
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

10-28-2013

apSLIP: A High-performance Adaptive-Effort
Pipelined Switch Allocator
Syed Ali Raza Jafri
Purdue University, sjafri@purdue.edu

Hamza Bin Sohail
Purdue University, hsohail@purdue.edu

Mithuna Thottethodi
Purdue University, mithuna@purdue.edu

T.N. Vijaykumar
Purdue University, vijay@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Jafri, Syed Ali Raza; Sohail, Hamza Bin; Thottethodi, Mithuna; and Vijaykumar, T.N., "apSLIP: A High-performance Adaptive-Effort
Pipelined Switch Allocator" (2013). ECE Technical Reports. Paper 451.
http://docs.lib.purdue.edu/ecetr/451

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages

apSLIP: A High-performance Adaptive-Effort Pipelined Switch Allocator

Syed Ali Raza Jafri

Hamza Bin Sohail

Mithuna Thottethodi

T.N. Vijaykumar

TR-ECE-13-13

October 28, 2013

Purdue University

School of Electrical and Computer Engineering

465 Northwestern Avenue

West Lafayette, IN 47907-1285

apSLIP: A High-performance Adaptive-Effort Pipelined Switch

Allocator

Syed Ali Raza Jafri, Hamza Bin Sohail, Mithuna Thottethodi, and T.N. Vijaykumar

School of Electrical Engineering

Purdue University

West Lafayette, IN, USA

Email: {sjafri, hsohail, mithuna, vijay}@purdue.edu

Abstract

Switch allocation and queuing discipline has a first-order

impact on network performance and hence overall system

performance. Unfortunately, there is a fundamental tension

between quality of switch allocation and clock-speed. On

one hand, sophisticated switch allocators such as iSLIP

include dependencies that make pipelining hard. On the

other hand, simpler allocators which are pipelineable (and

hence amenable to fast clocks) degrade throughput.

This paper proposes apSLIP which uses three novel ideas to

adaptively pipeline iSLIP at fast clocks. To address the

dependence between the grant and request stages in iSLIP,

we allow superfluous requests to occur and leverage the

VOQ architecture which naturally enables easy availing of

the corresponding grants. To address the dependence

between the reading and updating of priority counters in

iSLIP, we use stale priority values and solve the resulting

double booking by privatizing the priority counters and

separating the arbitration into odd and even stream.

Further, we observe that while iSLIP can exploit multiple

iterations to improve its matching strength, such additional

iterations deepen the pipeline and add to the network

latency. The improved matching strength helps high-load

scenarios whereas the increased latency hurts low-load

cases. Therefore, we propose an adaptive-effort pipelined

iSLIP – apSLIP – which adapts between one iteration

(shallow-pipeline) at low loads and two iterations (deep

pipeline) at high loads. Simulations reveal that compared to

an aggressive 2-cycle router apSLIP improves, on average,

end-to-end packet latency in an 8x8 network by 43% and

high-load application performance in a 3x3 network by 19%

without affecting the low-load benchmarks.

1 INTRODUCTION
As the microprocessor industry moves towards higher on-

chip core counts, the adoption of multi-hop networks as the

interconnection fabric is inevitable because neither buses

nor crossbars scale adequately. The queuing discipline

employed in the on-chip network router has a first order

impact on both latency and throughput of the network.

Routers can queue flits either at the input ports or the output

ports. However, input-queued routers suffer from head-of-

line (HOL) blocking which significantly degrades

performance [1]. In contrast, output-queued routers are free

of HOL blocking but naïve implementations require write

bandwidth to the output queues to scale with the number of

input ports for the cases where flits from multiple input

ports are destined to a single output port. This “speed up” of

the output queues is hard even for a few input ports [2]. To

address this issue, Karol et al. in [3] propose the virtual

output queuing (VOQ) architecture for routers. VOQ creates

as many queues at each input port as there are output ports.

Because each queue corresponds to a single output port,

VOQ completely eliminates head-of-line blocking without

the need for speedup of the switching fabric.

To be effective, however, the VOQ scheme requires a

sophisticated switch allocation algorithm which can support

high network throughput. A low throughput switch would

throttle the network and render the VOQ scheme useless.

McKeown proposes the iSLIP switch allocation algorithm

in [4] which approaches close to a 100% network

throughput. VOQ routers along with the iSLIP switch

allocation algorithm have been used extensively in Internet

routers. Internet routers can exploit VOQ/iSLIP because

they do not need flow control and can drop packets upon

congestion. In contrast, on-chip network routers cannot gain

from the iSLIP algorithm which necessitates a slow clock.

Clock speeds are more critical than Internet router clock

speeds where router delay is a small fraction of the long

end-to-end delay (e.g., 40 ms). Pipelining iSLIP to achieve

fast clock is challenging due to dependencies which is the

main problem we address in this paper.

An alternative to pipelining is to adapt per-packet switch

allocation which reduces the importance of fast allocation

by decreasing the frequency of allocation from per-flit to

per-packet. In per-packet allocation, a packet holds the

allocated switch port until all the packet’s flits are

transmitted. Such allocation enables the use of sophisticated

(and slow) switch allocators, as employed in Internet

routers, where slow clocks are acceptable. However, there

are two key disadvantages for on-chip networks. First, per-

packet allocation requires either full-packet buffering

(which can add significant area/power overheads) or

reservation of unused links when packets are spread over

multiple routers (which can exacerbate tree-saturation and

hence hurt performance). Second, because on-chip networks

have a large number of small, single-flit control packets,

per-packet switch allocation is no better than per-flit switch

allocation. Packet chaining [5] ameliorates this problem by

chaining multiple small packets together whenever possible;

but at the cost of additional hardware complexity to detect

chaining opportunity and duplicate allocators to exploit the

opportunity.

Due to the above problems with VOQ and iSLIP, current

on-chip network routers employ input queuing implemented

via virtual channels (VCs) to alleviate HOL blocking along

with simple switch allocation algorithms which are

pipelined for throughput. However, the simple algorithms

(e.g., SPAA [6]) offer no theoretical guarantees that they

can achieve full (100%) network throughput, unlike iSLIP.

We propose apSLIP which combines VOQ and adaptive-

effort, pipelined iSLIP to achieve higher network throughput

than the current combination of input queuing and simple

switch allocation algorithms. While apSLIP can work with

per-flit or per-packet allocation, we focus on per-flit

allocation due to its lower hardware overhead.

To provide flow control with VOQ, we observe that in

traditional networks, the source router allocates the VC at

the destination router and tracks the VC’s occupancy for

flow control. In VOQ, however, the destination virtual

output queue is determined at the destination router,

unknown to the source router. To address this problem, we

utilize look-ahead routing [2] where the destination’s output

port and therefore the virtual output queue are known at the

source router. Alternatives to flow control, such as

dropping or deflecting flits, perform worse at high network

loads [7, 8]. In addition to flow control, VCs can also

provide deadlock freedom for which we use the well-known

alternative of dimension-ordered routing (DOR).

To address the main problem of pipelining iSLIP, we

propose three novel ideas. Pipelining iSLIP is challenging

due to two dependencies amongst its three phases (natural

pipeline stages), which cause RAW hazards. The first

hazard involves resending requests for flits before the

outcome (grant/no-grant) of the previous request for the

same flits is known. Such re-sent requests would be

superfluous if the earlier request is granted and the

corresponding flit dispatched. Such superfluous requests

may then receive output grants which constitute lost

opportunity for other contending flits. Our first idea is based

on the key observation that with VOQ and at high network

loads, each virtual output queue will have more than one flit

in the common case. Therefore, there will almost always be

other flits waiting in the same queue to avail a grant for a

superfluous request. We emphasize this VOQ-iSLIP

synergy that the grant can be availed easily only in VOQ

where all the flits in the queue are destined for the granted

output which is not the case in input queuing where finding

a flit in an input queue for the granted output is hard.

Therefore, combining iSLIP with input queuing instead of

VOQ would not achieve the same effect.

The second hazard is a RAW hazard that arises because

priority-counters used for round-robin arbitration are written

in stage 3 but read in stage 2. Because the priority counters

hold metadata and not program data, we ignore the RAW

hazard and use stale metadata without violating program

dependencies. However, such a strategy does cause

performance degradation because of double-booking of

resources. We overcome this double booking by separating

the arbitrations into odd and even streams which amounts to

privatizing the priority counters (a separate set of counters

for each stream instead of one-set of counters for all

arbitrations).

Pipelining iSLIP fundamentally enables another

optimization in the switch allocator by exploiting a key

feature of iSLIP. iSLIP is one of the maximal-matching

allocators that can achieve higher-quality matching at higher

effort via more iterations of the matching algorithms.

Unpipelined, multi-iterative iSLIP implementations are

worse than single-iteration implementations when it comes

to clock speed. However, our pipelining can achieve a 2-

iteration, 6-stage pipelined implementation at a fast clock.

While the second iSLIP iteration is useful at high network

loads (where the increased bandwidth helps reduce queuing

latency), the extra latency hurts performance at low loads

(where there is no increase in throughput). To address this

issue, we propose our third idea of an adaptive-effort

allocator that adapts the pipeline depth between one and two

iterations depending on the injection rate to achieve low

latency at low loads and high bandwidth at high loads.

In summary, the paper’s contributions are:

 We pipeline iSLIP by addressing two key hazards:

o For superfluous requests, we leverage the VOQ

architecture which naturally enables easy availing

of the corresponding grants

o For priority-counter hazard, we use stale priority

values and avoid the resulting double booking by

privatizing the priority counters and separating the

arbitration into odd and even streams.

 We propose apSLIP, an adaptive-effort pipelined iSLIP

which adapts between low-effort, low-latency matching

at low loads (i.e., one iteration in three stages) and

high-effort, high-bandwidth matching at high loads

(i.e., two iterations in six stages).

Comparisons with several switch allocators using a trace-

driven network simulator and a full-system simulator

running commercial and scientific workloads show that

apSLIP improves, on average, end-to-end packet latency in

an 8x8 network and high-load application performance in a

3x3 network without affecting the low-load benchmarks by

43% and 19%, respectively, over an aggressive 2-cycle

router, and 20% and 9%, respectively, over idealized

packet-chaining (with per-packet allocation) while using

smaller buffers and avoiding duplicate allocators.

The rest of the paper is organized as follows. Section 2

discusses related work. Section 3 provides a brief

background on router queuing disciplines and iSLIP.

Section 4 describes apSLIP’s details. Section 5 describes

our experimental methodology and Section 6 presents

experimental results. Finally, Section 7 concludes the paper.

2 RELATED WORK
Alternatives to pipelining iSLIP are: (1) bypass the router,

(2) reduce router latency to 1 cycle, (3) make switch

allocation unimportant, and (4) improve switch allocation

algorithm. Proposals for the first option speculatively

exploit the lack of resource contention at low and near-zero

loads [9] [10] to allow flits to bypass most of the router and

incur only wire-delays. The SMART router extends this

further to achieve multi-router traversal with only wire-

delays [11]. In general, such speculative techniques

degenerate to full router latency at modest and high loads.

We find that memory-intensive commercial and scientific

workloads incur high cache miss rates and thereby high

network load so that such speculative techniques do not

work well in practice. As such, apSLIP significantly

outperforms the techniques (Section 6.1).

The second option includes many shallow-pipelined or even

single-cycle router proposals [14] [7]. There are two ways in

which the entire router can fit within a single cycle. First,

the critical path through the router is truly reduced by

eliminating key dependencies and enhancing circuit-level

parallelism. In general, modern router designs do not have

superfluous dependencies that may be non-speculatively

eliminated. Alternately, the second possibility is that even

though the critical path is unchanged, the clock happens to

be slow enough to accommodate the entire critical path.

Such a design offers a marginal latency advantage over a

pipelined alternative because of latch over heads in the

pipelined design. The latency advantage comes at the cost of

reduced bandwidth and is limited only to low loads. At high

loads the low bandwidth significantly degrades performance

compared to a pipelined alternative with a faster clock.

Additionally at low loads, there is not much communication

and hence little opportunity to impact overall performance

so that the latency advantage does not matter much. At high

loads, however, queuing delays dominate router delays,

which implies the pipelined design will achieve both better

latency and better bandwidth. Not surprisingly, our

comparison with an ideal, single-cycle router shows that

apSLIP significantly outperforms the router (Section 6.1).

As discussed in Section 1, per-packet switch allocation (e.g.,

packet chaining [5]) reduces the importance of fast

allocation – the third option – but requires full packet

buffering to avoid severe performance degradation. This

requirement can lead to large buffers and area/power

overheads. For example, assuming 7 ports (4 network ports

+ 3 local ports), a coherence protocol that uses 3-5 virtual

networks, 128-bit flits, 5-flit packets (assuming 64-byte

cache blocks), and 8 VCs per virtual network, a per-packet

design requires between 13-22 KB buffers per router. In

contrast, per-flit switch allocation may use fewer flit buffers

(say 2-3 flits/queue) thus reducing buffer requirements by

1.67X-2.5X (5.2-13.2 KB per router).

For the fourth option, TS-router [15] proactively avoids

scheduling conflicts by using knowledge of future

(conflicting) flits. Input ports where flits are expected in the

future are prioritized for switch allocation to evacuate older

flits before the scheduling conflict occurs (on the arrival of

the future flit). This anticipatory evacuation policy is

effective only at low loads when input queue occupancy is

low and thus evacuation is feasible. At medium/high loads,

when there are higher numbers of flits, it is impossible to

evacuate all flits in time to avoid scheduling conflicts.

Consequently, apSLIP significantly outperforms even a 1-

cycle TS-router (Section 6.1).

3 BACKGROUND
We discuss queuing discipline in routers, and iSLIP and its

variants.

3.1 Input Queuing

Karol et al. [1] showed that the throughput of an NxN port

input-queued switch with FIFO queues, under certain

conditions, will be limited to just (2-√2) = 58.6%. The

underlying cause of this limitation is HOL blocking, where

flits are delayed by other flits ahead in line destined for a

different output port. The HOL-blocking observed in

modern systems is not as bad as suggested by the limit in [1]

whose conditions (e.g., all ports equally likely to be taken,

single FIFO queuing) are not always true. One of the most

prevalent techniques for reducing HOL blocking is virtual

channel flow control proposed by Dally et al. [16]. As

shown in Fig 1, a virtual channel (VC) is associated with a

buffer which can hold flits of a single packet and other state

information. Multiple VCs share the bandwidth of a single

physical channel. Hence VCs act like multiple FIFO queues

at each input of the router. If flits of one packet (hence one

VC) are blocked, the input port can transfer flits from

another packet (another VC) hence mitigating HOL

blocking. When the packet is fully transferred, the router

can allocate the VC to another incoming packet. While VCs

can ameliorate HOL blocking (because packets in different

VCs do not block one another), they cannot completely

eliminate HOL blocking (because packets within VCs

cannot bypass blocked packets).

Fig 1: VC Router Architecture

Mukherjee et al. [6] perform a comparison of various switch

allocation algorithms for VC based flow control. They

propose the Simple Pipelined Arbitration Algorithm

(SPAA) and showed its superiority to unpipelined iSLIP and

unpipelined Wave Front Algorithm (WFA) [17]. While both

iSLIP and WFA can reach higher throughput than SPAA,

they are not pipelined and cannot compare in performance

with pipelined SPAA at a fast clock. However, SPAA

sacrifices powerful matching of input to output ports in

favor of pipelineability.

3.2 iSLIP Operation and Pipeline Hazards

Proposed by McKeown in [4], iSLIP is an allocation

algorithm that provides lower latency as compared to

parallel iterative matching in general and can theoretically

reach a 100% network throughput. We enumerate the key

steps of iSLIP below:

1. Request (RQ) stage: Each input port sends requests

to every output port for which it has a flit.

2. Output Arbitration (OA) stage: Each output port

selects on request based on a private counter and

informs the corresponding input port. Note the

counter is not incremented at this stage.

3. Input Arbitration/Counter Update (IA/CU) stage:

In an input port receives grants from multiple

output ports, it selects on based on a private round

robin counter. The input and output port both

increment their counters.

Fig 2 illustrates the unpipelined operation of the iSLIP

allocator for two flits. There are two cases of

dependencies. First, the RQ stage for subsequent

allocation attempts uses information on successful

matches from the previous allocation to ensure that

successfully matched flits do not continue to assert

requests (solid arrow in Fig 2). Second, the priority

counters used for round-robin arbitration are written in

stage three and read in the OA stage of subsequent

allocations (dashed arrow in Fig 2). Pipelining iSLIP

reveals that each of these two dependencies translate to

RAW (read-after-write) hazards (Fig 3).

Fig 2: Value communication in unpipelined iSLIP

Fig 3: Hazards exposed by pipelining iSLIP

Fig 4: Inter-iteration pipelining in Tiny Tera

3.3 VOQ and variants

In contrast to VCs which map input FIFO queues to packets,

VOQs map FIFO queues to the output ports of the router

thus completely eliminating HOL blocking (see Fig 5).

As we mention in Section 1, while implementing virtual

output queuing is non-trivial in a flow-controlled network,

VOQs have been widely adopted in Internet routers where

flow control is not required. Researchers have proposed

several variants of the powerful multi-iterative iSLIP

algorithm to provide high-throughput switch allocation in

virtual output queued internet routers. Nick McKeown

proposes pipelining across different iterations of iSLIP in

the Tiny Tera Internet router to reduce the latency of a

single round of multi-iterative iSLIP allocation. The Tiny

1 2 3 4 5 6

Flit 1 RQ OA IA/CU

Flit 2 RQ OA IA/CU

Clock cycle

1 2 3 4 5 6

Flit 1 RQ OA IA/CU

Flit 2 RQ OA IA/CU

Flit 3 RQ OA IA/CU

Clock cycle

1 2 3 4 5 6

Flit 1 RQ OA IA/CU

Flit 2 RQ OA IA/CU

Clock cycle

credit

out

 :
………

Routing Logic

crossbar

(P x P)

.
VC buffer

credit

out

 :

VC ID

VC buffer

output

channel

credits

in

output

channel

input

channel

VC Allocator
Switch Allocator

 :

Tera switch allocator leverages the fact that an input port

which receives at least one output grant in the OA stage is

guaranteed to transfer flits and hence should be excluded

from resending requests to subsequent allocations to later

iterations of iSLIP. Thus, the Tiny Tera switch allocator can

start the RQ stage of the next iteration without waiting for

the IA/CU stage of the previous iteration to complete. Fig 4

shows the IA/CU-to-RQ hazard being omitted (solid arrow

in Fig 3) so that two iterations of one round complete in 5

cycles. In general, Tiny Tera can start a new round of iSLIP

arbitration every cycles rather than every cycles

in the unpipelined case where is the number of iterations

per round assuming each stage of iSLIP takes 1 cycle. In

contrast, our approach can start a new round every cycle.

Fig 5: VOQ Router

Kim et al. propose using buffered crossbars in high-radix

on-chip routers [18]. The buffers in the crossbar act like

limited VOQs further reducing HOL blocking. The

performance of their switch allocator is bounded by that of

the SPAA allocator (with VOQs) because of their use of

input arbitration followed by output arbitration.

4 apSLIP

Recall from Section 1 that apSLIP employs VOQ to

eliminate HOL blocking combined with our two innovations

(1) high-throughput pipelined iSLIP switch allocation, and

(2) adaptive-effort switch allocation.

4.1 Virtual Output Queuing in On-chip Networks

As mentioned in Section 1, VOQ has one fundamental

operational difference vis-à-vis flow-controlled (i.e.,

backpressured) networks that use VCs. Essentially, VOQ

requires the destination router to determine the home queue

of an incoming flit because flits are placed in a virtual queue

corresponding to the flit’s output port. VC-based flow-

controlled networks, on the other hand, require the source

router to determine the home queue of the flit on the

destination router. The source router allocates a VC on the

destination router and tracks the occupancy of this VC when

sending a flit to ensure that the destination router does not

drop/overwrite any incoming flits.

apSLIP provides VOQ in a flow-controlled network by

determining the virtual queue in which the incoming flit will

reside at the source router instead of the destination router,

using the well-known idea of look-ahead routing. Thus,

look-ahead routing enables the use of VOQ in a

backpressured network. The apSLIP router provides virtual

queues at each input port for each output port of the router.

The source router tracks the occupancy of these virtual

queues through credits just like in flow-controlled networks

with VCs. When sending a flit the source router uses look-

ahead routing to determine the output port, and

consequently the virtual queue, for which the flit is destined

at the destination router. The source router then sends the

flit when there is space available in the virtual queue.

The implications of using VOQ as opposed to VCs are

many. Aside from eliminating HOL blocking, VOQ also

simplifies the apSLIP router by removing VCs and the VCA

stage from the pipeline. The primary goal of VCs is to

prevent intermingling of flits of different packets. A VC

allocated to a packet serves as an input queue which bids for

the crossbar in the switch allocation stage. Hence a VC

cannot have flits of multiple packets which may be headed

in different directions. VOQ, on the other hand, guarantees

that all flits in a queue, whether from single or multiple

packets,, are headed in the same direction. Therefore there is

no need to keep flits of different packets in a virtual queue

separate. Note that while flits of different packets could

intermingle in a virtual queue, the relative ordering of flits

of a single packet is still maintained. Removing VCs lets us

shorten the router pipeline by removing the VCA stage. The

router determines the VOQ for an outgoing flit in the look-

ahead routing stage as a function of the next hop address.

While VOQ improves performance, removing VCs from the

network creates challenges which we address next. First,

because we allow intermingling of flits from different

packets, per-flit switch allocation requires that each flit must

now carry address and virtual network information, which

results in slightly wider links, router buffers and crossbars

(e.g., 8 bits per flit for an 8x8 network with up to four

virtual networks). While such per-flit address information is

unnecessary for per-packet switch allocation and apSLIP

can employ either per-flit or per-packet allocation, we

assume the former because the latter imposes high overhead

of larger buffers. While VCs with per-packet allocation

avoid this overhead, they incur other overheads such as the

header flit and per-flit VC number neither of which are

needed if each flit carries the address and virtual network.

While VOQ’s per-flit address incurs area and power

overhead (e.g., 8/128 = 6.7% for 128-bit flits in a 8x8

network), VC’s header flit incurs power overhead (e.g., 1

header flit per 4 128-bit flits for 64-byte cache block

payload = 20%) and the per-flit VC number incurs area

overhead (5 bits for 8 VCs x 3 virtual networks for 5/128 =

switch
 fabric

scheduler

 :

1

1

.

.

.
N

1

.

.

.

N

1

N

 : :

N

 : :

3.9%). Thus VOQ’s overheads are comparable to or better

than VC’s. Further, while VOQ requires quadratically many

buffers compared to VC requiring only linear buffer counts,

this difference matters in practice only for high-radix routers

which are uncommon in on-chip networks. In fact, our

experiments use fewer buffers for VOQ than for VC

(Section 5).

 Second, because of the absence of VCs, one may think that

our design may not use routing algorithms that use VCs for

deadlock avoidance. (Note, this concern applies only to

network deadlocks. We still use multiple VOQs to avoid

coherence deadlocks via virtual networks.) In general,

routing algorithms that prevent deadlock by restricting turns

can be used without any additional safeguards even in the

absence of VCs. Further, using multiple VOQs via virtual

networks to break cyclic dependencies is also possible. One

possible side-effect of using VOQs with a deadlock

prevention strategy may be unbalanced usage of virtual

queues. For example, in a 2D mesh using XY dimension-

ordered routing (DOR) packets in the Y+/Y- input ports will

utilize only Y+/Y- output queues leaving the X+/X- queues

unutilized. We counter this imbalance by using non-uniform

static queue sizes. One may also use dynamic queue sizes as

proposed in [19] [20]. The fact that VCs and VOQs are

typically implemented as partitions of a single SRAM array

simplifies expanding the highly-utilized queues at the

expense of the under-utilized queues.

4.2 VOQ Synergy with Pipelined Switch Allocation

Recall from Section 3.2 that there are two key RAW hazards

that prevent naïve pipelining of iSLIP. We start our

discussion on pipelining iSLIP with a high-level observation

that the RAW hazards are meta-data hazards (hazards that

affect request vectors and priority counters; not program

data) that affect allocation performance and allocation

fairness. As such, ignoring the RAW hazard and using stale

information does not violate any program dependencies.

However, using stale meta-information (such as priority

counters) naively can degrade performance significantly and

in the worst case, even cause starvation. We outline the

solutions for each of the two hazards. The first hazard is

relatively easy to handle and the second hazard is a little

more complicated.

Consider the first hazard between IA/CU (stage 3) and RQ

(stage 1) in Fig 3, which is common to all pipelined switch

allocators. The key challenge is that requests for subsequent

allocations must be finalized before the outcome (i.e.,

grants) of prior allocations are determined. Using stale

information (i.e., continuing to make switch requests for all

outstanding flits), leads to potentially wasted allocations

wherein an input port receives redundant grants for flits

which have previously been dispatched.

VOQ and iSLIP can synergistically mitigate this hazard’s

effects. At high loads and consequentially high VOQ

occupancy, flits are available in the queue to avail a request

grant from an output port. Even though the flit that caused

that request is no longer in the queue, the VOQ organization

makes it easy to find other flits that are destined for the

same output port. At low loads, some switch grants may go

unutilized. However, the switch allocator is not a bottleneck

at low loads; thus, any wasted grants do not hurt

performance as we show in our results.

One may think that the above idea can be applied to VCs as

well in one of two ways: (1) The redundant grants could be

availed when the input port happens to have another flit in

the same VC that can use that switch allocation. However,

such availing is more successful in VOQs than VCs because

the former holds flits to the same output port in one queue

while the latter does not. We include this optimization in our

baseline VC implementation and show that apSLIP is

significantly better. (2) A more aggressive optimization is

to search other VCs of the same input port for flits that

could use the redundant grant. Such an optimization is

similar to packet-chaining [5], which we show is

outperformed by apSLIP.

4.3 Privatization of priority counters

The second hazard occurs between OA stage (stage 2) and

the IA/CU stage (stage 3) on the per-port output port

counters. Recall from Section 3.2 that an output port, whose

grant is accepted by an input port, updates its private

counter in IA/CU (stage 3). The output port then reads its

private counter to send grants in the following OA (stage 2)

(see Fig 3).

Fig 6: Stalling to avoid pipeline RAW hazard

A naïve solution would be to stall the pipeline stages to

eliminate the hazard as shown in Fig 6. Unfortunately, such

a solution would halve the throughput as it achieves matches

only every other cycle. Instead of stalling, another naïve

solution would be to use stale metadata which results in the

output port in stage 2 reading an outdated counter value as

shown in Fig 3. Unfortunately, this choice causes serious

performance pathology. Specifically, reading the outdated

counter value results in the output port nominating the same

input port twice (i.e., two reads of the same counter value

before an update) In the meantime, the input port accepts

grants based on its up-to-date private counter which is read

and then updated in stage 3 (Section 3.2). The slow-moving

output port counter when coupled with the input port

1 2 3 4 5 6 7

Flit 1 RQ OA IA/CU

Flit 2 RQ Stall OA IA/CU

Flit 3 RQ Stall Stall OA IA/CU

Clock cycle

counter (moving at the regular rate) results in unfairness and

significantly degraded performance (8% less saturation

throughput than our baseline SPAA router).

The key to iSLIP’s successful matching is keeping the

private counters of input ports and output ports

desynchronized with respect to those of the other input and

output ports, respectively. Consider a scenario where two

output ports keep sending grants to the same input ports

because their private counters keep synchronizing. The

input grants can choose only one output port and hence the

other would be wasted. Instead, by moving at the correct

rate, the counters stay desynchronized.

We need to resolve the hazard between stage 3 (of flit 1)

and stage 2 (of flit 2) while ensuring that both input port and

output port counters move at the correct rate. Our solution

ignores the RAW hazard and uses stale information. To

prevent the resulting counter synchronization, we propose

duplicating the counters (say counter set 0 and counter set

1), effectively privatizing them for odd/even cycles, as

shown using subscripts in Fig 7. This counter privatization

is similar to compiler variable privatization.

Fig 7: Privatization with duplicate counters

At a high-level, our solution is equivalent to operating two

independent, hazard-free allocators, each of which

guarantees fairness. At a low-level, we do not actually

duplicate the allocators. Rather, we privatize the per-port

priority counters for odd and even cycles. Because of such

privatization, we completely eliminate the hazard between

the IA/CU and OA stages of consecutive allocations.

Effectively, each allocation uses stale information from two

allocations ago. Consecutive writes and reads to the same

set of output port counters are now separated by two cycles

(see flit 1 and flit 3 in Fig 7) which ensures that the updated

counters are available at the end of cycle 3 before they are

read in cycle 4. Further, because of the absence of races, the

corresponding input and output counters are incremented at

the correct rate (i.e., exactly one read per update). We have

empirically examined non-uniform arrival patterns other

than the example in Fig 7 and confirmed that our

privatization is equivalent to unpipelined iSLIP.

Our discussion so far has focused on the apSLIP allocator

pipeline. Fig 8 shows the full router pipeline where the

look-ahead routing occurs in parallel with apSLIP’s RQ.

Fig 8: apSLIP router pipeline

In [21], the authors target pipelining instruction issue in out-

of-order processors which also poses a RAW hazard

problem of issuing dependent instructions back-to-back. The

authors propose to have grand-parent instructions wakeup

grand-child instructions instead of parent instructions

waking up child instructions. Our odd-even counters are

similar in spirit. However, they do not prevent overbooking

whereas our counter-privatization does.

4.4 Multi Iterative and Adaptive pSLIP

We extend the iSLIP pipeline to create a multi-iterative

iSLIP switch allocator with increased matching capability.

Recall from Section 1 that iSLIP is an iterative, maximal-

matching allocator that can achieve better matching by

expending additional matching effort in the form of

additional iterations. While high-load applications would

benefit from the resultant higher throughput, low-load

applications would lose performance due to the deeper

pipeline’s increased latency and higher chances of

redundant -grant mis-speculation.

To increase throughput at high loads without hurting latency

at low loads, we propose an adaptive-effort iSLIP. Every

router employs a six-stage, two-iteration switch allocator

pipeline. However, each router independently determines

whether to run a single or dual-iterative switch allocator

based on network load determined by queue occupancy. At

low queue occupancy, the switch allocator provides its

matches at the end of the first iteration yielding a three-stage

pipeline. When queue occupancy crosses a threshold, the

switch allocator runs two iterations corresponding to six

stages (we found experimentally that a threshold in the

range of 35-60% occupancy works and we use 50% for our

results). We revert from two to one iteration only after the

queues are empty (and not when the occupancy dips below

the threshold), thus providing hysteresis to avoid frequent

changes to the pipeline depth. Because we switch from two

iterations to one iteration only when the queues (and

therefore the request vectors) are empty, we avoid any

potential grant-conflicts between an earlier two-iteration

allocation and a later one-iteration allocation. While

changing the depth of most pipelines at runtime is usually

near impossible, the iSLIP pipeline is unique in that the

1 2 3 4 5 6

Flit 1 RQ OA0 IA/CU0

Flit 2 RQ OA1 IA/CU1

Flit 3 RQ OA0 IA/CU0

Flit 4 RQ OA1 IA/CU1

Clock cycle

Router

Stage 1

Router

Stage 2

Router

Stage 3

Router

Stage 4
Link

LAR

+

RQ

OA IA/CU
Switch

Traversal

iterations are identical. Therefore, the pipeline may be

terminated at the end of any iteration. We do not examine

implementing more than two iterations as we saw

diminishing returns from more iterations.

5 Methodology
We use two simulators: a trace-driven network-only

simulator using Garnet for an 8x8 network (64 nodes) and

the full-system GEMS [22] with Garnet [23] on top of

Simics [24] for a 3x3 network (9 nodes) using out-of-order-

issue, SMT cores and detailed memory system models

(larger systems proved infeasible due to long out-of-order

simulation times).While the former can cover larger

systems, the latter shows the feedback effect of the network

on execution time, not shown by the former, albeit for

smaller systems.

Table 1: Workload parameters

Name Run Input Warmup
Inj

Rate

PARSEC Benchmarks

Fluidanimate

200

million

cycle

traces

Simmedium 0.03

Blackscholes Simmedium 0.08

Dedup Simmedium 0.09

Streamcluster

1 mil. 128-D

points, 5000

centers

 0.10

Canneal 4 native 0.16

Commercial Workloads

Apache 600 tx

20,000 files

45,000

clients

25 ms think

time

20,000 tx cache

2 million system
0.32

SPECjbb 3000 tx
90

warehouses

50,000 tx cache

1 million system
0.30

Online

Transaction

Processing

(OLTP)

50 tx

25000

warehouses

300

connections

5000 tx cache

0.1 million system
0.28

SPLASH-2 Workloads

Ocean Full 34x34 grid 0.02

Barnes Full 512 particles 0.01

Water-

nsquared

1 time

step
64 molecules 0.02

We compare apSLIP with VoQ with several switch

allocators (Section 2): speculative designs [10] [9],

SMART [11], TS-router [15], and per-packet with and

without packet chaining [5]. To cover the various

speculative designs which reduce router latency, we assume

an idealized pipelined SPAA-based two-cycle router at all

loads which uses virtual channels (our 2-cycle baseline).

The first stage overlaps look-ahead routing with ideal

single-cycle VC allocation using perfect speculation. The

second stage performs both the local and global arbitration

phase of the SPAA switch allocator. In this allocator, any

redundant grant is availed if the input port has another flit in

the same VC (Section 4.2). We also show an idealized, one-

cycle SPAA-based baseline router at all loads though the

speculative designs achieve low latency only at low loads

and incur full latency at high loads (e.g., 4 cycles). The

baseline routers use DOR and 8 VCs per input port in each

of the three virtual networks and each VC has 5-flit buffers

where each flit is 128 bits. Our flit width is in line with

recent real products’ widths of 16-64 bits [12] [13]. We note

that while buses and rings (e.g., Intel Xeon Phi) need to be

wider for bandwidth, they can afford to be as they do not

have as many links as a typical network. Adding more VCs

did not yield any significant improvement. The baselines

and all other schemes run at 2.8 GHz (same as core

frequency) and have a 1-cycle wire delay in the links

beyond the router latency.

We build SMART on the 1-cycle baseline and the other

previous schemes, TS-router, per-packet, and packet

chaining, on the 2-cycle baseline. We include several

idealizations for each of these schemes. For SMART, we

assume that the router latency and router set-up are zero

cycles for route segments without any contention so that the

only latencies are 1-cycle inter-router wire delay and 1-

cycle router delay with contention. While the SMART paper

assumes 9 routers traversed in one 1-GHz cycle under zero

contention, SMART can remove only router delays and not

reduce wire delays; the use of asynchronous repeaters in

SMART to reduce wire delay is a well-known technique

equally applicable to all networks. Therefore we assume 1-

cycle/hop wire delay for SMART. For TS-router, per-

packet, and packet chaining, we assume an ideal one-cycle

switch allocation (2 cycles total router latency). The per-

packet switch allocator uses large, packet-sized 18-flit

buffers while packet chaining uses the large buffers and an

idealized, collision-free, duplicate allocator that finds the

best chaining candidate among all the packets in the switch.

Our apSLIP implementation models unevenly partitioned

VOQs at each input port, sharing a pool of 64-flit buffers

(fewer than the baseline VC’s 8x3x5 = 120-flit buffers per

input port). Each input port has as many VOQs as there are

output ports. apSLIP’s adaptive pipeline varies between four

and seven stages (total router latency). The first stage

includes look-ahead routing (Fig 8) followed by one or two

iterations of the iSLIP algorithm at low and high loads,

respectively (Section 4.3). apSLIP uses 8 extra bits per flit

for address (Section 4.1).

Table 2: System Configuration

System 1 chip 64 cores

Network 8x8 mesh, each tile has a core+private L1, an L2

cache bank and a directory slice connected to a

router (three injection/ejection ports); flit width is

128 bit, 2 control virtual networks and 1 data

network (8 + 8 + 8= 24 VCs) with 8-flit-deep

buffers; 1-cycle link latency

Cores Equivalent to 2-way SMT, 4-issue out-of-order with

40-entry instruction window

Private L1 Caches Split I & D, each 32KB, 2-way set associative, 64-

byte blocks, 2-cycle latency, 16 MSHRs

Shared L2 Cache Unified 64-MB with 64 banks, 16-way set

associative with LRU, 12-cycle bank access latency,

16 MSHRs

Memory 8 GB DRAM, 250-cycle off-chip access time, 16

memory controllers (4 per side of mesh), 2 DIMMs

per channel, 2 ranks per DIMM, 8 banks per rank,

32 bank queue entries

Trace-Driven Network-only Simulation: We gather

traces from full-system simulations of 64 in-order-issue 2-

way SMT cores to run on an 8x8 2-D mesh network

simulator with 64 nodes; Table 2 summarizes the system’s

key parameters. We scale the execution rate of each

individual trace to match the per-thread instructions per

cycle of an out-of-order-issue 2-way SMT core. We then

apply a constant scaling factor to the scale down the

execution rate of all traces to compensate for the smaller

bisection bandwidth of the 8x8 network to avoid network

saturation for our baseline. Note that such downscaling is

conservative as it helps the baseline avoid latency explosion

associated with network saturation. We measure average

end-to-end packet latency (i.e., latency from packet

insertion in to the source queue till packet drain at

destination) after adequate network warm-up.

Full-System Simulation: The simulated system has 9 out-

of-order-issue, 4-way SMT cores. Each tile is similar to that

in Table 2 ; but the number of tiles is scaled down to 9. To

maintain similar per-node bisection bandwidth for the 3x3

network as the 8x8 network, we scale down the link widths

to 32 bits.

Benchmarks: We run three sets of multi-threaded

benchmarks: five medium-/low-load scientific applications

from the PARSEC suite [25], three high-load commercial

applications, and three low-load scientific applications from

the SPLASH-II suite [26]. Table 1 column “Inj Rate” gives

the load in terms of per-cycle, per-core injection rate for the

8x8 network. We run the commercial benchmarks for a

fixed number of transactions after adequate cache warm-up.

We scale scientific workloads from SPLASH-II to run to

completion. We run the PARSEC and commercial

benchmarks for our trace-driven simulations; and

commercial and SPLASH-II benchmarks for our full-system

simulations (PARSEC takes too long to run to completion

due to larger data set sizes). Finally, we also run trace-

driven, open-loop simulations using synthetic workloads

with data (5 flits) and control (1 flits) packets on the 8x8 2-

D mesh network with unbounded source queues.

6 Results
We start with the main comparison of apSLIP+VOQ with

several previous switch allocators using commercial and

scientific workloads. We then isolate the impact of VOQ

and adaptive allocation. Next, we analyze apSLIP’s

performance using synthetic workloads. Finally, we present

circuit-level analysis of the apSLIP switch allocator.

6.1 Performance

Fig 9 plots end-to-end packet latency improvement for the

8x8 network in our trace-driven network simulator. The Y

axis shows end-to-end packet latency improvement over our

2-cycle SPAA-based baseline for 1-cycle SPAA-based

baseline, idealized SMART on top of the 1-cycle baseline,

idealized TS router on top of the 2-cycle baseline, per-

packet switch allocation without and with packet chaining

on top of the 2-cycle baseline. The X axis shows, in the

order of decreasing load (Table 1), our commercial

applications with average (Mean Hi), and PARSEC

benchmarks with average (Mean Lo), and overall average

(Mean).

For the high-load commercial applications, the 1-cycle

baseline, SMART, and TS router do not show significant

improvement over the 2-cycle baseline. The 1-cycle

baseline and SMART are limited by SPAA's poor matching

power. The SMART paper shows higher speedups at low

loads, while higher loads make uncommon SMART’s

favorable case of contention free route segments. Recall

from Section 2 that TS router’s anticipatory evacuation is

unable to adequately evacuate the input port queues at high

loads and is thus unable to improve scheduling. The TS-

router paper shows around 2% improvement over packet

chaining which we do not see because the TS-router paper

uses buffers that are smaller than a packet which impedes

packet chaining (we use packet-sized buffers for packet

chaining). Per-packet allocation without and with packet

chaining fare better than the previous schemes at high loads;

packet chaining achieves significant end-to-end latency

improvement (22% Mean), which is in line with the packet

chaining paper. Note that our implementation of packet

chaining has ideal choice of chaining candidates from all

packets in the switch. Still, per-packet allocation is limited

by control packets and the HOL blocking in VCs; and

packet chaining alleviates but does not eliminate the control

packet problem nor the HOL blocking in VCs. Finally,

apSLIP improves performance significantly by employing

VOQ to remove HOL blocking and iSLIP to achieve high-

quality allocation. apSLIP improves the high-load

commercial workloads significantly (63% Mean-Hi). Recall

that while packet chaining needs large buffers and duplicate

allocators and that our implementation uses an idealized,

collision-free packet chaining allocator (Section 5), apSLIP

performs better without incurring such overheads.

Fig 9: End-to-end packet latency

For the medium-to-low-load PARSEC applications, the 1-

cycle baseline, SMART and TS router provide some end-to-

end latency improvements (8-19%). apSLIP with VOQ

outperforms all the other schemes for all benchmarks but

fluidanimate where the ultra-low load gives an edge to the

1-cycle baseline and ideal SMART. apSLIP’s longer router

latency hurts packet latency while its higher throughput is

not needed. Overall, apSLIP improves packet latency by

43% (Mean), performing significantly better than the others.

Fig 10 plots application performance (1/execution time) for

a 3x3 network connecting 9 out-of-order-issue 4-way SMT

cores in our full-system simulator. The Y axis shows

performance for our 1-cycle SPAA-based baseline, idealized

SMART, idealized TS router, per-packet switch allocation

without and with packet normalized to that of our 2-cycle

SPAA-based baseline. The X axis shows our commercial

(high load) and SPLASH-II (low load) benchmarks in the

order of decreasing load (Table 1).

For the high-load commercial applications, the trends from

the end-to-end latency measurements hold, though the two

graphs plot different metrics and benchmarks, and should

not be compared directly. apSLIP improves performance of

the high-load applications by 19%. For the low-load

SPLASH-II applications, there is little opportunity to avail

of lower latency (1-cycle or ideal SMART) or higher

throughput (apSLIP). apSLIP loses a little due to its longer

latency but is within 5% of the other idealized schemes.

Fig 10: Application performance

6.2 Performance breakdown

The apSLIP scheme combines VOQ, pipelined iSLIP, and

adaptive pipelining (3- or 6-stage pipeline based on network

load). We now isolate the impact of these components. We

isolate the impact of VOQ’s elimination of HOL blocking

from apSLIP in Fig 11 and of apSLIP’s adaptive pipelining

in Fig 12. We do not isolate the pipelining part of apSLIP

because unpipelined iSLIP can generate a match only once

every three cycles as opposed to every cycle which would

incur severe performance loss. Further, we use full-system

simulations in Fig 12 to evaluate impact of adaptivity under

real injection rates.

Fig 11: Impact of VOQ on end-to-end packet latency

In Fig 11, we isolate VOQ’s impact by comparing SPAA

with VOQ and apSLIP with VOQ (i.e., our full scheme) in

an 8x8 network running our commercial and PARSEC

benchmarks. The Y axis shows end-to-end packet latency

improvement over our 2-cycle baseline (SPAA with VC) for

SPAA combined with VOQ (2-cycle router latency like the

baseline) and apSLIP (4- or 7-cycle router latency). VOQ

with SPAA improves over VC with SPAA (our baseline) by

17% due to VOQ’s removal of HOL blocking. apSLIP adds

another 26% to VOQ’s improvements for a total of 43%

0.90

1.10

1.30

1.50

1.70

1.90

1-cycle SPAA Ideal SMART Router

Ideal TS Router Per-packet SPAA

Ideal packet chaining apSLIP

0.90

1.00

1.10

1.20

1.30

1-cycle SPAA Ideal SMART router
Ideal TS router Per-packet SPAA
Ideal packet chaining apSLIP

High load ----- Benchmarks---- Low load

0.90

1.10

1.30

1.50

1.70

1.90
VOQ+SPAA apSLIP

High load ------- Benchmarks ------ Medium to low load

En
d

-t
o

-e
n

d
 p

ac
ke

t
la

te
n

cy

im
p

ro
ve

m
en

t
 o

ve
r

2
-c

yc
le

 S
P

A
A

A
p

p
lic

at
io

n
 p

e
rf

o
rm

an
ce

 n
o

rm
al

iz
ed

to

 2
-c

yc
le

 S
P

A
A

En
d

-t
o

-e
n

d
 p

ac
ke

t
la

te
n

cy

im
p

ro
ve

m
en

t
o

ve
r

2
-c

yc
le

 S
P

A
A

Benchmarks

(i.e., both components of apSLIP give good benefits). Some

benchmarks (dedup and blackscholes) do not benefit from

VOQ as they do not incur HOL blocking. fluidanimate’s

ultra-low load makes switch allocation unimportant so that

VOQ accounts for all of apSLIP’s benefits.

Fig 12: Impact of adaptivity on application performance

In Fig 12, we isolate apSLIP’s adaptivity by comparing

apSLIP against pipelined iSLIP with static 3 and 6 stages in

a 3x3 network running our commercial and SPLASH-II

workloads. The Y axis shows application performance for 3-

stage, 6-stage, and adaptive pipelined iSLIP normalized to

that of our 2-cycle baseline. While the high-load

commercial workloads prefer the 6-stage pipeline’s higher

bandwidth over the 3-stage pipeline’s lower latency, the

low-load scientific workloads reverse this preference. Being

adaptive, apSLIP performs better than or close to the better

of the two static pipelines across all loads.

6.3 Synthetic Workloads

To better understand apSLIP’s performance, we run

synthetic workloads of traffic patterns, namely uniform

random, transpose, and bit complement on an 8x8 network

(Table 1). In Fig 12(a-c), we plot the end-to-end packet

latency (Y axis) versus the injection rate in flits per node per

cycle (X axis) for SPAA with per-packet switch allocation,

SPAA with packet-chaining, and apSLIP. The uniform

random pattern creates contention without hot spots and

therefore emphasizes switch allocation. In this pattern (Fig

12(a)), per-packet saturates first followed by packet

chaining and apSLIP which performs best. In the bit

complement and transpose patterns (Fig 12(b, c)), which

stress the network bisection, all three schemes saturate near

injection rate of 0.26. These results show that apSLIP is

robust across traffic patterns and performs better when

switch allocation matters.

Fig 12: End-to-end packet latency for synthetic workloads: (a)

uniform random (b) bit complement (c) transpose

6.4 Circuit Analysis

To analyze apSLIP’s circuit delays, we model the two key

stages (OA and IA/CU) of apSLIP and SPAA in Verilog,

verify the functionality using Mentor Graphics’s ModelSim,

and synthesize the model in 45 nm technology using

Synopsys’s Design compiler. We do not model the third

lightweight stage which includes only wire delays for

forwarding requests. In terms of delays, the input and output

arbitrations are qualitatively identical in SPAA and apSLIP.

While only the counter updates differ, they are off the

critical path. Accordingly, the synthesized models show

little difference in clock speeds between SPAA and apSLIP

with SPAA allocator at 7.6 FO4 (243 ps) and apSLIP

allocator at 7.8 FO4 (249 ps) whereas the input buffer write

is the critical path at 8.7 FO4 (278 ps).

For area and power, there are two parts: the switch allocator

and the router datapath. Switch allocators account for only

1-2% of router area and 2-4% of router power [10].

Therefore, though apSLIP allocator incurs 72% and 95%

overhead in area and power, respectively, over SPAA,

apSLIP’s actual overheads are small. Recall from Section

4.1 that the datapath area and power overheads of apSLIP

using VOQ are comparable to or better than those of SPAA

using VC.

0.90

1.00

1.10

1.20

1.30

pSLIP 3-stage

pSLIP 6-stage

apSLIP

30

80

130

180

0.15 0.2 0.25 0.3 0.35 0.4

30

80

130

180

0.05 0.1 0.15 0.2 0.25 0.3

30

80

130

180

0.05 0.1 0.15 0.2 0.25 0.3

En
d

 –
to

-e
n

d
 P

ac
ke

t
La

te
n

cy
 (

cy
cl

es
)

Injection Rate (flits/node/cycles)

High load Benchmarks Low load

A
p

p
lic

at
io

n
 p

e
rf

o
rm

an
ce

 n
o

rm
al

iz
ed

to

 2
-c

yc
le

 S
P

A
A

(a)

(b)

(c)

 apSLIP Per Packet

 Ideal Packet chaining

7 Conclusion
Switch allocation and queuing discipline has a first-order

impact on network performance; and hence on overall

system performance. Quality of switch allocation and clock-

speed impose opposing constraints: Dependencies in

sophisticated switch allocation algorithms such as iSLIP

make pipelining at fast clocks hard. On the other hand,

simpler, pipelineable algorithms which are amenable to fast

clocks degrade throughput.

This paper proposes apSLIP, a high-performance, adaptive-

effort, pipelined switch allocator. apSLIP uses three novel

ideas to pipeline iSLIP. First, we break the request-grant

RAW hazard by leveraging VOQ which easily allows

another flit to avail a redundant grant. Second, we untangle

double-booking problem arising from priority counter RAW

hazard by privatizing priority counters. Finally, we use

adaptive effort switch allocation to achieve high-bandwidth

at high loads (via a deeper pipeline) and low latency at low

loads (via a shallower pipeline). Simulations reveal that

compared to an aggressive 2-cycle router apSLIP improves,

on average, end-to-end packet latency in an 8x8 network by

43% and high-load application performance in a 3x3

network by 19% without affecting the low-load

benchmarks. apSLIP’s high bandwidth and low latency are

important for on-chip networks to keep up with the ever-

growing core counts of multicores.

REFERENCES

[1] M. Karol, M. Hluchyj and S. Morgan, "Input versus output queueing on

a space division switch," IEEE Trans. Communications, vol. 35, no. 12, pp.

1347-1356, 1987.

[2] W. Dally and B. Towles, Principles and Practices of Interconnection

Networks, Morgan Kaufmann Publishers Inc.,, 2003.

[3] M. J. Karol, K. Y. Eng and H. Obara, "Improving the performance of

input-queued ATM packet switches," in Proc. of INFOCOM, 1992.

[4] N. McKeown, "The iSLIP scheduling algorithm for input-queued

switches," IEEE/ACM Trans. Networks, vol. 7, no. 2, pp. 188-201, 1999.

[5] George Michelogiannakis, Nan Jiang, Daniel Becker, and William

Dally, "Packet chaining: efficient single-cycle allocation for on-chip

networks," in Proc. of MICRO-44 , 2011.

[6] Shubhendu S. Mukherjee, Federico Silla, Peter Bannon, Joel Emer,

Steve Lang, and David Webb, "A comparative study of arbitration

algorithms for the Alpha 21364 pipelined router," in Proc. of ASPLOS-X,

2002.

[7] M. Hayenga, N. E. Jerger and M. Lipasti, "SCARAB: a single cycle

adaptive routing and bufferless network," in Proc. of MICRO 42, 2009.

[8] T. Moscibroda and O. Mutlu, "A case for bufferless routing in on-chip

networks," in Proc. of the 36th ISCA '09, 2009.

[9] Amit Kumar, Li-Shiuan Peh, Partha Kundu, and Niraj K. Jha, "Express

virtual channels: towards the ideal interconnection fabric," in Proc. of the

34th ISCA, 2007.

[10] Amit Kumar, Partha Kundu, Arvind P. Singh, Li-Shiuan Peh, and

Niraj K. Jha, "A 4.6Tbits/s 3.6GHz single-cycle NoC router with a novel

switch allocator in 65nm CMOS," in Proc. of the 25th ICCD 2007..

[11] Tushar Krishna, Chia-Hsin Owen Chen, Woo Cheol Kwon, and Li-

Shiuan Peh, "Breaking the On-Chip Latency Barrier Using SMART," in

Proc. of 19th HPCA, 2013.

[12] Intel Corporation, "An Introduction to the Intel® QuickPath

Interconnect," Intel Corporation, 2009.

[13] Yatin Hoskote, Sriram Vangal, Arvind Singh, Nitin Borkar, and

Shekhar Borkar, "A 5-GHz Mesh Interconnect for a Teraflops Processor,"

IEEE Micro , pp. 51-61, September 2007.

[14] R. Mullins, A. West, and S. Moore, "Low-Latency Virtual-Channel

Routers for On-Chip Networks," in Proc. of the 31st ISCA, 2004.

[15] Yuan-Ying Chang, Yoshi Shih-Chieh Huang, Matthew Poremba,

Vijaykrishnan Narayanan, Yuan Xie, and Chung-Ta King, "TS-Router: On

Maximizing the Quality-of-Allocation in the On-Chip Network," in Proc.

of the 19th HPCA, 2013.

[16] W. J. Dally, "Virtual-channel flow control," in Proc. of the 17th ISCA,

1990.

[17] Y. Tamir and H. C. Chi, "Symmetric Crossbar Arbiters for VLSI

Communication Switches," IEEE Trans. Parallel. Distrib. Syst., vol. 4, no.

1, pp. 13-27, 1993.

[18] J. Kim, W. J. Dally, B. Towles and A. K. Gupta, "Microarchitecture of

a High-Radix Router," in Proc. of the 32nd ISCA, 2005.

[19] Y. Tamir and G. L. Frazier, ""High-performance multiqueue buffers

for VLSI communication switches," in Proc. of the 15thISCA, 1988..

[20] Chrysostomos A. Nicopoulos, Dongkook Park, Jongman Kim, N.

Vijaykrishnan, Mazin S. Yousif, and Chita R. Das, "ViChaR: A Dynamic

Virtual Channel Regulator for Network-on-Chip Routers," in Proc. of the

39th MICRO,, 2006.

[21] J. Stark, M. D. Brown and Y. N. Patt, "On pipelining dynamic

instruction scheduling logic," in Proc. of the 33rd MICRO 33, 2000.

[22] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael

R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill,

and David A. Wood, "Multifacet's general execution-driven multiprocessor

simulator (GEMS) toolset.," SIGARCH Comput. Archit. News, vol. 33, no.

4, pp. 92-99, 2005.

[23] Niket Agarwal , Tushar Krishna , Li-shiuan Peh , Niraj K. Jha,

"Garnet: A detailed on-chip network model inside a full-system simulator,"

in Proc. of the ISPASS, 2009.

[24] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel

Forsgren, Gustav Hållberg, Johan Högberg, Fredrik Larsson, Andreas

Moestedt, and Bengt Werner, "Simics: A full system simulation platform,"

Computer, vol. 35, no. 2, pp. 50-58, 2002.

[25] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal

Singh, and Anoop Gupta, "The SPLASH-2 programs: characterization and

methodological considerations," in Proc. of the 22nd ISCA, 1995.

[26] C. Bienia, S. Kumar, J. P. Singh and K. Li, "The PARSEC benchmark

suite: characterization and architectural implications," in Proc. of the 17th

PACT, 2008.

[27] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P.

Thacker, "High-speed switch-scheduling for local area networks," ACM

Trans. Comput. Syst., vol. 11, no. 4, pp. 319-352, 1993.

[28] P. Gupta and N. McKeown, "Designing and Implementing a Fast

Crossbar Scheduler," IEEE Micro, vol. 19, no. 1, pp. 20-28, 1999.

[29] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,

P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, N. Borkar,

"An 80-tile 1.28TFLOPS network-on-chip in 65nm CMOS," in Proc. of the

ISSCC, 2007.

http://www.bibsonomy.org/author/Kundu
http://www.bibsonomy.org/author/Singh
http://www.bibsonomy.org/author/Peh
http://www.bibsonomy.org/author/Jha
http://www.researchgate.net/researcher/35402257_S_Vangal/
http://www.researchgate.net/researcher/10425223_J_Howard/
http://www.researchgate.net/researcher/10425224_G_Ruhl/
http://www.researchgate.net/researcher/13380967_S_Dighe/
http://www.researchgate.net/researcher/6473646_H_Wilson/
http://www.researchgate.net/researcher/8428382_J_Tschanz/
http://www.researchgate.net/researcher/33787716_D_Finan/
http://www.researchgate.net/researcher/13381068_P_Iyer/
http://www.researchgate.net/researcher/60457620_A_Singh/
http://www.researchgate.net/researcher/13381071_T_Jacob/
http://www.researchgate.net/researcher/67559821_S_Jain/
http://www.researchgate.net/researcher/13381070_S_Venkataraman/
http://www.researchgate.net/researcher/10425225_Y_Hoskote/
http://www.researchgate.net/researcher/35010992_N_Borkar/

	Purdue University
	Purdue e-Pubs
	10-28-2013

	apSLIP: A High-performance Adaptive-Effort Pipelined Switch Allocator
	Syed Ali Raza Jafri
	Hamza Bin Sohail
	Mithuna Thottethodi
	T.N. Vijaykumar

