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Abstract

In this paper, we first construct a b-metric, which is a special type of

C
∗-algebra-valued b-metrics, from a given C

∗-algebra-valued b-metric

and prove some equivalences between them. Then we show that not

only fixed point results but also topological properties in C
∗-algebra-

valued b-metric spaces may be deduced from certain results in b-metric

spaces. In particular, every C
∗-algebra-valued b-metric space is metriz-

able.
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1. Introduction and preliminaries

In metric fixed point theory, many generalised metric spaces leading to fixed
point theorems have been introduced, see [18] for example. One of them, that
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attracted many authors, is the notion of the b-metric [9], [10] or, equivalently,
of the metric-type [17]. However, many of these generalised metric spaces are
topologically equivalent to a metric space or to a known generalised metric
space and many fixed point results in such spaces may be deduced from certain
fixed point results in metric spaces or in known generalised metric spaces [5].
In particular, a b-metric space is also metrizable, see Theorem 1.11 below and
more details in [11].

Based on the notion and properties of C∗-algebras, Ma et al. [21] introduced
the notion of C∗-algebra-valued metric spaces and gave some fixed point theo-
rems for self-maps with contractive or expansive conditions in such spaces. As
applications, existence and uniqueness results for a type of integral equations
and operator equations were given. Similar to the relation between a metric and
a b-metric, Ma and Jiang [20] then generalised the notion of a C∗-algebra-valued
metric to a C∗-algebra-valued b-metric. The classes of C∗-algebra-valued met-
ric spaces and C∗-algebra-valued b-metric spaces were then studied by Batul
and Kamran [7], Shehwar and Kamran [26], Klin-eama and Kaskasem [19],
Qiaoling et al. [24], Shehwar et al. [25], Tianqing [27].

Very recently, Alsulami et al. [4] pointed out that the C∗-algebra-valued
metric does not bring about a real extension in metric fixed point theory and
showed that fixed point results in the C∗-algebra-valued metric can be derived
from the desired Banach mapping principle and its famous consecutive theo-
rems.

Motivated by the work of Alsulami et al. [4] we construct a b-metric from a
given C∗-algebra-valued b-metric and prove some equivalences between them.
Then we show that not only fixed point results but also topological properties
in C∗-algebra-valued b-metric spaces may be deduced from certain results in
b-metric spaces. A direct consequence is that every C∗-algebra-valued b-metric
space is metrizable.

We next recall definitions and properties which will be useful in what follows.

Definition 1.1 ([13], [22]). Let A be an algebra and ∗ : A −→ A be a map
that maps a ∈ A to a∗ ∈ A.

(1) A is called a ∗-algebra if (ab)∗ = b∗a∗ and (a∗)∗ = a for all a, b ∈ A.
(2) A is called a unital ∗-algebra if there exists an identity element 1A of

A, that is, ‖1A‖ = 1 and 1Aa = a1A = a for all a ∈ A.
(3) A is called a Banach ∗-algebra if A is a complete normed unital ∗-algebra

such that ‖ab‖ ≤ ‖a‖‖b‖ and ‖a‖ = ‖a∗‖ for all a, b ∈ A.
(4) A is called a C∗-algebra if A is a Banach ∗-algebra and ‖a∗‖ = ‖a‖ for

all a ∈ A.
(5) An element a ∈ A is called positive, written as 0 � a or a � 0, if a∗ = a

and σ(a) ⊂ [0,∞) where

σ(a) = {λ ∈ R : λ1A − a is not invertible }

is the spectrum of a.
(6) For all a, b ∈ A, a is called less than b or b is called greater than a,

written as a � b or b � a, if b− a � 0.
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The following lemma plays an important role in next proofs.

Lemma 1.2 ([22], Theorem 2.2.5.(3)). Let A be a C∗-algebra. If a, b ∈ A and
0 � a � b then ‖a‖ ≤ ‖b‖.

The following notion of a C∗-algebra-valued metric is an analogue of a metric
where a C∗-algebra A plays the role of the field of real numbers R.

Definition 1.3 ([21], Definition 2.1). Let X be a non-empty set, A be a
C∗-algebra and d : X ×X −→ A be a map such that for all x, y, z ∈ X ,

(1) 0 � d(x, y); and d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x).
(3) d(x, z) � d(x, y) + d(y, z).

Then d is called a C∗-algebra-valued metric on X and (X,A, d) is called a
C∗-algebra-valued metric space.

The convergence, Cauchy sequence and completeness in C∗-algebra-valued
metric spaces are defined with the same manner as that in metric spaces as
follows.

Definition 1.4 ([21], Definition 2.2). Let (X,A, d) be a C∗-algebra-valued
metric space and {xn} be a sequence in X .

(1) The sequence {xn} is called convergent to x ∈ X , written lim
n→∞

xn = x,

if lim
n→∞

‖d(xn, x)‖ = 0.

(2) The sequence {xn} is called Cauchy if lim
n,m→∞

‖d(xn, xm)‖ = 0 .

(3) The space (X,A, d) is called compete if each Cauchy sequence is a
convergent sequence.

The following notion of a C∗-algebra-valued b-metric is a generalisation of
a C∗-algebra-valued metric. Note that the relation between a C∗-algebra-
valued b-metric and a C∗-algebra-valued metric is very similar to that between
a b-metric and a metric.

Definition 1.5 ([10]). Let X be a non-empty set and ρ : X×X −→ [0,∞) be
a function such that for all x, y, z ∈ X and some K ≥ 1,

(1) ρ(x, y) = 0 if and only if x = y.
(2) ρ(x, y) = ρ(y, x).
(3) ρ(x, z) ≤ K [ρ(x, y) + ρ(y, z)].

Then ρ is called a b-metric on X and (X, ρ) is called a b-metric space with the
coefficient K.

Definition 1.6 ([17], Definition 7). Let (X, ρ) be a b-metric space and {xn}
be a sequence in X .

(1) The sequence {xn} is called convergent to x, written as lim
n→∞

xn = x,

if lim
n→∞

ρ(xn, x) = 0.

(2) The sequence {xn} is called Cauchy if lim
n,m→∞

ρ(xn, xm) = 0.
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(3) The space (X, ρ) is called complete if each Cauchy sequence is a con-
vergent sequence.

Definition 1.7 ([20], Definition 2.1). Let X be a non-empty set, A be a
C∗-algebra and d : X × X −→ A be a map such that for all x, y, z ∈ X

and some a ∈ A with a � 1A,

(1) 0 � d(x, y); and d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x).
(3) d(x, z) � a[d(x, y) + d(y, z)].

Then d is called a C∗-algebra-valued b-metric on X and (X,A, d) is called a
C∗-algebra-valued b-metric space with the coefficient a.

If the coefficient a = 1A then every C∗-algebra-valued b-metric space is a
C∗-algebra-valued metric space. The convergence, Cauchy sequence and com-
pleteness in C∗-algebra-valued b-metric spaces are defined in the same manner
of that in C∗-algebra-valued metric spaces as follows.

Definition 1.8 ([20], Definition 2.2). Let (X,A, d) be a C∗-algebra-valued
b-metric space and {xn} be a sequence in X .

(1) The sequence {xn} is called convergent to x ∈ X , written lim
n→∞

xn = x,

if lim
n→∞

‖d(xn, x)‖ = 0.

(2) The sequence {xn} is called Cauchy if lim
n→∞

‖d(xn, xm)‖ = 0.

(3) The space (X,A, d) is called compete if each Cauchy sequence is a
convergent sequence.

Definition 1.9 ([19], Definition 3.6). Let (X,A, d) be a C∗-algebra-valued
b-metric space. A subset S of X is called bounded if there exists x ∈ X and
M ≥ 0 such that ‖d(x, x)‖ ≤ M for all x ∈ S.

Definition 1.10 ([16]). Let S, T : X −→ X be two maps. Then S and T are
called weakly compatible if STx = TSx provided Sx = Tx.

The following result is the key in metrization of a b-metric space.

Theorem 1.11 ([3], Theorem I). Let (X, ρ) be a b-metric space with the co-
efficient K. Then there exists 0 < β ≤ 1, depending only on K, such that

(1.1) m(x, y) = inf
{

n
∑

i=1

ρβ(xi, xi+1) : x1 = x, x2, . . . , xn+1 = y ∈ X,n ∈ N

}

is a metric on X satisfying 1
2
ρβ ≤ m ≤ ρβ. In particular, if ρ is a metric then

m = ρ.

A b-metric is not continuous in general, for example see [6, Example 3.9.(3)].
To overcome the non-continuity of a b-metric in proving fixed point results in
b-metric spaces, the following result was used in the literature.
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Lemma 1.12 ([2], Lemma 2.1). Let (X, ρ) be a b-metric with the coefficient
K. If lim

n→∞
xn = x and lim

n→∞
yn = y then

1

K2
ρ(x, y) ≤ lim inf

n→∞
ρ(xn, yn) ≤ lim sup

n→∞
ρ(xn, yn) ≤ K2ρ(x, y).

In particular, if x = y then lim
n→∞

ρ(xn, yn) = 0. Moreover, for any z ∈ X,

1

K
ρ(x, z) ≤ lim inf

n→∞
ρ(xn, z) ≤ lim sup

n→∞
ρ(xn, z) ≤ Kρ(x, y).

2. Main results

First we construct a b-metric from a given C∗-algebra-valued b-metric and
state some equivalences between them. This result shows that each C∗-algebra-
valued b-metric space is topologically equivalent to a b-metric space. Note that
every b-metric space is metrizable by Theorem 1.11. So, every C∗-algebra-
valued b-metric space is also metrizable.

Theorem 2.1. Let (X,A, d) be a C∗-algebra-valued b-metric space with the
coefficient a and ρ(x, y) = ‖d(x, y)‖ for all x, y ∈ X. Then

(1) ρ is a b-metric on X with the coefficient ‖a‖.
(2) A sequence {xn} is convergent to x in the C∗-algebra-valued b-metric

space (X,A, d) if and only if it is convergent to x in the b-metric space
(X, ρ).

(3) A sequence {xn} is Cauchy in the C∗-algebra-valued b-metric space
(X,A, d) if and only if it is Cauchy in the b-metric space (X, ρ).

(4) The C∗-algebra-valued b-metric space (X,A, d) is complete if and only
if the b-metric space (X, ρ) is complete.

(5) A subset S is bounded in the C∗-algebra-valued b-metric space (X,A, d)
if and only if it is bounded in the b-metric space (X, ρ).

Proof. (1). For all x, y ∈ X we have
ρ(x, y) = ‖d(x, y)‖ ≥ 0;
ρ(x, y) = 0 if and only if ‖d(x, y)‖ = 0, if and only if d(x, y) = 0, that is,

x = y;
ρ(x, y) = ‖d(x, y)‖ = ‖d(y, x)‖ = ρ(y, x).
For all x, y, z ∈ X , since 0 � d(x, z) � a[d(x, z) + d(z, y)], by Lemma 1.2

we have

0 ≤ ‖d(x, z)‖ ≤ ‖a[d(x, z) + d(z, y)]‖ ≤ ‖a‖[‖d(x, z)‖+ ‖d(z, y)‖].

Then ρ(x, z) ≤ ‖a‖[ρ(x, y) + ρ(y, z)]. So ρ is a b-metric on X with the coeffi-
cient ‖a‖.

(2) and (3). They are obvious from Definition 1.8 and the formulation of ρ.
(4). It is a direct consequence of (2) and (3).
(5). We find that S is bounded in the C∗-algebra-valued b-metric space

(X,A, d) if and only if there exists x ∈ X and M ≥ 0 such that ‖d(x, x)‖ ≤ M

for all x ∈ S. It is equivalent to ρ(x, x) ≤ M for all x ∈ S, that is, S is bounded
in the b-metric space (X, ρ). �
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If the coefficient a = 1A then the C∗-algebra-valued b-metric space is ob-
viously a C∗-algebra-valued metric space. So from Theorem 2.1 we get the
following result that was the key in the proof of [4, Theorem 2.1].

Corollary 2.2. Let (X,A, d) be a C∗-algebra-valued metric space and ρ(x, y) =
‖d(x, y)‖ for all x, y ∈ X. Then

(1) ρ is a metric on X.
(2) A sequence {xn} is convergent to x in the C∗-algebra-valued metric

space (X,A, d) if and only if it is convergent to x in the metric space
(X, ρ).

(3) A sequence {xn} is Cauchy in the C∗-algebra-valued metric space (X,A, d)
if and only if it is Cauchy in the metric space (X, ρ).

(4) The C∗-algebra-valued metric space (X,A, d) is complete if and only if
the metric space (X, ρ) is complete.

By using Corollary 2.2 Alsulami et al. claimed that the main results of [21],
[7] and [26] can be derived from the existing corresponding fixed point theorems
in the setting of the standard metric space in the literature.

In [24] Qiaoling et al. established coincidence fixed point and common fixed
point theorems for two maps in complete C∗-algebra-valued metric spaces. In
the next we present short proofs to show that those results can be deduced
from certain coincidence fixed point and common fixed point results in metric
spaces.

Corollary 2.3 ([24], Theorem 2.1). Let (X,A, d) be a complete C∗-algebra-
valued metric space and T, S : X −→ X be two maps such that

(2.1) d(Tx, Sy) � b∗d(x, y)b

for all x, y ∈ X and some b ∈ A with ‖b‖ < 1. Then T and S have a unique
common fixed point in X.

Proof. Let ρ be the metric defined as in Corollary 2.2. Then (X, ρ) is a complete
metric space. By (2.1) we have 0 � d(Tx, Sy) � b∗d(x, y)b. Then by Lemma 1.2
we get

ρ(Tx, Sy) = ‖d(Tx, Sy)‖ ≤ ‖b∗d(x, y)b‖ ≤ ‖b∗‖‖d(x, y)‖‖b‖ = ‖b‖2ρ(x, y).

Note that ‖b‖2 < 1 since ‖b‖ < 1. By using [14, Theorem 3.8] with A = T ,
B = S and φ(t) = ‖b‖2t for all t ≥ 0, we get that T and S have a unique
common fixed point on X . �

Corollary 2.4 ([24], Theorem 2.2). Let (X,A, d) be a complete C∗-algebra-
valued metric space and T, S : X −→ X be two maps such that

(2.2) d(Tx, T y) � b∗d(Sx, Sy)b

for all x, y ∈ X and some b ∈ A with ‖b‖ < 1. If T (X) ⊂ S(X) and S(X) is
complete then T and S have a unique point of coincidence in X. Furthermore,
if T and S are weakly compatible then T and S have a unique common fixed
point in X.
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Proof. Let ρ be the metric defined as in Corollary 2.2. Then (X, ρ) is a complete
metric space. By (2.2) we have 0 � d(Tx, T y) � b∗d(Sx, Sy)b. Then by
Lemma 1.2 we get

ρ(Tx, Sy) = ‖d(Tx, T y)‖ ≤ ‖b∗d(Sx, Sy)b‖

≤ ‖b∗‖‖d(Sx, Sy)‖‖b‖ = ‖b‖2ρ(Sx, Sy).

Note that ‖b‖2 < 1 since ‖b‖ < 1. By using [1, Theorems 2.1-2.2], we find that
T and S have a unique point of coincidence in X . Furthermore, if T and S are
weakly compatible then T and S have a unique common fixed point in X . �

Using Corollary 2.2 to prove two following results we need not use even the
assumption b ∈ A′

+, where A′
+ = {b ∈ A : b � 0, bc = cb for all c ∈ A}. So the

assumption b ∈ A′
+ may be replaced by b ∈ A.

Corollary 2.5 ([24], Theorem 2.3). Let (X,A, d) be a complete C∗-algebra-
valued metric space and T, S : X −→ X be two maps such that

(2.3) d(Tx, T y) � b[d(Tx, Sx) + d(Ty, Sy)]

for all x, y ∈ X and some b ∈ A′
+ with ‖b‖ < 1

2
. If T (X) ⊂ S(X) and S(X) is

complete then T and S have a unique point of coincidence in X. Furthermore,
if T and S are weakly compatible then T and S have a unique common fixed
point in X.

Proof. Let ρ be the metric defined as in Corollary 2.2. Then (X, ρ) is a complete
metric space. By (2.3) we have 0 � d(Tx, T y) � b[d(Tx, Sx)+d(Ty, Sy)]. Then
by Lemma 1.2 we get

ρ(Tx, Sy) = ‖d(Tx, T y)‖ ≤ ‖b[d(Tx, Sx) + d(Ty, Sy)]‖

≤ 2‖b‖max{ρ(Tx, Sx), ρ(Ty, Sy)}.

Since ‖b‖ < 1
2
, we get 2‖b‖ < 1. By using [1, Theorems 2.1-2.2], we find that

T and S have a unique point of coincidence in X . Furthermore, if T and S are
weakly compatible then T and S have a unique common fixed point in X . �

Corollary 2.6 ([24], Theorem 2.4). Let (X,A, d) be a complete C∗-algebra-
valued metric space and T, S : X −→ X be two maps such that

(2.4) d(Tx, T y) � b[d(Tx, Sy) + d(Sx, T y)]

for all x, y ∈ X and some b ∈ A
′
+ with ‖b‖ < 1

2
. If T (X) ⊂ S(X) and S(X) is

complete then T and S have a unique point of coincidence in X. Furthermore,
if T and S are weakly compatible then T and S have a unique common fixed
point in X.

Proof. Let ρ be the metric defined as in Corollary 2.2. Then (X, ρ) is a complete
metric space. By (2.4) we have 0 � d(Tx, T y) � b[d(Tx, Sy)+d(Sx, T y)]. Then
by Lemma 1.2 we get

ρ(Tx, Sy) = ‖d(Tx, T y)‖ ≤ ‖b[d(Tx, Sy) + d(Sx, T y)]‖

≤ 2‖b‖
ρ(Tx, Sy) + ρ(Sx, T y)

2
.
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Since ‖b‖ < 1
2
, we get 2‖b‖ < 1. By using [1, Theorems 2.1-2.2], we find that

T and S have a unique point of coincidence in X . Furthermore, if T and S are
weakly compatible then T and S have a unique common fixed point in X . �

By using Theorem 2.1 we show that many results in C∗-algebra-valued
b-metric spaces can be deduced from certain results in b-metric spaces. Note
that the proof of [20, Theorem 2.1] is correct only for the case of ‖B‖2 < ‖A‖,
see the equality in lines -8, -7, -6 on page 4 of [20]. We next reprove that result
as follows.

Corollary 2.7 ([20], Theorem 2.1). Let (X,A, d) be a complete C∗-algebra-
valued b-metric space with the coefficient a and T : X −→ X be a map such that

(2.5) d(Tx, T y) � b∗d(x, y)b

for all x, y ∈ X and some b ∈ A with ‖b‖ < 1. Then T has a unique fixed point
in X.

Proof. Let ρ be the b-metric defined as in Theorem 2.1. Then (X, ρ) is a
complete b-metric space with the coefficient ‖a‖. By (2.5) we have

0 � d(Tx, T y) � b∗d(x, y)b.

Then by Lemma 1.2 we get

ρ(Tx, T y) = ‖d(Tx, T y)‖ ≤ ‖b∗d(x, y)b‖ ≤ ‖b∗‖‖d(x, y)‖‖b‖ = ‖b‖2ρ(x, y).

Note that ‖b‖2 < 1 since ‖b‖ < 1. So T is a contraction on the complete
b-metric space (X, ρ). By the Banach contraction principle in b-metric spaces
[12, Theorem 2.1], T has a unique fixed point in X . �

In the proof of [20, Theorem 2.2], Ma and Jiang claimed in lines -3 and -2
on page 6 that

‖d(Tx, x)‖ ≤ ‖(1A−a2b)−1a2b‖‖d(x, xn)‖+‖(1A−a2b)−1(ab+a)‖‖d(xn+1, x)‖.

However, this fact is not correct since the operator 1A−a2bmay not be invertible
from the assumption ‖ba‖ < 1

2
. In the next we revise [20, Theorem 2.2] by

replacing the assumption ‖ba‖ < 1
2
by ‖b‖‖a‖2 < 1

2
. Furthermore, we also

replace the assumption b ∈ A′
+ by the weaker one b ∈ A.

Corollary 2.8 (Revision of Theorem 2.2 in [20]). Let (X,A, d) be a complete
C∗-algebra-valued b-metric space with the coefficient a and T : X −→ X be a
map such that

(2.6) d(Tx, T y) � b[d(Tx, y) + d(Ty, x)]

for all x, y ∈ X and some b ∈ A with ‖b‖‖a‖2 < 1
2
. Then T has a unique fixed

point in X.
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Proof. Let ρ be the b-metric defined as in Theorem 2.1. Then (X, ρ) is a
complete b-metric space with the coefficient ‖a‖. By (2.6) we have

0 � d(Tx, T y) � b[d(Tx, y) + d(Ty, x)].

Then by Lemma 1.2 we get

ρ(Tx, T y) = ‖d(Tx, T y)‖ ≤ ‖b[d(Tx, y)+d(Ty, x)]‖ ≤ ‖b‖[ρ(Tx, y)+ρ(Ty, x)].

Note that ‖b‖ < 1
2‖a‖2 . Using [15, Corollary 3.9] with f = T , K = ‖a‖ and

a4 = a5 = ‖b‖, we see that T has a unique fixed point in X . �

In the proof of [20, Theorem 2.3], Ma and Jiang claimed in line -5 on
page 8 that

d(Tx, x) ≤ (1A − ab)−1abd(Txn, T xn−1) + (1A − ab)−1ad(Txn, x).

However, this fact is not correct since the member 1A−ab may not be invertible
from the assumption ‖b‖ < 1

2
. In the next we revise [20, Theorem 2.3] by

replacing the assumption ‖b‖ < 1
2
by ‖b‖‖a‖ < 1

2
. Furthermore, we also replace

the assumption b ∈ A′
+ by the weaker one b ∈ A.

Corollary 2.9 (Revision of Theorem 2.3 in [20]). Let (X,A, d) be a complete
C∗-algebra-valued b-metric space with the coefficient a and T : X −→ X be a
map such that

d(Tx, T y) � b[d(Tx, x) + d(Ty, y)]

for all x, y ∈ X and some b ∈ A with ‖b‖‖a‖ < 1
2
. Then T has a unique fixed

point in X.

Proof. Similar to the proof of Corollary 2.8 where ‖b‖ < 1
2‖a‖ and using [15,

Corollary 3.9] with f = T , K = ‖a‖ and a2 = a3 = ‖b‖. �

In [19] Klin-eama and Kaskasem studied fundamental properties of C∗-algebra-
valued b-metric spaces and gave some fixed point theorems for cyclic maps. By
using Theorem 2.1 we also show that fundamental properties of C∗-algebra-
valued b-metric spaces presented in [19] may be deduced from certain properties
of b-metric spaces.

Theorem 2.10 (Fundamental properties). Let (X,A, d) be a complete C∗-algebra-
valued b-metric space with the coefficient a.

(1) [19, Theorem 3.5] If {xn} is a convergent sequence then {xn} is a
Cauchy sequence.

(2) [19, Theorem 3.7]
(a) lim

n→∞
xn = x if and only if lim

n→∞
d(xn, x) = 0.

(b) If {xn} is convergent then it is bounded and its limit is unique.
(c) If {xn} is a Cauchy sequence then it is bounded.

(3) [19, Theorem 3.8] If lim
n→∞

xn = x then every subsequence {xnk
} of {xn}

is convergent and lim
k→∞

xnk
= x.

(4) [19, Theorem 3.9] If {xn} is a Cauchy sequence then every subsequence
{xnk

} of {xn} is a Cauchy sequence.
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(5) [19, Theorem 3.10] If {xn} is a Cauchy sequence and has a convergent
subsequence then it is convergent.

(6) [19, Theorem 3.12] If lim
n→∞

xn = x and lim
n→∞

yn = y then

1

‖a‖2
‖d(x, y)‖ ≤ lim inf

n→∞
‖d(xn, yn)‖ ≤ lim sup

n→∞
‖d(xn, yn)‖ ≤ ‖a‖2‖d(x, y)‖.

In particular, if x = y then lim
n→∞

‖d(xn, yn)‖ = 0. Moreover, for any

z ∈ X,

1

‖a‖
‖d(x, z)‖ ≤ lim inf

n→∞
‖d(xn, z)‖ ≤ lim sup

n→∞
‖d(xn, z)‖ ≤ ‖a‖‖d(x, y)‖.

Proof. Let ρ be the b-metric defined as in Theorem 2.1. Then (X, ρ) is a
b-metric space with the coefficient ‖a‖. By using Lemma 1.12 for the b-metric
space (X, ρ) with the coefficient ‖a‖ we get (6).

By using Theorem 1.11 we see that every b-metric space (X, ρ) is metrizable
by the metric m. Moreover, we find that convergence, Cauchy sequence, com-
pleteness and boundedness between the metric space (X,m) and the b-metric
space (X, ρ) are equivalent since 1

2
ρβ ≤ m ≤ ρβ . By Theorem 2.1 we also find

that convergence, Cauchy sequence, completeness and boundedness between
the b-metric space (X, ρ) and the C∗-algebra-valued b-metric space (X,A, d)
are equivalent. Note that all statements (1), (2), (3), (4) and (5) hold in the
metric space (X,m). So they also hold in the C∗-algebra-valued b-metric space
(X,A, d). �

Klin-eama and Kaskasem claimed that for a C∗-algebra-valued b-metric
space (X,A, d) with the coefficient a, if lim

n→∞
xn = x and lim

n→∞
yn = y then

lim
n→∞

d(xn, yn) = a2d(x, y), see [19, Theorem 3.11]. This claim is not correct

for a b-metric space with a continuous b-metric and the coefficient K > 1. The
confusion in the proof of [19, Theorem 3.11] is applying [19, Theorem 2.11] to
the inequality

d(xn, yn)− a2d(x, y) � ad(xn, x) + a2d(y, yn)

where d(xn, yn) − a2d(x, y) is not positive in general. In fact, the property of
lim
n→∞

d(xn, yn) is stated in Theorem 2.10.(6).

Finally we show that fixed point results for cyclic maps in [19] may be
deduced from certain fixed point results for cyclic maps in the the setting of
b-metric spaces. We need not use even the assumption b ∈ A′

+ in proofs of
Corollary 2.12 and Corollary 2.13 and it may be replaced by b ∈ A.

Corollary 2.11 ([19], Theorem 4.1). Let (X,A, d) be a complete C∗-algebra-
valued b-metric space with the coefficient a, A and B be non-empty closed
subsets of X and T : A ∪ B −→ A ∪ B be a cyclic map, that is TA ⊂ B

and TB ⊂ A, such that

d(Tx, T y) � b∗d(x, y)b
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for all x ∈ A, y ∈ B and some b ∈ A with ‖b‖ < 1
‖a‖ . Then T has a unique

fixed point in A ∩B.

Proof. Let ρ be the b-metric defined as in Corollary 2.2. Then (X, ρ) is a
complete b-metric space. By (2.11) we have 0 � d(Tx, T y) � b∗d(x, y)b for all
x ∈ A and y ∈ B. Then by Lemma 1.2 we get, for all x ∈ A and y ∈ B,

ρ(Tx, T y) = ‖d(Tx, T y)‖ ≤ ‖b∗d(x, y)b‖ ≤ ‖b∗‖‖d(x, y)‖‖b‖ = ‖b‖2ρ(x, y).

Note that ‖b‖2 < 1 since ‖b‖ < 1. By using [23, Corallary 3.4] with ϕ(t) = ‖b‖2t
for all t ≥ 0 we get that T has unique fixed point in A ∩B. �

Corollary 2.12 ([19], Theorem 4.5). Let (X,A, d) be a complete C∗-algebra-
valued metric space, A and B be non-empty closed subsets of X and T : A ∪
B −→ A ∪B be a cyclic map such that

d(Tx, T y) � b[d(Tx, x) + d(Ty, y)]

for all x, y ∈ X and some b ∈ A′
+ with ‖b‖ < 1

2‖a‖ . Then T has a unique fixed

point in A ∩B.

Proof. Similar to the argument in the proof of Corollary 2.11 and using [23,
Corallary 3.8] with ϕ(t) = 2‖b‖t for all t ≥ 0. �

Corollary 2.13 ([19], Theorem 4.7). Let (X,A, d) be a complete C∗-algebra-
valued metric space, A and B be non-empty closed subsets of X and T : A ∪
B −→ A ∪B be a cyclic map such that

d(Tx, T y) � b[d(Tx, y) + d(Ty, x)]

for all x, y ∈ X and some b ∈ A′
+ with ‖b‖ < 1

2‖a‖2 . Then T has a unique fixed

point in A ∩B.

Proof. Similar to the argument in the proof of Corollary 2.12 and using [23,
Corallary 3.6] with ϕ(t) = 2‖b‖t for all t ≥ 0. �

Though many results in C∗-algebra valued metric spaces and C∗-algebra
valued b-metric spaces are consequences of certain results in metric spaces or
in b-metric spaces, we must say that we do not know whether the Caristi’s fixed
point theorem in C∗-algebra valued metric spaces [25, Theorem 3.5] may be
deduced from Caristi’s fixed point theorem in metric spaces [8, Theorem 1] or
not. The difficulty is that from the inequality (3.6) on page 587 of [25] we may
not get ρ(x, Tx) ≤ ‖φ(x)‖ − ‖φ(Tx)‖ for all x ∈ X . So the following question
is still open.

Question 2.14. Is it possible to derive Caristi’s fixed point theorem in C∗-algebra
valued metric spaces [25, Theorem 3.5] from Caristi’s fixed point theorem in
metric spaces [8, Theorem 1]?

Acknowledgements. The authors wish to express their thanks to anonymous

reviewers and the Editor for several helpful comments concerning the paper.

c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 251



N. V. Dung, V. T. L. Hang, D. Dolicanin-Djekic

References

[1] M. Abbas, G. V. R. Babu and G. N. Alemayehu, On common fixed points of weakly
compatible mappings satisfying ‘generalized condition (B)’, Filomat 25, no. 2 (2011),
9–19.

[2] A. Aghajani, M. Abbas and J. R. Roshan, Common fixed point of generalized weak
contractive mappings in partially ordered b-metric spaces, Math. Slovaca 64, no. 4 (2014),
941–960.

[3] H. Aimar, B. Iaffei and L. Nitti, On the Maćıas-Segovia metrization of quasi-metric
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type spaces, Fixed Point Theory Appl. 2010 (2010), 1–15.

[16] G. Jungck, Common fixed points for noncontinuous nonself mappings on a nonmetric
space, Far East J. Math. Sci. 4, no. 2 (1996), 199–212.

[17] M. A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal.
73, no. 9 (2010), 3123–3129.

[18] W. Kirk and N. Shahzad, Fixed point theory in distance spaces, Springer, Cham, 2014.
[19] C. Klin-eam and P. Kaskasem, Fixed point theorems for cyclic contractions in

C∗-algebra-valued b-metric spaces, J. Funct. Spaces 2016, Art. ID 7827040, 16 pp.
[20] Z. Ma and L. Jiang, C∗-algebra-valued b-metric spaces and related fixed point theorems,

Fixed Point Theory Appl. 2015, 2015:222, 12 pp.
[21] Z. Ma, L. Jiang and H. Sun, C∗-algebra-valued metric spaces and related fixed point

theorems, Fixed Point Theory Appl. 2014, 2014:206, 11 pp.
[22] G. J. Murphy, C∗-algebras and operator theory, Academic Press, Inc., 1990.
[23] H. K. Nashine and Z. Kadelburg, Cyclic generalized ϕ-contractions in b-metric spaces

and an application to integral equations, Filomat 28, no. 10 (2014), 2047–2057.
[24] X. Qiaoling, J. Lining and M. Zhenhua, Common fixed point theorems in C∗-algebra-

valued metric spaces, arXiv:1506.05545v2 (2015).
[25] D. E. Shehwar, S. Batul, T. Kamran and A. Ghiura, Caristi’s fixed point theorem on

C∗-algebra valued metric spaces, J. Nonlinear Sci. Appl. 9 (2016), 584–588.

c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 252



An equivalence of results in C∗-algebra valued b-metric and b-metric spaces

[26] D. E. Shehwar and T. Kamran, C∗-valued G-contractions and fixed points, J. Inequal.
Appl. 2015, 2015:304, 8 pp.

[27] C. Tianqing, Some coupled fixed point theorems in C∗-algebra-valued metric spaces,
arXiv:1601.07168v1 (2016).

c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 253


