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ABSTRACT:

There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among
the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global
navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial
operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as
digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling
and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google
Earth†to build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this
serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it
correlates them with the database to localise the vehicle with respect to the inertial frame.
The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on
comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance
of the navigation algorithm is presented.

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) are currently seen as an op-
timal solution for intelligence, surveillance and reconnaissance
(ISR) missions of the next generation. Compared to human-
operated flights, UAVs offer more flexibility and allow for higher
risk and are generally less expensive. Employed for various tasks
from urban planning and management to exploration and map-
ping, most unmanned aerial systems have become highly depen-
dent on the accuracy of their navigation system. Moreover, on
surveillance and investigation missions such vehicles are sub-
jected to the risk of losing its primary source of navigation infor-
mation, GNSS due to jamming, interference, unreliability, or par-
tial or complete failure. Commercial operations in environments
such as so-called urban canyons where GNSS may be unreliable
or inaccurate due to multi-path or occlusion, robust operation of
the navigation system becomes a serious safety issue and other,
preferably passive, sensors become necessary for robustness.
To allow tolerance to GNSS faults, a UAV needs to be given a
capability to maintain its course and continuously localise rely-
ing on a backup passive navigation information source like a vi-
sual navigation system (VNS). Since the acceptable precision of
on-board inertial-based navigation system is limited to relatively
short periods of time due to the integration of sensor measure-
ments containing errors, a regular update, usually provided by
GNSS, is required. With the satellite information being poten-
tially unavailable in an uncharacterised environment, a position
update can be generated by a VNS coupled with simultaneous lo-
calisation and mapping (SLAM). Visual features detected in the
image, registered in database can provide an instantaneous posi-
tion update that limits the localisation uncertainty of the inertial
solution to a minimum.
∗Corresponding author
†The algorithm is independent of the source of satellite imagery im-

agery and another provider can be used

Aerial imagery contains all the necessary information about the
position and motion of the aircraft. Recently, the research com-
munity has been focused on developing methods to retrieve this
information from imagery by means of feature-based extraction.
While methods developed for Micro Aerial Vehicles (MAVs)
mostly use Scale-Invariant Feature Transform (SIFT) or Speeded-
Up Robust Feature (SURF) [1-3] feature matching algorithms,
the algorithms developed primarily for geographic information
system (GIS) update show a semantic, or meaningful, approach
to feature extraction. Although it has been recently shown that
real-time motion tracking based on small image patches can be
very precise [4], the use of such features for SLAM and data as-
sociation on level flight over repeatable terrain has not been in-
vestigated.
As the research in the field of remote sensing shows, high-level
visually identifiable features, such as roads, rooves, water bod-
ies etc., can be reliably extracted and used to update the map in-
formation or extract road networks from high-resolution satellite
imagery. Despite the abundance of GIS update methods offered,
only a few approaches can be regarded as autonomous and suit-
able for real-time application [5]. Within the described frame-
work, this article presents a visual navigation system that, due
to efficient feature modelling, achieves a near real-time perfor-
mance. The basic concept behind this is the detection, extrac-
tion, localisation and matching of high-level features present in
the aerial imagery (road network and its components, areas of
greenery, water bodies etc.) by modelling them with minimal ge-
ometric characterisations used for storage and association. The
semantic features listed above are discussed in the paper as sepa-
rate feature-tracking threads, which can run in parallel, contribut-
ing to the interpretation of the scene. A position update would be
produced based on the information from the most reliable or the
currently active thread. The focus of the current work has been on
development of robust feature extraction and modelling that takes
into account the a-priori knowledge about the road networks that
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suits the requirements of the navigation system.

2. RELATED WORK

The most complete review on the topic of road extraction was pre-
sented in Mena [5] and an elaborate comparison of various road
extraction methods was conducted by Mayer [6]. A recent sur-
vey of the road extraction algorithms satisfying the requirements
of visual aerial navigation systems can be found in Volkova [7].
Below, a brief overview of the feature extraction approaches is
provided, focusing on algorithms designed for navigational pur-
poses.
Research on the visual-aided navigation has been ongoing for
more than two decades [8]. Typical road extraction approaches
for the update of map and GIS information are designed as pipelines
consisting of image segmentation, extraction and connection of
road candidates and final network refinement. SVM classifier
[9-12], tensor voting feature detector [13-16] and non-maximum
suppression for road centreline extraction [16-23] have been pop-
ular road network update techniques. Although, these techniques
are superior in quality to direct intensity-based classification and
mathematical morphology, they are much more computationally
demanding.
Recent corner-based and patch-based real-time motion estima-
tion approaches [4, 24, 25] for MAVs achieved high robustness in
scenes with high-frequency self-similar texture. A UAV Naviga-
tion System presented in [27] combined point-based visual odom-
etry with edge-based image registration. Since low-level features
used in odometry-based algorithms are often not unique and can
only be used in conjunction with depth information, they are use-
ful in the short-term especially micro and mid-scale platforms but
cannot be the sole basis of a SLAM-based visual navigation sys-
tems on a larger scale.
Visual navigation using higher level features (houses, roads, etc.)
has been the focus of far fewer research works, partially due to a
variety of features representing any one class. Such GIS features
as lines (roads), points (road intersections) and regions (forests,
lakes, buildings) were suggested for use in navigational system
[22, 28] with special attention given to intersections [29, 30]. The
rest of this section provides an overview of the approaches that,
in the authors’ opinion, are most relevant to the current research.
Vision systems focused on landmark detection in [19] utilised
a combination of SURF-based image registration and road and
building detection using Haar classifiers. Haar training involves
creation of a large dataset of the buildings regions and road inter-
sections. Although the comparison presented in the above work
showed that the Haar classifier outperformed line-based intersec-
tion detectors and edge-based building detectors under various il-
lumination conditions, its inability to deal with rotation increased
the complexity of the system. The GIS-based system presented
in [22] registered meaningful object-level features such as road
centrelines, intersections and villages in real-time aerial imagery
with the data of geographic information system (GIS). The road
was extracted using Local Weighted Features (LWF), an approach
to estimate the background value of a pixel based on local neigh-
bourhood pixels. Subsequently, road end points, branch points
and cross points were generated from extracted road networks
and were matched with a GIS database.
Three-stage landmark detection navigation proposed in [31] ex-
tracted a few (3-10) significant objects per image, such as rooves
of buildings, parking lots etc., based on pixel intensity level and
the number of the pixels in the object. For each of the extracted
objects the feature signature was calculated, defined as a sum of
the pixel intensity values in radial directions for a sub-image en-
closing the feature. The centroids of the extracted objects were
simultaneously used to form a waypoint polygon. The angles

between centroids and ratios of polygon sides to its perimeter
were then used as scale and rotation-invariant features describing
a waypoint in the database.
The autonomous map-aided visual navigation system proposed
in this paper combines intensity and frequency-based segmenta-
tion, high-level feature extraction and feature pattern matching
to achieve reliable feature registration and generate the position
and orientation innovations restricting the inertial drift of the on-
board navigation system.

3. AUTOMATIC ROAD FEATURE EXTRACTION AND
MATCHING (ARFEM) ALGORITHM

This paper has the goal to provide on-board inertial navigation
system with a localisation update calculated from the match be-
tween localised visual features registered in an image and a pre-
computed database. The proposed multi-pronged architecture of
the feature-extraction algorithm is shown on Fig.1. Although the
overall structure of the system involves detection of features of
greenery and water classes, the specific focus of this paper is on
the road-detection component. To generate localisation update,
an automatic Road Feature Extraction and Matching algorithm
has been developed. The algorithm analyses each image frame
to detect the features belonging to one of several classes. It then
refines, models, and localises the features and finally matches it
to a database built using the same algorithm from Google Earth
imagery. In the following section each of these steps of the algo-
rithm is detailed.

3.1 Image classification

The first stage of the feature detection algorithm is intensity-
based image segmentation. A maximum likelihood classifier trained
on 3-5 images for each class was used to detect road, greenery and
water regions in the image based on pixel colour, colour variance
and frequency response (for the latter two classes). The result-
ing class objects were taken through the pipeline shown in Fig.1
to minimise the misclassification and improve the robustness of
feature generation. This process is described in detail as the fol-
lowing.
The aerial image was classified into road, greenery, water, and
background regions using the training data for each class. While
road class training was based on intensity of the pixels only (Fig.2),
the greenery class description also contains Gabor frequency re-
sponse of the provided training region that allows discriminating
it from water, which is similar in intensity. At the current stage
of algorithm development objects of greenery and water classes

Figure 1: Image classification for visual feature extraction
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are used for detection of the environment in which the system is
operating to adapt the detection techniques accordingly. Future
realisation of the system will include processing threads for the
corresponding classes and incorporation of localisation informa-
tion derived from them.

3.2 Road class filtering

Since reliance on training only in image classification can result
in misclassification, further filtering of the classes based on a-
priori knowledge about the nature of features in each class is per-
formed. The most probable misclassification is between regions
of confined water and greenery, and inclusion of road-like ob-
jects (parking lots, roofs) into the road components. To extract
the road candidates from the urban features category of classes,
connected component (CC) analysis [32] was used. The com-
ponents were analysed with respect to size and compared with a
threshold Athresh. Components smaller than the threshold were
discarded. Middle sized features with high bounding ellipse as-
pect ratio [16] were selected. Aspect ratio (shown on Fig.3) is
calculated as follows.

ARi =
ai
bi
>> tAR, (1)

where tAR is an aspect ratio threshold. Aspect ratio [16] elim-
inates the misclassification in the road class due to inclusion of
rooves and other non-road objects. In cases, where a bounding
ellipse is drawn around a curved road segment (Fig.3, centre),
the ellipse semi-minor axis is no longer a good approximation to
the width of the road. To prevent such components from being
discarded, a road ratio check is applied. The road ratio RRi is
calculated by estimating the ratio of the road pixels to the total
number of pixels within the bounding ellipse:

RRi =
road pixels

bounding ellipse area
>> tRR (2)

Figure 2: Training images and ground truth shown for road,
greenery and water classes

Figure 3: Comparison of bounding ellipses with bounding box
method for straight (left) and curved road components (centre);
the area of bounding ellipse in lilac compared to the area of the
road component in black(right)

Figure 4: Flowchart of road network generation from road com-
ponents detected in the image

For parking lots the road ratio would be considerably larger than
the empirically defined threshold tRR, road segments in turn would
have a relatively low RR. The generated road component was
processed with trivial morphological operations to improve the
robustness of the centreline generation.
Natural features that include water bodies, forests, bush etc. are
analysed using frequency analysis. Generally, water areas give
higher frequency response, which allows for discrimination be-
tween the two. Glare present on the water remains one of the
major segmentation problems for intensity-based approaches. Al-
though further frequency analysis can be effective in glare detec-
tion it is a more computationally demanding operation compared
to contextual solution.
We propose to distinguish between glare and other features sim-
ilar in intensity based on the surrounding or neighbouring con-
nected components and assign the glare region to the same class.
For example, if a glare region is found in the image within the
water region but comes up as a road-similar component based on
its intensity, it can be filtered from the road class and inserted into
the water class (processes marked with * in Fig.1). This glare pro-
cessing routing works with the underlying assumption that there
are no built-up areas or islands in the confined water regions.

3.3 Road centreline extraction and extrapolation

After road class image regions have been detected, the 2nd stage
of the algorithm, outlined in Fig.4, converts them into a road net-
work with defined centrelines and intersections. The road cen-
treline candidates are derived from the filtered segmented road
component by morphological thinning. Skeletonisation of the
road component can be alternatively performed by non-maximum
suppression [16, 17] and/or tensor voting algorithms [13-15]. Ap-
plying mathematical morphology [32] to the road skeleton, a road
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graph that describes the location and the length of the road seg-
ments together with road intersections is obtained. Further anal-
ysis and post-processing of road segments and intersections leads
to a reliable road network description for further data association.

3.3.1 Extrapolation-based segment joining Some of the road
branches in the road graph appear to be incomplete because of the
occlusion or the rapid intensity change of the road surface in the
image. To address these shortcomings, the following road branch
search and connection method is proposed. Splines were fitted to
the branch points and then extrapolated in the direction outward
from the tip of the branch (Fig.5). The search areas (marked
in red) were then checked for the presence of the tips of other
branches. In case a tip of another branch is found within the
search region, the algorithm suggests joining the branches. If the
search initiated from the opposite branch finds the first branch,
the branches will be joined.

3.3.2 Road centreline modelling with splines Road branches
obtained in the previous stage are heavily influenced by road oc-
clusions. For instance, in the presence of the trees along the road
side, the road component will decrease in width and therefore its
centreline will be shifted to the side opposite to occlusions. To
address this problem splines are fitted to model the road in a way
in which they capture the most information about the road cen-
treline. Similar to the approach to coast line modelling in [33]
this work adopts the B-splines fitting described in [34] for road
centreline modelling. Here we improve the road modelling by
adjusting the locations of the spline nodes to reflect the curvature
of the road as follows. First a spline is fitted to road branch pixels
to provide filtered coordinates of the branch.

The curvature of the obtained filtered branch is analysed 1 by
first fitting polygons to the points and then calculating the analyt-
ical curvature between consequent points of the polygons. Fig-
ure 6 (bottom) illustrates the process of curvature accumulation,
where the location of the nodes on the branch are marked with red
lines. The curvature threshold is set based on scale of the image,
with lower threshold for images with lower scale (taken at low
altitudes) and higher threshold for images taken from higher alti-
tudes, that allows recording of all significant changes in road di-
rection and discards the insignificant fluctuations due to the pres-
ence of occlusions.

Modelling road branches with splines is an effective method of
converting the pixel information into scale independent form, since
a spline describes the shape of the feature independent of the
scale at which the feature is observed. Splines also minimise

1Matlab function LineCurvature2D by D. Kroon, University of
Twente

Figure 5: Image of extrapolation search (red rectangles) for se-
lected road branches (green)

Figure 6: (top) Road branch points generated by thinning (green)
are modelled with a spline (yellow); (bottom) curvature of the
road branch with locations of the nodes shown in red

the amount of information with which the feature is encoded and
therefore are preferable for feature matching and data association.

3.3.3 Post-processing of the junctions Road intersections are
prioritised in data association because correct registration of a
road intersection constrains the position of the observer in both
directions, compared to straight sections of the road, which can
only constrain the position in direction normal to its centreline.
Hence, accurate detection and extraction of information about in-
tersections present in the image is of primary importance. Distor-
tion in the locations of road intersections due to imperfection in
the skeletonisation operation is one of the common problems in
road extraction. This problem has been recently approached by
substituting the skeletonisation procedure with tensor voting [13,
16, 26, 35], which is superior to traditional methods in extract-
ing the geometrical structures but much more computationally
demanding and may therefore be unsuitable for real-time appli-
cations. In this paper the problem of distorted junctions is ap-
proached from a feature association perspective and a composite
solution suitable for road-extraction is offered. A feature match-
ing algorithm, operating on features described above, matches
junctions by their location, number of branches and branch an-
gular distribution, and branch absolute angles, allowing for some
tolerance. The problem of junctions being offset and the branch
angles being skewed becomes crucial as it can generate false pos-
itives or simply does not allow for data associations. Rather than
relaxing the matching constraints to improve the representation
of the junctions several post-processing steps described below are
applied.
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T- junctions
The skeletonisation operation often causes the offset of the T-
junction centroid in the direction of the connecting branch (Fig.7).
Since the junction database or map will have T-junctions with
branches intersecting at angles close to 180◦ or 90◦ and one part
being straight, the intersections detected from the splines should
be adjusted. The new centroid of a road junction is formed by
finding an intersection of the branches based on nodes located
around the junction.
Revision of T- and X- junctions

The spline-generating algorithm may cause the loss of road in-
tersections due to a tendency to directly join the road branches.
To avoid this situation and ensure repeatability of the feature de-
tection method, the cases where a spline joins the branches of
the junction are revisited by a post-processing routine. The pos-
sible location and distribution of branches of such junctions is
determined based on the curvature and mutual location of neigh-
bouring splines (Fig.7). A typical application of the road network
detection algorithm is shown in Fig. 8.

3.4 Road feature registration

After a feature has been detected in the image, information cap-
turing its uniqueness was extracted and stored in a database. Since
parts of a road network detected in the image need to be analysed
and compared with the database individually, the road segments
are stored separately from road intersections. Information about
the connectivity of road components is stored in a database index.
This section overviews encoding of road centrelines and intersec-
tion detected previously for database construction. Choice of the
coordinate system to store the road database was made taking into
account the environment the system operated in. The geodetic
frame was chosen, which means that the location of spline nodes
and intersection centroids were converted from camera frame into
ECEF reference frame.

3.4.1 Road centreline feature LetR represent a database en-
try corresponding to the road centreline

R = [X,Y, Z]gs , wr, ni, ii. (3)

The parameters associated with it are 1) the location of s spline
nodes [X,Y, Z]gs representing road centreline, 2) the average width
of the road region wr calculated perpendicular to the road centre-
line, 3) the number of intersections ni road segment connects to,

Figure 7: Typical cases of T- and X-junction revision: junction
centres are shown as red circles and branches are shown as black
lines.

Figure 8: Road extraction example stages: (a) raw road segmen-
tation, (b) road components superimposed on the original image,
(c) road skeleton, (d) road network with road centrelines shown
in yellow and intersections in red.

4) the indices of intersections associated with the road segment
ii.

3.4.2 Road intersection feature The road intersection fea-
ture modelling approach used here was adopted from Dumble
[36]. Intersection descriptor I , that permits performing intersec-
tion matching regardless of the position and orientation of the
feature in the camera frame, looks as follows.

I = [X,Y, Z]g, nb, ψbN , ψb, (4)

where [X,Y, Z]g is the location of the intersection centroid in
the geodetic frame Fg , nb is the number of road branches, ψbN

angles of the road branches forming the intersection relative to
North (Fig. 9) and ψb - the angular difference between the suc-
cessive road branches. The width of the branches can also be
added to the descriptor to improve uniqueness of the feature.

4. FEATURE LOCALISATION AND ASSOCIATION

4.1 Road network feature matching

Feature matching is the part of the visual navigation algorithm
responsible for associating the features detected in the camera
frame with those in a database. Improvement of both the unique-
ness of features and the construction of several association levels
ensures fault detection prior to feeding the feature into the navi-
gational update. To optimise the computational load of the asso-
ciation operation on the system, the matching tasks are prioritised
and assigned to different threads, each associated with a specific

Figure 9: Road Intersection branch labelling and angle determi-
nation
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Figure 10: Pattern matching and transformation calculation for
intersections detected in the camera (green dots) and database
matches (black)

combination of features present in the image. Choice of data as-
sociation thread depends on both type and number of features
present in the camera frame. The correspondence between fea-
tures present in the camera frame and the initialised data match-
ing threads is shown in Table 1.

Feature combination Matching thread
1 roads and 1+ intersections intersection pattern matching
2 roads and 1 intersection intersections and splines
3 roads only splines

Table 1: Correspondence between features present in the frame
and initiated association thread

The choice of features for data association is hierarchical and
can be explained by differences in priority of the operations. As
mentioned before, intersection matching has priority compared to
spline matching because it is less computationally expensive and
provides absolute information constraining the inertial drift from
the IMU. Hence, if the intersection association thread initiated in
the first case (Table 1.), successfully registers the pattern of in-
tersections in the database, there is no need for additional spline
matching. In the third case, however, when intersection asso-
ciation is not possible, localisation information is derived from
spline matching only. Depending on the shape of the spline, it
can provide precision in one or two directions. Therefore, splines
with sections of high curvature can be seen as unique features
are assigned higher priority in the matching sequence over vir-
tually straight splines. Future realisation of the data association
algorithm will also consider water bodies and shapes formed by
greenery detected in the frame in pattern analysis. Data associa-
tion threads are described in the next section.

4.2 Road intersection matching

4.2.1 Intersection feature matching Each of the intersections
detected in the camera frame is matched to the feature database
based on the ECEF coordinates [Xi, Yi, Zi]

g , number of branches
nb, and angles between them. Pairs of intersections for which the
least-square position error δLi and the difference of orientation of
the branches ψi are lower than the corresponding thresholds are
considered as a potential match. The corresponding comparison
measures are defined as follows.

ni = niDB ; δψi = Σn
i (ψi − ψiDB ); (5)

δŁi =
√

Σ([Xi, Yi, Zi])g − ([Xi, Yi, Zi]
g
DB))2) (6)

Depending on the number of intersections in the frame pattern
matching is initiated, which compares the angles and the distance
of the polygon constructed from camera features (green dots,
Fig.10) to those of the polygon constructed using their database
matches (shown with black dots).

4.2.2 Intersection pattern matching At this stage the angle
ψi formed by vertex i and distance between the adjacent vertices
di is compared with the corresponding angle and distance in the
polygon built based on the database information and the matches

which produce errors δψi, δdi higher than the threshold value are
rejected. Errors δψi, δdi are defined as

δψi = Σ(ψi − ψiDB ); (7)

δdi = Σ(di − dDB) (8)

The check of the angles and distances a pattern forms ensures that
the detected features are located in the same plane and connection
between them resembles the pattern stored in the database. After
correspondence between the matched features being confirmed,
the transformation between the corresponding vertices of the two
polygons (Fig.10) is estimated through singular value decompo-
sition to correct the camera pose. Since the offset remains con-
sistent for all features in the frame, the transformation defined by
rotation matrix R and translation vector t estimated via pattern
matching can serve as an update for the Kalman filter. Precision
of the aircraft estimate is generally sufficient to isolate possible
matches within the database so, repetitive patterns and regular
geometry is not considered to be a problem. If multiple possible
matches cannot be discriminated, none of them will be used as
innovations.

4.2.3 Road centreline matching The spline nodes accurately
capture the location of the road centreline and information about
the shape of the road component. It would be incorrect though to
match the location of individual nodes of the splines present in the
image to the ones in the database due to the non-deterministic na-
ture of the procedure though which they are generated. However,
spline matching can reliably use the characteristic shape of the
road segment by analysing its curvature. Spline matching takes
into account the peculiarity that spline features have due to aerial
video as their sources: each subsequent piece of the information
about the feature “enters” the frame at the top, and is added to the
feature representation available from the previous frame.

Curvature-based spline matching uses algebraic curvature de-
scription of the spline to search for correspondences in the database.
Once the correspondence is found, the part of the feature which
enters the camera field of view in the subsequent frame, is added
to the match correspondingly. The spline matching procedure,
depending on the shape of the road, can constrain the drift of
dead reckoning in one or both directions. This leads to priority
ranging of detected splines. The sections capturing grater change
in curvature of a spline will have higher priority in the matching
sequence since they constrain the drift in both directions in a 2D
plane compared to relatively straight sections of the splines which
can only limit the drift of the vehicle in a direction perpendicular
to the spline. Two subsequent video frames with spline sections
limiting the position drift in both directions are shown as an ex-
ample in Figure 11. It is worth noting that the repeatability of
the spline extraction across the frames allows reliable operation
of both SLAM and database matching threads.

5. EXPERIMENTAL RESULTS

The algorithm was implemented in Matlab, on a 3.6Ghz Intel
i7 4 core processor. A relatively low resolution of the Google
Imagery (1024x768px) was deliberately chosen to minimise the
differences between the simulation and real imagery. For future
implementation of the system, the cameras on the UAV will be
chosen with respect to the requirements of the system. Possible
blur and stabilisation issues occurring in the real sequence are
planned to be addressed with additional processing modules of
the algorithm. For the purpose of testing the algorithm, Google
Earth projected imagery was taken with no consideration of ter-
rain height variation. This has some effect on accumulation of
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Figure 11: Splines detected in the frame (shown in yellow) com-
pared to priority matching spline (green).

the error in altitude (see Fig. 14). For future processing of real
UAV flight data, compensation of the range to the surface and
terrain height using Digital Elevation Maps will be added to the

Figure 12: Combined histograms of the frame #1 from Datasets 2007, 2009, 2014 correspondingly.

Dataset Features detected Features matched Ratio
Dataset 2007 566 152 27%
Dataset 2009 166 46 27%
Dataset 2014 768 150 20%

Table 2: Comparison of number of features detected and fused in
the navigation filter

algorithm.
A number of tests were conducted to evaluate the robustness of
the algorithm. Three datasets based on Google Earth imagery
taken in different years (2007, 2009, and 2014) closely resem-
ble video that would typically be taken from an on-board down-
ward looking camera, including variations in camera field of view
when the vehicle is performing a coordinated turn. The three
datasets were picked to represent different season, lighting con-
ditions as well as to capture structural changes of the urban en-
vironment (Fig. 12). All three videos were analysed by feature
extraction and matching threads of the algorithm. A database
of intersections used for feature matching was constructed sepa-
rately by manually extracting the locations and angular orienta-
tions of the road intersections in the fly-over area using Google
Earth software. Criteria for positive matches were chosen as an-
gle δψi < 2 ◦, and distance δŁi < δŁthr , where δŁthr = 8[m],
to ensure fusion of only true positives in the navigational Kalman
filter (for description of the criteria see 4.2.1). As a planar ac-
curacy measure, the distribution of distance and difference in
angular orientations of matched junctions from Dataset 2007 is
presented on Fig 13. The comparison of the number of features
identified and matched per dataset is shown in Table 2.
The position drift accumulated during flight with updates pro-
vided by VNS is shown in North, East and down directions (Fig.
14). The number of intersections detected in the image and used
for data fusion compared with the number of features in the database
is shown in Fig. 15. The effect of varying lighting and seasonal
conditions is reflected in the difference between the numbers of
detected features in different videos compared. Although the
number of features and regularity of updates is lower for Dataset
2009 compared to the other two datasets, the corresponding nav-
igational update proves that the algorithm is able to constrain the
inertial drift even with relatively infrequent updates.
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Figure 13: Accepted errors in distance and angular orientation of
the matched intersections shown against the number of intersec-
tions.

The sections of the video between frames 90-100 and 154-180
correspond to flight over the area covered by the lake and for-
est respectively. No intersections or road centrelines are detected
within these sections of the video that corresponds to the period
of unconstrained position drift (Fig. 14). From frame 200, the
airplane enters an urban area and as soon as the positive reliable
match is found, the position error drops to a value close to zero.
Other peculiarities connected to the dataset account for structural
changes, such as the presence of the new built-up area in frames
149-153 of the 2014 dataset, which were not present at the time
of the database construction.
The breakdown of execution time, showing the share of each of
the functions in the overall processing time of a typical 1024x768
px frame from an aerial sequence, is presented in Table 3.

Algorithm module Time, [s] Ratio
Extraction 0.0820 7.4%
Detection 0.6791 61%

Association 0.3444 31%
Other 0.0067 0.6%
Total 1.1055 100%

Table 3: Breakdown of the algorithm execution time for a typical
1024x768px video frame

Figure 14: Position error between true vehicle position and the
position calculated from IMU data integrated with VNS in North,
East and down directions.

Figure 15: The number of features detected and matched with the
database in the videos sequences generated using Google Earth
imagery from 2007, 2009, and 2014.

6. CONCLUSION

Current work shows the effective application of the designed fea-
ture extraction and matching algorithm to the task of visual navi-
gation. Feature extraction technique aimed to maximise the unique-
ness of each detected feature and a frame as a whole. The fea-
ture description and registration techniques developed use mini-
mal description vector to optimise the operation of the matching
system performing a continuous database search, producing reli-
able periodic position update.
Testing of the algorithm performance in the presence of varying
image conditions, such as changes in illumination and seasonal
effect, has proved that an intensity-based classifier combined with
frequency information can present a reliable robust solution for
region extraction. The comparison has shown the effect of the
change in intensity of the image on feature detection. The drop
in the number of features detected in the most recent sequence
(Dataset 2014) with least contrast resulted in less frequent nav-
igational updates although with no significant loss of accuracy.
The test also proved that the system operates reliably with only
20-30% of the features detected from those present in the image
without drop in accuracy of the localisation solution. From the
presented graphs it is evident that the localisation error drops sig-
nificantly each time the features are detected and registered in the
image. The database search also allows for prolonged periods
with no features detected, by adapting the search region of the
database according to the position uncertainty.
The contributions of this paper are the multi-pronged approach
to feature detection and the design of the automatic road feature
extraction and matching (ARFEM) algorithm. They will serve
as a basis for the development of future feature-based navigation
algorithms for visual navigation. Ongoing work on the algorithm
includes the integration of Optical Flow [37] to provide a Kalman
update of the vehicle speed in x and y directions based on the mo-
tion of the objects found in the camera frame. With direct update
of the velocity estimates derived from Optical Flow, the drift rate
of the inertial navigation system will change linearly rather than
in a quadratic fashion typical of double integration of accelera-
tion information from the inertial sensors. Further algorithm im-
provement will include development of multi-temporal operation
modes for the feature extraction and matching modules as well as
the use of contextual information to improve the reliability of fea-
ture extraction. Current test and evaluation of the algorithm using
real flight test imagery in under way. The focus of this work is on
the evaluation of the performance of the image processing com-
ponents in presence of variations of natural lighting and changes
in the urban environment from the Google datasets.
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