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Abstract 

The pulmonary infection with Pseudomonas aeruginosa is considered as one of the main 

causes of health deterioration in cystic fibrosis patients (CF). Efficient management of P. 

aeruginosa in CF remains difficult mainly with the emergence of multidrug-resistant strains 

leading ultimately to death. There is a pressing need for new approaches to control these 

Pseudomonal infections. Current studies on the antimicrobial efficacy of liposomal antibiotics 

have shown conflicting results. We sought to assess whether the incorporation of clarithromycin 

into liposomes could improve its antibacterial activity against clinical isolate of Pseudomonas 

aeruginosa from CF patients. Different formulations of liposomal clarithromycin were prepared, 

characterized and their antibacterial activities against resistant strains of P. aeruginosa were 

investigated. These formulations reduced the biofilm formation, the virulence factors production 

and the bacterial motilities compared to free drug. The therapeutic importance of liposome 

containing macrolides in the management of experimental pseudomonal lung infection in 

animals is warranted. 
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1. General Review 

1.1. Cystic Fibrosis 

CF is the most common fatal inherited disorder that was first documented in the 1930s and 

is a challenging health problem still today (1-3). Although, CF can affect all races, the rate of 

occurrence among the Caucasian population (particularly among those of European descent) 

appears to be significantly higher, with 1 in 2,000 newborns being affected (2, 4). In Europe, the 

prevalence of CF among children and young adults is dramatically higher when compared to 

North American countries, the United States and Canada (4). CF arises as a result of a mutation 

in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein 

(5). This protein regulates the production of digestive juices and mucus by acting as a channel to 

allow the movement of salt and water in and out of cells in the lungs and other tissues. 

Although there is currently no cure for CF, therapeutics have been developed that can 

alleviate several of the symptoms associated with this disease. 

1.1.1. Pathophysiology of cystic fibrosis  

CF is considered a multi-system disease affecting the liver, sweat glands, pancreas, 

reproductive organs, intestines, sinuses, gastrointestinal tract and the lungs (3, 6). However, the 

most affected organs comprise the exocrine sweat glands, pancreas and the lungs (7, 8). The 

most debilitating aspect of CF is its effects on the lungs (7).  

Mutations, that cause CF, affect the transport of sodium (Na
+
) and chloride (Cl

-
) ions 

across the epithelial membranes (8). The dysfunction of Cl
-
 ions transport and hyperabsorption of 

Na
+
 give rise to the characteristic of salty skin phenotype among patients afflicted by CF (8-10). 
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This characteristic feature of CF led to the development of the salt skin diagnostic test, that 

involves placing a band on the child's forehead to measure Cl
-
 levels (7, 11). 

The CFTR protein plays a critical role in the regulation and secretion of sweat, digestive 

enzymes and mucus (7, 12). With this disease, chloride secretion is reduced, which results in 

dehydration of water molecules from the airways (11). This dehydration causes thick and sticky 

mucus, invariably leading to dysfunction of cilia to cleanse the lungs (1) rendering them more 

susceptible to infections. Pulmonary infections cannot be cleared easily and they quickly develop 

to chronic infections, the main cause of morbidity and mortality in CF patients. Patients with CF 

have significant difficulties in breathing, often feeling as if they are drowning in their own mucus 

(11). The current hypothesis for the cause of CF lung disease suggests that CFTR dysfunction in 

the apical epithelial membranes results in an abnormal transport of Cl
-
, Na

+
 ions and H2O leading 

to the depletion of airway surface fluid which is required for normal ciliary function (8-10). Once 

the disease has progressed to a point where the patient can no longer breathe unassisted, the only 

treatment that can be recommended to help alleviate this symptom is lungs transplantation. 

1.1.2. Structure and function of CFTR 

CF results from a mutation that affects the CFTR chloride channel, rendering it 

ineffective and unable to open. The CFTR functions as an ion channel that transports Cl
-
 ions 

across the cell membrane (13). When the transport of Cl
-
 ions is disrupted, the anion flow is 

decreased, resulting in the buildup of mucus in the lungs (14). The CFTR protein is primarily 

located in the apical membrane, where it provides a pathway for Cl
-
 ion movement across 

epithelia and regulates the rate of Na
+
 ion flow. 

The CFTR gene (Diagram 1) is located on the long arm of chromosome 7, spanning 

approximately 250-kb and containing 27 exons (15, 16). The CFTR gene encodes 1480 amino 



4 
 

acids, a protein product that comprises two repeated units of membrane spanning domains 

(MSDs) and nucleotide-binding domains (NBDs) (9). Each unit of MSDs consists of six 

hydrophobic transmembrane α-helices that form the anionic channel, while the NBDs interact 

with ATP (17). The two repeated units are linked by a single regulatory (R) domain that contains 

multiple consensus phosphorylation sites and many charged amino acids (17, 18). It separates the 

two MSDs and interacts physically with the NBDs. The R domain is unique for CFTR as it is not 

present in the other members of the ATP binding cassette (ABC) superfamily (18). The CFTR is 

classified as an ATP binding cassette transporter (ABC transporter); as the name suggests, the 

channel uses ATP binding to open and close the channel (13, 19). 

 

 

Diagram 1: Structure of cystic fibrosis transmembrane conductance regulator. 
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1.1.3. Classes of CFTR mutations 

Since the discovery of the CFTR gene in 1989, more than 1,900 mutations have been 

identified (20-22). The most commonly studied mutations are the ΔF508 and G551D mutations. 

With the ∆F508 mutation, a phenylalanine amino acid is deleted from the NBDI sequence (23, 

24). Interestingly, this deletion does not result in irregular protein folding as it was previously 

thought. Instead, the mutation causes the CFTR to be less soluble in H2O. In addition, this 

mutation causes a chemical change in the CFTR protein, thereby making it a poor signal 

receptor. On the other hand, the G551D mutation prevents ATP from binding to the NBDs 

thereby making the channel gating slow and inefficient (13). 

CFTR mutations are divided into 6 classes (Diagram 2) based on their effects on CFTR 

production and the level of residual CFTR function (20, 22, 25). Although not all mutations fit 

exclusively into one class, the system nonetheless is helpful towards determining which 

medication or course of treatment would prove beneficially for a particular mutation. The 

different CFTR mutations, that have been identified primarily, affect the translation of the CFTR 

gene product at different stages (11). Class I mutations result in the insertion of a premature stop 

codon, resulting in a truncated CFTR protein that fails to reach the cell membrane (26, 27). Class 

II mutations (e.g. ∆F508) result in defects of protein processing. The CFTR protein that fails to 

fold correctly, having no glycosylation on it, remains in the endoplasmic reticulum (ER) and 

eventually gets degraded before reaching the membrane (9, 27). Class III mutations are classified 

as gating mutations. The CFTR protein is transported to the cell membrane; however, the 

channel does not open properly and chloride transport cannot occur leading to a defect in 

chloride regulation of CFTR (11, 26). In class IV mutations, the CFTR protein reaches the cell 

membrane and is partially functional. Due to the decreased chloride conductance the chloride ion 
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fails to move through the channel effectively which results in conductance defect (11, 16, 28). 

Class V mutations result in splicing abnormalities in the CFTR protein, which reduce the number 

of functional CFTRs that reach the membrane; however, these proteins remain functional and are 

capable of effectively transporting Cl
- 
ions (9, 11). Finally, class VI mutations result in unstable 

CFTR protein with increased turnover rate (20, 22). 
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Diagram 2: Classification of CFTR mutations. 



8 
 

1.2. CF lung inflammation and infection  

Patients with CF suffer from lung inflammation and are prone to infections. Numerous 

scientists have studied CF lung pathogenesis and have proposed several hypotheses of the cause. 

Firstly, lung inflammation is responsible for causing primary damage to lung parenchyma. 

Secondly, bacterial colonization of the mucus layer is at the root of inflammation and infection 

(29, 30). Finally, antimicrobial treatments prove ineffective in reducing the inflammation. Lung 

inflammation can be observed in patients with CF from a very early age (30). Studies have 

shown that young children with CF show signs of inflammation in their lungs even in the 

absence of bacterial infections (29). Lung biopsies show an absence of any pathogens which 

could be responsible for the inflammation, and therefore it is thought that the inflammation is a 

CF specific symptom (31). However, current tests do not detect mild viral infections, and 

therefore cannot be discounted as a cause of inflammation in patients with CF (31). Fluid 

biopsies taken from the lungs of patients with CF show increased concentrations of the cytokines 

interleukin (IL)-6 and IL-8 (32). These are produced by the respiratory epithelium cells to attract 

neutrophils and macrophages into the lung (33). The presence of neutrophils in the CF sputum is 

associated with neutrophilic inflammation and airway mucus obstruction. The airway surface 

fluid of patients with chronic airway diseases usually has a high concentration of neutrophil 

elastase, a serine protease, which is released by neutrophils. Neutrophil elastase can damage 

mucociliary clearance, thus stimulating mucin production, contributes to an overall increase in 

airway inflammation (34). This increase in inflammation causes direct mechanical damage to the 

lungs by alterations in mucociliary movements and by an autoimmune response against chronic 

airway bacterial infection, which causes enzymatic destruction of the lung parenchyma (35). 
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The environment in the lungs of CF patients is an ideal breeding ground for bacteria (36). 

The initial infection causes an imbalance in the sodium channel (ENaC) function, which results 

in a reduction of airway surface liquid volume (37). This leads to further increases in the levels 

of neutrophils and macrophages within the airways. 

Patients with CF are prone to acute infections with bacteria, such as Staphylococcus aureus 

and Haemophilus influenzae (29). Also, many of these patients become chronically infected with 

another bacteria, Pseudomonas aeruginosa, and there are no treatments available with antibiotics  

against initial colonization (38). It is also possible that the infection and lung damage occur due 

to the presence of P.aeruginosa at bronchial tree (39). The majority of CF fatalities results from 

respiratory failure secondary to infection and inflammation (38, 39). Presently, modern advances 

in medical treatments have significantly reduced morbidity rates and the occurrence of severe 

acute infections that have contributed to the prolongation of life in patients diagnosed with CF. 

However, the constant state of inflammation and presence of chronic infections cause a slow 

buildup of damage to lung parenchyma (40). 

1.3. Microbiology of lung infection in cystic fibrosis  

From a very early age, patient affected by CF are more prone to contracting lung infections. 

Microbial cultures from the broncho-alveolar lavage (BAL) fluid of CF patients often show the 

presence of multiple microbial pathogens (41, 42). Most bacterial infections are caused by S. 

aureus, H. influenzae, Burkholderia cepacia and P.aeruginosa (43-45). Analysis of the BAL 

fluid has revealed a correlation between the presence of specific microorganisms and the age of 

the patients. For example, S. aureus is the most common pathogen found in CF children before 

the age of one, while H. influenzae and P. aeruginosa are the predominant species found in older 
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than one CF patients. B. cepacia on the other hand, is predominantly seen in adults and less in 

children (42). 

1.3.1. Staphylococcus aureus 

S. aureus is a Gram-positive, aerobic and non-motile coccus which is normally found on 

human skin (46, 47). This ubiquitous species causes infection in approximately 70% of children 

aged 6 to 10 (42). Studies have shown that infections with S. aureus and P. aeruginosa, alone or 

in combination, lead to varying degrees of morbidity in patients with CF. Fraunholz and Sinha, 

2012, have delineated the mechanism by which this organism infects and survives within a host 

(48). The mechanism governing the entry of the pathogen into the host involves its ability to 

adhere to the host cell and the ability to alter host signaling pathways, apoptotic mechanisms and 

autophagy (46, 48, 49). S. aureus is usually the first organism to infect the lower airways of CF 

patients and typically precedes infection by H. influenzae and P. aeruginosa, respectively (50). 

In CF patients, S. aureus colonizes the lower respiratory tract, triggering an inflammatory 

cascade, which ultimately results in tissue damage (51). This compromised environment 

provides favorable conditions for other species such as H. influenzae and P. aeruginosa to 

flourish. S. aureus generates multilayered biofilms which contribute to antibiotic resistance, 

thereby making it difficult to eradicate the infection (42). Progress in CF research has shown that 

extrachromosomal DNA (eDNA) is a component of these biofilms, a feature that provides a new 

target for novel CF treatments. In vitro studies have shown some promising results by using a 

combination of DNase and antibiotic treatments (52) The DNase degrades the eDNA and 

weakens the biofilm, thereby removing the protective layer against antibiotics (53). 
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1.3.2. Haemophilus influenzae  

H. influenzae is a Gram-negative, facultative anaerobic species which has been isolated 

from humans (54). This species is further categorized into six serotypes based on the nature of its 

outer oligosaccharide capsule (55). Some H. influenzae members do not contain this capsule and 

are classified as nonencapsulated or nontypeable H. influenzae (56). It has been found that the 

nonencapsulated form of H. influenzae predominates in the lower airways of CF patients with 

chronic lung infection (54). Interestingly, studies have shown that growth of nonencapsulated H. 

influenzae was inhibited by the mucoid P. aeruginosa and some Proteus species (57, 58).  

H. influenzae is commonly found in the lungs of CF patients and some studies suggest that 

the colonization of H. influenzae in CF patients is comparable to that of P. aeruginosa (42). 

There is still much debate regarding the mechanism by which H. influenzae causes tissue damage 

in CF patients. In these patients, H. influenzae has been shown to colonize in the oropharynx, 

sputum and lower respiratory tract (LRT) (59). Infection of the LRT is not a common occurrence 

within the non-CF population (60). Once colonized in the LRT, H. influenzae disease progresses 

due to onset of inflammation (61). Increased the levels of leukocytes, particularly neutrophils, 

can be detected in the BAL of CF patients (42). Clinical consequences of H. influenzae infection 

in immunocompromised individuals, such as those afflicted with CF, include rhinosinusitis, otitis 

media and pharyngitis (62). The presence of biofilms also leads to early lung infections that 

compromise the tissue to subsequent and more severe infection by P. aeruginosa (62).  

1.3.3. Burkholderia cepacia 

The Burkholderia cepacia complex (Bcc) is a Gram-negative, non-spore forming, rod-like 

bacteria that occur naturally in plants, wet soil and any moist environment (63). This bacterium, 

previously known as Pseudomonas cepacia, is the primary causative agent of soft rot in onion 
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bulbs (64). The prevalence of B. cepacia in CF patients has been documented since 1970s and 

infections from this organism still persist today (44). It is estimated that nearly 40% of sputum 

cultures from CF patients contain B. cepacia (50). B. cepacia often precedes systemic bacterial 

infection, increases inflammatory mediators in the blood and decreases erythrocyte 

sedimentation rates (65). These symptoms are characteristic of the ''cepacia syndrome'', an often 

fatal condition (66). The compromised lung surface in CF patients tends to exacerbate the 

incidence and severity of this condition (50). Like other bacterial species, B. cepacia also 

damages the lungs cell surfaces (67), thus making it more susceptible to infection by other 

bacteria and/or viruses. B. cepacia tends to infect adults with CF and unfortunately, the 

morbidity associated with this organism exceeds that of P. aeruginosa (42).  

B. cepacia infection mechanisms have been extensively studied. Similar to P. aeruginosa, 

B. cepacia also possesses the ability to form a glycoprotein capsule which protects it from host 

defence mediators (50, 66). Further, the Bcc group also exhibits intrinsic resistance to 

polymixins and most aminoglycoside and β-lactam antibiotics (68). In addition to this innate 

resistance, this bacterium can also acquire resistance to other kinds of antibiotics during in vivo 

treatment regimens (69). This feature makes the Bcc group especially dangerous. One method 

used by this organism to achieve antibiotic resistance is the production of inactivating enzymes, 

such as β-lactamase, a compound which has been shown to degrade β-Lactams class of 

antibiotics (70). In addition, B. cepacia also has active efflux pumps which efficiently pump out 

antibiotic agents that enter the cell. Furthermore, the bacteria can also alter receptors that the 

antibiotics target, thereby making the cells insensitive to the drugs (64). Apart from its 

pathogenic effects, B. cepacia can also make the lung surface more susceptible to infection by 

other bacterial species and viruses. 
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1.3.4. Pseudomonas aeruginosa 

P. aeruginosa is the most common microorganism found in the sputum of patients with CF 

(44). Approximately 80% of patients over the age of 20 show P. aeruginosa colonization in their 

lungs (71, 72). Another common feature associated with this bacterial species is antibiotic 

resistance, which is one of the leading causes of chronic lung infections among CF patients (73). 

This virulent bacterium is classified as Gram-negative and creates biofilms in order to protect 

itself from host immune system and antibiotics (74). During the biofilm formations, the flagella 

and type IV pilus of P. aeruginosa are required for cell motility (75-77). Once bacteria gains 

access to the lung, this motile bacterium uses its flagella to attach into the host cell, causing 

infection (72, 74, 78). The altered surface membrane glycoproteins in the lungs of patients with 

CF act as anchoring points for the attachment of this bacterium (50). The pathogenesis of P. 

aeruginosa in the lungs of CF patients can be described as a two-phase mechanism. The first 

phase is characterized by the presence and isolation of the organism and its opposing antibodies, 

at this point having minimal effects on pulmonary function (79). The second phase is 

characterized by chronic infection, which arises as a result of a prolonged incubation of the 

pathogen within the host. At this point, the presence of the bacterium can be detected in the 

sputum of the affected individuals (80). During this chronic phase, the bacteria produce a 

polysaccharide, called alginate, which acts as an immunogen. Antibodies against alginate can be 

isolated from patients with CF (50). Long term infection by P. aeruginosa causes significant 

damage to the lung surface leading to airway obstruction and ultimately loss of pulmonary 

function (81). Previous studies have shown that P. aeruginosa produces a biofilm in the airways 

of the lungs of patients with CF (82, 83). The biofilm acts as a protective barrier for bacterial 

cells by limiting their exposure to antibiotics, thereby worsening the disease prognosis in CF 
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(72). Furthermore, biofilm contributes to the bacterial tolerance towards the host innate defense 

mechanisms (82, 84). These pathological changes seen in the CF lung are all associated with the 

mucoid nature of P. aeruginosa and its production of alginate (50, 81). In conclusion, all of these 

pathogens become chronic due to the resistance to commonly used antibiotic. Current research 

efforts focus on antibiotic therapy to develop effective treatments for cystic fibrosis. 

1.4. Resistance mechanism of pathogens 

1.4.1. Drug inactivation 

Bacteria have evolved several mechanisms that make them resistant to antibiotics, thus 

limiting treatment options (85). Generally, bacteria acquire resistance to antibiotics by either (i) 

altering the antibiotic binding target or (ii) through the production of inactivating enzymes that 

decrease antibiotic activity (86). 

Hydrolysis, group transfer and redox are other enzymatic strategies employed by bacteria to 

inactivate antibiotics. Amides are an example of enzymatic targets which are commonly found in 

antibiotics (86). Bacteria target the amides by cleaving hydrolytically susceptible chemical 

bonds, as a means of destroying antibiotic activity. In addition, resistance enzymes such as the 

phosphotransferases, the largest family of resistance enzymes, modify the antibiotics by causing 

structural alterations resulting in impaired target binding (86, 87). Bacteria can also produce and 

secrete enzymes that add acetyl groups to the antibiotic periphery which interferes with bacteria-

antibiotic binding. Furthermore, oxidation is another method used for antibiotic detoxification 

(86). Finally, mutation or modification can also occur on the target sites of bacteria which 

prevent antibiotic binding to its ribosomal targets (88). Bacteria can acquire resistance to an 

antimicrobial agent through mutations by upregulating the production of enzymes that inactivate 

http://cystic-fibrosis.emedtv.com/cystic-fibrosis/treatment-for-cystic-fibrosis.html
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the antimicrobial agent, such as erythromycin ribosomal methylase in staphylococci (88, 89). 

Mutations enable several bacterial species to quickly adapt to strains in their environment 

including antimicrobial agents (89). 

1.4.2. Outer membrane permeability 

The outer membrane offers strong permeability barrier to antibiotics that are effective 

against some bacteria. Gram-negative bacteria differ from Gram positives by structural 

differences of their cell wall. The Gram-negative bacterial membrane is composed of an inner 

layer of phospholipids and an outer layer of lipopolysaccharides (LPS) (90). In humans, LPS 

triggers an innate immune response which causes the release of cytokines thereby leading to 

inflammation. The structure of this membrane and the water-filled pore protein work together to 

derail the penetration and conduction of antibiotics across the bacterial cell membrane (89). The 

inner membrane restricts the penetration of hydrophilic substances which results in a perfect 

barrier. Gram-negative bacteria are sensitive to changes in the permeability properties of the 

lipid bilayer and the diffusion of porins which form channels in the cell membrane (90). These 

changes improve resistance to antibiotics through an adaptive counteractive mechanism. Studies 

have shown that changes in the proportions of porins found on the membrane could decrease cell 

envelope permeability to antibiotics. For example, low permeability of P. aeruginosa membrane 

often works in combination with efflux pumps in order to promote drug resistance (89). 

Modifications of the lipid and protein composition of the outer membrane (OM) are used to 

enhance drug resistance in several bacterial species (90, 91). Other studies have also detected the 

presence of plasmids, transposons and bacteriophages that may promote antibiotic resistance (92, 

93). Further, outer membrane proteins (OMPs) also undergo various adaptations depending on 
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specific microbial environmental conditions such as pH (91, 94). Therefore, OMPs play an 

important role in the adaptation of the bacteria to the host's biological environment. 

1.4.3. Efflux systems 

Bacteria, including P. aeruginosa, E. coli, S. aureus, often achieve drug resistance by 

increasing expression of efflux pumps (95, 96). Efflux pumps comprise a special type of protein 

that works to remove antibiotics from the bacterial cytoplasm by pumping them back into the 

external environment (95, 97). Macrolides and tetracycline have internal mechanisms of action 

and therefore efficiently pumping them out of the bacteria renders the antibiotic ineffective (88). 

Antibiotic extrusion proteins are commonly found in Gram-negative bacteria in addition to a 

number of eukaryotes (97). Efflux pumps typically work on one specific class of antibiotics; 

however, some pumps also show cross-reactivity to broader ranges of commercially available 

antibiotics (97, 98). 

There are 5 major families of efflux pump transporters: (i) Major Facilitator (MF), (ii) 

Multidrug and toxic efflux (MATE), (iii) Resistance-nodulation division (RND), (iv) Small 

multi-drug resistance (SMR), and (v) ATP binding cassette (ABC). These efflux pump 

transporters exploit ATP hydrolysis and the proton motive force as their main energy source for 

displacement of antibiotics from bacterial cytoplasm to external environment (87, 95, 97, 99). 

1.4.4. Biofilm 

Biofilm refers to a community of microbes where cells are attached to each other on a 

surface (100-102). Microbes form these biofilms in response to a number of factors. For 

example, bacteria use the formation of biofilms to limit their exposure to toxic substances such 
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as antibiotics and/or antimicrobials (102-104). Biofilm matrix is composed of an assortment of 

exopolysaccharides, extracellular DNA (e-DNA) and proteins (101, 105). 

Biofilm development (Diagram 3) involves different phases including attachment, 

formation of microcolony and macrocolony maturation, and detachment (101, 106). Biofilms 

incur resistance to antimicrobial/antibiotic agents by slowing or preventing their penetration 

beyond the film (107-109). Biofilm cells also express protective factors such as multidrug efflux 

pumps and stress-response regulators (84, 110, 111). Growth rates are significantly diminished in 

the center of the biofilms, as compared to the outermost portion of the biofilm, due to nutrient 

limitations (111). Increased resistance of P. aeruginosa against antimicrobial/antibiotic agents is 

attributed to its specialized biofilm matrix, which is called a mucoid Pseudomonas biofilm. This 

specialized biofilm has been shown to reduce antibiotic susceptibility by over 1,000 fold (101, 

109). Cultures of P. aeruginosa biofilm show varying levels of oxygen, 50 to 90 µm between the 

outermost and innermost sections of the biofilm colony (101). 

Biofilm secretes polymeric nutrients, metabolites and lyses as an antibiotic resistant 

adaptive mechanism (101, 112). This results in the formation of a complex biofilm matrix 

material and the formation of mushroom shaped macro-colonies of mature biofilm community 

(107). This resistance to antibiotics is attributed to the unique anatomical and biochemical 

features of biofilm, which are absent in other microbial cells. These features include the presence 

of the biofilm matrix, which forms a physical and chemical barrier against the antibiotics action 

on or inside the biofilm microbial cells (84). The mucoid-bearing biofilm demonstrates more 

than 1000 times reduced susceptibility to antibiotics than non-mucoid biofilm (101). It is also 

argued that the biofilm matrix involves retardation of the antibiotics action, which is mediated by 

a specialty antibiotic mutated gene (110). In conclusion, biofilms are responsible for 
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complications and fatalities associated with human diseases such as CF. The resistance 

properties of the biofilm make it extremely difficult to eradicate by antibiotic treatment alone. 

 

Diagram 3: Biofilm formation stages. 

 

1.5. Treatment of pulmonary infections in CF  

Once P. aeruginosa is established in the airways, it is difficult to eradicate from CF 

patients; however, aggressive treatment can delay the development of chronic infection. Novel 

approaches are required to improve quality of life of those afflicted by this disease and to also 

achieve further increases in life expectancy. 
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1.5.1. Antibiotics therapy  

The commonly used treatment strategy in CF includes antibiotic therapy aimed at 

preventing, eradicating, or controlling respiratory infections (113). Over the years, a standard 

strategy, such as antipseudomonal drugs, has been used to enhance activity and reduce resistant 

organisms (114). Therefore, effective use of antibiotics holds great promise for improving the 

quality of life and reducing the impact of infection in patients with CF (39, 115). There are 

several classes of antibiotics with specific targets and/or functions that have been used as a 

treatment of CF. 

1.5.1.1. Aminoglycosides 

Aminoglycosides are the antibiotic of choice in patients suffering from CF with chronic 

P. aeruginosa infection (115). These antibiotics are mostly used to prevent infections against 

Gram-positive as well as Gram-negative bacterial pathogens (116, 117). They are also widely 

employed in order to manage pulmonary exacerbation in patients with CF who have developed 

chronic pulmonary infection with P. aeruginosa (116). These antibiotics inhibit bacterial protein 

synthesis by interfering with translation by causing misreading of the codons in the mRNA 

(118). They can also disrupt the translocation process by binding to the 30S ribosomal subunit of 

the bacterial ribosome (119) which results in bacterial death (118). Although aminoglycosides 

have been used to manage pulmonary infection caused by opportunistic pathogens such as P. 

aeruginosa with some success, drug cytotoxicity has limited their clinical application (115, 116). 

Amikacin, gentamicin and tobramycin are examples of aminoglycoside antibiotics, which are a 

choice in treatment of pulmonary infections caused by P. aeruginosa (119). However, the high 
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concentrations of aminoglycoside that required in treating pulmonary infection in CF are 

associated with toxicity risk (117, 119). 

1.5.1.2. Macrolides 

Macrolide antibiotics are characterized by the presence of a macrocyclic lactone ring 

(Diagram 4) to which one or more deoxy sugar moieties are attached (120, 121). Since their 

discovery in 1952, these antibiotics are effectively used to treat infections arising from Gram-

positive (120) and Gram-negative bacteria pathogens (122, 123). The basic structure (Diagram 4) 

of the macrolides antibiotics is characterized by a lactone cycle with two osidic chains; and they 

are classified according to the number of lactone ring in the cycle: 14, 15 and 16 membered 

macrolides (123, 124). Macrolides exhibit both bacteriostatic and bactericidal property in 

susceptible bacteria according to antibiotic concentrations and bacterial sensitivity (125). Due to 

their broad spectrum property, macrolides have been the antibiotic of choice for those suffering 

from chronic pulmonary inflammatory syndromes including diffuse panbronchiolitis, CF lung 

infection, chronic obstructive pulmonary disease, and asthma (121, 125). Long-term use of 

macrolide at a low concentration has been found to be useful in patients with chronic airway 

disease (121, 126). 
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Diagram 4: Macrolide chemical structures. 
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1.5.1.3. Mechanism of action 

Macrolides act by inhibiting bacterial protein synthesis directly (120). They bind to the P 

site of 50S ribosomal subunit (Diagram 5) and appear to inhibit the movement of the growing 

peptide chain (122). Moreover, these antibiotics have been shown to cause premature 

dissociation of peptidyl-tRNA from the ribosome (127). The antibiotic appears to prevent the 

movement of the growing peptide chain. They can also interfere with the bacterial protein 

synthesis by disturbing the binding of the peptide moiety of the peptidyl-tRNA (124). 

 

 

Diagram 5: Mechanism of action of macrolides. 
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1.5.1.4. Erythromycin 

Erythromycin, the first member of macrolide antibiotics, has been in clinical use for more 

than four decades (124). Structurally, the antibiotic contains 14-membered lactone rings (124) 

and is derived from the bacterium Streptomyces erythreus (128). Erythromycin has been shown 

to effectively eradicate acute or chronic state of diphtheria (129). Furthermore, due to its close 

association with penicillin in terms of antimicrobial spectrum, it is often prescribed as an 

alternative to penicillin (130). The immunomodulatory effect of erythromycin has made it a good 

choice for treatment in CF lung infection and inflammation (131). It was demonstrated in vivo 

that an optimum dose of erythromycin would decrease sputum mucus secretion that binds to 

chloride channels in epithelial cells (132). In addition, erythromycin also reduces the production 

of pro-inflammatory cytokines and NF-κB activation in CF infections (131). Erythromycin 

shows potent anti-inflammatory effect and thus is widely used for treating chronic lower 

respiratory tract infections (131, 133). As well, it is the drug of choice in treatment of 

bronchiectasis and bronchiolitis which are characterized by chronic inflammation of respiratory 

bronchioles (134). Apart from that, treatment with erythromycin was effective even in the 

presence of erythromycin resistant bacteria such as H. influenzae (135, 136). A lower dose of 

erythromycin has significant clinical implications on patients with P. aeruginosa infection (136). 

Therefore, erythromycin might play an important role in the future development of novel 

antibiotic therapies against P. aeruginosa infection, especially in the cases of CF and 

bronchiectasis. 
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1.5.1.5. Azithromycin  

Azithromycin has been produced by chemical modification of erythromycin (Diagram 4); 

it has a 15-membered macrocyclic lactone ring structure (137). This antibiotic exhibits 

bacteriostatic activity against Gram-positive bacteria although many Gram-negative rods, such as 

P. aeruginosa, are inherently resistant to azithromycin (137, 138). It is one of the most potent 

drugs for the treatment of upper and lower respiratory tract infections (138, 139). Earlier studies 

also suggested that long term use of azithromycin in low doses is beneficial in CF patients 

harboring chronic P. aeruginosa infection (138, 140). Apart from that, azithromycin shows anti-

pseudomonal activity through inhibition of a pseudomonal quorum sensing-system (105, 140). It 

suppresses virulence factor production, reduces oxidative stress response and interferes with 

biofilm formation, but has no influence on its proliferation (138, 141, 142). In vitro study, using 

low doses of azithromycin, has shown to improve many key parameters of lung functions in CF 

patients (143). Due to its antagonistic role in the quorum-sensing system, azithromycin 

administration results in improved clearance of P. aeruginosa biofilms along with a marked 

inhibition in alginate production, all of which reduces disease severity (142, 144). Furthermore, 

it has been demonstrated that Sub-MICs of azithromycin can inhibit the production of several 

QS-related virulence factors of P. aeruginosa (141, 142). Recent in vivo studies with sputum 

samples from CF patients showed similar results with the findings of clinical studies that 

azithromycin treatment improved lung function in CF patients (142). Prolonged use of 

azithromycin has been shown to improve clinical outcomes in patients with chronic 

inflammatory lung diseases, such as CF (144). However, azithromycin use has been reported to 

be associated with and increased infection rate of non-tuberculosis mycobacteria (NTM) (145). 
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In vitro studies have confirmed azithromycin as the most potent anti-inflammatory drug, 

followed by roxithromycin, clarithromycin and erythromycin respectively (146). 

1.5.1.6. Clarithromycin 

Clarithromycin is a relatively new class of macrolide antibiotic which was introduced 

around 1991 (135). It has a 14-member ring (147) structure like erythromycin (Diagram 4) but 

contains a methylated hydroxyl group at position 6 with a lactone ring attached to two sugar 

moieties (135). Clarithromycin contains several important pharmacokinetics properties; for 

example, unlike erythromycin, it is acid stable and has a half-life twice that of erythromycin 

(148). Moreover, the antibiotic is readily absorbed and widely diffused into most tissues with 

high concentrations especially in lungs (149). In addition, it is extensively metabolized in the 

liver by hepatic cytochrome P-450 enzymes (135, 150). Some of the usage of clarithromycin 

includes pharyngitis, tonsillitis, acute bacterial exacerbation of chronic bronchitis, and 

pneumonia (148, 150, 151). The antibiotic has been reported to be effective against respiratory 

tract infections (135) as well as skin infections in clinical studies. Clarithromycin inhibits 

bacterial growth by interfering with its protein synthesis even at a sub inhibitory concentration 

level (152). Apart from the bacteriostatic activity, clarithromycin also exhibits bactericidal 

activity (153). Moreover, the antibiotic has been shown to down-regulate inflammatory 

responses and is associated with immunological changes (147). Clarithromycin exhibits anti-

inflammatory effect through inhibition of the neutrophil migration and pro-inflammatory 

cytokines (154) which are responsible for the increased phagocytosis and natural killer cell 

activity (151). In addition, the antibiotic might play an important role in the suppression of 

inflammation by inhibiting neutrophils and reducing the level of several cytokines (134). Lower 

level of cytokines has been observed both in plasma and sputum in clinical studies (155). 
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Furthermore, multiple studies suggest that, clarithromycin may regulate mucus glycoprotein 

formation by inhibiting the expression of transcriptional factors of mucus glycoproteins (156, 

157). Even in studies with AIDS patients and Mycobacterium avium complex infections, 

clarithromycin has been found to be effective and safe (152, 158). Despite its several remarkable 

benefits, clarithromycin resistance is increasingly being reported in clinical isolates of pathogens 

and therefore, an approach using a combination of clarithromycin and other antibodies is 

currently being tested (159). For instance, a combination of clarithromycin/tobramycin has been 

successfully reported to eliminate P. aeruginosa biofilm formation in CF patients suffering 

chronic infection (153, 160). In addition, when used with amikacin, clarithromycin was able to 

improve amikacin activity through a reduction of bacterial adherence to the biofilm (161). 

However, one of the limitations associated with clarithromycin is that prolonged usage can result 

in gastrointestinal irritation and hepatotoxicity, especially among elders (152). Clarithromycin 

uses cytochrome P-450 system (CYP3A4) both as a substrate and an inhibitor (150, 162). 

Further studies have also found that clarithromycin is associated with high probability of digoxin 

toxicity and the risk is four times greater than with erythromycin or azithromycin (163, 164). 

Also, clarithromycin has been found to inhibit P-glycoprotein (P-gp) resulting in an increase in 

digoxin level (164). This poses a higher risk of overt toxicity and due to this its application has 

been limited. All these warrant further studies to explore more viable combinatorial antibiotic 

therapies. For instance, recent studies have shown that liposome mediated drug delivery is more 

efficient than combination therapy in free form in reducing drug toxicity (165). Due to this 

limitation, an appropriate drug delivery system such as liposomes is needed to overcome drugs’ 

toxicity.  
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1.6. Liposomes as drug delivery system 

Drug carrier systems, such as polymer micelles, nanoparticle dispersions consisting of 

small particles, nanocrystals, and liposomes were shown to have great promise as drug delivery 

systems (166-168). Bangham first characterized liposomes in the early 1960’s as bilayer vesicles 

of phospholipids in aqueous solutions (169, 170). Liposomes were considered as potential drug 

delivery systems to modify drug biodistribution and pharmacokinetics with the purpose of 

reducing the drugs' toxicity by their accumulation at the target tissue (170-172). The application 

of liposomes as potential drug delivery systems has been under investigation since the early 

1970’s (173). Liposomes can be filled with drugs, and used to treat several diseases including 

cancer and fungal infection (171). Among the various drug carriers, only a few make it to the 

stage of clinical trials. However, liposome showed a strong potential for effective drug delivery 

to the site of action (170). The liposome-loaded drugs can be delivered by various routes such as 

intravenous, oral inhalation, local application, and ocular (168, 172, 174). Liposomes, as a drug 

delivery system, were used in medicine due to their unique properties of encapsulating both 

hydrophobic and hydrophilic drugs (175). The hydrophilic drugs are held in the center of the 

liposomal vesicle, whereas hydrophobic drugs can be incorporated into the membrane bilayers 

for transport (171, 175). 

 

1.6.1. Liposomal structure 

Liposome (Diagram 6) contains one or more concentric lipid bilayers with a hydrophilic 

head group and a hydrophobic tail enclosing an internal aqueous volume (176, 177). The 

hydrophilic tails organize themselves to face each other in the bilayer and the lipids’ headgroups 
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are exposed to the aqueous phase (176, 178). Different phospholipids (Diagram 7) can be used in 

fabricating the liposomal vesicles such as phosphatidylcholines (PC), phosphatidylethanolamines 

(PE) and phosphatidylserines (PS) are commonly used as phospholipids for liposome preparation 

(176, 179). Cholesterol can be added to the bilayer mixture to reduce the permeability of 

liposomal membrane and increase the stability (180). Liposomes can have different net charges 

depending on the phospholipids' content such as dipalmitoylphosphatidylcholine (DPPC) neutral, 

dimethyldioctadecyl-ammonium bromide (DDAB) cationic charges, and dicetyl phosphate 

(DCP) anionic charges (181). 

 

Diagram 6: Structure of liposome.  
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1.6.2. Liposomal preparation and characterization 

Different types of liposomes can be prepared using various methods, implying that there 

are several operating mechanisms in liposome formation (Diagram 8). The first method used to 

prepare liposomes is the Bangham method (179, 181, 182), which is the most commonly used 

for the preparation of Multilamellar Liposomes vesicles (MLV) (183). Briefly, lipids are 

distributed onto a thin film on a round bottom flask, dissolving the lipids in an organic solvent 

such as choloroform, and later evaporating that solvent (184). Then the film is hydrated by 

adding an aqueous solution under vortexing conditions and this results in liposome formulation 

(183, 185). However, the major limiting factors of the Bangham method are its low 

encapsulation efficiency, low internal volume, and heterogeneous size distribution (185,186). A 

Reverse-phase evaporation vesicles (REV) method has been developed to increase the entrapped 

efficiency (187) through the addition of several phospholipids and cholesterol to organic solvents 

followed by the removal of the solvent via reducing pressure with a rotary evaporator. Next, 

lipids are redissolved in organic phase, followed by adding aqueous solution. The mixture is then 

sonicated to produce inverted micelles. The organic solvent is removed and system is kept under 

continuous nitrogen until the mixture becomes a homogeneous dispersion (188). However, this 

method is not safe for pharmaceutical purposes due to the usage of a large quantity of organic 

solvent, which is not suitable for the encapsulation of the fragile molecule (179, 182) Another 

technique used is the dehydration-rehydration vesicle (DRV) method, which has been reported to 

encapsulate large amounts of aqueous materials. This method was generally used to obtain small 

unilamellar vesicles (SUV) (189). A lipid mixture was dissolved in chloroform/methanol and 

dried to a film in a round bottom flask by using a rotary evaporator. Next, the drug was added to 

the film (169, 186). This technique is simple; however, it results in a larger size of liposomes 
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(186). Moreover, liposomes can be stored in a lyophilized state which improves shelf-life 

stability of liposomes as drug carriers (189). Due to the high encapsulation efficiency and 

stability of liposomal formulation, the DRV technique was used to prepare our formulations in 

this study. 

 

Diagram 8: Preparation of liposomes. 
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1.6.3. Stability of liposomes 

Liposome stability is one of the most important issues in liposome applications and this 

mainly depends on the physicochemical properties of the lipid membrane (phospholipids) (190). 

The stability of a liposome is usually enhanced by cholesterol incorporation (191), especially 

when using unsaturated phospholipids in liposomal formulation. The stability of liposome can be 

divided into physical, chemical, and biological. The physical stability of the liposomes depends 

on its size distribution due to aggregation/fusion of liposome bilayers or leakage of encapsulated 

material (189). Moreover, the temperature of stored liposomes is an essential perquisite for 

physical stability (192). Chemical stability of the lipids during storage is another point of 

concern. It can be determined by monitoring the oxidation of the unsaturated fatty acid chains or 

the hydrolysis of the lipids (192, 193). Oxidation of phospholipids is more likely due to the 

unsaturated fatty acyl chains, whereas incorporation of cholesterol and antioxidants to the 

liposome formulation can usually protect the phospholipids from oxidation (180, 189, 191). 

Hydrolysis of phospholipids detaches the hydrophobic chains of ester bonds, which might 

increase permeability of the phospholipids (189, 194, 195). The biological stability of liposomes 

can be increased by covering liposomes with inert hydrophilic polymers (193). In addition, the 

properties of liposomes, such as size, net surface charge, hydrophobicity, fluidity, and packing of 

the lipid bilayers would limit the stability of liposomes (190). Shelf-life stability of liposomes 

can be enhanced by optimizing the size distribution, pH, the addition of antioxidants and 

lyophilization.  
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1.6.4. Liposomal toxicity 

Liposomal toxicity is an essential issue in liposomal drug enterprise. Some drugs are 

associated with toxic side effects such as poor penetration, solubility and stability of the drug 

after uptake (196). The toxicity of liposomal formulation depends on the net charge of lipids and 

the properties of the charged lipids (193, 197). For instance, by using cationic lipids in liposomal 

formulation such as dioleoylphosphatidylethanolamine (DOPE) and dimethyldioctadecyl-

ammonium bromide (DDAB) the cell proliferation would be affected (198, 199). Moreover, 

cationic liposomes can be used effectively as carriers for pulmonary delivery of an anionic 

material and successfully used to deliver DNA inside mammalian cells (173, 193, 198). Despite 

the negatively charged liposomes have a shorter half-life in the blood than neutral liposomes, 

positively charged liposomes have been found to be toxic and were quickly removed from 

circulation (197, 198). Taken together, the choice of main lipids and charged component in 

formulation of the liposomes has to be considered to reduce the liposomal toxicity (173, 193, 

200). 

1.6.5. Applications of liposomes 

Liposomes have been studied for many years as carrier systems for drugs. At this time, 

several liposomal drugs have been approved for clinical use and numerous others are in clinical 

trials. Liposomal formulation containing amikacin currently undergoes phase III clinical trial for 

the treatment of pseudomonal lung infections. 

Entrapment of drugs into liposomes has several advantages such as: (1) increased 

circulation lifetime, (2) enhanced deposition in the infected tissues, (3) reduced toxicity of the 

encapsulated agent, and (4) improved pharmacokinetic of drugs (173, 193). Liposomes have an 
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ability to accommodate drugs in target tissues with different physicochemical properties such as 

size, surface charge, permeability and stability (172, 173, 176). Liposomes can be distinguished 

based on the number of lamellae they possess, such as small unilamellar vesicles (SUV), or large 

unilamellar vesicles (LUV), or multilamellar vesicles (MLV) (172, 181). SUVs are usually 

smaller than 50 nm while LUVs are usually large than 50 nm; MLVs usually range from 500 to 

10,000 nm (176, 181). Moreover, the ranges in diameter from 10,000 to 1,000,000 nm are called 

giant liposomes (176). For instance, the diameter size of liposomes, < 200 nm or smaller, can 

exhibit circulation half-lives of several hours and accumulate at active sites (176).  In addition, 

liposomes can be loaded with polar and nonpolar substances which cross different hydrophobic 

barriers to deliver the entrapped substances into the hydrophobic environment. Liposomes have 

the ability to target specific cells for drug delivery by fusing with the lipid bilayer of the cell 

membrane. 

1.6.6. Liposomes in infectious diseases  

The robust treatment of several infectious diseases requires an intense and enduring 

antibiotic treatment. One of the methods by which one can potentiate the action of antimicrobial 

drugs is through the use of liposomes as drug delivery vehicles (201). Liposomes have been 

shown to boost the distribution of the drug in the target tissue with minimal toxic side effects. 

Furthermore, liposomes can effectively be modified to potentiate the efficacy of the drug by 

altering the charge, surface properties, fluidity and the composition of the lipid layers (201). 

Previous studies have shown that liposomes can fuse to the membranes of Gram-negative 

bacteria by exploiting their structural similarity. This feature allows liposomes to be effective 

antimicrobial agents. For instance, it has been demonstrated that when macrolide antibiotics 

were encapsulated within liposomes, they showed enhanced bactericidal activity compared to 
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non-encapsulated control groups (202). Presently, several liposomal formulations of antibiotics, 

including Arikace (Liposomal-Amikacin), have been approved for phase II and III clinical trials 

in treating P. aeruginosa infection in the lungs of CF patients (172). Other liposomal 

formulations such as AmBisome® (Amphotericin B), Abelcet® (Amphotericin B Injection), and 

Amphotec® (Amphotericin B) are being employed to treat fungal infections such as aspergillosis 

(172). Finally, liposomal formulations are also being employed in the treatment of cancer (168, 

172, 203, 204). Doxil® and Myocet® are two examples of liposomal formulations being used as 

anti-cancer therapeutics in the treatment of breast cancer and Kaposi’s sarcoma (168, 172, 205). 

Taken together, using liposomes as drug delivery vehicles may pave the way towards developing 

more advanced and powerful therapeutic measures against infectious diseases and cancer. 
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1.7. Objective of the thesis 

This thesis aimed to demonstrate the bactericidal activities of macrolide antibiotics and 

liposomal macrolides against P. aeruginosa, which causes morbidity and mortality in CF 

patients. New liposomal formulations with different charges of lipids compositions were 

characterized to determine whether the use of liposomal delivery system would enhance 

antibacterial activity of clarithromycin against resistant strains of P. aeruginosa. 
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Abstract 

We investigated the efficacy and safety of liposomal clarithromycin formulations with 

different surface charges against clinical isolates of Pseudomonas aeruginosa from the lungs of 

cystic fibrosis (CF) patients. The liposomal clarithromycin formulations were prepared by the 

dehydration-rehydration method, and their sizes were measured using the dynamic-light-

scattering technique. Encapsulation efficiency was determined by microbiological assay, and 

stabilities of the formulations in biological fluid were evaluated for a period of 48 h. The MICs 

and minimum bactericidal concentrations (MBCs) of free and liposomal formulations were 

determined with P. aeruginosa strains isolated from CF patients. Liposomal clarithromycin 

activity against biofilm-forming P. aeruginosa was compared to that of free antibiotic using the 

Calgary Biofilm Device (CBD). The effect of subinhibitory concentrations of free and liposomal 

clarithromycin on bacterial virulence factors and motility on agar were investigated on clinical 

isolates of P. aeruginosa. The cytotoxicities of the liposome preparations and free drug were 

evaluated on a pulmonary epithelial cell line (A549). The average diameter of the formulations 

was >222 nm, with encapsulation efficiencies ranging from 5.7% to 30.4%. The liposomes 

retained more than 70% of their drug content during the 48-h time period. The highly resistant 

strains of P. aeruginosa became susceptible to liposome-encapsulated clarithromycin (MIC, 256 

mg/liter verses 8 mg/liter; P<0.001). Liposomal clarithromycin reduced the bacterial growth 

within the biofilm by 3-4 log units (P<0.001), significantly attenuated virulence factors 

production, and reduced bacterial twitching, swarming, and swimming motilities. The 

clarithromycin-entrapped liposomes were less cytotoxic than the free drug (P<0.001). These data 

indicate that our novel formulations could be a useful strategy to enhance the efficacy of 
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clarithromycin against resistant P. aeruginosa strains that commonly affect individuals with 

cystic fibrosis. 

2.1. Introduction 

Cystic fibrosis (CF) is a fatal inherited disease that is common among the Caucasian 

population and affects 30,000 and 3,000 newborns/year in the United States and Canada, 

respectively (1, 2). Cystic fibrosis is a multiorgan disease affecting the liver, pancreas, 

gastrointestinal tract, and lungs; however, pulmonary injury is the main cause of death among 

CF patients (3-5). 

The underlying molecular mechanism of CF is mutations in the cystic fibrosis 

transmembrane conductance regulator (CFTR) gene located on chromosome 7 (4, 6). The CFTR 

molecule is a 1,480-amino-acid membrane-bound chloride channel (7). The structure and 

function of the channel in CF are compromised by over 1,800 types of mutations (2). The most 

prevalent mutation, delta F 508, is a deletion of phenylalanine at position 508 and is responsible 

for 70% of CF cases worldwide (6, 7). The CFTR glycoprotein regulates salt and water transport 

across epithelial cells (8, 9). Accumulation of the chloride ion inside the cells carrying defective 

CFTR protein results in dehydration of the epithelial lining fluid and overproduction of thick and 

sticky mucus (10). The condition, in part, provides a suitable environment for microbial growth, 

including bacteria, such as Staphylococcus aureus, Haemophilus influenzae, Burkholderia 

cepacia and Pseudomonas aeruginosa (11). P. aeruginosa, however, persists in the lungs of over 

80% of adults suffering from CF and causes recurrent infection and inflammation (1, 4, 12). 

P. aeruginosa is a ubiquitous aerobic Gram-negative bacterium that affects individuals 

with compromised immune system and has a high intrinsic resistance to most antibiotics (13, 

14). P. aeruginosa possesses a large array of virulence factors, such as flagellum, pili, elastase, 
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chitinase, lipase, and proteases (15-17). The flagellum and pili can bind to the overexpressed 

asialoganglioside (GM1) in CF epithelial cells and help bacteria to twitch, swarm, and swim 

toward nutritional signals, as well as in biofilm formation (18-21). Elastase, chitinase, lipase, and 

proteases can cause degradation and damage of elastin, collagen, and immunoglobulins, 

affecting the alveolar epithelial permeability (22). 

There are several molecular mechanisms by which bacteria, including P. aeruginosa, 

resist the action of macrolide, including target site modification by methylation and/or mutation 

that prevents the binding of antibiotics to their target molecules and inactivation of the drugs or 

efflux (23-25). 

Forming biofilm is one of the strategies for bacteria to evade chemotherapy, as well as 

the host immune response (26). Biofilm formation, however, starts with attachment of the 

microorganism to a surface, followed by a production of extracellular matrix composed of 

polysaccharides and proteins, which mediate bacterial attachment during the initial biofilm 

community formation process (27-29). Biofilm protects bacteria from phagocytosis, opsonization 

by antibodies, and their removal by the ciliary action of tracheal epithelium (30, 31). 

Furthermore, the extracellular polymeric matrix delays diffusion of some antibiotics into the 

community (27, 32), and thus, bacteria might be expose to a drug concentration below the MIC, 

leading to increased mutation and resistance of the bacteria (33). P. aeruginosa in biofilms was 

found to be resistance to macrolide due to mutation in nfxB, which encodes the negative 

transcriptional regulator protein NfxB for the efflux pump, leading to increased expression of the 

efflux pump MexCD-OprJ and resistance of P. aeruginosa to macrolide (34). 

Pseudomonal lung infections are treated with antibiotics, such as aminoglycosides and 

macrolides, to reduce infection (35, 36). Macrolide antibiotics are usually characterized by a 
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large lactone ring within their structure (23). They are classified according to the number of 

lactone ring components: 14-membered (erythromycin and clarithromycin [CAM]), 15-

membered (azithromycin) (37), and 16-membered (roxithromycin) (17) groups. Macrolides are 

effective against most aerobic and anaerobic Gram-positive organisms and many Gram-negative 

bacteria (35, 37). They are used for treating respiratory tract and soft tissue infections (23, 38). 

Macrolides, such as clarithromycin, inhibit protein synthesis in bacteria by reversibly binding to 

the 50S ribosomal subunits (38). Clarithromycin is also known as the most effective 

chemotherapy against Mycobacterium avium complex (MAC) (39). The effective doses of oral 

clarithromycin are 200 to 500 mg/ml in adult humans; long exposure and high doses are required 

for treating chronic respiratory P. aeruginosa infection (40, 41). A group of investigators 

reported the beneficial effect of clarithromycin on treatment of biofilm-associated chronic 

respiratory P. aeruginosa infection in a murine model (26). Clarithromycin, however, is a known 

inhibitor of the hepatic microsomal cytochrome CYP3A4 (42), which has a significant role in 

metabolizing macrolides. The loss of CYP3A4 catalytic ability resulted in elevated serum drug 

levels and hepatotoxicity (43). Due to the high resistance of P. aeruginosa to most antimicrobial 

agents, including macrolides (35), and the appearance of toxicity of some drugs (44), there is a 

strong demand for novel drugs as well as new and safe delivery systems, such as liposomes, to 

combat P. aeruginosa-induced chronic infection (45). 

Liposomes are round vesicles consisting of one or more phospholipid bilayers 

surrounding an aqueous solution space (46, 47). Hydrophobic drugs, such as macrolides, can be 

entrapped in the lipid bilayers of the biocompatible and biodegradable liposomes, while 

hydrophilic drugs can be incorporated in to their aqueous compartments (36, 48, 49). Liposomes, 

as a drug carrier system, have the ability to improve antibiotic therapy by decreasing antibiotic 
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toxicity and enhancing bactericidal efficacy through fusion with the bacterial membrane (48, 50-

52). Liposomes have the ability to protect their loads from the host cellular elements and the 

action of bacterial enzymes (50, 53-55). Another study indicated that the liposomal formulation 

was effective in enhancing polymyxin B antimicrobial activity against Gram-negative bacteria 

compared to the free drugs (56). A previous in vivo study performed in a rat model demonstrated 

that liposomal tobramycin administered intratracheally improved the pharmacokinetic 

parameters and significantly reduced P. aeruginosa bacteria after multiple treatments (57). 

Another study showed that liposome encapsulated clarithromycin significantly increased the 

uptake of human macrophages to the encapsulated agent and reduced Mycobacterium avium 

complex infection compared to the free drug (58). Furthermore, combination therapy using 

liposomal amikacin in the initial phase of chemotherapy in M. avium infection enhanced the 

efficacy of clarithromycin/ethambutol regimen (59). 

The aim of this work was to investigate whether the lack or the type of surface charges in 

liposomal formulations containing clarithromycin; negatively charged liposomal clarithromycin 

(NEG-Lipo-CAM), positively charged liposomal clarithromycin (POS-Lipo-CAM), and 

uncharged liposomal clarithromycin (NEU-Lipo-CAM); would enhance clarithromycin 

antimicrobial activity. We also evaluated clarithromycin cell toxicity and measured the 

liposomal formulation size, stability, and antibacterial activity (MIC and minimum bactericidal 

concentrations [MBC]) in vitro. Furthermore, we investigated the formulations’ ability to prevent 

biofilm formation, virulence factors production, and motility of clarithromycin-resistant strains 

of P. aeruginosa. 
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2.2. Materials and methods 

2.2.1. Chemicals and media 

Clarithromycin was obtained from Sigma-Aldrich (Oakville, ON, Canada). 

Dipalmitoylphosphatidylcholine (DPPC) was purchased from Avanti Polar Lipids, Inc. 

(Alabaster, AL). Other chemicals such as didodecyldimethylammonium bromide (DDAB), 

dicetyl phosphate (DCP), Triton X-100, trypan blue, elastin-Congo red, chitin azure, and 

agarose, were also obtained from Sigma-Aldrich (Oakville, ON, Canada). For antibiotic 

susceptibility test, Mueller-Hinton agar, trypsin-EDTA, and Cell Titer Blue Cell Viability Assay 

kit were purchased from Fisher Scientific (Ottawa, ON, Canada).Tryptic soy agar, tryptic soy 

broth, Luria-Bertani (LB) broth, and Luria-Bertani agar were purchased from Becton Dickinson 

Microbiology Systems (Oakville, ON, Canada). Cationic-adjusted Mueller-Hinton broth for 

culturing microorganisms was purchased from BD (Franklin Lakes, NJ). Normal pooled plasma 

was purchased from Precision Biologic (Dartmouth, NS, Canada). ABt medium consisted of 27 

mM (NH4)2SO4, 30 mM Na2HPO4•2H2O, 20 mM KH2PO4, 47 mM NaCl, 1 mM MgCl2, 0.1 mM 

CaCl2, 0.01 mM FeCl2, 0.5% (wt/vol) glucose, 0.5% (wt/vol) Casamino Acids, and 0.00025% 

(wt/vol) thiamine. 

2.2.2. Microorganisms 

A laboratory strain of Bacillus subtilis (ATCC 6633) was used as an indicator organism 

for clarithromycin activity. Laboratory strains of P. aeruginosa (ATCC 10145 and ATCC 25619) 

and clinical isolates of P. aeruginosa (PA-M13639-1, PA-M13641-2, PA-1, PA-11, PA-12, PA-

13572, and PA-M13640) were purchased from PML Microbiologicals (Mississauga, ON, 

Canada) or obtained from the Clinical Microbiology Laboratory of Memorial Hospital (Sudbury, 
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ON, Canada). All strains were stored at -80°C in cationic-adjusted Mueller-Hinton broth 

supplemented with 10% glycerol. 

2.2.3. Liposomes preparation 

Clarithromycin was encapsulated into liposomes composed of different lipids (DPPC, 

DDAB, and DCP) and cholesterol (CHOL). The positively charged liposomal formulation was 

composed of DDAB, DPPC, and cholesterol in a ratio of 4:2:1; the negatively charged liposomal 

formulation was composed of DCP, DPPC, and cholesterol in a ratio of 4:2:1; and the uncharged 

liposomal formulation was composed of DPPC and cholesterol in ratio of 6:1. The liposomal 

formulations were prepared by the dehydration-rehydration method (60, 61). Briefly, the lipids 

were dissolved in the chloroform-methanol solution (2:1 [vol/vol]). A rotary evaporator 

(Rotavapor; BÜCHI Labortechnik AG) was used to evaporate the organic solvent (62). Once a 

thin, dry lipid layer was formed, clarithromycin solution (1 mg/ml) was added, followed by a 

series of sonication using the Sonic Dismembrator (FS20H; Fisher Scientific, Ottawa, Canada) 

(45). 

2.2.4. Microbiological assay 

After preparation of the liposomes, the mixture was centrifuged at 16,000 × g for 20 

min at 4°C. Triton X-100 was added to the pellet to release the drug, as previously reported (60, 

63). The concentrations of clarithromycin incorporated into liposomes were measured by agar 

diffusion assay (56). A B. subtilis laboratory strain (ATCC 6633) was used as the indicator 

organism for clarithromycin activity, as recommended by the Clinical and Laboratory 

Standards Institute (CLSI). B. subtilis was cultured overnight in cationic Mueller-Hinton broth, 

and a bacterial solution was prepared equivalent to a 0.5 McFarland standards (1.5 × l0
8
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CFU/ml) (60). The cells were added to an agar solution at 41°C and quickly poured into a 

sterile glass plate (440 mm × 340 mm) to form a thin layer of agar and bacteria. Wells 5 mm in 

diameter made with a well puncher were filled with 25 µl of samples or standard solutions (62), 

and  the plate was incubated for 18 h at 37°C (47). After the incubation period, inhibition zones 

in the plate were measured in triplicate. The averaged values for each triplicated sample were 

used to analyze the encapsulation efficiency of the liposomal formulations for clarithromycin. 

The sensitivity of the assay was 0.002 mg/liter. The quantifiable limit for clarithromycin 

was 0.002 mg/liter. At concentrations from 0.002 to 0.0125 mg/liter, the coefficients of 

variation ranged between 1 and 2%. Over the same concentrations, the intraday coefficients of 

variation ranged between 2 and 3%. For 10 samples of spiked clarithromycin, the standard 

curve linearity extended over the range of 0.002 to 0.0125 mg/liter and gave a correlation 

coefficient greater than 0.99. The concentration measurements are the means of at least three 

independent experiments, with each experiment measured in triplicate.. 

2.2.5. Encapsulation efficiency determination 

The encapsulation efficiency of liposomal clarithromycin was determined as the 

percentage of clarithromycin entrapped in the liposomes relative to the initial total amount of 

the drug in solution (54). The concentration of the entrapped clarithromycin was determined by 

the microbiological assay outlined above (62). 

2.2.6. Size determination and polydispersity index 

The polydispersity index (PI) and the mean diameter of liposomes were determined by 

using a Submicron Particle Sizer Model 270 (Nicomp, Santa Barbara, CA) (47, 54, 64). 
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2.2.7. Stability of liposomal clarithromycin 

The stability of liposomal clarithromycin was assessed in phosphate-buffered saline 

(PBS) at 4°C and 37°C. The stability of liposomal clarithromycin was determined as the 

percentage of retention of the initial encapsulated drug after a period of time under different 

conditions (54, 65). Briefly, liposomal clarithromycin was suspended in PBS and incubated in 

water bath shaker with mild agitation at 100 rpm (Julabo SW22 Incubator Shaker; Labortechnik, 

Seelbach, Germany). After incubation times of 0.25, 0.5, 1, 3, 6, 12, 24, and 48 h (64), samples 

were centrifuged at 18,300 × g for 15 min at 4°C to remove the released drugs (52, 66). The 

supernatants of the liposomal samples were collected, and 25 µl was transferred into holes on a 

plate containing agar prepared with an appropriate bacterial culture (B. subtilis ATCC 6633). 

The plates were then incubated at 37°C for 18 h, and the inhibition zones were measured. Free-

clarithromycin concentrations were also determined by agar diffusion assay (60). 

2.2.8. MICs and MBCs 

A broth dilution method was used to determine the MICs of liposomal clarithromycin. 

Overnight cultures of the clinical strains of P. aeruginosa were diluted in cationic Mueller-

Hinton broth to achieve 0.5 McFarland standards (56). The bacterial cell population were then 

exposed to several dilutions of liposomal or free clarithromycin ranging from 0.031-256 mg/liter 

and thoroughly mixed with Mueller-Hinton agar. The plates were incubated for 18 h at 37°C 

(45). For MBC assays, bacterial suspensions were mixed with subinhibitory concentrations, 

MICs, and two times the MICs of free CAM or Lipo-CAM, and the plates were incubated for 24 

h at 37°C (63). Broth medium alone and free clarithromycin bacterial cultures were used as 

negative and positive controls, respectively. 
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2.2.9. Bactericidal activity of liposomal clarithromycin against P. 

aeruginosa in biofilm (MBEC) 

In order to assess the minimum biofilm eradication concentration (MBEC), P. aeruginosa 

strain PA-13572 was allowed to form a biofilm in a Calgary biofilm plates (Innovotech, 

Edmonton, AB, Canada) as previously reported (67). Briefly, strain PA-13572 (1.5 × 10
6
 

CFU/ml; 24 ml) was added to the Calgary biofilm device plate. The plates were placed in an 

incubator shaker rotating at 50 rpm (Innova 4000 Incubator Shaker; New Brunswick scientific, 

NJ) at 37°C for 4 days, ensuring equal distribution of medium in the troughs and adhesion of 

PA-13572 to the pegs (fresh broth was added every 24 h to remove the nonadherent bacteria). 

After 5 days, the biofilm on the pegs were washed twice with medium, and a sterile forceps were 

used to transfer the biofilm pegs into microcentrifuge tubes containing 1 ml of PBS. The pegs 

were then sonicated for 1 min to detach and disperse bacteria, followed by vortexing for 2 min. 

the bacterial suspension was subjected to 10-fold serial dilution for a bacterial count to serve as 

the control. Aliquots of 100 µl of each dilution were plated on Mueller-Hinton agar and incubate 

for 24 h at 37°C. The rest of the pegs were then submerged in a 96-well plate containing 200 µl 

of different dilutions of free CAM, NEG-Lipo-CAM, POS-Lipo-CAM, and NEU-Lipo-CAM. 

The plate was incubated at 37°C for 24 h. The peg lid was washed with medium twice, and the 

pegs were removed and transferred to microcentrifuge tubes, sonicated, and serially diluted (10-

fold) for bacterial counts (CFU) after 24 h of incubation at 37
o
C. 

2.2.10. Virulence factors assays 

To test which concentrations below the MIC are subinhibitory, free or liposomal 

formulations (NEG-Lipo-CAM, NEU-Lipo-CAM and POS-Lipo-CAM) at concentration of 1/2 



49 
 

to 1/8 the MIC were introduced into P. aeruginosa PA-13572. The bacterial growth was 

repetitively monitored (optical density at 600 nm [OD600]) up to 8 h. For experiments involving 

lipase, chitinase, elastase, and protease assays, P. aeruginosa PA-13572 was cultured in ABt 

medium for 18 h at 37°C (68), and then the cell density of bacteria in a 100-ml flask was 

adjusted to match 0.5 McFarland standard (OD600=0.132) following incubation for 1 h at 37°C. 

When the bacterial cell density doubled to an OD600 of 0.26 (67), the cells were exposed to equal 

volumes of free and liposomal formulations at 1/8 the MIC. After 24 h of incubation, bacterial 

concentrations were measured at OD600 and the suspension was centrifuged for 15 min (16,000 × 

g at 4°C) and filtered sterilized (0.22 µm) for biochemical assays. 

2.2.10.1. Lipase assay 

The reaction mixture of the lipase assay consisted of 0.6 ml of 10% Tween 20 in Tris 

buffer; 0.1 ml of 1 M CaCl2, 0.6 ml of filtered supernatant, and 1.6 ml of double-distilled water; 

we used medium alone (blank) as a control (68, 69). The reaction mixtures were incubated at 

37°C for 24 h (69) with agitation at 200 rpm (Innova 4000 Incubator Shaker; New Brunswick 

scientific, NJ). Lipase uses Tween 20 as a substrate and converts it into fatty acid and alcohol. 

The resulting fatty acid bound to the calcium and formed an insoluble complex the absorbance of 

which was measured in a spectrophotometer at 400 nm (67, 70). Lipase experiments were done 

three times in triplicates. 

2.2.10.2. Chitinase assay 

Insoluble chitin azure (5 mg) was properly mixed with 1 ml of filtered suspended 

supernatant or medium alone (blank) in 1 ml of PBS. The reaction mixture was incubated for 24 

h at 37°C. Chitinase breaks chitin azure and produces a blue compound whose absorbance was 
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determined at 290 nm. Experiments were performed three times with two replicates. The 

resulting data were normalized by dividing the optical density by cell density (OD600) (68, 71). 

The experiment was repeated three times in triplicates. 

2.2.10.3. Elastase assay  

Insoluble elastin-Congo red (20 mg) (72) was mixed with 1 ml of PBS and 1 ml of 

filtered suspended supernatants or medium alone (blank) as a control (68). The mixture was 

incubated for 24 h at 37°C with agitation at 200 rpm (Innova 4000 Incubator Shaker; New 

Brunswick scientific, NJ). Elastase breakdown of insoluble elastin–Congo red produced a red 

compound whose absorbance was measured at OD459 (73) after centrifugation at 16,000 × g. All 

these experiments were repeated at least three times in triplicates (68). 

2.2.10.4. Protease assay  

Filtered supernatants or medium alone (100 µl) was transferred into the wells of a petri 

dish containing 2% agarose and 2% skim milk, following incubation for 48 h at 37°C. Zones of 

clearance due to the proteolytic activity of protease could be easily observed (74) and were 

measured in (mm) by using digital calipers (67, 68). All these experiments were repeated at least 

three times in triplicates. 

2.2.10.5. Effect of liposomal clarithromycin on P. aeruginosa motility 

The motility of P. aeruginosa was investigated by methods described previously (67). 

Briefly, P. aeruginosa PA-13572 grown overnight was diluted to 1.5 × 10
8
 CFU/ml, and 1 µl 

was inoculated onto a 3-mm depth of ABt-agarose plates containing a subinhibitory 

concentration of free or liposomal clarithromycin (1/8 the MIC). Inoculation into the bottom of 
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ABt medium with agarose (1% [wt/vol]) was used for twitching, and point inoculation onto the 

medium with agarose (0.3% [wt/vol]) was used for swimming and swarming (0.5% [wt/vol]). 

After 12 h of incubation at 37°C, swimming and swarming diameters were measured. For 

twitching at the agarose-petri dish interface, after 24 h of incubation at 37°C, the medium was 

gently removed and the petri dish was air dried. A 1% crystal violet solution was used to stain 

the Petri dish for 10 min. The Petri dish was rinsed, and the crystal violet-stained twitching 

pattern was measured. All experiments were performed in three independent experiments in 

triplicates. 

2.2.11. Determination of the liposomal clarithromycin cytotoxicity 

The viability of cells was determined by Cell Titer Blue assay. The cells were seeded into 

24- well plates (75) at a density of 5 × 10
5
 cells/ml and left to adhere to the surfaces of the wells 

overnight (50). The cell culture medium was then replenished with 500 µl of fresh media 

containing free clarithromycin or liposomal clarithromycin at four different concentrations (2×, 

1.5×, 1×, and 0.5× the MICs) and transferred into the 24-well plates. In this assay, different 

liposomal formulations of clarithromycin-positively charged liposomal clarithromycin (DPPC, 

DDAB, and CHOL), negatively charged liposomal clarithromycin (DPPC, DCP, and CHOL), 

and uncharged liposomal clarithromycin (DPPC and CHOL) were used. The concentrations of 

free or liposomal clarithromycin that had been introduced to the A549 cells were calculated 

based on the MIC value for each formulation, as stated above. All of these liposomal 

preparations were exposed to these concentrations for three different periods - 24, 48, and 72 h - 

following incubation in 5% CO2 at 37°C. The wells containing only cell culture medium without 

the drug were used as controls (50, 51). Once the required exposure period was over, they were 

removed, and the cells were washed once with PBS and subsequently with cell culture medium 
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to remove any residual Lipo-CAM or free-CAM. Then, the existing medium was replaced with 

500 µl of fresh media, and 100 µl of resazurin dye was added to each of 24-well plates. The cells 

were then incubated overnight in the dark at 37°C in 5% CO2 (50). The absorbance was 

measured at 570 nm, using 600 nm as a reference wavelength in a spectrophotometer. A blank 

well containing Cell Titer Blue reagent without cells was used as a reference (75). All 

experiments were performed in independently three experiments in triplicates. 

2.2.12. Data analysis 

The data are represented as mean ± standers errors of the mean (SEM) of three 

independent experiments. For comparisons of multiple groups, one-way analysis of variance 

(ANOVA) was performed using GraphPad Prism, followed by a post-t test. P values of <0.05, 

<0.01, and<0.001 were considered statistically significant. 

2.3. Results 

2.3.1. Encapsulation efficiency and size 

The percent encapsulation efficiency (EE %), size, and size distribution for liposomal 

formulations are summarized in Table 1. A PI<0.1 indicates a homogenous population. The 

results are given as means ± SEM of three separate experiments 
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Table 1: Encapsulation efficiencies, particle sizes, and polydispersity indexes of macrolide 

antibiotics. 

Liposomal 

Clarithromycin 

Size(nm)         

(mean ± SEM) 

PI              

(mean ± SEM) 

EE%                    

(mean ± SEM) 

Neutral DPPC- CHOL 221.60 ± 14.98 0.776 ± 0.004 15.96 ± 0.05 

Negative DPPC -DAP-CHOL 199.63 ± 6.87 0.786 ± 0.024 30.37 ± 0.10 

Positive DPPC-DDAB-CHOL 169.20 ± 16.75 0.518 ± 0.035 5.70 ± 0.01 

 

2.3.2. Stability of liposomal clarithromycin 

The stability of liposomal clarithromycin was evaluated in PBS at 4°C (storage 

temperature) and at 37°C (body temperature) for a study period of 48 h. It was evident from the 

data that the liposomal clarithromycin stored at 4°C was more stable than that incubated at 

37°C. The negatively charged liposomal clarithromycin retained 94.15% ± 0.34% of the drug at 

4°C, and its retention rate was 92.03% ± 0.78% at 37°C. Antibiotic retention of the positively 

charged liposomes followed the same pattern, though the retention rates were much lower 

(60.13% ± 0.92% at 4°C and 53.00% ± 0.95% at 37°C). The negatively charged liposomes 

formulation was significantly more stable than the positively charged formulation (P<0.001). 

The uncharged liposomal clarithromycin showed more stability at a lower temperature and 

retained more antibiotics than the liposomes at 37°C (95.07%± 0.005% versus 91.00% ± 

0.76%, respectively). There was no significant difference between the stabilities of negatively 
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charged liposomes and uncharged liposomes; however, the uncharged formulation was 

significantly more stable than the positively charged formulation (P<0.001). 

2.3.3. MICs and MBCs 

The MICs of liposomal clarithromycin against P. aeruginosa strains were significantly 

lower than those of free clarithromycin, as illustrated in Table 2. The experiments were done 

with two highly clarithromycin-resistant mucoid and nonmucoid clinical strains of P. 

aeruginosa. As demonstrated in Table 2, the MICs of free clarithromycin for all P. aeruginosa 

strains were ≥ 256 mg/liter compared to 64 mg/liter for negatively charged liposomal 

clarithromycin. The MICs for uncharged liposomal clarithromycin against P. aeruginosa 

strains were reduced from over 256 mg/liter for free clarithromycin to 32 mg/liter, whereas 

positively charged liposomal clarithromycin was effective at 8 mg/liter. The MIC against one 

of the resistant strains (PA-1) was 4 mg/liter for positively charged liposomal clarithromycin 

compared to 16 mg/liter for uncharged liposomal clarithromycin and 32 mg/liter for negatively 

charged liposomal clarithromycin. The difference between the MICs and MBCs of liposomal 

clarithromycin and free clarithromycin against P. aeruginosa strain was remarkable (2 to 4 

versus 256 to 512 mg/liter, respectively). The MBCs of free clarithromycin against P. 

aeruginosa strains were ≥ 512 mg/liter compared to 64 mg/liter for NEG-Lipo-CAM and NEU-

Lipo-CAM. The positively charged liposomal clarithromycin was bactericidal at 16 mg/liter 

(Table 2). 
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Table 2: Antimicrobial activities of free and liposomal clarithromycin on P. aeruginosa strains   

                                                   Antimicrobial activity (mg/liter) 

Bacterial 

strain 

Description
a
  NEU-Lipo-CAM  NEG-Lipo-CAM  POS- Lipo-CAM  F-CAM 

MIC MBC  MIC MBC  MIC MBC  MIC MBC 

ATCC 10145 Non Muc 32 > 64  64 > 64  8 16  >256 512 

ATCC 25619 Non Muc 32 64  64 > 64  8 16  256 512 

PA-M13639-1 Muc 32 64  64 64  8 > 64  256 512 

PA-M13641-2 Muc 32 > 64  64 > 64  8 16  256 512 

PA-1 Non Muc 16 > 64  32 32  4 8  >255 512 

PA-11 Non Muc 32 > 64  64 > 64  8 16  >256 512 

PA-12 Non Muc 32 > 64  64 > 64  8 16  >256 512 

PA-13572 Non Muc 32 64  64 64  8 16  >256 512 

PA-M13640 Non Muc 32 64  64 64  8 16  256 512 

a
 Non Muc, non mucoid ; Muc, mucoid.  
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2.3.4. Liposomal clarithromycin bactericidal activity on P.aeruginosa 

biofilm 

POS-Lipo-CAM and NEG-Lipo-CAM completely eradicated P. aeruginosa 13572 in the 

biofilm, whereas, NEU-Lipo-CAM and free CAM reduced bacterial numbers in biofilm 

communities by 5 and 3 log units (CFU/ml), respectively, at 128 mg/liter (Fig. 1). POS-Lipo-

CAM still proved to have a potent effect on bacteria in biofilms: it was able to completely 

eliminate the bacteria within the biofilm at a lower concentration of 64 mg/liter. The other 

formulation could only decrease P. aeruginosa at 64 mg/liter by 3 log units for free and 

negatively charged liposomes and 4 log units for uncharged liposomes compared to the control. 

It was also observed that the liposomal formulations and free clarithromycin at 32 mg/liter 

reduced bacterial counts by 2 log units for free CAM and NEG-Lipo-CAM and 3 log units for 

POS-Lipo-CAM compared to the control. 
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Figure 1: Liposomal clarithromycin activity on P.aureginosa PA-13572 biofilm (MBEC assay). 

Free (F-CAM) or liposomal formulations were introduced to mature biofilm at concentrations of 

32 mg/liter (a), 64 mg/liter (b), and 128 mg/liter (c). Untreated biofilm acted as control. The data 
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represent three independent experiments in triplicate and are shown as means ± SEM. P values 

were considered significant compared with the control: ***,P<0.001. 

 

2.3.5. Effect of subinhibitory concentration of free and liposomal 

clarithromycin on growth of P. aeruginosa  

Both free and liposomal clarithromycin affected the growth of P. aeruginosa PA-13572 (Fig. 

2a and b). Subinhibitory concentrations (1/8 the MIC), however, did not inhibit bacterial growth 

(Fig. 2c). For this reason, all experiments involving virulence factors were performed using 

subinhibitory concentrations of 1/8 the MIC. 
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Figure 2: Effect of subinhibitory concentrations of liposomal clarithromycin formulations on 

growth of PA-13572 at 1/2 the MIC (a), 1/4 the MIC (b), and 1/8 the MIC (c). Experiments were 

tested three times in triplicate, with means shown (the error bars were deleted for clarity of the 
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graphs). Shown are control (black), negatively charged liposomal clarithromycin (pink), 

positively charged liposomal clarithromycin (green), uncharged liposomal clarithromycin (blue) 

and for free clarithromycin (purple). 

 

2.3.6. Effect of liposomal clarithromycin on bacterial virulence factors 

The levels of the lipase, chitinase, elastase, and protease in the free- or liposomal-

clarithromycin-treated PA-13572 cultures were measured at 1/8 the MIC. Positively charged 

liposomal clarithromycin attenuated lipase production significantly compared to the control 

(P<0.001), while uncharged liposomal CAM and negatively charged liposomal CAM were 

ineffective (Fig. 3a). Chitinase production in the supernatant was evaluated by quantifying the 

release or breakdown of chitin azure (see Materials and Methods). Liposomal CAM (uncharged 

and positively charged) reduced chitinase production. However, the negatively charged 

liposomal CAM reduced chitinase productions significantly (P<0.001) (Fig. 3b). All liposomal 

formulations reduced elastase and protease production significantly at 1/8 of the MIC (P<0.05) 

compared to the control (Fig. 3c and d, respectively). There were no significant differences in 

the attenuation of elastase and protease production between the free-clarithromycin and 

liposomal-clarithromycin formulations. 
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Figure 3: Effects of subinhibitory concentrations (1/8 the MIC) of free and liposomal 

clarithromycin on PA-13572 virulence factors production. (a) Lipase. (b) Chitinase. (c) Elastase. 

(d) Protease. The results represented the mean ± SEM of three independent experiments in 

triplicates. For lipase, chitinase, and elastase experiments, the results were normalized by 

dividing the OD by the OD600 (cell density). P values were considered significant compared with 

the control: ***, P<0.001; **, P<0.01; *, P<0.05. 
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2.3.7. Effect of liposomal clarithromycin on bacterial motility 

We examined bacterial motility, including twitching, swarming, and swimming, in the 

presence of subinhibitory concentrations of either free or liposomal clarithromycin with 

different surface charge (neutral, positive, and negative). Liposomal-loaded clarithromycin 

significantly reduced twitching of P.aeruginosa PA-13572 compared to free-clarithromycin 

and control groups (P<0.001) (Fig. 4a). However, positively charged liposomes exhibited more 

reduction in the twitching motility of P.aeruginosa (P<0.01 and P<0.001 compared to 

negatively charged and uncharged liposomal formulations, respectively). For swarming, 

liposomes (neutral, positive, and negative) were able to reduce swarming of P.aeruginosa PA-

13572 at the subinhibitory concentration compared to the free-clarithromycin and control 

groups (Fig. 4b). However, positively charged liposomes reduced swarming more significantly 

than uncharged and negatively charged liposomes (P<0.001). Liposomal formulations 

attenuated the swimming activity of P.aeruginosa compared to the free-clarithromycin and 

control groups (Fig. 4c). However, positively charged liposomes reduced swimming activity 

significantly (P<0.001) compared to neutral and negatively charged liposomes. 
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Figure 4: Effect of a subinhibitory concentration of liposomal clarithromycin on P. aeruginosa 

motility. Free or liposomal clarithromycin at 1/8 the MIC was added to agarose plates, and 

motility was examined. Twitching (1% agarose [wt/vol]) (a), swarming (0.5% agarose [wt/vol]) 

(b), and swimming (0.3% agarose [wt/vol]) (c) were measured with digital calipers. P values 

were considered significant compared with the control and between groups: ***, P < 0.001. 
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2.3.8. Toxicity of liposomal clarithromycin 

When lung cells were incubated for 24 h and exposed to 2× the MIC of treatments, cell 

viabilities were 100% for NEG-Lipo-CAM, 99% for NEU-Lipo-CAM, 1% for POS-Lipo-CAM, 

and 20% for free CAM. Following a 48-h period, the viabilities of lung cells exposed to 

treatment formulations at 2× the MIC were 97% for NEG-Lipo-CAM, 95% for NEU-Lipo-CAM, 

1% for POS-Lipo-CAM, and 5% for free CAM. After 72 h of incubation, at 2× MIC, the 

percentages of cell viability were 93% for NEG-Lipo-CAM, 98% for NEU-Lipo-CAM, 0% for 

POS-Lipo-CAM, and 1% for free CAM (Table 3). 
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Table 3: Cell viability of epithelial lung cells exposed to free or liposomal clarithromycin formulations 

 

Cell viability (%) 

Time 

(h) 

Free CAM  NEG-Lipo-CAM  NEU-Lipo-CAM  POS-Lipo-CAM 

1×MIC 2× MIC  1×MIC 2× MIC  1× MIC 2× MIC  1× MIC 2× MIC 

0 100 ± 0.00 100 ± 0.00  100 ± 0.00 100 ± 0.00  100 ± 00 100 ± 00  100 ± 0.00 100 ± 0.00 

24 98 ± 2.08 21 ±7.60b  99 ± 1.04 100 ± 0.63a,b  100 ± 0.40 99 ± 0.40a,b  0 ± 0.06a,b 1 ± 0.04a,b 

48 95 ± 6.14 5 ±0.41 b  97 ± 1.38 97 ± 1.79a,b  96 ± 2.15 95 ± 3.38a,b  0 ± 1.29a,b 1 ± 1.97a,b 

72 97 ±1.57 1 ±1.48 b  96 ± 3.67 93 ± 9.04a,b  93 ± 3.14 98 ± 3.26 a,b  0 ± 0.20a,b 0 ± 0.02a,b 

 

a
P values were considered significant compared with free clarithromycin (P<0.001). 

b
P values were considered significant for free or liposomal clarithromycin compared to the control (P<0.001
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2.4. Discussion 

In this study, we established that macrolide antibiotics can be efficiently encapsulated in 

liposomes composed of DPPC-cholesterol, DPPC-DDAB-cholesterol, or DPPC-DCP-

cholesterol. Our data show that the efficiency of encapsulation of clarithromycin by negatively 

charged liposomes was significantly higher than that of other formulations due to attractive 

interaction with positively charged clarithromycin (76). These results were in agreement with a 

study that showed that an electrostatic attraction between the negatively charged drug 

ciprofloxacin and positively charged lipids increases the percent encapsulation efficacy 

compared to a negatively charged drug (77). 

The size of a liposomal formulation is a determining factor in terms of intended 

anatomical target. The particle diameter of negatively charged liposomal clarithromycin was 

larger than that of the positively charged formulation. This is due to the inclusion of charge, 

which results in an increased space between the adjacent bilayers. The phenomenon can be 

explained by the attraction of the drug to negatively charged particulates and pushing the 

phospholipid head group apart (54, 77). 

An additional factor that must be considered in the development of an effective drug 

delivery system is the carrier stability. The liposome’s stability was found to be largely 

independent of temperature, although liposomal formulations were more stable at 4°C. In order 

to enhance the stability further, we chose to incorporate cholesterol in our formulations. 

Cholesterol reduces the bilayer permeability of the liposomal membrane, allowing greater drug 

retention at higher temperatures (64, 66). We found that liposomes composed of DPPC-CHOL 

and DCP-DPPC-CHOL retained more drug in PBS than liposomes composed of DDAB-DPPC-

CHOL at the end of a 48-h experimental period. This may be due to the electrostatic repulsion 
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that occurs between the drug and the positively charged liposomes, which results in a higher 

rate of drug release and a change in the phase transition temperature (77). This may also be 

explained by highlighting important factors that contribute to liposome stability, such as the 

formulation of the saturated neutral phospholipids with different acyl chain lengths and the 

transition temperature of the phospholipids (78). An earlier report from our laboratory 

confirmed the notion that the higher transition temperatures of liposomes are more stable due to 

an increase in the acyl chain length of constituent lipids; this may explain the better stability of 

liposomes in formulations containing DPPC (64). 

We have shown that the liposomal clarithromycin formulations enhance clarithromycin 

antimicrobial activity against a resistant clinical strain of P.aeruginosa. This is in agreement 

with previous reports indicating that liposomal formulations are highly effective against most 

strains of bacteria compared to free drug (52). The MICs and MBCs of liposomal 

clarithromycin were less than those of free clarithromycin. In most cases, the MIC of free 

clarithromycin was 256 mg/liter, which is consistent with a previous study (78). To our 

knowledge, our formulations are the first liposomal carriers that enhance clarithromycin 

antibacterial activity against antibiotic-resistant clinical strains of P. aeruginosa. Positively 

charged liposomal clarithromycin was highly effective against P. aeruginosa strains, reducing 

the MIC from a resistant level of 256 mg/liter to a sensitive level of 8 mg/liter. It is possible 

that electrostatic attraction and fusion occurring between positively charged liposomal 

clarithromycin and the cell membrane of P. aeruginosa enhances its activity in vitro. Similar 

results were obtained in previous studies ,which showed other formulation of positively 

charged liposomes (PC-DOPE-DOTAP [phosphatidylcholines- dioleoyl-glycero-

phophoethsnolamine - dioleyloxy trimethyl ammonium-propane] and PC-CHOL-DOTAP) 
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exhibited better antimicrobial efficiency against P. aeruginosa than other formulation of 

liposome (79). 

Clarithromycin in its free form is known to be a bactericidal enhancer in the treatment of 

P. aeruginosa biofilm (80, 81). A pervious study offered two explanations for the eradication of 

membranous structures of biofilms after treatment with clarithromycin: destruction of 

polysaccharide glycocalyx by clarithromycin and inhibition of de novo polysaccharides synthesis 

(80). In terms of the improved efficacy of our liposomal formulations, a continuous contact with 

the target and slow antibiotic release may accelerate biofilm penetration by the drug (50). 

Positively charged liposomal clarithromycin affects biofilm more than other formulations, as it 

completely eradicates the biofilm community at lower concentrations than the others. This might 

be due to the attraction between the opposite charges of the bacterial membrane and the 

liposomal formulation. This allows better penetration of the liposomes into the biofilm and 

release of antibiotics within the community (79). Different electrical charges affect biofilms 

differently: negatively charged liposomal clarithromycin eradicated biofilms completely at high 

concentration, while uncharged liposomal clarithromycin produced an acceptable reduction of 

the biofilm community. This is in agreement with our earlier findings on the efficacy of 

uncharged liposomal antibiotic formulations (65, 82). Thus, formulations containing a variety of 

liposomes are superior in biofilm eradication and can be utilized to overcome bacterial resistance 

to antibiotics. 

Previous studies demonstrated that macrolides at subinhibitory concentration inhibited 

bacterial motility, which contributes to biofilm formation, by affecting the gene expression 

responsible for producing flagella and preventing proper assembly of type IV pili on the surface 

of bacteria (30, 83), thereby causing a reduction of bacterial motility, including twitching, 
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swarming, and swimming. Here, we demonstrated that encapsulation of clarithromycin into 

liposomes resulted in improving the efficacy of clarithromycin in inhibiting P. aeruginosa 

motility. The enhanced activity of liposomal formulations might be attributed to fusion of 

liposomes to the bacterial cell wall (66) so that a high concentration of antibiotic can be 

delivered directly to the bacterial cytoplasm, allowing inhibition of flagellar and type IV pilus 

activities (30, 35). Furthermore, we have noted improved efficacy of positively charged 

liposomal formulation, which could be explained by the interaction of the positively charged 

liposomes surface with the negatively charged bacterial cell wall, which attracts a high 

concentration of liposomes-loaded clarithromycin to fuse with the bacterial cell membrane 

(79). 

A subinhibitory concentration of macrolides might reduce the production of virulence 

factors and host tissue damage (84, 85). A previous study demonstrated the effect of 

subinhibitory concentration on reducing virulence factor using azithromycin (86). Wozniak and 

Keyser showed that a sub-MIC level of clarithromycin inhibited the formation of the biofilm 

matrix and the production of proteases (30, 87). A sub-MIC level of clarithromycin, however, 

is less effective than azithromycin in reducing the production of elastase and lipase (88). 

Considering these reports, a combination of the antitwitching property of clarithromycin, which 

might be enhanced when encapsulated in novel liposomal formulations, with the bactericidal 

properties of other drugs may prove more effective in treating chronic bacterial infections. 

Exposure of A549 human lung cells to free clarithromycin reduced cell viability by 99% 

at 2× the MIC after 72 h of treatment. After the same period of treatment, negatively charged 

and uncharged liposomal clarithromycin at similar concentrations protected the cell against 

clarithromycin toxicity. These and other published data supports our hypotheses that liposomal 
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formulations protect host cells from toxic drugs. It was also shown in previous work that the 

liposomal formulation reduced the toxicity of antibiotics for cell line A549 for different 

formulations of liposome (DPPC: dimyristoyl glycerol-phosphglycerol [DMPG]) (50, 51, 53). 

In contrast, positively charged liposomal clarithromycin at a low concentration decreased the 

viability of A549 cells. This phenomenon has since been observed by others for positively 

charged liposomes containing DDAB lipid (89). It is possible that the positively charged lipid 

DDAB had an adverse effect on cell proliferation (51, 90, 91). 

In conclusion, these data indicate that negatively charged liposomal clarithromycin 

successfully reduced clarithromycin toxicity, greatly affected biofilm community members, and 

improved clarithromycin activity against highly resistance P. aeruginosa. Future experiments 

will assess the efficacy of these liposomal clarithromycin formulations in animal models.  
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Conclusion and future work 

Antibiotic therapy has prolonged the life span of CF patients by preventing and eradicating 

the lung infection and inflammation. Encapsulation of drugs with liposomes is also known to be 

associated with improved activity against resistant strains. We have developed new drug 

formulations with different charges of lipids in an attempt to enhance clarithromycin bactericidal 

activity. These charged liposomal clarithromycin formulations were tested to prove their efficacy 

including stability, MIC, MBC, MBEC, virulence factor production, motilities, and toxicity in 

comparison to free drug form. 

Our data indicate a steady drug release from liposomal clarithromycin formulations 

whereas positively liposomal clarithromycin failed to do so. The MICs and MBCs of 

clarithromycin liposomal formulations were less than that of the free drug. Negatively charged 

liposomal clarithromycin greatly reduced the biofilm community and enhanced clarithromycin 

activity against highly resistant P. aeruginosa strains. These formulations, therefore, have 

potential to overcome bacterial resistance to antibiotics. Liposomal clarithromycin would 

improve the efficacy of clarithromycin in inhibiting the motility at sub-inhibitory concentration. 

The liposomal formulations (negative and uncharged) protected the A549 lung epithelial cells 

against clarithromycin toxicity whereas positively charged liposomal clarithromycin decreased 

the viability of A549 cells. 

Future work in our laboratory would study the mechanism of liposome bacterium 

interactions by transmission electron microscopy (TEM), flow cytometry, lipid mixing assay, 

and fluorescence activated cell sorter (FACS). Interaction of free CAM and Lipo-CAM with 

bacterial membrane will also be investigated by using immunocytochemistry. Also, we will 

address the mechanism of action of virulence factor production by using specific inhibitors and 
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may be helpful for the development of novel therapies for P. aeruginosa caused pulmonary 

diseases. Quorum sensing (QS) and β-glycosidase assay will be examined after exposure to 

different charged liposomal clarithromycin. Finally, the efficacy of these formulations will be 

evaluated in animal models of chronic pulmonary infection with P. aeruginosa.  
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