
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

10-28-2013

apSLIP: A High-performance Adaptive-Effort
Pipelined Switch Allocator
Syed Ali Raza Jafri
Purdue University, sjafri@purdue.edu

Hamza Bin Sohail
Purdue University, hsohail@purdue.edu

Mithuna Thottethodi
Purdue University, mithuna@purdue.edu

T.N. Vijaykumar
Purdue University, vijay@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Jafri, Syed Ali Raza; Sohail, Hamza Bin; Thottethodi, Mithuna; and Vijaykumar, T.N., "apSLIP: A High-performance Adaptive-Effort
Pipelined Switch Allocator" (2013). ECE Technical Reports. Paper 451.
http://docs.lib.purdue.edu/ecetr/451

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages


apSLIP: A High-performance Adaptive-Effort Pipelined Switch Allocator 

 

 

 

 

 
Syed Ali Raza Jafri 

Hamza Bin Sohail 

Mithuna Thottethodi 

T.N. Vijaykumar 

 

 

 

TR-ECE-13-13 

October 28, 2013 

 

 

 

 

 

Purdue University 

School of Electrical and Computer Engineering 

465 Northwestern Avenue 

West Lafayette, IN  47907-1285 



 

apSLIP: A High-performance Adaptive-Effort Pipelined Switch 

Allocator 

Syed Ali Raza Jafri, Hamza Bin Sohail, Mithuna Thottethodi, and T.N. Vijaykumar 

School of Electrical Engineering 

Purdue University 

West Lafayette, IN, USA 

Email: {sjafri, hsohail, mithuna, vijay}@purdue.edu 

 

Abstract 

Switch allocation and queuing discipline has a first-order 

impact on network performance and hence overall system 

performance. Unfortunately, there is a fundamental tension 

between quality of switch allocation and clock-speed. On 

one hand, sophisticated switch allocators such as iSLIP 

include dependencies that make pipelining hard. On the 

other hand, simpler allocators which are pipelineable (and 

hence amenable to fast clocks) degrade throughput. 

This paper proposes apSLIP which uses three novel ideas to  

adaptively pipeline iSLIP at fast clocks. To address the 

dependence between the grant and request stages in iSLIP, 

we allow superfluous requests to occur and leverage the 

VOQ architecture which naturally enables easy availing of 

the corresponding grants. To address the dependence 

between the reading and updating of priority counters in 

iSLIP, we use stale priority values and solve the resulting 

double booking by privatizing the priority counters and 

separating the arbitration into odd and even stream. 

Further, we observe that while iSLIP can exploit multiple 

iterations to improve its matching strength, such additional 

iterations deepen the pipeline and add to the network 

latency.  The improved matching strength helps high-load 

scenarios whereas the increased latency hurts low-load 

cases. Therefore, we propose an adaptive-effort pipelined 

iSLIP – apSLIP – which adapts between one iteration 

(shallow-pipeline) at low loads and two iterations (deep 

pipeline) at high loads. Simulations reveal that compared to 

an aggressive 2-cycle router apSLIP improves, on average, 

end-to-end packet latency in an 8x8 network by 43% and 

high-load application performance in a 3x3 network by 19% 

without affecting the low-load benchmarks. 

1 INTRODUCTION 
As the microprocessor industry moves towards higher on-

chip core counts, the adoption of multi-hop networks as the 

interconnection fabric is inevitable because neither buses 

nor crossbars scale adequately. The queuing discipline 

employed in the on-chip network router has a first order 

impact on both latency and throughput of the network. 

Routers can queue flits either at the input ports or the output 

ports. However, input-queued routers suffer from head-of-

line (HOL) blocking which significantly degrades 

performance [1]. In contrast, output-queued routers are free 

of HOL blocking but naïve implementations require write 

bandwidth to the output queues to scale with the number of 

input ports for the cases where flits from multiple input 

ports are destined to a single output port. This “speed up” of 

the output queues is hard even for a few input ports [2]. To 

address this issue, Karol et al. in [3] propose the virtual 

output queuing (VOQ) architecture for routers. VOQ creates 

as many queues at each input port as there are output ports. 

Because each queue corresponds to a single output port, 

VOQ completely eliminates head-of-line blocking without 

the need for speedup of the switching fabric.  

To be effective, however, the VOQ scheme requires a 

sophisticated switch allocation algorithm which can support 

high network throughput. A low throughput switch would 

throttle the network and render the VOQ scheme useless.  

McKeown proposes the iSLIP switch allocation algorithm 

in [4] which approaches close to a 100% network 

throughput. VOQ routers along with the iSLIP switch 

allocation algorithm have been used extensively in Internet 

routers. Internet routers can exploit VOQ/iSLIP because 

they do not need flow control and can drop packets upon 

congestion. In contrast, on-chip network routers cannot gain 

from the iSLIP algorithm which necessitates a slow clock. 

Clock speeds are more critical than Internet router clock 

speeds where router delay is a small fraction of the long 

end-to-end delay (e.g., 40 ms). Pipelining iSLIP to achieve 

fast clock is challenging due to dependencies which is the 

main problem we address in this paper. 

An alternative to pipelining is to adapt per-packet switch 

allocation which reduces the importance of fast allocation 

by decreasing the frequency of allocation from per-flit to 

per-packet. In per-packet allocation, a packet holds the 



 

allocated switch port until all the packet’s flits are 

transmitted. Such allocation enables the use of sophisticated 

(and slow) switch allocators, as employed in Internet 

routers, where slow clocks are acceptable. However, there 

are two key disadvantages for on-chip networks. First, per-

packet allocation requires either full-packet buffering 

(which can add significant area/power overheads) or 

reservation of unused links when packets are spread over 

multiple routers (which can exacerbate tree-saturation and 

hence hurt performance). Second, because on-chip networks 

have a large number of small, single-flit control packets, 

per-packet switch allocation is no better than per-flit switch 

allocation.  Packet chaining [5] ameliorates this problem by 

chaining multiple small packets together whenever possible; 

but at the cost of additional hardware complexity to detect 

chaining opportunity and duplicate allocators to exploit the 

opportunity.   

Due to the above problems with VOQ and iSLIP, current 

on-chip network routers employ input queuing implemented 

via virtual channels (VCs) to alleviate HOL blocking along 

with simple switch allocation algorithms which are 

pipelined for throughput. However, the simple algorithms 

(e.g., SPAA [6]) offer no theoretical guarantees that they 

can achieve full (100%) network throughput, unlike iSLIP.  

We propose apSLIP which combines VOQ and adaptive-

effort, pipelined iSLIP to achieve higher network throughput 

than the current combination of input queuing and simple 

switch allocation algorithms. While apSLIP can work with 

per-flit or per-packet allocation, we focus on per-flit 

allocation due to its lower hardware overhead. 

To provide flow control with VOQ, we observe that in 

traditional networks, the source router allocates the VC at 

the destination router and tracks the VC’s occupancy for 

flow control. In VOQ, however, the destination virtual 

output queue is determined at the destination router, 

unknown to the source router. To address this problem, we 

utilize look-ahead routing [2] where the destination’s output 

port and therefore the virtual output queue are known at the 

source router.  Alternatives to flow control, such as 

dropping or deflecting flits, perform worse at high network 

loads [7, 8]. In addition to flow control, VCs can also 

provide deadlock freedom for which we use the well-known 

alternative of dimension-ordered routing (DOR).  

To address the main problem of pipelining iSLIP, we 

propose three novel ideas. Pipelining iSLIP is challenging 

due to two dependencies amongst its three phases (natural 

pipeline stages), which cause RAW hazards. The first 

hazard involves resending requests for flits before the 

outcome (grant/no-grant) of the previous request for the 

same flits is known. Such re-sent requests would be 

superfluous if the earlier request is granted and the 

corresponding flit dispatched. Such superfluous requests 

may then receive output grants which constitute lost 

opportunity for other contending flits. Our first idea is based 

on the key observation that with VOQ and at high network 

loads, each virtual output queue will have more than one flit 

in the common case. Therefore, there will almost always be 

other flits waiting in the same queue to avail a grant for a 

superfluous request.  We emphasize this VOQ-iSLIP 

synergy that the grant can be availed easily only in VOQ 

where all the flits in the queue are destined for the granted 

output which is not the case in input queuing where finding 

a flit in an input queue for the granted output is hard. 

Therefore, combining iSLIP with input queuing instead of 

VOQ would not achieve the same effect. 

The second hazard is a RAW hazard that arises because 

priority-counters used for round-robin arbitration are written 

in stage 3 but read in stage 2. Because the priority counters 

hold metadata and not program data, we ignore the RAW 

hazard and use stale metadata without violating program 

dependencies. However, such a strategy does cause 

performance degradation because of double-booking of 

resources. We overcome this double booking by separating 

the arbitrations into odd and even streams which amounts to 

privatizing the priority counters (a separate set of counters 

for each stream instead of one-set of counters for all 

arbitrations).  

Pipelining iSLIP fundamentally enables another 

optimization in the switch allocator by exploiting a key 

feature of iSLIP. iSLIP is one of the maximal-matching 

allocators that can achieve higher-quality matching at higher 

effort via more iterations of the matching algorithms. 

Unpipelined, multi-iterative iSLIP implementations are 

worse than single-iteration implementations when it comes 

to clock speed. However, our pipelining can achieve a 2-

iteration, 6-stage pipelined implementation at a fast clock. 

While the second iSLIP iteration is useful at high network 

loads (where the increased bandwidth helps reduce queuing 

latency), the extra latency hurts performance at low loads 

(where there is no increase in throughput). To address this 

issue, we propose our third idea of an adaptive-effort 

allocator that adapts the pipeline depth between one and two 

iterations depending on the injection rate to achieve low 

latency at low loads and high bandwidth at high loads.  

In summary, the paper’s contributions are: 

 We pipeline iSLIP by addressing two key hazards: 

o For superfluous requests, we leverage the VOQ 

architecture which naturally enables easy availing 

of the corresponding grants  

o For priority-counter hazard, we use stale priority 

values and avoid the resulting double booking by 



 

privatizing the priority counters and separating the 

arbitration into odd and even streams.  

 We propose apSLIP, an adaptive-effort pipelined iSLIP 

which adapts between low-effort, low-latency matching 

at low loads (i.e., one iteration in three stages) and 

high-effort, high-bandwidth matching at high loads 

(i.e., two iterations in six stages).  

Comparisons with several switch allocators using a trace-

driven network simulator and a full-system simulator 

running commercial and scientific workloads show that 

apSLIP improves, on average, end-to-end packet latency in 

an 8x8 network and high-load application performance in a 

3x3 network without affecting the low-load benchmarks by 

43% and 19%, respectively, over an aggressive 2-cycle 

router,  and 20% and 9%, respectively, over idealized 

packet-chaining (with per-packet allocation) while using 

smaller buffers and avoiding duplicate allocators. 

The rest of the paper is organized as follows. Section 2 

discusses related work. Section 3 provides a brief 

background on router queuing disciplines and iSLIP.  

Section 4 describes apSLIP’s details. Section 5 describes 

our experimental methodology and Section 6 presents 

experimental results. Finally, Section 7 concludes the paper. 

2 RELATED WORK  
Alternatives to pipelining iSLIP are: (1) bypass the router, 

(2) reduce router latency to 1 cycle,   (3) make switch 

allocation unimportant, and (4) improve switch allocation 

algorithm. Proposals for the first option speculatively 

exploit the lack of resource contention at low and near-zero 

loads [9] [10] to allow flits to bypass most of the router and 

incur only wire-delays. The SMART router extends this 

further to achieve multi-router traversal with only wire-

delays [11]. In general, such speculative techniques 

degenerate to full router latency at modest and high loads. 

We find that memory-intensive commercial and scientific 

workloads incur high cache miss rates and thereby high 

network load so that such speculative techniques do not 

work well in practice. As such, apSLIP significantly 

outperforms the techniques (Section 6.1). 

The second option includes many shallow-pipelined or even 

single-cycle router proposals [14] [7]. There are two ways in 

which the entire router can fit within a single cycle. First, 

the critical path through the router is truly reduced by 

eliminating key dependencies and enhancing circuit-level 

parallelism. In general, modern router designs do not have 

superfluous dependencies that may be non-speculatively 

eliminated. Alternately, the second possibility is that even 

though the critical path is unchanged, the clock happens to 

be slow enough to accommodate the entire critical path. 

Such a design offers a marginal latency advantage over a 

pipelined alternative because of latch over heads in the 

pipelined design. The latency advantage comes at the cost of 

reduced bandwidth and is limited only to low loads. At high 

loads the low bandwidth significantly degrades performance 

compared to a pipelined alternative with a faster clock. 

Additionally at low loads, there is not much communication 

and hence little opportunity to impact overall performance 

so that the latency advantage does not matter much. At high 

loads, however, queuing delays dominate router delays, 

which implies the pipelined design will achieve both better 

latency and better bandwidth. Not surprisingly, our 

comparison with an ideal, single-cycle router shows that 

apSLIP significantly outperforms the router (Section 6.1).  

As discussed in Section 1, per-packet switch allocation (e.g., 

packet chaining [5]) reduces the importance of fast 

allocation – the third option – but requires full packet 

buffering to avoid severe performance degradation. This 

requirement can lead to large buffers and area/power 

overheads. For example, assuming 7 ports (4 network ports 

+ 3 local ports), a coherence protocol that uses 3-5 virtual 

networks, 128-bit flits, 5-flit packets (assuming 64-byte 

cache blocks), and 8 VCs per virtual network, a per-packet 

design requires between 13-22 KB buffers per router. In 

contrast, per-flit switch allocation may use fewer flit buffers 

(say 2-3 flits/queue) thus reducing buffer requirements by 

1.67X-2.5X (5.2-13.2 KB per router).  

For the fourth option, TS-router [15] proactively avoids 

scheduling conflicts by using knowledge of future 

(conflicting) flits. Input ports where flits are expected in the 

future are prioritized for switch allocation to evacuate older 

flits before the scheduling conflict occurs (on the arrival of 

the future flit). This anticipatory evacuation policy is 

effective only at low loads when input queue occupancy is 

low and thus evacuation is feasible. At medium/high loads, 

when there are higher numbers of flits, it is impossible to 

evacuate all flits in time to avoid scheduling conflicts. 

Consequently, apSLIP significantly outperforms even a 1-

cycle TS-router (Section 6.1). 

3 BACKGROUND 
We discuss queuing discipline in routers, and iSLIP and its 

variants.  

3.1 Input Queuing 

Karol et al. [1] showed that the throughput of an NxN port 

input-queued switch with FIFO queues, under certain 

conditions, will be  limited to just (2-√2) = 58.6%. The 

underlying cause of this limitation is HOL blocking, where 

flits are delayed by other flits ahead in line destined for a 

different output port. The HOL-blocking observed in 

modern systems is not as bad as suggested by the limit in [1]  

whose conditions (e.g., all ports equally likely to be taken, 

single FIFO queuing) are not always true. One of the most 



 

prevalent techniques for reducing HOL blocking is virtual 

channel flow control proposed by Dally et al. [16]. As 

shown in Fig 1, a virtual channel (VC) is associated with a 

buffer which can hold flits of a single packet and other state 

information. Multiple VCs share the bandwidth of a single 

physical channel.  Hence VCs act like multiple FIFO queues 

at each input of the router. If flits of one packet (hence one 

VC) are blocked, the input port can transfer flits from 

another packet (another VC) hence mitigating HOL 

blocking. When the packet is fully transferred, the router 

can allocate the VC to another incoming packet.  While VCs 

can ameliorate HOL blocking (because packets in different 

VCs do not block one another), they cannot completely 

eliminate HOL blocking (because packets within VCs 

cannot bypass blocked packets). 

 

Fig 1: VC Router Architecture   

Mukherjee et al. [6] perform a comparison of various switch 

allocation algorithms for VC based flow control. They 

propose the Simple Pipelined Arbitration Algorithm 

(SPAA) and showed its superiority to unpipelined iSLIP and 

unpipelined Wave Front Algorithm (WFA) [17]. While both 

iSLIP and WFA can reach higher throughput than SPAA, 

they are not pipelined and cannot compare in performance 

with pipelined SPAA at a fast clock. However, SPAA 

sacrifices powerful matching of input to output ports in 

favor of pipelineability. 

3.2 iSLIP Operation and Pipeline Hazards 

Proposed by McKeown in [4], iSLIP is an allocation 

algorithm that provides lower latency as compared to 

parallel iterative matching  in general and can theoretically 

reach a 100% network throughput. We enumerate the key 

steps of iSLIP below: 

1. Request (RQ) stage: Each input port sends requests 

to every output port for which it has a flit.  

2. Output Arbitration (OA) stage: Each output port 

selects on request based on a private counter and 

informs the corresponding input port. Note the 

counter is not incremented at this stage.  

3. Input Arbitration/Counter Update (IA/CU) stage: 

In an input port receives grants from multiple 

output ports, it selects on based on a private round 

robin counter. The input and output port both 

increment their counters.  

Fig 2 illustrates the unpipelined operation of the iSLIP 

allocator for two flits. There are two cases of 

dependencies. First, the RQ stage for subsequent 

allocation attempts uses information on successful 

matches from the previous allocation to ensure that 

successfully matched flits do not continue to assert 

requests (solid arrow in Fig 2). Second, the priority 

counters used for round-robin arbitration are written in 

stage three and read in the OA stage of subsequent 

allocations (dashed arrow in Fig 2). Pipelining iSLIP 

reveals that each of these two dependencies translate to 

RAW (read-after-write) hazards (Fig 3).  

 

Fig 2: Value communication in unpipelined iSLIP 

 

Fig 3: Hazards exposed by pipelining iSLIP 

 

Fig 4: Inter-iteration pipelining in Tiny Tera 

3.3 VOQ and variants 

In contrast to VCs which map input FIFO queues to packets, 

VOQs map FIFO queues to the output ports of the router 

thus completely eliminating HOL blocking (see Fig 5).  

As we mention in Section 1, while implementing virtual 

output queuing is non-trivial in a flow-controlled network, 

VOQs have been widely adopted in Internet routers where 

flow control is not required. Researchers have proposed 

several variants of the powerful multi-iterative iSLIP 

algorithm to provide high-throughput switch allocation in 

virtual output queued internet routers. Nick McKeown 

proposes pipelining across different iterations of iSLIP in 

the Tiny Tera Internet router to reduce the latency of a 

single round of multi-iterative iSLIP allocation. The Tiny 
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Tera switch allocator leverages the fact that an input port 

which receives at least one output grant in the OA stage is 

guaranteed to transfer flits and hence should be excluded 

from resending requests to subsequent allocations to later 

iterations of iSLIP. Thus, the Tiny Tera switch allocator can 

start the RQ stage of the next iteration without waiting for 

the IA/CU stage of the previous iteration to complete. Fig 4 

shows the IA/CU-to-RQ hazard being omitted (solid arrow 

in Fig 3) so that two iterations of one round complete in 5 

cycles. In general, Tiny Tera can start a new round of iSLIP 

arbitration every        cycles rather than every    cycles 

in the unpipelined case where   is the number of iterations 

per round assuming each stage of iSLIP takes 1 cycle. In 

contrast, our approach can start a new round every cycle. 

 

Fig 5: VOQ Router 

Kim et al. propose using buffered crossbars in high-radix 

on-chip routers [18]. The buffers in the crossbar act like 

limited VOQs further reducing HOL blocking. The 

performance of their switch allocator is bounded by that of 

the SPAA allocator (with VOQs) because of their use of 

input arbitration followed by output arbitration.  

4 apSLIP  

Recall from Section 1 that apSLIP employs VOQ to 

eliminate HOL blocking combined with our two innovations 

(1) high-throughput pipelined iSLIP switch allocation, and 

(2) adaptive-effort switch allocation.  

4.1 Virtual Output Queuing in On-chip Networks 

As mentioned in Section 1, VOQ has one fundamental 

operational difference vis-à-vis flow-controlled (i.e., 

backpressured) networks that use VCs. Essentially, VOQ 

requires the destination router to determine the home queue 

of an incoming flit because flits are placed in a virtual queue 

corresponding to the flit’s output port. VC-based flow-

controlled networks, on the other hand, require the source 

router to determine the home queue of the flit on the 

destination router. The source router allocates a VC on the 

destination router and tracks the occupancy of this VC when 

sending a flit to ensure that the destination router does not 

drop/overwrite any incoming flits.  

apSLIP provides VOQ in a flow-controlled network by 

determining the virtual queue in which the incoming flit will 

reside at the source router instead of the destination router, 

using the well-known idea of look-ahead routing. Thus, 

look-ahead routing enables the use of VOQ in a 

backpressured network. The apSLIP router provides virtual 

queues at each input port for each output port of the router. 

The source router tracks the occupancy of these virtual 

queues through credits just like in flow-controlled networks 

with VCs. When sending a flit the source router uses look-

ahead routing to determine the output port, and 

consequently the virtual queue, for which the flit is destined 

at the destination router. The source router then sends the 

flit when there is space available in the virtual queue. 

The implications of using VOQ as opposed to VCs are 

many. Aside from eliminating HOL blocking, VOQ also 

simplifies the apSLIP router by removing VCs and the VCA 

stage from the pipeline. The primary goal of VCs is to 

prevent intermingling of flits of different packets. A VC 

allocated to a packet serves as an input queue which bids for 

the crossbar in the switch allocation stage. Hence a VC 

cannot have flits of multiple packets which may be headed 

in different directions. VOQ, on the other hand, guarantees 

that all flits in a queue, whether from single or multiple 

packets,, are headed in the same direction. Therefore there is 

no need to keep flits of different packets in a virtual queue 

separate. Note that while flits of different packets could 

intermingle in a virtual queue, the relative ordering of flits 

of a single packet is still maintained. Removing VCs lets us 

shorten the router pipeline by removing the VCA stage. The 

router determines the VOQ for an outgoing flit in the look-

ahead routing stage as a function of the next hop address.  

While VOQ improves performance, removing VCs from the 

network creates challenges which we address next. First, 

because we allow intermingling of flits from different 

packets, per-flit switch allocation requires that each flit must 

now carry address and virtual network information, which 

results in slightly wider links, router buffers and crossbars 

(e.g., 8  bits per flit for an 8x8 network with up to four 

virtual networks). While such per-flit address information is 

unnecessary for per-packet switch allocation and apSLIP 

can employ either per-flit or per-packet allocation, we 

assume the former because the latter imposes high overhead 

of larger buffers. While VCs with per-packet allocation 

avoid this overhead, they incur other overheads such as the 

header flit and per-flit VC number neither of which are 

needed if each flit carries the address and virtual network. 

While VOQ’s per-flit address incurs area and power 

overhead (e.g., 8/128 = 6.7% for 128-bit flits in a 8x8 

network), VC’s header flit incurs power overhead (e.g., 1 

header flit per 4 128-bit flits for 64-byte cache block 

payload = 20%) and the per-flit VC number incurs area 

overhead (5 bits for 8 VCs x 3 virtual networks for 5/128 = 

switch 
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3.9%). Thus VOQ’s overheads are comparable to or better 

than VC’s. Further, while VOQ requires quadratically many 

buffers compared to VC requiring only linear buffer counts, 

this difference matters in practice only for high-radix routers 

which are uncommon in on-chip networks. In fact, our 

experiments use fewer buffers for VOQ than for VC 

(Section 5). 

  Second, because of the absence of VCs, one may think that 

our design may not use routing algorithms that use VCs for 

deadlock avoidance. (Note, this concern applies only to 

network deadlocks. We still use multiple VOQs to avoid 

coherence deadlocks via virtual networks.)  In general, 

routing algorithms that prevent deadlock by restricting turns 

can be used without any additional safeguards even in the 

absence of VCs. Further, using multiple VOQs via virtual 

networks to break cyclic dependencies is also possible. One 

possible side-effect of using VOQs with a deadlock 

prevention strategy may be unbalanced usage of virtual 

queues. For example, in a 2D mesh using XY dimension-

ordered routing (DOR) packets in the Y+/Y- input ports will 

utilize only Y+/Y- output queues leaving the X+/X- queues 

unutilized. We counter this imbalance by using non-uniform 

static queue sizes. One may also use dynamic queue sizes as 

proposed in [19] [20]. The fact that VCs and VOQs are 

typically implemented as partitions of a single SRAM array 

simplifies expanding the highly-utilized queues at the 

expense of the under-utilized queues.  

4.2 VOQ Synergy with Pipelined Switch Allocation 

Recall from Section 3.2 that there are two key RAW hazards 

that prevent naïve pipelining of iSLIP. We start our 

discussion on pipelining iSLIP with a high-level observation 

that the RAW hazards are meta-data hazards (hazards that 

affect request vectors and priority counters; not program 

data) that affect allocation performance and allocation 

fairness. As such, ignoring the RAW hazard and using stale 

information does not violate any program dependencies. 

However, using stale meta-information (such as priority 

counters) naively can degrade performance significantly and 

in the worst case, even cause starvation. We outline the 

solutions for each of the two hazards. The first hazard is 

relatively easy to handle and the second hazard is a little 

more complicated.  

Consider the first hazard between IA/CU (stage 3) and RQ 

(stage 1) in Fig 3, which is common to all pipelined switch 

allocators. The key challenge is that requests for subsequent 

allocations must be finalized before the outcome (i.e., 

grants) of prior allocations are determined. Using stale 

information (i.e., continuing to make switch requests for all 

outstanding flits), leads to potentially wasted allocations 

wherein an input port receives redundant grants for flits 

which have previously been dispatched.  

VOQ and iSLIP can synergistically mitigate this hazard’s 

effects. At high loads and consequentially high VOQ 

occupancy, flits are available in the queue to avail a request 

grant from an output port. Even though the flit that caused 

that request is no longer in the queue, the VOQ organization 

makes it easy to find other flits that are destined for the 

same output port.  At low loads, some switch grants may go 

unutilized. However, the switch allocator is not a bottleneck 

at low loads; thus, any wasted grants do not hurt 

performance as we show in our results. 

One may think that the above idea can be applied to VCs as 

well in one of two ways: (1)  The redundant grants could be 

availed when the input port happens to have another flit in 

the same VC that can use that switch allocation. However, 

such availing is more successful in VOQs than VCs because 

the former holds flits to the same output port in one queue 

while the latter does not. We include this optimization in our 

baseline VC implementation  and show that apSLIP is 

significantly better.  (2) A more aggressive optimization is 

to search other VCs of the same input port for flits that 

could use the redundant grant. Such an optimization is 

similar to packet-chaining [5], which we show is 

outperformed by apSLIP.  

4.3 Privatization of priority counters 

The second hazard occurs between OA stage (stage 2) and 

the IA/CU stage (stage 3) on the per-port output port 

counters. Recall from Section 3.2 that an output port, whose 

grant is accepted by an input port, updates its private 

counter in IA/CU (stage 3). The output port then reads its 

private counter to send grants in the following OA (stage 2) 

(see Fig 3).  

 

Fig 6: Stalling to avoid pipeline RAW hazard 

A naïve solution would be to stall the pipeline stages to 

eliminate the hazard as shown in Fig 6. Unfortunately, such 

a solution would halve the throughput as it achieves matches 

only every other cycle. Instead of stalling, another naïve 

solution would be to use stale metadata which results in the 

output port in stage 2 reading an outdated counter value as 

shown in Fig 3. Unfortunately, this choice causes serious 

performance pathology.  Specifically, reading the outdated 

counter value results in the output port nominating the same 

input port twice (i.e., two reads of the same counter value 

before an update) In the meantime, the input port accepts 

grants based on its up-to-date private counter which is read 

and then updated in stage 3 (Section 3.2). The slow-moving 

output port counter when coupled with the input port 
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counter (moving at the regular rate) results in unfairness and 

significantly degraded performance (8% less saturation 

throughput than our baseline SPAA router).  

The key to iSLIP’s successful matching is keeping the 

private counters of input ports and output ports 

desynchronized with respect to those of the other input and 

output ports, respectively. Consider a scenario where two 

output ports keep sending grants to the same input ports 

because their private counters keep synchronizing. The 

input grants can choose only one output port and hence the 

other would be wasted.  Instead, by moving at the correct 

rate, the counters stay desynchronized. 

We need to resolve the hazard between stage 3 (of flit 1) 

and stage 2 (of flit 2) while ensuring that both input port and 

output port counters move at the correct rate.  Our solution 

ignores the RAW hazard and uses stale information. To 

prevent the resulting counter synchronization, we propose 

duplicating the counters (say counter set 0 and counter set 

1), effectively privatizing them for odd/even cycles, as 

shown using subscripts in Fig 7. This counter privatization 

is similar to compiler variable privatization.  

 

Fig 7: Privatization with duplicate counters 

At a high-level, our solution is equivalent to operating two 

independent, hazard-free allocators, each of which 

guarantees fairness. At a low-level, we do not actually 

duplicate the allocators. Rather, we privatize the per-port 

priority counters for odd and even cycles. Because of such 

privatization, we completely eliminate the hazard between 

the IA/CU and OA stages of consecutive allocations. 

Effectively, each allocation uses stale information from two 

allocations ago. Consecutive writes and reads to the same 

set of output port counters are now separated by two cycles 

(see flit 1 and flit 3 in Fig 7) which ensures that the updated 

counters are available at the end of cycle 3 before they are 

read in cycle 4. Further, because of the absence of races, the 

corresponding input and output counters are incremented at 

the correct rate (i.e., exactly one read per update). We have 

empirically examined non-uniform arrival patterns other 

than the example in Fig 7 and confirmed that our 

privatization is equivalent to unpipelined iSLIP. 

Our discussion so far has focused on the apSLIP allocator 

pipeline. Fig 8 shows the full router pipeline where the 

look-ahead routing occurs in parallel with apSLIP’s RQ. 

 

Fig 8: apSLIP router pipeline 

In [21], the authors target pipelining instruction issue in out-

of-order processors which also poses a RAW hazard 

problem of issuing dependent instructions back-to-back. The 

authors propose to have grand-parent instructions wakeup 

grand-child instructions instead of parent instructions 

waking up child instructions. Our odd-even counters are 

similar in spirit. However, they do not prevent overbooking 

whereas our counter-privatization does. 

4.4 Multi Iterative and Adaptive pSLIP 

We extend the iSLIP pipeline to create a multi-iterative 

iSLIP switch allocator with increased matching capability. 

Recall from Section 1 that iSLIP is an iterative, maximal-

matching allocator that can achieve better matching by 

expending additional matching effort in the form of 

additional iterations. While high-load applications would 

benefit from the resultant higher throughput, low-load 

applications would lose performance due to the deeper 

pipeline’s increased latency and higher chances of 

redundant -grant mis-speculation.   

To increase throughput at high loads without hurting latency 

at low loads, we propose an adaptive-effort iSLIP. Every 

router employs a six-stage, two-iteration switch allocator 

pipeline. However, each router independently determines 

whether to run a single or dual-iterative switch allocator 

based on network load determined by queue occupancy. At 

low queue occupancy, the switch allocator provides its 

matches at the end of the first iteration yielding a three-stage 

pipeline. When queue occupancy crosses a threshold, the 

switch allocator runs two iterations corresponding to six 

stages (we found experimentally that a threshold in the 

range of 35-60% occupancy works and we use 50% for our 

results). We revert from two to one iteration only after the 

queues are empty (and not when the occupancy dips below 

the threshold), thus providing hysteresis to avoid frequent 

changes to the pipeline depth. Because we switch from two 

iterations to one iteration only when the queues (and 

therefore the request vectors) are empty, we avoid any 

potential grant-conflicts between an earlier two-iteration 

allocation and a later one-iteration allocation. While 

changing the depth of most pipelines at runtime is usually 

near impossible, the iSLIP pipeline is unique in that the 
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iterations are identical. Therefore, the pipeline may be 

terminated at the end of any iteration. We do not examine 

implementing more than two iterations as we saw 

diminishing returns from more iterations.  

5 Methodology 
We use two simulators: a trace-driven network-only 

simulator using Garnet for an 8x8 network (64 nodes) and 

the full-system GEMS [22] with Garnet [23]  on top of 

Simics [24] for a 3x3 network (9 nodes) using out-of-order-

issue, SMT cores and detailed memory system models 

(larger systems proved infeasible due to long out-of-order 

simulation times).While the former can cover larger 

systems, the latter shows the feedback effect of the network 

on execution time, not shown by the former, albeit for 

smaller systems.  

Table 1: Workload parameters 

Name Run Input Warmup 
Inj 

Rate 

PARSEC Benchmarks 

Fluidanimate 

200 

million 

cycle 

traces 

Simmedium  0.03 

Blackscholes Simmedium  0.08 

Dedup Simmedium  0.09 

Streamcluster 

1 mil. 128-D 

points, 5000 

centers 

 0.10 

Canneal 4 native   0.16 

Commercial Workloads 

Apache 600 tx 

20,000 files 

45,000 

clients 

25 ms think 

time 

20,000 tx cache 

2 million system 
0.32 

SPECjbb 3000 tx 
90 

warehouses 

50,000 tx cache 

1 million system 
0.30 

Online 

Transaction 

Processing 

(OLTP) 

50 tx 

25000 

warehouses 

300 

connections 

5000 tx cache 

0.1 million system 
0.28 

SPLASH-2 Workloads 

Ocean Full 34x34 grid  0.02 

Barnes Full 512 particles  0.01 

Water-

nsquared 

1 time 

step 
64 molecules  0.02 

 

We compare apSLIP with VoQ with several switch 

allocators (Section 2):  speculative designs [10] [9], 

SMART [11], TS-router [15], and per-packet with and 

without packet chaining [5]. To cover the various 

speculative designs which reduce router latency, we assume 

an idealized pipelined SPAA-based two-cycle router at all 

loads which uses virtual channels (our 2-cycle baseline). 

The first stage overlaps look-ahead routing with ideal 

single-cycle VC allocation using perfect speculation. The 

second stage performs both the local and global arbitration 

phase of the SPAA switch allocator. In this allocator, any 

redundant grant is availed if the input port has another flit in 

the same VC (Section 4.2). We also show an idealized, one-

cycle SPAA-based baseline router at all loads though the 

speculative designs achieve low latency only at low loads 

and incur full latency at high loads (e.g., 4 cycles). The 

baseline routers use DOR and 8 VCs per input port in each 

of the three virtual networks and each VC has 5-flit buffers 

where each flit is 128 bits. Our flit width is in line with 

recent real products’ widths of 16-64 bits [12] [13]. We note 

that while buses and rings (e.g., Intel Xeon Phi) need to be 

wider for bandwidth, they can afford to be as they do not 

have as many links as a typical network. Adding more VCs 

did not yield any significant improvement.  The baselines 

and all other schemes run at 2.8 GHz (same as core 

frequency) and have a 1-cycle wire delay in the links 

beyond the router latency. 

We build SMART on the 1-cycle baseline and the other 

previous schemes, TS-router, per-packet, and packet 

chaining, on the 2-cycle baseline. We include several 

idealizations for each of these schemes. For SMART, we 

assume that the router latency and router set-up are zero 

cycles for route segments without any contention so that the 

only latencies are 1-cycle inter-router wire delay and 1-

cycle router delay with contention. While the SMART paper 

assumes 9 routers traversed in one 1-GHz cycle under zero 

contention, SMART can remove only router delays and not 

reduce wire delays; the use of asynchronous repeaters in 

SMART to reduce wire delay is a well-known technique 

equally applicable to all networks. Therefore we assume 1-

cycle/hop wire delay for SMART. For TS-router, per-

packet, and packet chaining, we assume an ideal one-cycle 

switch allocation (2 cycles total router latency). The per-

packet switch allocator uses large, packet-sized 18-flit 

buffers while packet chaining uses the large buffers and an 

idealized, collision-free, duplicate allocator that finds the 

best chaining candidate among all the packets in the switch.   

Our apSLIP implementation models unevenly partitioned 

VOQs at each input port, sharing a pool of 64-flit buffers 

(fewer than the baseline VC’s 8x3x5 = 120-flit buffers per 

input port). Each input port has as many VOQs as there are 

output ports. apSLIP’s adaptive pipeline varies between four 

and seven stages (total router latency). The first stage 

includes look-ahead routing (Fig 8) followed by one or two 

iterations of the iSLIP algorithm at low and high loads, 

respectively (Section 4.3). apSLIP uses 8 extra bits per flit 

for address (Section 4.1). 

Table 2: System Configuration 

System 1 chip 64 cores 

Network 8x8 mesh, each tile has a core+private L1, an L2 

cache bank and a directory slice connected to a 

router (three injection/ejection ports); flit width is 

128 bit, 2 control virtual networks and 1 data 



 

network (8 + 8 + 8= 24 VCs) with 8-flit-deep 

buffers; 1-cycle link latency 

Cores Equivalent to 2-way SMT, 4-issue out-of-order with 

40-entry instruction window  

Private L1 Caches Split I & D, each 32KB, 2-way set associative, 64-

byte blocks, 2-cycle latency, 16 MSHRs 

Shared L2 Cache Unified 64-MB with 64 banks, 16-way set 

associative with LRU, 12-cycle bank access latency, 

16 MSHRs 

Memory 8 GB DRAM, 250-cycle off-chip access time, 16 

memory controllers (4 per side of mesh), 2 DIMMs 

per channel, 2 ranks per DIMM, 8 banks per rank, 

32 bank queue entries 

Trace-Driven Network-only Simulation:  We gather 

traces from full-system simulations of 64 in-order-issue 2-

way SMT cores to run on an 8x8 2-D mesh network 

simulator with 64 nodes; Table 2 summarizes the system’s 

key parameters. We scale the execution rate of each 

individual trace to match the per-thread instructions per 

cycle of an out-of-order-issue 2-way SMT core. We then 

apply a constant scaling factor to the scale down the 

execution rate of all traces to compensate for the smaller 

bisection bandwidth of the 8x8 network to avoid network 

saturation for our baseline. Note that such downscaling is 

conservative as it helps the baseline avoid latency explosion 

associated with network saturation. We measure average 

end-to-end packet latency (i.e., latency from packet 

insertion in to the source queue till packet drain at 

destination) after adequate network warm-up.  

Full-System Simulation:  The simulated system has 9 out-

of-order-issue, 4-way SMT cores. Each tile is similar to that 

in Table 2 ; but the number of tiles is scaled down to 9. To 

maintain similar per-node bisection bandwidth for the 3x3 

network as the 8x8 network, we scale down the link widths 

to 32 bits. 

Benchmarks:  We run three sets of multi-threaded 

benchmarks: five medium-/low-load scientific applications 

from the PARSEC suite [25], three high-load commercial 

applications, and three low-load scientific applications from 

the SPLASH-II suite [26]. Table 1 column “Inj Rate” gives 

the load in terms of per-cycle, per-core injection rate for the 

8x8 network. We run the commercial benchmarks for a 

fixed number of transactions after adequate cache warm-up. 

We scale scientific workloads from SPLASH-II to run to 

completion. We run the PARSEC and commercial 

benchmarks for our trace-driven simulations; and 

commercial and SPLASH-II benchmarks for our full-system 

simulations (PARSEC takes too long to run to completion 

due to larger data set sizes). Finally, we also run trace-

driven, open-loop simulations using synthetic workloads 

with data (5 flits) and control (1 flits) packets on the 8x8 2-

D mesh network with unbounded source queues.  

6 Results 
We start with the main comparison of apSLIP+VOQ with 

several previous switch allocators using commercial and 

scientific workloads. We then isolate the impact of VOQ 

and adaptive allocation. Next, we analyze apSLIP’s 

performance using synthetic workloads. Finally, we present 

circuit-level analysis of the apSLIP switch allocator.  

6.1 Performance 

Fig 9 plots end-to-end packet latency improvement for the 

8x8 network in our trace-driven network simulator. The Y 

axis shows end-to-end packet latency improvement over our 

2-cycle SPAA-based baseline for 1-cycle SPAA-based 

baseline, idealized SMART on top of the 1-cycle baseline, 

idealized TS router on top of the 2-cycle baseline, per-

packet switch allocation without and with packet chaining 

on top of the 2-cycle baseline. The X axis shows, in the 

order of decreasing load (Table 1), our commercial 

applications with average (Mean Hi), and PARSEC 

benchmarks with average (Mean Lo), and overall average 

(Mean).  

For the high-load commercial applications, the 1-cycle 

baseline, SMART, and TS router do not show significant 

improvement over the 2-cycle baseline. The 1-cycle 

baseline and SMART are limited by SPAA's poor matching 

power. The SMART paper shows higher speedups at low 

loads, while higher loads make uncommon SMART’s 

favorable case of contention free route segments. Recall 

from Section 2 that TS router’s anticipatory evacuation is 

unable to adequately evacuate the input port queues at high 

loads and is thus unable to improve scheduling. The TS-

router paper shows around 2% improvement over packet 

chaining which we do not see because the TS-router paper 

uses buffers that are smaller than a packet which impedes 

packet chaining (we use packet-sized buffers for packet 

chaining). Per-packet allocation without and with packet 

chaining fare better than the previous schemes at high loads; 

packet chaining achieves significant end-to-end latency 

improvement (22% Mean), which is in line with the packet 

chaining paper. Note that our implementation of packet 

chaining has ideal choice of chaining candidates from all 

packets in the switch. Still, per-packet allocation is limited 

by control packets and the HOL blocking in VCs; and 

packet chaining alleviates but does not eliminate the control 

packet problem nor the HOL blocking in VCs. Finally, 

apSLIP improves performance significantly by employing 

VOQ to remove HOL blocking and iSLIP to achieve high-

quality allocation. apSLIP improves the high-load 

commercial workloads significantly (63% Mean-Hi).  Recall 

that while packet chaining needs large buffers and duplicate 

allocators and that our implementation uses an idealized, 

collision-free packet chaining allocator (Section 5), apSLIP 

performs better without incurring such overheads. 



 

 

Fig 9: End-to-end packet latency 

For the medium-to-low-load PARSEC applications, the 1-

cycle baseline, SMART and TS router provide some end-to-

end latency improvements (8-19%). apSLIP with VOQ   

outperforms all the other schemes for all benchmarks but 

fluidanimate where the ultra-low load gives an edge to the 

1-cycle baseline and ideal SMART. apSLIP’s longer router 

latency hurts packet latency while its higher throughput is 

not needed. Overall, apSLIP improves packet latency by 

43% (Mean), performing significantly better than the others. 

Fig 10 plots application performance (1/execution time) for 

a 3x3 network connecting 9 out-of-order-issue 4-way SMT 

cores in our full-system simulator. The Y axis shows 

performance for our 1-cycle SPAA-based baseline, idealized 

SMART, idealized TS router, per-packet switch allocation 

without and with packet normalized to that of our 2-cycle 

SPAA-based baseline. The X axis shows our commercial 

(high load) and SPLASH-II (low load) benchmarks in the 

order of decreasing load (Table 1). 

For the high-load commercial applications, the trends from 

the end-to-end latency measurements hold, though the two 

graphs plot different metrics and benchmarks, and should 

not be compared directly. apSLIP improves performance of 

the high-load applications by 19%. For the low-load 

SPLASH-II applications, there is little opportunity to avail 

of lower latency (1-cycle or ideal SMART) or higher 

throughput (apSLIP).  apSLIP loses a little due to its longer 

latency but is within 5% of the other idealized schemes. 

 

Fig 10: Application performance 

6.2 Performance breakdown 

The apSLIP scheme combines VOQ, pipelined iSLIP, and 

adaptive pipelining (3- or 6-stage pipeline based on network 

load). We now isolate the impact of these components. We 

isolate the impact of VOQ’s elimination of HOL blocking 

from apSLIP in Fig 11 and of apSLIP’s adaptive pipelining 

in Fig 12. We do not isolate the pipelining part of apSLIP 

because unpipelined iSLIP can generate a match only once 

every three cycles as opposed to every cycle which would 

incur severe performance loss. Further, we use full-system 

simulations in Fig 12 to evaluate impact of adaptivity under 

real injection rates.  

 

Fig 11: Impact of VOQ on end-to-end packet latency 

In Fig 11, we isolate VOQ’s impact by comparing SPAA 

with VOQ and apSLIP with VOQ (i.e., our full scheme) in 

an 8x8 network running our commercial and PARSEC 

benchmarks. The Y axis shows end-to-end packet latency 

improvement over our 2-cycle baseline (SPAA with VC) for 

SPAA combined with VOQ (2-cycle router latency like the 

baseline) and apSLIP (4- or 7-cycle router latency). VOQ 

with SPAA improves over VC with SPAA (our baseline) by 

17% due to VOQ’s removal of HOL blocking. apSLIP adds 

another 26% to VOQ’s improvements for a total of 43% 
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(i.e., both components of apSLIP give good benefits). Some 

benchmarks (dedup and blackscholes) do not benefit from 

VOQ  as they do not incur HOL blocking. fluidanimate’s 

ultra-low load makes switch allocation unimportant so that 

VOQ accounts for all of apSLIP’s benefits.  

 

Fig 12: Impact of adaptivity on application performance 

In Fig 12, we isolate apSLIP’s adaptivity by comparing 

apSLIP against pipelined iSLIP with static 3 and 6 stages in 

a 3x3 network running our commercial and SPLASH-II 

workloads. The Y axis shows application performance for 3-

stage, 6-stage, and adaptive pipelined iSLIP normalized to 

that of our 2-cycle baseline. While the high-load 

commercial workloads prefer the 6-stage pipeline’s higher 

bandwidth over the 3-stage pipeline’s lower latency, the 

low-load scientific workloads reverse this preference. Being 

adaptive, apSLIP performs better than or close to the better 

of the two static pipelines across all loads. 

6.3 Synthetic Workloads 

To better understand apSLIP’s performance, we run 

synthetic workloads of traffic patterns, namely uniform 

random, transpose, and bit complement on an 8x8 network 

(Table 1). In Fig 12(a-c), we plot the end-to-end packet 

latency (Y axis) versus the injection rate in flits per node per 

cycle (X axis) for SPAA with per-packet switch allocation, 

SPAA with packet-chaining, and apSLIP. The uniform 

random pattern creates contention without hot spots and 

therefore emphasizes switch allocation. In this pattern (Fig 

12(a)), per-packet saturates first followed by packet 

chaining and apSLIP which performs best. In the bit 

complement and transpose patterns (Fig 12(b, c)), which 

stress the network bisection, all three schemes saturate near 

injection rate of 0.26. These results show that apSLIP is 

robust across traffic patterns and performs better when 

switch allocation matters. 

 

 

 

 

 

 

 

  

 

Fig 12: End-to-end packet latency for synthetic workloads: (a) 

uniform random (b) bit complement (c) transpose 

6.4 Circuit Analysis 

To analyze apSLIP’s circuit delays, we model the two key 

stages (OA and IA/CU) of apSLIP and SPAA in Verilog, 

verify the functionality using Mentor Graphics’s ModelSim, 

and synthesize the model in 45 nm technology using 

Synopsys’s Design compiler. We do not model the third 

lightweight stage which includes only wire delays for 

forwarding requests. In terms of delays, the input and output 

arbitrations are qualitatively identical in SPAA and apSLIP. 

While only the counter updates differ, they are off the 

critical path.  Accordingly, the synthesized models show 

little difference in clock speeds between SPAA and apSLIP 

with SPAA allocator at 7.6 FO4 (243 ps) and apSLIP 

allocator at 7.8 FO4 (249 ps) whereas the input buffer write 

is the critical path at 8.7 FO4 (278 ps).  

For area and power, there are two parts: the switch allocator 

and the router datapath. Switch allocators account for only 

1-2% of router area and 2-4% of router power  [10]. 

Therefore, though apSLIP allocator incurs 72% and 95% 

overhead in area and power, respectively, over SPAA, 

apSLIP’s actual overheads are small.  Recall from Section 

4.1 that the datapath area and power overheads of apSLIP 

using VOQ are comparable to or better than those of SPAA 

using VC.  
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7 Conclusion 
Switch allocation and queuing discipline has a first-order 

impact on network performance; and hence on overall 

system performance. Quality of switch allocation and clock-

speed impose opposing constraints: Dependencies in 

sophisticated switch allocation algorithms such as iSLIP 

make pipelining at fast clocks hard. On the other hand, 

simpler, pipelineable algorithms which are amenable to fast 

clocks degrade throughput.  

This paper proposes apSLIP, a high-performance, adaptive-

effort, pipelined switch allocator. apSLIP uses three novel 

ideas to pipeline iSLIP. First, we break the request-grant  

RAW hazard by leveraging VOQ which easily allows 

another flit to avail a redundant grant. Second, we untangle 

double-booking problem arising from priority counter RAW 

hazard by privatizing priority counters. Finally, we use 

adaptive effort switch allocation to achieve high-bandwidth 

at high loads (via a deeper pipeline) and low latency at low 

loads (via a shallower pipeline). Simulations reveal that 

compared to an aggressive 2-cycle router apSLIP improves, 

on average, end-to-end packet latency in an 8x8 network by 

43% and high-load application performance in a 3x3 

network by 19% without affecting the low-load 

benchmarks. apSLIP’s high bandwidth and low latency are 

important for on-chip networks to keep up with the ever-

growing core counts of multicores.   
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