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Abstract 

 

Line scan camera calibration for fabric imaging 
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Supervisor:  Bugao Xu 

 

Fabric defects inspection is a vital step for fabric quality assessment. Many 

vision-based automatic fabric defect detection methods have been proposed to detect 

fabric flaws efficiently and accurately. Because the inspection methods are vision-based, 

image quality is of great importance to the accuracy of detection result. To our 

knowledge, most of camera lenses have radial distortion. So our goal in this project is to 

remove the radial distortion and achieve undistorted images. 

Much research work has been done for 2-D image correction, but the study for 1-

D line scan camera image correction is rarely done, although line scan cameras are 

gaining more and wider applications due to the high resolution and efficiency on 1-D data 

processing. A novel line scan camera correction method is proposed in this project. We 

first propose a pattern object with mutually parallel lines and oblique lines to each pair of 

parallel ones. The purpose of the pattern design is based upon the fact that line scan 
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camera acquires image one line at a time and it’s difficult for one scan line to match the 

“0-D” marked points on pattern. We detect the intersection points between pattern lines 

and one scan line and calculate their position according to the pattern geometry. 

As calibrations for 2-D cameras have been greatly achieved, we propose a method 

to calibrate 1-D camera. A least-square method is applied to solve the pinhole projection 

equation and estimate the values of camera parameter matrix. Finally we refine the data 

with maximum-likelihood estimation and get the camera lens distortion coefficients. We 

re-project the data from the image coordinate to the world coordinate, using the obtained 

camera matrix and the re-projection error is 0.68 pixel. With the distortion coefficients 

ready, we correct captured images with an undistortion equation.  

We introduce a term of unit distance in the discussion part to better assess the 

proposed method. When testifying the undistortion results, we observe corrected image 

has almost identical unit distance with standard deviation of 0.29 pixels. Compared to the 

ideal distortion-free unit distance, the corrected image has only 0.09 pixel off the average, 

which proves the validity of the proposed method. 
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Chapter 1: Introduction 

1.1 MOTIVATION AND GOALS  

Quality is one of the most important elements to evaluate textile fabrics. It is 

desirable to produce high quality products to meet customers‟ requirements and gain 

competitive ability. Quality inspection of textile fabric is an important problem for fabric 

manufactures. In the manufacturing facility, typical product is 1 to 3 meters wide and is 

driven with speeds ranging from 20 to 200 m/min. Fabric defects are traditionally 

inspected manually, which is very time-consuming and expensive. Moreover, only about 

70% of the defected can be detected, even by the most highly trained inspectors during 

their most efficient time period, and the detected defect rate will decrease when the 

inspectors work with fatigue. The rate drops as the fabric is moving faster than 30 m/min. 

To enhance the accuracy of fabric defects detection, and save human from this 

tedious and stressful work, automated computer vision based fabric inspection has been 

proposed [1] [2], and has already received substantial progress. Almost all computer 

vision based inspection solutions rely on digital cameras to acquire images of the 

inspected fabrics. To accommodate the moving nature of the fabric at the production line, 

line scan cameras are often used. This is because line scan camera only captures one line 

at a time. Images of the fabrics are created as the scanned lines accumulate while the 

inspected fabric moves across the camera‟s view. But in order to get accurate defects 

detection results, we should first make sure the source images are in good condition, i.e., 

images truthfully reflect the geometrical features or color tones of fabric. That is why 

most of researchers would like to apply camera calibration before image capturing, to 

obtain relatively accurate images. Currently, there are multiple papers dedicate to area-

based camera calibration, but few researches shed lights on line-scan camera calibration. 
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In this study, we will focus on the line-scan camera calibration method, and try to found 

its application in fabric imaging.  

 

1.2 METHODS FOR FABRIC DEFECTS INSPECTION 

Generally, the methods for fabric defects inspection can be divided into two 

categories. One is subjective; the other is objective. Defects exist in many types, and the 

chances of them to be distinguished by an inspector vary depending on the fabric 

weaving pattern. In the case of human vision inspection the types of defects that are 

mostly likely to be detected are „Burl Mark‟, „Drawbacks‟, „Dropped Pick‟, „End Out‟, 

„Mixed Filling‟, „Open Reed‟, „Smash‟, „Soiled Filling‟, „Thin Place‟, „Broken Color 

Pattern‟, „Drop Stitches‟, „Hole‟, „Missing Yarn‟, „Mixed Yarn‟, „Press-off‟, and 

„Runner‟. Table 1.1 shows a list of images illustrating the various fabric defects. But as 

we have found, visual evaluation manually can be subjective and inefficient, and thus the 

result from human vision is not reliable. So a lot of researchers started to put their efforts 

on objective evaluation system design. Therefore automatic and computer vision based 

detection methods have emerged and developed very quickly. Basically, the development 

of automatic fabric defects detection has gone through three steps, from the color image 

processing technique, to digital images processing, and to the recent artificial neural 

network (ANN) approach. 
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Table 1.1 Major types of fabric defects 

Flawless fabric Fabric defect 
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Table 1.1, cont. 
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Table 1.1, cont. 
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For the color image processing level, Takato et al developed a gray-level 

matching system to inspect fabric defects [1]. But in this paper, to implement the 

inspection, all image conditions should remain constant, which is hard to achieve. Also 

the threashold setting was subjective. These problems were solved by Zhang et al.[2] in 
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1995, when he and his coworkers introduced gray-level statistical and morphological 

method to do the fabric defect evaluation and classification. Convolution mask method 

was introduced by Lanes et al. in [3]. Depending on the intensity contrast in the boundary 

of regular fabric and defects, like spots, knot, and slab, this method used multiple masks 

to identify the defects. But this approach cannot cover most of the commonly found 

defects like drawbacks, or missing yarn, for there is not obvious boundary or contrast 

around these kinds of defects. Northon et al.[4] proposed adaptive threshold and binary 

filtering method to achieve a high contrast between foreground defects and background 

fabric. But there is still detectable influence of noise which hinders the separation of 

defects from fabric.  

Although apparent progression has been made in defects inspection through color 

image processing method, system with this approach is not redundant and the evaluation 

result is so sensitive to ambient light that one fabric set under different lumen can get 

totally different defects. This limitation makes the space for the development of digital 

image processing when researcher began to use frequency-domain theory to solve 

temporal-domain problems. Methods in this field include cosine transform[5], Fourier 

Transform[6][7][8][9] , Fast Fourier Transform[10], and wavelet transform[11][12]. 

Fourier transform has been used by Sari-Saraf et al in [9] to detect fabric defects. This 

approach used the idea of concentric ring filter in optical processing[13], and rings were 

concentric with different radii and were used to inspect filling and warp densities. This 

approach was achieved by performing a one-dimensional signature diagram in the two-

dimensional spectrum through integrating the points within each ring in the two-

dimensional spectrum. The main advantage was that this approach can effectively get rid 

of the influence of background noise and obtain clearer defect results because of the 
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dimensional changes in the fabric structure. The only limitation for this approach was the 

high-order (2 dimensions) of complexity, which meant longer computational time. A 

vision-based on-loom fabric inspection system was introduced in [12], using wavelet 

transform, image fusion and the correlation dimension theory to implement the defect 

segmentation algorithm, which was based on the idea that local defects in the input 

images would disrupt the global homogeneity of the background fabric texture. After 

repeated testing on 3700 images, the inspection system got an overall 89% efficacy with 

localization accuracy in 0.2 in (the minimum defect size). The shortcoming for this 

inspection system was the cost because even small textile plants need over 20 looms. 

Chan and his colleagues [14] used Fourier Transformation to get the frequency spectrum 

of a fabric and created simulated models to understand the relationship of fabric structure 

between spatial-domain and frequency-domain. This approach first classified all 

commonly found defects broadly into four categories: double yarn; missing yarn; webs or 

broken fabric and yarn density variation and use the central spatial frequency spectrums 

to analysis the fabric structure and finally extract seven parameters to describe the above 

four classes of defects. But for the fabric defects are so numerous and complex, simply 

four classes cannot cover all defects we need to recognize and identify in the practical 

industrial usage. 

Artificial Neural Network (ANN) approach is a newly developed approach in 

conjunction with image processing to recognize and classify fabric defects and has been 

proved as a powerful tool when dealing with the recognition and classification 

[15][16][17]. Lippmann initiated the theory of neural network in [18], and described that 

ANNs were made up with multiple interconnected neurons that performs either in parallel 

or connected with weights. They were developed for assessing set marks and parameter 
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selection. Rajasekaran [19] employed an ANN method combined with image processing 

technology to identify fabric defects. A direct approach using optical acquisition and an 

ANN was introduced by Borzone et al. [20] to analyze the acquired fabric data. Good 

classification rate demonstrated the relevant information on the textile sample. Also the 

system was very fast since there is no complicated computation in algorithm 

implementation, thus was suitable for the real-time inspection of fabric defects with a 

high detection rate. Shady et al. [21] reported an ANN algorithm based method to detect 

and classify knitted fabric defects. They choose six different knitting defects for study 

and employed both statistical procedure and Fourier Transform as approaches for feature 

extraction. After 30 samples testing, they got the conclusion that their method is 

successful to classify most of the defects, also Fourier Transform feature extraction 

method show more success compared to the statistical approach when detecting the 

defect-free fabrics. The Back-propagation Neural Network (BPNN) is a hierarchical feed-

forward ANN composed with three or more fully interconnected layers of neurons. Since 

Tsai and Hu [22] first used the BPNN to classify a fabric image‟s Fourier spectrum with 

nine parameters extracted, the BPNN has been the most widely used ANN architecture 

[23]. Chen et al. [24] used a BP neural network with power spectra to classify fabrics. 

Shiau et al. [25] reported a method to classify web defects by color image processing 

using BP neural network. Recently, an approach combining BP Neural Network and 

Wavelet digital image processing method to detect textile flaws was introduced in [26] by 

Yin and his members. They narrowed textile defects to two types: one is oil stain; the 

other is hole. Wavelet is used to separate the background of the pattern of fabric and 

leave the fabric defects to sub-images. BP neural network training and recognition 

procedure is implemented to identify types of flaws. They reported an effective detection 
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results and accurate recognition rate for fabric defects after 32 samples testing. The 

hybrid approach of putting wavelet transform and BP neural network together to fix the 

problem to defects detection was also employed by Wong and his colleagues [27], but 

they focus stitching defect, which is rarely researched, compared to the other more 

commonly found textile defects. After sample testing, their classification results 

demonstrated that the proposed method can effectively identify five classes of stitching 

defects with high recognition and detection accuracy.  

 

1.3 IMAGE UNDISTORTION 

After we go through the current search papers on fabric defects inspection, we 

found that almost all the automatic and objective method is computer vision based. In 

that case, the quality of source fabric images captured from camera is of great importance 

to determine the subsequent defects detection accuracy. A poor quality image could be 

ghost, being blurred or unclear enough. As to the poor images like this, the reason is that 

the camera wasn‟t adjusted to a suitable focal length that makes the view of objects not 

clear, and this problem can solved when we get through multiple trainings to adjust the 

focal length to the best we can see. But there is another type poor images not caused by 

manually inexperienced, but by the imperfection of camera lens which inevitably happens 

all the time, called lens distortion. It occurs when a lens produces curved lines where 

straight lines should take place [28]. Several types of lens distortion exist; however, 

radial distortion is usually the most severe part of the total lens distortion. Radial 

distortion actually implies a nonlinear radius mapping from the object to the image: 

Pincushion distortion is actually simply an exaggerated radius mapping for large radii in 

comparison with small radii. Conversely, barrel distortion is actually a diminished radius 
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mapping for large radii in comparison with small radii. So the value of radius directly 

determines the distortion severity of the image projection from world objects.  

Source images obtained from lens distortion will greatly hinder the accuracy of 

defects detection, especially when we need to measure the size of defects, and compute 

the overall defect rates of fabric samples. To fix this problem and get good quality source 

image, image undistortion is only way to help us out.  

There have been a lot of effects focused in this area. From the initially 

photogrammetric method for distortion modeling and removal [29] to the camera 

calibration based method [30] [31]. In [31], Weng and his colleagues obtained the 

equation to describe radial distortion, and this equation is simplified by Tsai in his paper 

[30] for more practical purposes. But both of the above methods need distortion 

coefficients to correct distorted image, which should be computed from camera 

calibration.  

 

1.4 CAMERA CALIBRATION 

Camera calibration is a necessary step to get the relationship between the 3D 

object coordinates and the image coordinates. This transformation is determined in 

camera calibration procedure by obtaining the unknown parameters of the camera model, 

including internal calibration parameters and external parameters. The internal 

parameters include the basic intrinsic camera matrix that affects how sensor samples the 

scene; and the external parameters indicate the position and orientation of the sensor 

related to the world coordinate system. According to the dimensional difference of image 

sensor in camera, line-scan and area-scan, we have different approaches to deal with 

these two types of cameras. 
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1.4.1 Area-based camera calibration 

There have been tremendous works on the area-based camera calibration. Many 

different camera calibration approaches have been reported, such as traditional 

photogrammetric method [32], computer vision [33][34][35][36][30][37], and self-

calibration [38][39]. 

Photogrammetric calibration is first developed for aerial imaging and surveying. 

In [40], Brown focused on the close-range photogrammetry to take into account of the 

variation of lens distortion. The analytical plumb line method is used in this approach to 

confirm the validity of the theory accounting for variation of distortion with object 

distance. This approach was reported to excel in operational convenience and be able to 

achieve relatively accurate results. But recently photographic cameras have been replaced 

by video cameras.  

As to computer vision approach, according to the difference of dimensions of 

calibration objects, the technique can be divided into two categories: 3D object 

calibration and 2D planar object calibration. 

For 3D object calibration, it‟s conducted by observing a calibration object with 

précised 3-D shape and position, usually including two or three planes orthogonal to each 

other. A technique for three-dimensional camera calibration was reported by Tsai[30] for 

machine vision metrology using off-the-shelf TV cameras and lenses. He used two-stage 

technique to achieve efficient computation of camera external parameters and focal 

length, radial lens distortion, and image scanning parameters. His system was reported to 

be efficient, accurate, and straightforward to implement in real environment and test 



12 

 

results were described with both accuracy and speed reported. But this approach needs 

highly accurate calibration apparatus and complicated setup[41]. 

For 2D planar object calibration, techniques in this category don‟t need elaborate 

setup as[30] does and it‟s required to observe the planar objects shown in multiple 

different directions. Zhang made apparent contribution to this field in his paper [37], he 

proposed a flexible new technique to easily calibrate a camera. It only required the 

camera to observe a planar pattern shown at a few (at least two) different orientations. 

The planar pattern can be printed on a laser printer with regular marked points that can be 

measured with great accuracy. It was not necessary to know the plane motion. The 

proposed method included a closed-form solution, using a nonlinear refinement based on 

the maximum likelihood criterion. Test results from both computer simulation and real 

data was reported very well. Compared with classical techniques using expensive 

equipment, his approach is more flexible and easier to be implemented. 

 

1.4.2 Line-scan camera calibration 

Although there have been a lot of publications talking about area-based camera 

calibration and the research on this field is relatively mature, however, line-scan camera 

calibration is rarely talked about [42][43]. Compared to the 2-D matrix cameras, 1-D 

cameras are more efficient and accurate of the measurement, and 1-D data is easier and 

faster to process than 2-D images. Right now the application of line-scan cameras for 

measurement in various areas is increasing, and in our fabric defects inspection, we used 

line-scan cameras to capture fabric images.  

From the scant information available on the subject of linear camera calibration, 

the approach proposed by Horaud et al [44] is helpful for the subsequent research in this 
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field. They proposed a multiline calibration method to calculate the external parameters. 

The calibration pattern had three mutually parallel lines with the fourth line crossing the 

three lines and making an angle with the direction of three. With this pattern design, they 

can get the geometric position of the camera with respect to pattern and thus the camera‟s 

external parameters matrix. The paper reported by Luna et al [43] proposed a method 

based the multiple line calibration technique [44], using a calibration pattern with two 

parallel planes marked by 4 parallel lines for each. With pattern geometry, they can 

describe the lines on pattern. Using the straight line that is captured by line-scan camera 

and the lines on pattern, they obtained the relationship of the 3-D world coordinate and 

the image coordinate, and got the internal and external parameters of the line scan camera 

through standard calibration procedure based on recursive least squares method. After 

repeated calibration process for 500 times, they reported the obtained median residual 

error was 0.28 pixel. But his approach ignored the optical distortion because they fixed 

camera at long focal length, at approximately 100mm. However in real application, local 

length should be flexible and adjustable, in this case, optical distortion could be apparent 

and cannot be ignored. 

 

1.5 STRUCTURES OF THE THESIS 

This thesis will cover four parts, Chapter 2 to Chapter 5, to report our contribution 

to the research of line-scan camera calibration and image undistortion technique in detail 

for fabric defects inspection system. 

Chapter 2 will discuss the “Framework of image capturing system by line-scan 

camera”. This chapter will show us the system setup, the linear camera scan principle. 
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This part will give the readers basic idea of linear scanning system and its difference 

from commonly used 2-D scan.  

Chapter 3 is “Calibration of line-scan camera”. In this part, a novel linear camera 

calibration algorithm developed by ourselves will be discussed in detail. It consists five 

steps to solve the calibration problem, object pattern design, geometric formulation, 

feature extraction on image coordinate, 1-D to 2-D data frame establishment, functional 

minimization and camera matrix computation. With this method, we can get all camera 

parameters, including external parameters, internal parameter, and optical distortion 

coefficients, with the re-projection error less than 0.68 pixels. 

Chapter 4 will discuss “Image undistortion and correction”. A calibration-based 

method is developed for fabric image undistortion. We apply the optical distortion 

coefficients, which are obtained in the last chapter, to create lens distortion formula, and 

then derive the correction formula to calculate undistortion coefficients. After the 

undistortion coefficients are obtained, distorted images can be corrected with undistortion 

matrix. The last section reports the image correction results after a series of validation 

tests, we propose the term of UD to reliably evaluate the accuracy of our correction 

method. 

Chapter 5 gives conclusion for this study. 
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Chapter 2: Framework of Image Capturing System by Line-scan 

Camera 

Application of line-scan camera for measurement is becoming increasingly 

important because of the accuracy and efficiency of the linear data captured from line-

scan camera. This chapter will give us a brief review of the basic principle of line-scan 

system, and then the setup of the fabric image capturing system will be presented in 

detail.  

 

2.1 PRINCIPLE OF LINEAR SCAN SYSTEM 

Line-scan camera is an image capturing device whose CCD sensor is formed by a 

single line of photosensitive elements (pixel) (Figure 2.1(b)) rather than rectangular CCD 

sensor which is used by area-based 2-D cameras. (Figure 2.1(a)) Although the sensor is 

only one pixel high but can be very wide to three or four thousand pixels. Line-scan 

camera acquires images line by line, and by moving objects or camera at certain speed, 

we can obtain a complete 2-D image at the end. This can very useful when inspecting 

items such as newspaper, or banknotes being printed when passing under the camera very 

quickly. The image built up can subsequently be analyzed for flaws or defects on the 

computer. 
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One single scanning line is a 1-D mapping of the gray level related to every single 

point of the captured line and every sudden change in a single point of objects would 

cause variation, either color or other aspect, of the acquire image. Therefore, line scan 

camera has better accuracy in measurement than an area sensor. Also linear sensors 

normally have high resolution than that of 2-D camera. 

 

2.2 SYSTEM SETUP 

This section describes the hardware design for the study. The following Figure 2.2 

displays the line scan camera we use. The high-resolution DALSA line scan camera has 

2048 pixels on the CCD. A Nikon F-mount lens with effective focal length of 28 mm is 

used. 
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Figure 2.1 View of 2-D camera and 1-D camera. 

(a) 2-D area scan camera. (b) 1-D line scan camera. 
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Figure 2.2 Line scan camera 

Figure 2.3 illustrates the configuration of our system. The object we put in front 

of the camera is the pattern we proposed with around 115 pattern lines (including vertical 

parallel and oblique ones).  
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Figure 2.3 System configuration 

The camera is controlled by a computer via Camera Link interface, and captured 

images can be transferred directly to the computer memory, which makes the system 

more efficient and practical. A desktop computer with Intel Core 2 Quad 2.4 GHz CPU 

and 4GB RAM is used to control the cameras and receive images from the camera. 
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Chapter 3: Calibration of Line Scan Camera 

3.1 INTRODUCTION 

Using - has a few advantages over area based 2-D camera, because of its high 

resolution and efficiency when dealing with 1-D data. And Line scan camera has been 

increasingly used in automotive industries [45] and bioengineering [46]. Calibration is an 

important step before we use the camera for research purpose. But as to our knowledge, 

there is scant information talking about line scan camera calibration and even though 

some publications dealing with this problem got some result, their results were 

conditionally obtained, based upon ignoring a few parameters which are important and 

can be ignored in our project. On the contrary, calibration methods for 2-D camera have 

been studied intensively, from the traditional 3-D object calibration to the relatively 

flexible planar objects calibration. In this chapter, we will introduce a novel method of 

applying 2-D calibration method to fix the 1-D camera calibration problem. The 

following are the major steps to solve the calibration problem in our project. 

 

3.2 CALIBRATION 

3.2.1 Pattern design 

In the calibration process of the area 2-D camera, the important problem to be 

fixed is the determination of coordinate projection from world coordinate to image plane 

with the significant points of the pattern. These significant points could be corners [37], 

centers of circles [36], or intersection between lines [44]. In the case of line scan camera, 

since the scan line is invisible, it is very difficult to match the scan line with the specific 
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points of the pattern. In our project, we propose a calibration pattern and a method to 

obtain these points with geometric principle of the pattern and scan line.  

The pattern we used is a planar pattern with 58 straight lines and 57 oblique lines 

connecting each pair of parallel straight lines. To explain how to map the image 

coordinate to world coordinate, here we only show 7 straight lines and 6 oblique ones in 

Figure 3.1, where 𝐿0 ,  𝐿2 ,  𝐿4,  𝐿6,  𝐿8,  𝐿10 , 𝐿12  and 𝑌 axis are mutually parallel and 

𝐿1, 𝐿3, 𝐿5 , 𝐿7 , 𝐿9, and 𝐿11  make an angle to 𝑌 axis.  

Figure 3.2 is the corresponding image segment to show what the scan line 

“viewed” from the pattern. Since the camera is stationary when we capture the image 

from pattern, only one line has information and other lines are just the copy of the first 

line data. So each column of the image represents one point of scan line on the pattern.  
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P2 P4P3 P5 P6 P7 P8 P9 P10 P11 P12
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d d d d d
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Figure 3.1 Planar pattern for camera calibration 
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Figure 3.2 Pattern image segment 

 

3.2.2 Geometric formation 

Due to the basic structure of the camera, the view line cannot be seen directly, but 

it can be detected using the geometric information of the pattern we propose. First we 

assume the view line asVL, (see Figure 3.1), and VL makes cross points with pattern lines 

when it goes by. We label the cross points as 𝑃0, 𝑃1, 𝑃2, … , 𝑃11 , and 𝑃12 , and the segments 

between the two neighboring cross points as 𝑃0𝑃1,  𝑃1𝑃2, … , 𝑃10𝑃11 , 𝑃11𝑃12 . As to the 

image part (see Figure 3.2), as we mentioned in the last section, since each column of 

image pixels represents only one point of scan line, the black lines in the captured image 

are the accumulation of intersection points when the scan line meets with the black 

pattern lines. Thus, we can consider one dark line as one cross point. These cross points 

can be detected by edge recognition method, which will be discussed in detail in the next 

section. Here we just assume the extracted image cross points named 

as  𝑉0, 𝑉1, 𝑉2, … , 𝑉11 , 𝑉12 , which is counterpart to the pattern cross points in world 

coordinate. Correspondently, the distance between the neighboring cross points in 

captured image are defined as𝑉0𝑉1, 𝑉1𝑉2, … , 𝑉10𝑉11 , 𝑉11𝑉12 . According to the pinhole 

model projection principle, based on the precondition that view line or the one 
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dimensional CCD slot is parallel to target pattern plane, and that the distance between 

neighboring points is small enough, we can get the following equation: 

 
𝑃𝑛−1𝑃𝑛
𝑃𝑛𝑃𝑛+1

=
𝑉𝑛−1𝑉𝑛
𝑉𝑛𝑉𝑛+1

 (3.1) 

Computing error is neglect able even if the camera view line is not perfectly 

parallel to the pattern planes [46]. And in our project, we manually adjust the camera to 

make the CCD slot as parallel to target plane as possible to reduce the error. Also we 

create 115 pattern lines within 3.408 meters. That means our computation is based upon 

each pair of neighboring cross points, in a relatively small area, where the computer error 

is much less. 

𝑉𝑛−1𝑉𝑛  and 𝑉𝑛𝑉𝑛+1 can be easily computed once we have the position of cross 

points, 𝑉𝑛−1, 𝑉𝑛 , and 𝑉𝑛+1 in image coordinate.  

Given the equation (3.1), the relationship between 𝑃𝑛−1𝑃𝑛  and 𝑃𝑛𝑃𝑛+1 is ready 

for subsequent computation. 

To find the position of cross points on patterns, 𝑃𝑛−1, 𝑃𝑛 , and 𝑃𝑛+1 we should 

resort to the triangle model in Figure 3.1. As the unit width and height of calibration 

pattern can be measured directly, named as d and h respectively, and given the ratio of 

𝑃𝑛−1𝑃𝑛  over 𝑃𝑛𝑃𝑛+1 , we can easily calculate the position of  𝑃1, 𝑃3, … , 𝑃2𝑛−1, (n is 

positive integer) using the following equation: 

On X axis, 

 𝑥2𝑛−1 =  𝑑 ×
𝑃𝑛−1𝑃𝑛 

𝑃𝑛−1𝑃𝑛 +  𝑃𝑛𝑃𝑛+1 
+  𝑛 − 1 × 𝑑 (3.2) 

 = 𝑑 ×
1

1+
𝑃𝑛𝑃𝑛+1 
𝑃𝑛−1𝑃𝑛  

+   𝑛 − 1 × 𝑑 

Given the relationship defined in equation (3.1), we have 
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 𝑥2𝑛−1 = 𝑑 ×
1

1 +
𝑉𝑛𝑉𝑛+1 

𝑉𝑛−1𝑉𝑛 

+   𝑛 − 1 × 𝑑 
(3.3) 

On Y axis, 

 𝑦2𝑛−1 = ℎ ×
1

 1 + 𝑃𝑛−1𝑃𝑛 

𝑃𝑛𝑃𝑛+1 

= ℎ ×
1

1 +
𝑉𝑛−1𝑉𝑛 

𝑉𝑛𝑉𝑛+1 

 
(3.4) 

After we obtain the position of odd cross points, the position of even cross points 

can also be calculated because both odd and even cross points are theoretically supposed 

to be in the same line, since the view line is straight. So we can take the slope of odd 

cross points as overall slope for the view line, when the slope of odd points is easy to 

find. But in most cases, because of imperfection of CCD slot during manufacturing, view 

line is not perfectly straight, so we cannot simply use overall slope as the regional slope 

for each pair of even points. To solve this problem, we take the regional slopes between 

two neighboring odd points separately for the approximation of the corresponding even 

points slope and calculate slope for each even cross point using the linearity of its 

neighboring left and right odd points. As to the start and end even points, since them 

don‟t have left and right neighbor, respectively, we apply the nearest slope to their 

calculation. So we get the following equation: 

 
 

𝑥0 = 0,

𝑦0 = 𝑃1 . 𝑦 +  
𝑃3 . 𝑦 − 𝑃1. 𝑦

𝑃3. 𝑥 − 𝑃1. 𝑥
× (𝑃0. 𝑥 − 𝑃1. 𝑥)

  (3.5) 

  

𝑥2𝑛 = 𝑛 × 𝑑,

𝑦2𝑛 = 𝑦2𝑛−1 +  
𝑦2𝑛+1 − 𝑦2𝑛−1

𝑥2𝑛+1 − 𝑥2𝑛−1
× (𝑥2𝑛 − 𝑥2𝑛−1)

  (3.6) 
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𝑥2𝑁 = 𝑁 × 𝑑,

𝑦2𝑁 = 𝑦2𝑁−1 +  
𝑦2𝑁−1 − 𝑦2𝑁−3

𝑥2𝑁+1 − 𝑥2𝑁−3
× (𝑥2𝑁 − 𝑥2𝑁−1)

  (3.7) 

In the above equations, 𝑛 refers to the index of unit width of two neighboring 

parallel lines, and when 𝑁 indicates the index of unit width for the last pair of parallel 

line.  

 

3.2.3 Image feature points extraction 

As we‟ve already known that the 2-D image we got is only the repeating of one 

line data captured from object pattern (see Figure 3.3) since we didn‟t move camera, 

neither pattern. So the grey value of the pixels in the same column should identical and 

we randomly choose 10 lines of pixels and calculate the average of the 10 and finally 

carry out only one line pixel points for subsequent analysis.  

 

 
Figure 3.3 Image segment for feature points extraction 

The following picture with 1 pixel high is the line data we get from the 2-D image 

 
Figure 3.4 Image from one line of pixels. 
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To extract the position of the dark cross points in this line, we should first figure 

out the region of interest (RI) because the one object feature point covers more than one 

pixel in the image. Using global threshold method, we define the region with all pixels‟ 

(pixel numbers larger than 2) grey value less than average grey value of the whole line as 

the RI, shown as the following expression, 

 ∀a ϵ A, if g a <  𝐴𝑣𝑒𝑟, 𝑡ℎ𝑒𝑛 𝐴 ⊆ 𝑅𝐼 (3.8) 

Where “A” is the set of continuous pixels, “a” is the pixel point of region “A”, 

“g a ” refer to the grey value of “a”, “Aver” refers to the overall average, and “RI” is the 

sets consisting RI. 

After we fix the RI, we set out to calculate the position of cross points. To better 

express the above line image, we obtain a continuous mathematic function to simulate the 

discrete image points using B-spline interpolation technique [47]. Following is the plot 

from the simulation function.  
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Figure 3.5 Line data grey scale distribution 

From the above plot, we can clearly see that around each cross point, there is an 

abrupt plunge on the left side and a big jump on the right. So here we use slope 

information to locate the cross point. First for the left edge, the point whose grey value 

has biggest negative slope among all the points in the RI, can be regarded as the left edge 

for cross point, that is  

 
if d g amin   = min d g a  , a ∈ A ,

amin  is the left edge position 
(3.9) 

Using the same method, we can found the right edge according to the following 

equation: 

 if d g amax   = min d g a  , a ∈ A ,

amax  is the right edge position 
(3.10) 
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So feature point can be considered to be in the middle of the line connected by its 

left and right edge point. 

 afp =
1

2
∗  amax + amin  , afp  is the cross point position (3.11) 

After the multiple times of iteration to get each RI then each cross point, we can 

obtain all the cross points of intersection between invisible view line and visible pattern 

line. Those cross points are of high importance for us to create correspondence from 

image coordinate to world coordinate. So we call them image feature points in the 

following parts.  

 

3.2.4 1-D to 2-D mapping 

After we have all the feature points in the calibration pattern and also their 

corresponding positions in the image coordinate. We can start the camera calibration. 

Among the much work done on matrix camera calibration, Zhang [37] and Tai [30] 

created great breakthrough in this field. And Zhang [37] is one more step ahead because 

his technique on camera calibration is more flexible and easier to use. But the biggest 

limitation is that the method is only applicable for area based camera calibration, not for 

line scan camera calibration. Also the current study of line scan camera is rare and 

incomplete. In this case, we should think about a method to create a set of data which is 

suitable for 2D camera calibration while does not change the information line scan 

camera expresses. When we come to this problem, we should know the fact that the 

positions of feature points in images only show the information along with the view line, 

which is the one dimensional data. That means, in the image captured with line scan 

camera, from stationary object, we only have the valid data in horizontal direction, data 



28 

 

in vertical direction is only the accumulation of time, and only to repeat the line data. The 

line data in horizontal direction is what the line scan camera captured on the very thin 

CCD slot.  

While considering the lens for line scan camera, although we know the case in 

most cases, the principle point of the lens is not posed exactly on the CCD slot (see 

Figure 3.6). That means, the distortion of one dimensional image comes from two 

directions, 𝑋 and 𝑌 axis. But practically the deviation of slot from principle in 𝑌 axis, 

defined as 𝑑 is so small (normally less that 2 pixel) that the distortion (distortion 

coefficient defined as 𝑘) caused in 𝑌 axis (𝑘 ∗ 𝑑, 𝑘 ≪ 1) could be neglected. In the result 

part, we will prove that the distortion caused by deviation is neglect able with solid value. 

 

Ideal CCD array

Real CCD array

Lens

d

Principle point

 
Figure 3.6 Camera inner look 

Before we start to settle this problem, it‟s necessary for us to understand what 

type of lens distortion occurs in our line scan camera. Lens distortion is the phenomena 

that prohibit use of simple pinhole camera models. Several types of lens distortion exist, 

including tangential and radial distortion. Due to the manufacturing technique, tangential 

distortion is very little and could be neglected. So here we only consider radial distortion. 

Radial distortion actually implies a nonlinear radius mapping from the object to the 

image: And the value of radius directly determines the distortion severity of the image 

projection from world objects. 
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After a general introduction of lens distortion, we continue the topic to solve the 

problem of 1-D calibration. Although the feature points on calibration have two 

dimensional positions, all the points are supposed to locate in the same scan line. That 

mean all object feature points are linear correlated. But the current area-based 2-D 

camera calibration method cannot accept the input data with linear correlation. That‟s the 

problem we need to fix, if we plan to apply the relative mature matrix camera calibration 

method to calibrate our line scan camera. We need to make our 1-D dimensional data 

have 2 dimensions and linear independent, while keeping results consistent for 1-D 

calibration.  

Our solution is to create a 2-D image coordinate is to add another set of image 

data in perpendicular dimension which is exactly the same to the original line data 

captured. That means the lens distortion existing in the horizontal direction will exert the 

same effect to the vertical direction. According to the lens distortion principle, radial 

distortion is directly related to the radius, the distance from the image points to principle 

point, assumed as (𝐶𝑥 , 𝐶𝑦 ). To make sure the created image data in vertical direction has 

the same radial distortion with that in horizontal direction, we need to put each created 

image points with as same distance to principle point as corresponding original image 

points. So the following picture illustrated is the 2-D image with original feature points in 

horizontal direction and the created feature points array in vertical direction. 
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Figure 3.7 2-D image data establishment 

In this way, we successfully convert a 1-D image into 2-D, without changing the 

properties of the original image; we put the original line data on 𝑌 =  𝐶𝑦  of the new 2-

D image coordinate, and rotate the line clock wisely by 90 degree according to torsion 

center (𝐶𝑥 , 𝐶𝑦 ) to create another set of data 𝑋 =  𝐶𝑥 . In  𝑋 =  𝐶𝑥 , feature points 

𝑉0
′ , 𝑉1

′ , 𝑉2
′ , … , 𝑉11

′ , 𝑉12
′  have as the same distance to (𝐶𝑥 , 𝐶𝑦 ) as the corresponding points 

onY =  Cy , V0, V1 , V2 , … , V11 , V12 , respectively. That is, 

 ∀  𝑖 ∈ 𝐼, ∃ (𝑉𝑖
′ . 𝑥 − 𝐶𝑥)2 +  (𝑉𝑖

′ . 𝑦 − 𝐶𝑦)2

=  (𝑉𝑖 . 𝑥 − 𝐶𝑥)2 +  (𝑉𝑖 . 𝑦 − 𝐶𝑦)2, 
(3.12) 

where 𝐼 is the set of two dimensional object feature points. 



31 

 

Therefore distortion effect should be the same due to the same distance to 

principle point (𝐶𝑥 , 𝐶𝑦 ). 

Since principle point (𝐶𝑥 , 𝐶𝑦 ) is very important for our technique of 1-D to 2-D 

mapping, It would be better if we have (𝐶𝑥 , 𝐶𝑦 ) available before the mapping. But 

(𝐶𝑥 , 𝐶𝑦 ) are 2 parameters in camera intrinsic matrix which we need to compute, there is 

no way to get exactly what (𝐶𝑥 , 𝐶𝑦 ) is before that calibration. So at first we assume 

(𝐶𝑥 , 𝐶𝑦 ) available and set an initial value as the center point of 2-D image we create. The 

size of CCD array of our line scan camera is 2048 pixels, so the size of 2-D image we 

create is 2048×2048 pixels. Thus the initial value of (𝐶𝑥 , 𝐶𝑦 ) is set as (1024, 1024). Then 

we use the least-square method to iteratively compute more accurate (𝐶𝑥 , 𝐶𝑦 ) value till we 

obtain the least square error. The steps in detail are the following. 

First we use the initial value of (𝐶𝑥 , 𝐶𝑦 ) to do mapping and calibration, after the 

calibration and we get all the camera parameters including a new set of (𝐶𝑥 , 𝐶𝑦 ).We 

replace the previous value with the newly obtained (𝐶𝑥 , 𝐶𝑦 ) and do mapping and 

calibration over and over again. The termination condition to end this iteration is that, if 

the current position of (𝐶𝑥 , 𝐶𝑦 ) has the least deviation and stays almost the same with the 

previous few values, the iteration can be terminated with the current value as the final 

principle point.  

After we get 2-D image coordinate, we can use the same method to create 2-D 

object feature points by adding another set of data perpendicular to the scan line. 

Accordingly, we just need to rotate the object line by another 90 degree at the torsion 

center 𝑇(𝑥, 𝑦, 𝑧). Torsion center point could be obtained by equation (1), which connects 

the image coordinate with world coordinate, given the principle point (𝐶𝑥 , 𝐶𝑦 ) available.  
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To get the rotated data points( x′ , y′ , z′ = 0) , we define R as rotation matrix, 

and T as the translation vector. According to the transformation principle, we have, 

  
𝑥
𝑦

𝑧 = 0
 ∗ 𝑅 + 𝑇 =   

𝑥′

𝑦′

𝑧′ = 0

  (3.13) 

Where Give the fixed rotation R is a rotation matrix converted from vector𝒓(𝛼 =

0, 𝛽 = 0, 𝛾 =
𝜋

2
)by the following formula,  

 𝑹

=   

𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛾 −𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛾 + 𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛾 𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛾 + 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛾
𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛾 + 𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛾 𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛾 + 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛾
−𝑠𝑖𝑛𝛽 𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛽 𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽

  
(3.14) 

Before we know  𝑥′ , 𝑦′ , 𝑧′ = 0 , we should calculate translation 𝑻 first, since 𝑹 

is available. To get 𝑻, we can get use of torsion center which is already know and is the 

only point which stays at the same position during the rotation. As we know that torsion 

center is the only point which keeps the same position during the rotation.  

With the transformation formula, we can create another set of object feature 

points corresponding to the original ones. Following is the illustration of 2-D object 

feature point establishing. 
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Figure 3.8 2-D object data establishment 

With the image coordinate and world coordinate feature points ready, we can 

move to the next step to calculate intrinsic and extrinsic parameters and distortion 

efficient of the camera. 

 

3.2.5 Camera matrix calculation 

Given the basic principle of a pinhole model, we have the relationship between 

3D point M and its image projection m given by:  

 𝑠 ∗ 𝑚 =  𝐴  𝑅 𝑇 𝑀, with 𝐴 =   
𝑓𝑥 𝛼 𝑢0

0 𝑓𝑦 𝑣0

0 0 1

  (3.15) 
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S refers to an arbitrary scale factor,  𝑹, 𝑻  is the extrinsic parameters in rotation 

and translation to project world coordinate system to the image coordinate system. A is 

called intrinsic matrix, with  𝑢0, 𝑣0  as the principle point, and  𝑓𝑥 , 𝑓𝑦  as the focal 

length in 𝑢 and 𝑣 axis respectively, and α as the skew value of the two image axis. 

A 2-D image point is denoted by 𝑚 = [𝑢, 𝑣]𝑇 , and 𝑀 = [𝑋, 𝑌, 𝑍]𝑇, to generalize 

the equation, we augment the vector of 𝑚 into[𝑢, 𝑣, 1]𝑇and 𝑀 into [𝑋, 𝑌, 𝑍, 1]𝑇 , by 

denoting the ith column of the rotation matrix 𝑹 by 𝒓𝒊, and considering the 𝑍 = 0 for 

all the object points on the calibration pattern, we have the following equation. 

 
𝑠  
𝑢
𝑣
1
 = 𝐴 𝑟1 𝑟2    𝑟3 𝑡  

𝑋
𝑌
0
1

 = 𝐴 𝑟1 𝑟2 𝑇  
𝑋
𝑌
1
  (3.16) 

Giving the knowledge that 𝑟1 and 𝑟2 are orthonormal, we have the following 

equations: 

 
 

𝑟1  ∙  𝑟2 = 0

 𝑟1 = 1

 𝑟2 = 1

  (3.17) 

By using the above three constrains and applying least-square method, we solve 

the equation with the multiple groups of known image feature points [𝑢, 𝑣]𝑇  and object 

feature points [𝑋, 𝑌, 𝑍 = 0]𝑇  and obtain the intrinsic matrix A and the extrinsic  𝑅, 𝑇  

of the camera. 

To refine the camera matrix, we use the Maximun-likelihood estimation method 

proposed by Zhang [37]. Because the images we captured are interrupted by lens 

distortion and independent noise, and given n images of a model plane and there are m 

points on each model plane, we can decrease and lens distortion and noise by minimizing 

the following function: 
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    𝑚𝑖𝑗 − 𝑚 (𝐴, 𝑅𝑖 , 𝑡𝑖 , 𝑀𝑗 ) 
2

𝑚

𝑗=1

𝑛

𝑖=1

 (3.18) 

In the above formula, 𝑚 (𝐴, 𝑅𝑖 , 𝑡𝑖 , 𝑀𝑗 )is the reprojection of feature points 𝑀𝑗  

from world coordinate to image coordinate 𝑚  and 𝑚𝑖𝑗  is the image points captured by 

camera from model plane. Formula (15) is a nonlinear polynomial, to minimize (15), we 

should use Levenberg-Marquardt Algorithm [48] to solve the problem, with an initial 

guess of 𝐴,  𝑅𝑖 , 𝑡𝑖  𝑖 = 1…𝑛}. 

By minimizing the formula (15), we can refine the camera matrix and also obtain 

the radial distortion 𝑘1, 𝑘2, and 𝑘3,. 

 

3.3 EXPERIMENTAL RESULTS 

To summarize the iteration procedure we did for refining principle point (𝐶𝑥 , 𝐶𝑦 ) 

and calibration, we give the following diagram to show this procedure, 
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Calibration, get new (Cx, Cy)

1D to 2D object mapping

1D to 2D image mapping

|new (Cx, Cy) – pre (Cx, 
Cy)| < Thresh

YES

NO

Start,set initial value to 
(Cx, Cy) 

End, save the final (Cx, Cy)and 
other camera parameters

 

Figure 3.9 Procedure diagram 

Table 3.1 lists the intrinsic and extrinsic parameters from a successful calibration 

of line scan camera, with the reprojection error within 0.68 pixels. From this table we can 

find that 𝐶𝑥  and 𝐶𝑦  are not exactly the same although our feature point data in two 

directions is identical. The reason is that as we mentioned above, although the CCD slot 

is in one dimension, the lens designed for line scan camera is the same we use for area-

based camera. So the position the principle point could be different in 𝑋  and 
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𝑌  coordinate, when the one dimensional CCD slot doesn‟t pass the principle point of 

lens.  

Also we assume that there is no tangential distortion in line scan camera due to 

the modern lens manufacture technique. Besides, as to one dimensional camera, the 

distortion happens in one direction of lens, which is radial distortion. Focal length is the 

same in both 𝑋 and 𝑌  direction. 

 

Table 3.1 Camera intrinsic and extrinsic parameters 

Camera Parameters Value 

Rx (degree) -0.008143 

Ry (degree) 0.008024 

Rz (degree) -0.003570 

Tx (mm) -1144.4522 

Ty (mm) -68.9639 

Tz (mm) 343.9326 

f (mm) 261.6441 

κ1 0.003276 

κ2 0.000073 

k3 0 

cx (pixel) 1021.6435 

cy (pixel) 1022.4045 

 

3.4 CONCLUSION AND DISCUSSION 

In this part, we discussed the novel method of line scan camera calibration in 

detail for the fabric defects imaging project. Based on the complete understanding of the 

specialty of line scan camera, we design the pattern for its calibration. We create multiple 

parallel lines (around 58 lines) and 57 oblique line connecting each pair of neighboring 
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parallel lines to obtain around 115 feature point crossed by invisible scan line and visible 

pattern lines. The 115 image feature points and their corresponding object feature points 

can create 115 equations where only 14 parameters unknown. The large numbers of 

equations are sufficient to obtain the parameters from pinhole model with high accuracy. 

With a linear least-square equation, we estimated the parameters which are refined by 

maximum likelihood estimation, we obtain all the parameters with the reprojection error 

only 0.68 pixel.   
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Chapter 4: Image Undistortion and Correction 

Image quality is greatly influenced by lens distortion. One of the most common 

visual distortions is radial distortion. This occurs when the magnification of the lens at 

the edge is different from that at the center of lens. Chapter 3 has shown us the method to 

obtain distortion coefficient through camera calibration. In this chapter, we‟ll discuss the 

procedure to correct the images using distortion coefficients. 

 

4.1 RADIAL DISTORTION EQUATION 

4.1.1 2-D camera radial distortion 

Before we set out studying radial distortion equation, it‟s necessary to review the 

projection relationship from 3D world coordinate to the 2D image coordinate, according 

to the pinhole camera principle. See the following equation (4.1),  

 
𝑠  
𝑢
𝑣
1
 = 𝐴 𝑅|𝑇  

𝑋
𝑌
𝑍
1

  (4.1) 

Where  
𝑋
𝑌
𝑍
  is a point from world coordinate, and  

𝑢
𝑣
  is a corresponding pixel 

point from image coordinator; A =  

𝛼 𝛾 𝑢0

0 𝛽 𝑣0

0 0 1
 , where  𝛼, 𝛽  is the focal length of 

camera in X and Y axis, and  u0, v0  is camera lens principle point;  

R is a 3 × 3 rotation matrix converted from rotation vector 

𝒓 𝛿, 𝜀, 𝜃 , as the equation  12  has shown us. To simply the rotation matrix here, we 

use 𝑅 =  

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟23 𝑟33

  

T is a 1 × 3 translation vector 𝑻(𝑡1, 𝑡2, 𝑡3). 
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So the equation (4.1) can be rewritten as following: 

 
s 
𝑢
𝑣
1
 =  

𝛼 𝛾 𝑢0

0 𝛽 𝑣0

0 0 1
 ×  

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟23 𝑟33

     

𝑡1

𝑡2

𝑡3

  ×  

𝑋
𝑌
𝑍
1

  (4.2) 

Considering the Z = 0 for all the object points on the calibration pattern, we have, 

 s 
𝑢
𝑣
1
 =  

𝛼 𝛾 𝑢0

0 𝛽 𝑣0

0 0 1
 ×  

𝑟11 𝑟12 𝑡1

𝑟21 𝑟22 𝑡2

𝑟31 𝑟23 𝑡3

  ×   
𝑋
𝑌
1
  (4.3) 

To calculate the right side the above equation, we get, 

 𝑠  
𝑢
𝑣
1
 

=  
𝛼 𝑟11𝑋 +  𝑟12𝑌 +  𝑡1 +  𝛾 𝑟21𝑋 +  𝑟22𝑌 +  𝑡2 +  𝑢0(𝑟31𝑋 +  𝑟32𝑌 +  𝑡3) 

𝛽(𝑟21𝑋 + 𝑟22𝑌 +  𝑡2) +  𝑣0(𝑟31𝑋 +  𝑟32𝑌 +  𝑡3)
𝑟31𝑋 +  𝑟32𝑌 +  𝑡3

  

(2)
(3)
(4)

 

(4.4

) 

First let‟s do 𝑣 / 1, and have, 

 𝑣 =
𝛽(𝑟21𝑋 +  𝑟22𝑌 +  𝑡2)

𝑟31𝑋 +  𝑟32𝑌 + 𝑡3
 +  𝑣0 (4.5) 

Then 𝑢 / 1 

 𝑢 =
𝛼 𝑟11𝑋 +  𝑟12𝑌 +  𝑡1 +  𝛾(𝑟21𝑋 +  𝑟22𝑌 +  𝑡2)

𝑟31𝑋 +  𝑟32𝑌 +  𝑡3
 +  𝑢0 (4.6) 

Equation (4.5) and (4.6) show us the ideal pinhole projection from world 

coordinate to image coordinator for X and Y axis, without taking account lens distortion. 

But in real case, lens distortion always happens. Distortion makes the deviation from the 

original image point. We define the deviation as (dx , dy ). And the deviated image point 

(𝑢′ , 𝑣 ′) is show as the following equation,  
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𝑢′ = 𝑢 + dx ,
𝑣 ′ = 𝑢 +  dy

  (4.7) 

As we‟ve known that radial distortion just means each point is radially distorted 

and the degree of distortion depends on the distance from the principle point of lens or 

image center to the certain point. According to the research of Weng [31], we have the 

following equation,  

 
 

dx =  𝑢 − 𝑢0  ×  𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6 + …  

dy =  𝑣 − 𝑣0  ×   𝑘1𝑟
2 +  𝑘2𝑟

4 +  𝑘3𝑟
6 +  …  

𝑟2 =   𝑢 − 𝑢0 
2 +   𝑣 − 𝑣0 

2

  (4.8) 

where 𝑘𝑗 , 𝑗 ∈ {1, 2, 3, … } is the coefficient of radial distortion. Its value affects how 

much a point is radially distorted and its sign indicated the type of radial distortion. If 𝑘𝑗  

is negative, the resultant distortion is barrel radial distortion; if 𝑘𝑗  is positive, the 

resultant distortion is pincushion radial distortion.  

4.1.2 1-D camera radial distortion 

As to 1-D camera, the information in Y axis is only time accumulation because the 

one dimensional CCD array is in X direction. In each line the image points are distorted 

with a ratio directly influenced by their distance to principle points. And as we discussed 

in the last chapter that the distance from CCD array to principle point in Y direction is so 

small that could be neglected. So the radial distortion in line scan camera happens only in 

X direction. That is dy = 0;  

The one dimensional radial distortion can also be explained in another way. Since 

line scan camera only has one dimensional CCD array in X direction, so the data in Y 

direction is meaningless, only showing time accumulation. So, 

𝑣 = 𝑣0 
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And rewrite equation (4.8), we have  

 
 

dx =  𝑢 − 𝑢0  ×   𝑘1𝑟
2 +  𝑘2𝑟

4 +  𝑘3𝑟
6 +  …  (1)

dy = 0 (2)

𝑟2 =   𝑢 − 𝑢0 
2 (3)

  (4.9) 

As to 𝑘𝑗 , for practical usage and according to Tsai‟s theory [30], 𝑘𝑗 , (𝑗 > 3) is 

extremely small that we can safely approximate radial distortion by using the first three 

items of the infinite series of (4.9)-(1). Since we have calculated the radial distortion 

coefficient 𝑘𝑗  in the last chapter, we‟ll discuss how to correct the distorted images in the 

next section. 

4.2 DISTORTED IMAGE CORRECTION 

According to the equation (4.7) and (4.9) in the above section, we have, 

 𝑢′ = 𝑢 +  dx =  𝑢 +   𝑢 − 𝑢0 ×   𝑘1𝑟
2 +  𝑘2𝑟

4 +  𝑘3𝑟
6 +  …  

= 𝑢 − 𝑢0 +  𝑢0 +   𝑢 − 𝑢0 ×  𝑘1𝑟
2 +  𝑘2𝑟

4 +  𝑘3𝑟
6 +  …  

=    𝑢 − 𝑢0 ×   1 +  𝑘1𝑟
2 +  𝑘2𝑟

4 +  𝑘3𝑟
6 +  …  + 𝑢0 

(4.10) 

To calculate the corrected point value 𝑢, we rewrite the above equation, and put 

𝑢 on the left side of the equation.  

 𝑢 =  
𝑢′ − 𝑢0

1 +  𝑘1𝑟2 +  𝑘2𝑟4 +  𝑘3𝑟6 +  …
+  𝑢0 (4.11) 

Here we only consider the first four items of the infinite series of denominator, so 

the above equation turns to, 

 𝑢 =  
𝑢′ − 𝑢0

1 +  𝑘1𝑟2 +  𝑘2𝑟4 +  𝑘3𝑟6
+  𝑢0 (4.12) 
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Specifically, we know that each point in the distorted image corresponds to a 

point in the undistorted image. Given the above equation, we can easily find the 

corresponding undistorted point from distorted point.  

Due to the calculated undistorted points are not integers. We first use B-spline 

interpolation method to get evenly distributed sub-pixel points, and then apply 1/10 

sampling technique to pick out the image points whose fractional part is zero, and finally 

fit these points to the desired undistorted image coordinate.  

In the next part we‟ll show image correction results and give relative discussion.  

 

4.3 IMAGE CORRECTION RESULT 

After image correction, we obtain the undistorted image in Figure 4.2. Compared 

to the originally captured image in Figure 4.1, the objects in corrected image become 

wider in the first impression.  
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Figure 4.1 Originally captured image 

 
Figure 4.2 Corrected image 
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The reason behind is that the lens of our line scan camera cause barrel distortion, 

the farther image pixel to principle point, the severer distortion. So image points on the 

boundary have greatest tendency to approach to the principle point. As to the pattern we 

designed, distance between each pair of parallel lines is identical. But from the image 

coordinate aspect, when we look at the captured image Figure 4.1, from the left side 

(define the first line index as 0) and to right side and calculate the distance of neighboring 

even-index parallel lines. Here we skip all odd-index parallel lines because the odd-index 

lines are the projection from world coordinate where intersection happens between 

oblique line and scan line, we have no way to prove the distance between neighboring 

oblique lines are the same due to the fact that view line is not always horizontally 

straight. So here we only consider the distance of even-index parallel lines, call Unit 

Distance (UD) of image, which is also image projection of  𝑃0𝑃2 ,  𝑃2𝑃4, … , 𝑃2𝑛−2𝑃2𝑛 , … 

(see Figure 3.1) in world coordinate. Following is the Table 4.1 to list all UDs detected 

from left to the right side of one image before and after image lens correction. 
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Table 4.1 Image UD before and after correction 

Unit 

index 

UD Unit 

index 

UD Unit 

index 

UD 

Before After Before After Before After 

0 32.6 34 20 34 34.6 40 33.5 34.2 

1 32.8 33.9 21 34 34.2 41 33.4 34.2 

2 32.6 34.2 22 34 34.4 42 33.1 34.1 

3 32.3 34.5 23 34 34.3 43 33.2 34.2 

4 32.3 34.2 24 34.1 34.2 44 33 34.1 

5 32.4 34.5 25 34.1 34.1 45 32.8 34.1 

6 32.4 34.3 26 34.1 34.2 46 32.8 34.2 

7 32.3 34.1 27 34.3 34.2 47 32.5 33.9 

8 33.1 34.8 28 34.4 34.4 48 32.5 34.2 

9 33 34.7 29 34 34.1 49 32.4 33.9 

10 32.7 34.4 30 34.1 34.1 50 32.3 34.1 

11 33 34.4 31 34.2 34.1 51 32.1 34 

12 33 34.2 32 34.3 34.4 52 32.1 34.1 

13 33.4 34.6 33 34.1 34.2 53 32 34 

14 33.1 34.3 34 34.1 34.3 54 31.9 33.9 

15 33.3 34.3 35 34 34.3 55 32 34.2 

16 33.6 34.4 36 33.7 34 56 31.8 34 

17 33.5 34.3 37 33.8 34.2 57 31.4 34.4 

18 33.6 34.3 38 33.8 34.4    

19 34 34.4 39 33.3 33.8    

 

According to Table 4.1, we draft a diagram to visually show the validity of our 

correction method. In Figure 4.3, the blue line with square dots refers to image UD before 

image correction, from this plot we can see that on the center of image there is little lens 
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distortion and UD remains high at around 34 pixels, but beyond the center region, the UD 

keep decreasing, with a deviation around 3 pixels in two edges. But after the image being 

corrected, as the red line in the diagram with triangular dots shows us, most of the 

triangular dots are around 34 pixels. The points surrounded by black rectangular, from 

unit index 25 to index 33, are the coincidence of two lines. They indicate that image 

points within this region are captured without distortion. We defined the corresponding 

UD as distortion-free UD 𝑑𝑑𝑓𝑟𝑒𝑒 . Based upon the data listed in Table 4.1, we calculate 

that 𝑑𝑑𝑓𝑟𝑒𝑒 = 34.16 𝑝𝑖𝑥𝑒𝑙.  

 
Figure 4.3 UD before and after correction 

For the distorted image (the blue line), the average UD, is defined as 𝑑𝑝𝑟𝑒 , and 

𝑑𝑝𝑟𝑒 = 33.17 𝑝𝑖𝑥𝑒𝑙 , with the standard deviation, 𝑆𝑇𝐷𝑝𝑟𝑒 = 0.79 𝑝𝑖𝑥𝑒𝑙 . The overall 

deviation of UD to distortion-free UD is 𝑂𝑉𝐷𝑝𝑟𝑒 = 1.601 𝑝𝑖𝑥𝑒𝑙. 
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As to the corrected image (the red line), the average UD, is defined as 𝑑𝑝𝑜𝑠𝑡 , and 

𝑑𝑝𝑜𝑠𝑡 = 34.22 𝑝𝑖𝑥𝑒𝑙, with the standard deviation, 𝑆𝑇𝐷𝑝𝑜𝑠𝑡 = 0.20 𝑝𝑖𝑥𝑒𝑙. The overall 

deviation of UD to distortion-free UD is 𝑂𝑉𝐷𝑝𝑜𝑠𝑡 = 0.043 𝑝𝑖𝑥𝑒𝑙. 

To testify the precondition that image plane should be parallel to the pattern plane 

is not necessary, we captured a couple of images with camera skewed to a certain angle. 

Using the same method we obtain the UD from captured image before image correction 

and compare the results with that after correction. The following lists all the UD data  

 

Table 4.2 UD before and after correction (with a skewed camera plane) 

Unit 

index 

UD Unit 

index 

UD Unit 

index 

UD 

Before After Before After Before After 

0 41.9 43.7 15 44.3 45.4 30 45.5 46.3 

1 41.8 43.5 16 44.7 45.2 31 45.5 46.5 

2 41.3 44 17 44.8 45.3 32 45.3 46.5 

3 41.8 43.6 18 45 45.4 33 45.2 46.5 

4 42 43.9 19 45.2 45.6 34 44.9 46.6 

5 41.3 43.6 20 45.4 45.6 35 44.9 46.6 

6 42.2 44.2 21 45.6 45.7 36 44.6 46.7 

7 42.9 44.4 22 45.7 45.7 37 44.6 47.1 

8 43.2 44.7 23 45.7 45.9 38 44.2 46.7 

9 42.7 44.6 24 45.8 45.9 39 44.3 47 

10 42.9 45.4 25 45.9 46 40 44.3 46.8 

11 43.8 44.8 26 45.8 45.9 41 44.1 47.1 

12 43.4 44.6 27 45.7 46.3 42 44 47.1 

13 43.5 44.8 28 45.8 46.2 43 44.2 47.2 

14 43.9 45.2 29 45.8 46.3    
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The following Figure 4.4 is the corresponding diagram to show the difference. 

Although the camera plane is skewed and the correct UD doesn‟t remain constant, we 

still can see the proposed method has successfully removed the radial lens distortion, and 

pull the distorted points (the blue line with square points) all the way to the right track. 

The corrected points are almost linearly located, as shown in the red line with triangular 

points.  

 
Figure 4.4 UD before and after image correction (with a skewed camera plane) 

Using SPSS to do the regression analysis, we find our hypothesis of linearity is 

significant with R Square larger than 0.95, as the following Table 4.3 shows us.  

 

Table 4.3 Model summary and parameter estimations 

Dependent Variable:Y 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. Constant b1 

Linear .955 899.313 1 42 .000 43.806 .083 

The independent variable is X. 
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And using the curve fitting method, we obtain the curve to simulate the corrected 

points, shown in Figure 4.5. 

 
Figure 4.5 Linear simulation 

To test the proposed method, we capture 4 images, with 2 images captured from a 

parallel camera plane and the other two from a skewed camera plane. Table 4.4 is the 

summary of test results for parallel camera plane. 
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Table 4.4 Test result summary 

Image 

No. 

Distortion free 

UD  𝑑𝑑𝑓𝑟𝑒𝑒  

Average UD UD_Standard deviation UD_Overal deviation 

𝑑𝑝𝑟𝑒  𝑑𝑝𝑜𝑠𝑡  𝑆𝑇𝐷𝑝𝑟𝑒  𝑆𝑇𝐷𝑝𝑜𝑠𝑡  𝑂𝑉𝐷𝑝𝑟𝑒  𝑂𝑉𝐷𝑝𝑜𝑠𝑡  

1 34.16 33.17 34.22 0.79 0.20 1.601 0.043 

2 34.21 33.16 34.23 0.85 0.37 1.796 0.139 

Mean 33.19 33.17 34.23 0.82 0.29 1.90 0.09 

From the above table, we can see that both of the images are corrected with high 

accuracy. The average deviation from distortion free UD is only 0.09 pixel. Compared to 

original image without correction, whose deviation is nearly 2 pixels, the quality of 

corrected image has been greatly modified with the proposed method. 

As to the images captured from skewed camera plane, our correction algorithm 

still works in rectifying the image. We‟ve illustrated one image result and given detailed 

discussion. To show the consistency of the result, we provide linearity analysis to another 

corrected image, as shown in the following Table 4.5 and Figure 4.6. 

 

Table 4.5 Model summary and parameter estimates 

Dependent Variable:Y 

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. Constant b1 

Linear .958 950.633 1 42 .000 43.268 .112 

The independent variable is X. 
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Figure 4.6 Linear simulation 

Compare to the first image, the linearity of the second is slightly higher with R 

Square 0.958. And the linear slope is also higher at 0.112 pixel per unit. That means UD 

increases more when index increases, which indicates that the skewed angle in the second 

image in larger than that of first captured image. 
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Chapter 5: Conclusion 

Quality is a very important element to evaluate fabric. Large numbers of scholars 

have been dedicated in the research of fabric defects inspection and made substantiate 

progress in this field. Many vision-based automatic fabric detection algorithms have been 

proposed to detect fabric flaw efficiently and with a high accuracy. To secure the 

accuracy of detection result, image quality should be reliable before we apply any kind of 

detection methods. But as we know that all camera lens has distortions, especially radial 

distortion. To remove that distortion and correct image, much research work has been 

done to do 2-D camera image correction. However as to 1-D line scan camera, there is 

scant information talking about camera correction although line scan camera is getting 

wider application due to the high resolution and data processing efficiency.  

A novel calibration-based line scan camera correction method is proposed in this 

study. Same as 2-D camera calibration, pattern design is a vital step before calibration. 

Pattern with regular marks can be projected to camera plane, and these marks from both 

pattern plane and image plane can create relationship between world coordinate and 

image coordinate. But base upon the specialty of line scan camera that it acquires images 

one line at a time, it‟s difficult for the one scan line to match the marked points on 

pattern. So we propose a pattern with many mutual parallel lines and one oblique line to 

connect each pair of the parallel ones. We consider the intersection points between 

pattern lines and scan lines as feature points and calculate the position according to the 

pattern geometry. 

As 2-D camera calibration has been greatly researched and the algorithms and 

techniques to deal with 2-D calibration are relatively mature. We propose a method to 
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calibrate 1-D camera from 2-D aspect by mapping all 1-D data to 2-D without changing 

the original properties of 1-D data.  

When we have the 2-D data ready, we use least-square method to solve the 

pinhole projection equation and estimate the values of camera internal parameters and 

external parameters. Then we refine the data with maximum-likelihood estimation and 

get the camera lens distortion coefficients, with reprojection error only 0.68 pixel. With 

the distortion coefficients ready, the distortion equation is applied and modified to obtain 

undistortion equation. And finally we use modified undistortion equation to correct 

captured images.  

To better testify the undistortion results and prove the validity of proposed 

method, we introduce a term of unit distance in assessing procedure. In the discussion 

part, we can see that corrected image has almost identical unit distance with standard 

deviation only 0.29 pixels. Compare to the ideal distortion-free unit distance, the 

corrected image has only 0.09 pixel in average apart. To prove the generality of our 

method, we capture a couple of images with skewed camera plane, the results given in 

discussion part are also positive to shown the effectiveness of the proposed method.  
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