neglect wave reflection. Comparison between PM and EM, in test cases that are experimentally measured, proved
that both models give good results for unidirectional and narrow-directional RWW. However, EM is more accurate in modelling
broad-directional RWWs.

1. Introduction

In studying many coastal engineering problems, it is essential
to have accurate information on wave conditions in the
area of interest. These wave conditions, including the wave
height and the dominant wave direction, are usually obtained
through a wave transformation model that transfers the wave
characteristics from the location where the wave data are
collected to the site of concern. Because of depth variation,
coastal currents, artificial structures, and geological features,
waves change their propagation direction and speed and
redistribute their energy along wave crests as waves approach
the shore. Inside the surf zone, where breaking is an
important feature, waves have more severe transformation.

Researchers have developed the mild-slope equation to
simulate shoaling, refraction, reflection, diffraction, and
breaking of regular water waves, when the rate of change
of depth bottom slope up to 1 : 3 [1] and the current is
small within wave length. It is a two-dimensional partial
differential equation of elliptic type that can be solved
as a boundary-value problem using specified appropriate
boundary conditions. Its computational requirements are
too large relative to the ray tracing method, since the entire
domain must be solved simultaneously and the grid size
must be small enough to allow eight to ten nodes within
a wavelength. Ebersole presented a modified method as an

efficient way to solve the elliptic form of the mild-slope
equation [2].

Situation becomes more complex when modeling of
random water waves (RWWs) transformation. The extended
mild-slope equation of Suh et al. [3] and Lee et el. [4]
are compared analytically and numerically to determine
their applicability to random wave transformation. The
phenomenon of breaking of RWW was treated also in
many works; see, for example, [5], where two numerical
formulations of breaking phenomenon were implemented in
a numerical model for RWW propagation. A low-frequency
spectrum in a harbour excited by short and random incident
waves was modeled in [6].

An alternative numerical scheme, the parabolic approx-
imation, has been developed and applied to the mild-slope
equation to reduce the computational effort. However, the
parabolic approximation has two disadvantages compared to
the elliptic formulation; it assumes weak refraction and no
wave reflection [7].

In the following sections, we will introduce both the
parabolic (PM) and elliptic models (EM) for single wave
and extend them to model RWW propagation. The incident
RWW is decomposed into a spectrum of multiple waves.
Each wave, has its different height and direction, is propa-
gated by PM or EM, and then superposition is imposed. In
Section 4, both models are compared to experimental data
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of Vincent and Briggs [8] to investigate their limitations and
accuracy.

2. The Parabolic Model

Application of the parabolic equation method to investigate
wave transformation needs that the propagation directions
of all concerned components of the wave field to be confined
to some narrow band of directions centered about the
dominant propagation direction. The allowed directional
bandwidth is limited by the maximum allowed error in the
principal direction.

2.1. Derivation of the Parabolic Governing Equation. Kirby
started with the mild-slope equation [9]
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cg= group velocity; c = wave celerity; k = wave number; σ =
wave frequency; ε breaking coefficient;∇ = (∂/∂x, ∂/∂y).

The last term in (1) is dissipation function ε to model
frictional dissipation [10] or wave breaking [9]. Introducing
the harmonic time representation of the wave potential as

Φ = ϕe−iωt, (2)

where ω, angular frequency,
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Then, (1) can be simplified as
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Rewrite (5) following the splitting method used by Kirby [7]
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The goal of the parabolic approximation is to split the
reduced elliptic equation (6) for φ into parabolic equations
for a forward scattered wave φ+ and a backward scattered
wave φ−, where

φ = φ+ + φ−. (8)

According to the parabolic assumption of no reflection the
reflected wave φ− is neglected, and (6) is shown by Kirby and

Dalrymple [9] to be parabolic equation of φ+ because it has
a first derivative in the longitudinal direction x
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where M′φ = (ccgφy)y .

The amplitude form of the parabolic equation is derived
from (9) by making the substitution
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∫ B
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The finite difference scheme for (11) follows directly using
the Crank-Nicolson method for performing an implicit
update for each row in x-direction. Denote x positions
by “i” superscripts and y positions “ j” subscripts. The
computations proceed row by row by updating values of A
from the known “i” row to the unknown “i + 1” row. The
difference scheme will be

CP1ijA
i+1
j−1 + CP2ijA

i+1
j + CP3i1j A

i+1
j+1

= C1ijA
i
j−1 + C2ijA

i
j + C3i1j A

i
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(12)

2.2. Parabolic Modeling of Random Waves Propagation. It
is assumed that the water surface is composed of multiple
components of waves. Each wave has angular frequency ωm

and direction θn. The refraction, shoaling, and diffraction of
discrete wave components are assumed to be governed by
the parabolic model of Kirby and Dalrymple [9]. Rewrite
(11), the governing equation of complex wave amplitude, by
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replacing A by Amn. Indices m and n will be used to represent
frequency and direction, respectively [11]
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where cgm = group velocity cm = wave celerity and km = wave
number of the mth component.

The discretization process of the directional spectrum
results in wave components of amplitude Amn with an
associated frequency fm and an angle of incidence θn. The
transformed spectrum can be evaluated at any grid point
by the superposition of the different wave components.
Assuming a Rayleigh distribution of the wave heights and
using the computed information about spectral components
at locatio {x, y}, the significant wave height can be computed
as
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where Nf and Nθ = number of discretizations in frequency
and direction, respectively.

3. The Elliptic Model

The mild-slope equation (1) has been used to study various
kinds of combined refraction, diffraction, shoaling, and
reflection phenomena. It was reported that the solutions
from the mild-slope equation agreed excellently with the
experimental data for waves scattered by a submerged shoal
[12]. It was also found that the mild-slope equation could
produce accurate solution even the bottom slope is large as
45◦ [10].

To decrease computational effort, a new numerical
method to solve the boundary-value problem of the mild-
slope equation is needed. Ebersole [2] presented this method
as an efficient way to solve the elliptic form of the mild-slope
equation. Balas and Inan [13] used the same technique of
Ebersole [2] to solve a field wave transformation problem.
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Figure 2: Input directional spectra.

3.1. Derivation of the Elliptic Governing Equation. Following
Liu [1], write the wave velocity potential as

Φ = Z(z)φ = − ig cosh(z + h)
cosh kh

A

ω
eis, (15)

where both A and s are real functions. Substituting (15)
into (1) and multiplying the resulting equation by A/ω, for
monochromatic steady propagation, we can get
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We can write ∇s = |∇s| ∧s and kω = c, then (17) will take
the form

∇.
{
ccg|∇s| ∧s A2

}
= 0. (18)

The wave energy propagates in the
∧
s direction, and, due

to effects of diffraction, the wave energy flux is no longer
conservative along wave rays. The curves tangential to the
effective wave number vector ∇s may be viewed as the
“effective wave rays” for the mild-slope equation; see Liu [1].
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Figure 3: Comparison between PM and EM and experimental data
for cases (U3 and N3).

We now define θ, the angle of wave propagation as

∇s = |∇s|
(

cos θi + sin θ j
)
. (19)

The eikonal equation and the transport equation can be
recast as
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where H = wave height = double wave amplitude, A.
The wave number vector is irrotational, hence

∂
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∂
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(|∇s| cos θ) = 0. (22)

Equations (20), and (21), and (4) constitute the coupled
governing equations for H , |∇s|, θ.

3.2. Numerical Solution. A three-step approximate iterative
scheme to solve these equations is developed [2]
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Figure 4: Comparison between PM and EM and experimental data
for cases (U4 and N4).

(i) First, using the known depth, the linear dispersion
relation is solved for the wave number, k, and then
the wave celerity, c, and the group velocity, cg . Snell’s
law is formulated as

sin θo
co

= sin θ

c
, (23)

where co = deep water wave celerity = g/2π; θo =
initial angle of incidence. Through Snell’s law, the
direction θ is obtained at all grid points. The
refraction and shoaling coefficients are calculated as

Kr =
(

cos θ0

cos θ

)1/2

, Ks = 1

(1 + 2kh/ sinh 2kh)1/2 . (24)

An initial approximation for the wave height at grid
points is estimated by

H = HoKrKs. (25)

(ii) Second, the refraction problem is solved. We can
write (22) as

∂As

∂x
+
∂Ac

∂y
= 0, (26)
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Figure 5: Comparison between PM and EM and experimental data
for cases (B3 and B4).

where As = |∇s| sin θ; Ac = |∇s| cos θ. Express the
x-derivative as forward and the y-derivative as central

Asi+1, j = Asi, j + r
(
Aci, j+1 − Aci, j−1

)
, (27)

where r = Δx/2Δy. Let |∇s| = k, from (27) θ is then
obtained as
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. (28)

To the refracted wave height, we can write (21) as
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where Hc = H2ccg|∇s| cos θ;Hs = H2ccg|∇s| sin θ.
Express the x-derivative as forward and the y-
derivative as central
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The relation |∇s| = k is still used; the wave height is
then obtained as
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Figure 6: Comparison between PM and EM and experimental data
for case (M2).

(iii) To solve for diffraction, (20) is solved to obtain
the modified wave number due to diffraction. In
(20), express the x-derivative as backward and the y-
derivatives as central.

Then, we can get
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Now, the modified wave number is inserted in (27)
and solved for angle of propagation. (29) is then resolved
for the wave height, and (32) is solved for the modified
wave number. This algorithm is repeated until the error
in the wave height is less than 1%. This solution method
ignores reflection, since it marches toward the shoreline. This
procedure takes advantage of the elliptic form of the mild-
slope equation of full refraction.

3.3. Elliptic Modeling of Random Waves Propagation. The
method adopted, for modeling of random waves propaga-
tion, is based on spectral calculation method of Goda [14],
which assumes linear behavior between different compo-
nents of the directional spectrum. The incident directional
spectrum is discretized into components. Each component
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has its own frequency and direction. The solution of
each component is carried through the elliptic model of
Ebersole [2]. The transformed spectrum can be evaluated
at any grid point by the superposition of the different wave
components. Assuming a Rayleigh distribution of the wave
heights and using the computed information about spectral
components at location {x, y}, the significant wave height
can be computed as
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Nθ∑

n=1

∣∣Hmn
(
x, y
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, (33)

where Nf and Nθ = number of discretizations in frequency
and direction, respectively.

4. Comparison between the Parabolic and
Elliptic Models

To investigate the limits of (PM) and (EM) in modeling
the propagation of RWW, both are tested versus the exper-
imental data of Vincent and Briggs [8]. The test includes
only nonbreaking series. Nonbreaking series will enable us to
compare their abilities in modeling of refraction, diffraction,
and shoaling of RWW over a submerged shoal.

4.1. Experiment Setup. The basin is approximately 35 m wide
and 29 m long. The basin is flat of uniform depth of 45.72 cm,
except a shoal. The shoal center is located at x = 6.01 m and y
= 13.72 m. The elliptical shoal has a major radius of 3.96 m,
minor radius of 3.05 m, and height of 30.48 cm at the center.
The shoal perimeter is given by

(
x′

3.05

)2

+
(

y′

3.96

)2

= 1, (34)

where x′ = (x − 6.01)m; y′ = (y − 13.72)m.
The water depth over the shoal is given by

h = 0.9144− .762

{
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4.95
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m. (35)

The inputs of the experiment for random waves are in the
form of the directional wave spectrum as

S
(
f , θ

) = G
(
f
)∗D

(
f , θ

)
, (36)

where G( f ) represent a one-dimensional frequency spec-
trum and D( f , θ) is a directional spreading function that
satisfies

∫ 2π

0
D
(
f , θ

)
dθ = 1. (37)

The irregular wave frequency spectrum produced by the
laboratory was TMA [15].

There are two frequency spectra, narrow and broad,
which are paired with two different directional spreading,
narrow and broad directional spectra narrow and broad.

4.2. Comparison of Results. The results are compared for
the nonbreaking series of monochromatic and spectral
distribution from case 1 up to case 7 including all varieties
of random wave spectra. Test results are all at transect
4 which lies behind the shoal and shows both refraction
and diffraction phenomena. For all test cases: wave period
is 1.3 sec and representative wave height is 2.54 cm. They
have one monochromatic incident wave M2 and two input
unidirectional wave frequency spectra (narrow U3 and broad
U4). However, they have for input directional wave spectra,

N: narrow directional spreading,
B: broad directional spreading,
3: narrow frequency spreading,
4: broad frequency spreading.
The input spectra for spectral test cases are all combina-

tions of the shapes of Figures 1 and 2. In Figures 3, 4, 5, and 6,
we have the output of comparison between the PM and EM
as compared to experimental data at Section 4.

In general, the numerical models and experimental data
show that the difference between the monochromatic wave
(M2) and random wave cases (N3, B3, N4, and B4) is
dramatic. The pattern associated with the monochromatic
wave shows wave height amplification of about 2.5. The wide
directional spectral waves (B3 and B4), in contrast, have no
amplification greater than 1.2 (which is almost 50% less than
the monochromatic case). On the other hand, the narrow
directional spread cases (N3 and N4) reach amplification of
1.8 (which is almost 30% less than monochromatic case).
The unidirectional cases (U3 and U4) give results close to the
monochromatic case.

Comparison of the four directional spectral cases indi-
cates that directional spreading is a more effective parameter
than frequency spreading. The patterns of narrow spread
cases (N3 and N4) are reasonably similar and those of broad
spread cases (B3 and B4) are also reasonably similar.

The unidirectional cases are more like the monochro-
matic wave than the directional cases. Comparison between
the numerical models and the experimental data show that
the PM and EM give good results for the monochromatic
wave, the unidirectional cases, and the narrow spread cases.
In contrast, the EM gives good results for the broad spread
cases, while PM does not. Also, the peak relative wave height
is almost perfectly reached by the EM but the PM gives slight
overestimation in the monochromatic, the narrow spread,
and the unidirectional cases and a higher overestimation in
the broad spread cases.

Finally, the monochromatic wave representation is good
for the unidirectional spectra and adequate for the narrow
directional spectra, but it is not accurate for the broad
directional spectra.

5. Conclusions

(1) Directional spreading of random water waves is more
significant than their energy spreading in the frequency
space.

(2) The difference in results between PM and EM
depends mainly on the directional spreading of the incident
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wave spectra. The results are close for monochromatic,
unidirectional, and narrow directional spectra, while the
results for broad directional spectra are different. EM can
cover all incident directions, and hence, its results are more
accurate than PM.

(3) The parabolic model is efficient in cases of weak
refraction, because the less efficient elliptic model gives the
same results.
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