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The presence of structure in a computational problem can often be

exploited and can lead to a more efficient numerical algorithm. In this disser-

tation, we look at structured numerical problems that arise from applications

in wireless communications and machine learning that also impact other areas

of scientific computing.

In wireless communication system designs, certain structured matrices

(frames) need to be generated. The design of such matrices is equivalent to

a symmetric inverse eigenvalue problem where the values of the diagonal ele-

ments are prescribed. We present algorithms that are capable of generating a

larger set of these constructions than previous algorithms. We also discuss the

existence of equiangular tight frames—frames that satisfy additional structural

properties.
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Kernel learning is an important class of problems in machine learning.

It often relies on efficient numerical algorithms that solve underlying convex

optimization problems. In our work, the objective functions to be minimized

are the von Neumann and the LogDet Bregman matrix divergences. The al-

gorithm that solves this optimization problem performs matrix updates based

on repeated eigendecompositions of diagonal plus rank-one matrices in the

case of von Neumann matrix divergence, and Cholesky updates in case of the

LogDet Bregman matrix divergence. Our contribution exploits the low-rank

representations and the structure of the constraint matrices, resulting in more

efficient algorithms than previously known.

We also present two specialized zero-finding algorithms where we ex-

ploit the structure through the shape and exact formulation of the objective

function. The first zero-finding task arises during the matrix update step

which is part of the above-mentioned kernel learning application. The second

zero-finding problem is for the secular equation; it is equivalent to the com-

putation of the eigenvalues of a diagonal plus rank-one matrix. The secular

equation arises in various applications, the most well-known is the divide-and-

conquer eigensolver. In our solutions, we build upon a somewhat forgotten

zero-finding method by P. Jarratt, first described in 1966. The method em-

ploys first derivatives only and needs the same amount of evaluations as New-

ton’s method, but converges faster. Our contributions are the more efficient

specialized zero-finding algorithms.
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Chapter 1

Overview

1.1 Motivation

Specialized algorithms can solve many structured numerical problems

more efficiently. For example, eigensolvers exploiting the structure are avail-

able for symmetric, tridiagonal, diagonal plus rank-one, Toeplitz and many

other types of matrices. These specialized algorithms outperform a general

eigensolver in many respects. A different example is provided by the zero-

finding algorithm specifically developed for the secular equation, which is part

of the divide-and-conquer eigensolver. In this state of the art solution a mod-

ified version of Newton’s method takes into account the shape of the function

in order to accelerate the convergence. When we exploit the symmetry, a low-

rank representation or other structure present in the problem formulation we

can expect significant improvement in efficiency.

In this dissertation, we look at applications in wireless communication

system design, machine learning and scientific computing in which numerical

computational problems involving structured matrices arise. Our main contri-

bution is a collection of algorithms which solve these computational problems

more efficiently.

1



1.2 Contributions

In Chapters 2 and 3, we present our research on frames. Frames

are vector sets that can be viewed as a generalization of orthogonal vector

bases [14, 26]. Unlike a base however, a set of frame vectors is overcomplete,

which means that there is more than one way to combine them to represent

elements of the vector space. However, the frame structure allows us to select

one natural representation which is useful in wireless applications [58,60]. We

formulate frame construction as an inverse eigenvalue problem and recognize

that the Chan-Li and Bendel-Mickey algorithms [4, 13] can be used to gener-

ate frames. We present generalized versions of the Chan-Li and Bendel-Mickey

algorithms that can produce a larger class of these frame constructions. We

also describe versions of the algorithms which operate on a factored repre-

sentation that exploits low rank and hence reduces the memory requirements

from n(n + 1)/2 to n(r + 2), where r denotes the rank, and n is the matrix

dimension.

Additional structural restrictions apply to the class of frames called

equiangular tight frames which find applications in communications, coding

theory, and sparse approximation, see [53,57] and references therein. In Chap-

ter 3 we use algebraic number theory to prove conditions on the existence of

real and certain complex equiangular tight frames.

Kernel learning is an important problem in machine learning, which is

an important tool in classifications and clustering, see [18,39] for some recent

applications. In mathematical terms, the goal is to find a positive-definite
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matrix, the so-called kernel matrix, that satisfies some linear constraints that

are extracted from observations, and also minimizes a given distance measure.

The resulting kernel matrix can be used for clustering, classification and other

machine learning tasks. In Chapter 4 we discuss specific numerical algorithms

based on Bregman’s algorithm [8], that are central to the solution of such a

kernel learning problem. We exploit the specific form of the distance measures

used, which are the von Neumann and LogDet matrix divergences [12] in this

application. We also extend the formulation to include rank-deficient matrices

and subsequently exploit the low-rank decomposition of the solution matrix.

Our algorithms take advantage of the factored form that captures the structure

and provide significant gains in efficiency by reducing the memory requirements

from O(n2) to O(nr) while the computational cost of the repeated matrix

updates decreases from O(n2) to O(r2).

In Chapter 5, we take a closer look at the zero-finding problem that is

central to the kernel learning application that we presented in Chapter 4. The

definition of the objective function for this zero-finding task involves the matrix

exponential and that makes the evaluation of the function and its derivative

costly. We present efficient zero-finding algorithms that exploit the structure

present in the function definition, namely we take advantage of the sharing

of computation between the evaluation of the function and its derivative. We

find that the additional cost of computing the derivative is sufficiently less

than the cost of the function evaluation alone, and that makes using Newton’s

method more efficient than non-derivative based approaches. We also exploit

3



the shape of the objective function through a reparametrization. Furthermore,

a seemingly forgotten improvement to Newton’s method due to Jarratt [40],

which does not need additional function evaluations, allows us to speed up

convergence even further.

The zero-finding algorithm due to Jarratt deserves further attention.

If we assume that the cost of the function evaluation is relatively expensive,

this zero-finder is faster than Newton’s method; it has order of convergence

1 +
√

3 ∼ 2.732 [40]. Given the function and derivative values, the cost of

computing the next approximation step is constant for both Newton’s and

Jarratt’s method. In many application the function evaluation step can easily

dominate the computational cost. This was true for the function involving

the matrix exponential in Chapter 5 and it is also true for the secular equa-

tion [10,45]. In Chapter 6 we discuss our improvement to the secular equation

solver by adapting Jarratt’s method for this special case. Finding the zeros of

the secular equation amounts to finding the eigenvalues of a symmetric diago-

nal plus rank-one matrix and it is an important step of the divide and conquer

eigensolver [16]. The divide and conquer algorithm is highly parallelizable [25]

and it is one of the prominent methods that computes the eigenvalues of a

symmetric or singular values of an arbitrary matrix. Our improved algorithm

exhibits faster convergence and this reduces the maximum number of iterations

needed per zero. Reducing the maximum work needed per zero is important

in a parallel implementation often more so than reducing the total computa-

tional work. We also present a proof aided by a computer algebra package

4



that establishes the order of convergence for Jarratt’s method and when it is

embedded in our secular equation solver algorithm.

The work that we present in this dissertation has resulted in the fol-

lowing publications and should be referred to for further exposition:

[24] Generalized finite algorithms for constructing Hermitian ma-

trices with prescribed diagonal and spectrum with I. S. Dhillon,

R. W. Heath Jr. and J. A. Tropp appeared in SIAM Journal on Matrix

Analysis and Applications, vol. 27, no. 1, pages 61–71, May 2005.

[55] On the Existence of Equiangular Tight Frames with J. A. Tropp,

I. S. Dhillon, and R. W. Heath Jr. appeared in Linear Algebra and its

Applications, vol. 426:2-3, pages 619-635, October 2007.

[41] Learning Low–Rank Kernel Matrices with B. Kulis and I. S. Dhillon

appeared in Proceedings of the Twenty–third International Conference on

Machine Learning (ICML), pages 505-512, July 2006.

[42] Low–Rank Kernel Learning with Bregman Matrix Divergences

with B. Kulis and I. S. Dhillon appeared in Journal of Machine Learning

Research, 2009, pages 341–376.

[56] On a zero-finding problem involving the matrix exponential

with I. S. Dhillon appeared in SIAM Journal on Matrix Analysis and

Applications 2012, vol. 33, no. 4, pages 1237–1249.
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Chapter 2

Wireless Communication Application

In this chapter we discuss a matrix construction problem that has arisen

in wireless communications [58,60]. It turns out that d×N matrices, d < N ,

with d identical nonzero singular values and with prescribed column norms

satisfy a certain “sum capacity” bound and “minimum squared correlation”

property that is important in wireless applications. The column vectors form

an over–complete set and they yield a natural representation for each vector

of the vector space. These matrices are called frames and can be viewed as

generalizations of orthonormal basis; they. The problem can be formulated

as a symmetric inverse eigenvalue problem where the values of the diagonal

elements are pre–specified.

We present new algorithms that can replace the diagonal entries of a

Hermitian matrix by any set of diagonal entries that majorize the original set

without altering the eigenvalues of the matrix. Both the Bendel–Mickey [4]

and the Chan–Li algorithms [13] are special cases of the proposed procedures.

Another example of an application where our algorithms can be ap-

plied is the problem to construct Hermitian matrices with unit diagonal and

prescribed nonnegative eigenvalues. Such matrices are called correlation ma-

6



trices; Davies and Higham [17] discuss several applications that require such

matrices, ranging from the generation of test matrices for eigenvalue solvers

to the design of statistical experiments.

Our algorithm generalizes the Bendel–Mickey and Chan–Li algorithms.

Like them, our techniques use a sequence of (N − 1) or fewer plane rotations;

the crux of the matter is the strategy for selecting the planes of rotation.

The generalized algorithms can produce a richer set of matrices with

prescribed diagonal entries and eigenvalues, making it possible to find solutions

that satisfy additional properties or better suit the application. For numerical

examples and further discussion see [24].

It is well known that any positive semi-definite matrix A ∈ MN can

be expressed as the product X∗X where X ∈ Md,N and d ≥ rankA. With

this factorization, the two–sided transformation A 7→ Q∗AQ is equivalent to

a one–sided transformation X 7→ XQ. In consequence, the machinery of our

new algorithms requires little adjustment to produce these factors, yielding

the ’one–sided’ versions of the algorithms.

We finish the chapter with a discussion about the existence of equian-

gular tight frames. These d × N frame matrices need to satisfy additional

structural properties and they exist only for specific values of d and N .

7



2.1 Background

We briefly introduce (tight) frames, majorization, partially ordered

sets, plane rotations and the Chan–Li and Bendel–Mickey algorithms prior

to our generalized algorithm presentation. For further details we refer to [24].

2.1.1 Frames

Frames are an over–complete set of vectors which yield one natural

representation for each element of the vector space while may allow many

other representations. Frames can be viewed as generalizations of orthonormal

basis.

Any vector x of a d–dimensional vector space can be written in the

form

x =
d∑
i=1

(e∗ix)ei,

where the vectors ei (i = 1, 2, . . . d) form an orthonormal basis. We gener-

alize this concept by considering an over–complete set of unit–length vectors

denoted by fi (i = 1, 2, . . . , N , N > d) for which

x = α

N∑
i=1

(f ∗i x)fi, (2.1)

holds for every x vector in the space with a fixed α ∈ R. We call such a system

of vectors a tight frame1.

1Uniform tight frame and Parseval tight frame are also used in the literature.

8



We form the d×N matrix S consisting of fi as its column vectors. By

substituting e1, e2, . . . , ed into (2.1) we deduce that SS∗ = (1/α)I:

1

α
δjk =

1

α
e∗jek =

(
N∑
i=1

(f ∗i ej)fi

)∗
· ek =

N∑
i=1

(f ∗i ej)(f
∗
i ek).

Since N = trace(S∗S) = trace(SS∗), we also have α = d/N .

The G = S∗S Gram–matrix has a unit diagonal and its eigenvalues

are 0 and N/d with multiplicities N − d and d respectively. Given an N ×N

matrix G with such spectrum and diagonal, one can produce a frame matrix S

via the reduced eigendecomposition of G, hence the algorithms of this section

can be used to generate frames.

2.1.2 Majorization

An intuitive definition of majorization is that one vector majorizes an-

other if the former has “more average” entries than the latter. We make this

notion precise:

Definition 1. Let a be a real, N-dimensional vector, and denote its kth small-

est component by a(k). This number is called the kth order statistic of a.

Definition 2. Let a and z be real N–dimensional vectors, and suppose that

their order statistics satisfy the following relationships.

a(1) ≤ z(1),

a(1) + a(2) ≤ z(1) + z(2),

...

9



a(1) + a(2) + · · ·+ a(N−1) ≤ z(1) + z(2) + · · ·+ z(N−1), and also

a(1) + a(2) + · · ·+ a(N) = z(1) + z(2) + · · ·+ z(N).

Then we say that z majorizes a, and we write z < a2. If each of the inequal-

ities is strict, then z strictly majorizes a, and we write z � a.

Majorization defines the precise relationship between the diagonal en-

tries and eigenvalues of a Hermitian matrix.

Theorem 1 (Schur–Horn). The diagonal entries of a Hermitian matrix ma-

jorize its eigenvalues. Conversely, if a < λ, then there exists a Hermitian

matrix with diagonal entries listed by a and eigenvalues listed by λ.

I. Schur demonstrated the necessity of the majorization condition in

1923, and A. Horn proved the converse some thirty years later [37].

2.1.3 Plane Rotation

We can use a plane rotation to modify the diagonal entries of a Hermi-

tian matrix while preserving its spectrum. Let us suppose that A is a 2 × 2

matrix with diagonal a that we wish to transform to z, where z < a. Without

loss of generality, we can assume that a1 ≤ z1 ≤ z2 ≤ a2. We can explicitly

construct a real plane rotation Q so that the diagonal of Q∗AQ equals z.

Recall that a two–dimensional plane rotation is an orthogonal matrix of the

2Note that the direction of the partial ordering is reversed in some treatments, but we
follow the convention in Horn & Johnson’s book [37].

10



form

Q =

[
c s
−s c

]
, (2.2)

where c2 + s2 = 1 [29]. The desired plane rotation yields the matrix equation[
c s
−s c

]∗ [
a1 a∗21

a21 a2

] [
c s
−s c

]
=

[
z1 z∗21

z21 z̃2

]
. (2.3)

The equality of the upper–left entries allows us to determine the values

of c and s. Details are in [24, page 4].

2.1.4 Bendel–Mickey and Chan–Li Algorithms

In the sequel, we use MN to denote the set of complex N ×N matrices

and Md,N to denote the set of complex d×N matrices.

The Bendel–Mickey algorithm produces random (Hermitian) correla-

tion matrices with given spectrum [4]. Suppose that A ∈ MN is a Hermitian

matrix with traceA = N . If A does not have a unit diagonal, we can locate

two diagonal elements so that ajj < 1 < akk; otherwise, the trace condition

would be violated. It is then possible to construct a real rotation Q in the

jk–plane for which (Q∗AQ)jj = 1. The transformation A 7→ Q∗AQ preserves

the conjugate symmetry and the spectrum of A, but it reduces the number of

non–unit diagonal entries by at least one. Therefore, at most (N−1) rotations

are required before the resulting matrix has a unit diagonal.

The Chan–Li algorithm, on the other hand, was developed as a con-

structive proof of the Schur–Horn Theorem [13]. Suppose that a < λ. The

11



Chan–Li algorithm begins with the diagonal matrix Λ
def
= diagλ. Then it ap-

plies a sequence of (N − 1) cleverly chosen (real) plane rotations to generate

a real, symmetric matrix A with the same eigenvalues as Λ but with diagonal

entries listed by a.

The Bendel–Mickey algorithm is a surjective map from the set of Her-

mitian matrices with spectrum λ onto the set of correlation matrices with

spectrum λ. If the initial matrix is chosen uniformly at random (which may

be accomplished with standard techniques [52]), the result may be construed

as a random correlation matrix. The distribution of the output, however, is

unknown [35]. On the other hand, due to the special form of the initial matrix

and the rigid choice of rotations, the Chan–Li algorithm cannot construct very

many distinct matrices with a specified diagonal.

2.2 Generalized Bendel–Mickey Algorithm

Let z and a be N–dimensional vectors for which z < a. We will show

how to transform a Hermitian matrix A with diagonal a and spectrum λ into

one with diagonal z and spectrum λ using a sequence of plane rotations. It

is enough to prove the result when the components of a and z are sorted in

ascending order, so we place that restriction in the sequel.

Suppose that a 6= z. On account of the majorization relationship, it is

possible to select indices i < j that satisfy two properties: ai < zi ≤ zj < aj

and ak = zk for all k strictly between i and j. If zi − ai ≤ aj − zj, then

we construct a plane rotation Q in the (i, j)-plane such that (Q∗AQ)ii =

12



zi. Otherwise, we find Q such that (Q∗AQ)jj = zj. Either rotation can be

calculated from simple equations, see [24, page 5].

To see that this strategy can be repeated, we just need to check that

z majorizes the diagonal of Q∗AQ. In the first case, the plane rotation trans-

forms ai to zi and aj to ai + aj − zi, while the remaining diagonal entries do

not change. Since ai < zi ≤ zj ≤ ai + aj − zi < aj the diagonal entries of

Q∗AQ remain in ascending order. The first (i−1) majorization conditions are

clearly unaffected. Notice that

i−1∑
`=1

a` + zi ≤
i−1∑
`=1

z` + zi,

which proves the ith majorization condition. The next (j− i−1) majorization

inequalities follow in consequence of akk being equal to zk whenever i < k < j.

The rest of the majorization conditions hold since

i−1∑
`=1

a` + zi +

j−1∑
k=i+1

ak + (ai + aj − zi) =

j∑
`=1

a` ≤
j∑
`=1

z`.

The argument in the case when zi − ai > aj − zj is similar. It follows

that our rotation strategy may be applied until diagA = z. This proof leads

to Algorithm 1. The computed Hermitian matrix has diagonal entries z and

eigenvalues equal to that of A.

The algorithm requires about 12N2 real floating–point operations if

conjugate symmetry is exploited, and the storage of about N(N+1)/2 complex

floating–point numbers.
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Algorithm 1: Generalized Bendel–Mickey algorithm

Input : Matrix A: N ×N Hermitian with diagonal a; vector z:
satisfies z < a, where both a and z are arranged in
ascending order.

Output: Updated matrix A that is orthogonally similar and has
diagonal z.

1 repeat
2 Find i < j for which ai < zi, zj < aj and ak = zk for i < k < j

(in our implementation we pick the smallest such i). If no such
pair exists, we are either done (z = a) or the majorization
condition is violated.

3 Construct a plane rotation Q in the (i, j)–plane to transform ai
to zi in the case zi − ai ≤ aj − zj or transform aj to zj
otherwise.

4 Replace A by Q∗AQ.

5 until the diagonal is transformed to z

2.3 Generalized Chan–Li Algorithm

Distinct algorithms arise by changing the strategy for selecting the

planes of rotation. Let z and a be N–dimensional vectors for which z < a.

As before, we assume that they are sorted in ascending order, and suppose that

A is a Hermitian matrix with diagonal a. We now exhibit a different method

for transforming the diagonal of A to z while preserving its eigenvalues. It

can be viewed as a generalization of the Chan–Li algorithm [13].

We will use induction on the dimension, so grant us for a moment that

we can perform the advertised feat on Hermitian matrices of size (N − 1).

Now we consider N–dimensional vectors for which z < a, and suppose that

diagA = a. The majorization condition implies that a1 ≤ z1 ≤ zN ≤ aN , so

14



it is always possible to select a least integer j > 1 so that aj−1 ≤ z1 ≤ aj. Let

P1 be a permutation matrix for which

diag(P ∗1AP1) = (a1, aj, a2, . . . , aj−1, aj+1, . . . , aN). (2.4)

Observe that a1 ≤ z1 ≤ aj and a1 ≤ a1 + aj − z1 ≤ aj. We compute (see [24,

page 6]) a two–dimensional plane rotation Q2 that sets the upper left entry of

Q∗2

[
a1 a∗j1
aj1 aj

]
Q2 (2.5)

to z1. If we define the rotation

P2
def
=

[
Q2 0∗

0 IN−2

]
, (2.6)

then

P ∗2P
∗
1AP1P2 =

[
z1 v∗

v AN−1

]
, (2.7)

where v is an appropriate vector and AN−1 is an appropriate submatrix with

diag(AN−1) = (a1 + aj − z1, a2, . . . , aj−1, aj+1, . . . , aN). (2.8)

In order to apply the induction hypothesis, it remains to check that the vector

(z2, z3, . . . , zN) majorizes the diagonal of AN−1. We accomplish this in three

steps. First, recall that ak ≤ z1 for k = 2, . . . , j − 1. Therefore,

m∑
k=2

zk ≥ (m− 1) z1 ≥
m∑
k=2

ak (2.9)

for each m = 2, . . . , j − 1. The sum on the right-hand side obviously exceeds

the sum of the smallest (m − 1) entries of the vector diagAN−1, so the first

15



(j − 2) majorization inequalities are in force. Second, we use the fact that

z < a to calculate that, for m = j, . . . , N ,

m∑
k=2

zk =
m∑
k=1

zk − z1 ≥
m∑
k=1

ak − z1 = (a1 + aj − z1) +

j−1∑
k=2

ak +
m∑

k=j+1

ak.(2.10)

Once again, observe that the sum on the right–hand side exceeds the sum of the

smallest (m−1) entries of the vector diagAN−1, so the remaining majorization

inequalities are in force. Finally, rearranging the relation
∑N

k=1 zk =
∑N

k=1 ak

yields
∑N

k=2 zk = traceAN−1. In consequence, the induction furnishes a ro-

tation QN−1 that sets the diagonal of AN−1 equal to the vector (z2, . . . , zN).

Defining

P3
def
=

[
1 0∗

0 QN−1

]
, (2.11)

we see that conjugating A by the orthogonal matrix P = P1P2P3 transforms

the diagonal entries of A to z while retaining the spectrum λ. This proof

leads to Algorithm 2 which has the same functionality and complexity as the

generalized Bendel–Mickey algorithm.

2.4 One–sided Algorithms

It is well known that any positive semidefinite matrix A ∈ MN can

be expressed as the product X∗X where X ∈ Md,N and d ≥ rankA. With

this factorization, the two–sided transformation A 7→ Q∗AQ is equivalent to a

one–sided transformationX 7→ XQ. In consequence, the machinery of the gen-

eralized Bendel–Mickey algorithm requires little adjustment to produce these
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Algorithm 2: Generalized Chan–Li algorithm

Input : Matrix A: N ×N Hermitian with diagonal a; vector z:
satisfies z < a, where both a and z are arranged in
ascending order.

Output: Updated matrix A that is orthogonally similar and has
diagonal z.

1 Set i = 1.
2 repeat
3 Find the least j > i so that aj−1 ≤ zi ≤ aj.
4 Use a symmetric permutation to set ai+1 equal to aj while

shifting diagonal entries i+ 1, . . . , j − 1 one place down the
diagonal.

5 Construct a plane rotation Q in the (i, i+ 1)–plane
transforming the diagonal accordingly.

6 Replace A by Q∗AQ.
7 Use a symmetric permutation to re–sort the diagonal entries of

A in ascending order.
8 i→ i+ 1.

9 until i = N

factors. The following algorithm generalizes the one–sided version proposed

by Davies and Higham in [17].

Suppose that z and a are non–negative vectors of length N with as-

cending entries. Assume, moreover, that z < a. The following algorithm takes

as input a d × N complex matrix X whose squared column norms are listed

by a and transforms it into a matrix with the same singular spectrum and

with squared column norms listed by z. The algorithm requires about 12dN

real floating–point operations and storage of N(d+ 2) complex floating–point

numbers including the desired column norms and the current column norms.

A similar modification of our generalized Chan–Li algorithm also leads to a
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Algorithm 3: One–sided generalized Bendel–Mickey algorithm

Input : Matrix X: d×N with squared column norms a; vector
z: satisfies z < a, where both a and z are arranged in
ascending order.

Output: Updated matrix X with squared column norms z and
preserved singular spectrum.

1 repeat

2 Find i < j for which ‖xi−1‖2
2 < zi, zj < ‖xj‖2

2 and ‖xk‖2
2 = zk

for i < k < j. If no such pair exists, we are either done or the
majorization condition is violated.

3 Form the quantities

ai = ‖xi‖2
2 , aji = 〈xj, xi〉 and aj = ‖xj‖2

2 .

4 Construct a plane rotation Q in the (i, j)–plane to transform ai
to zi in the case zi − ai ≤ aj − zj, or transform aj to zj
otherwise.

5 Replace X by XQ.

6 until all column norms are as desired

one–sided version.
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Chapter 3

On the Existence of Equiangular Tight Frames

Frames with well separated vectors (considering the pairwise angles)

are of special interest. In this chapter we discuss frames for which the pairwise

angles are the same, they are called equiangular tight frames or ETFs for short.

Equiangular line systems do not need to have the tight frame prop-

erty; they first appeared in the literature on discrete geometry [44, 59]. The

earliest results on systems that meet both the frame property and satisfy the

equiangular conditions appear in Welch’s work [62]. More recently, ETFs have

found applications in communications, coding theory, and sparse approxima-

tion [53, 57]. In particular, Holmes and Paulsen have shown that an ETF

provides an error-correcting code that is maximally robust against two era-

sures [36]. ETFs are sometimes called Maximum Welch-Bound-Equality Se-

quences, or optimal Grassmannian frames, or two-uniform frames. We prefer

the more descriptive term “equiangular tight frame.”

3.1 Background

We start by introducing the formal definition for equiangular tight

frames or ETFs. Next, we summarize some necessary facts from the theory of
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algebraic integers.

3.1.1 Equiangular tight frame

We begin with a formal definition.

Definition 3. Let S be a d × N matrix whose columns are s1, . . . , sN . The

matrix S is called an equiangular tight frame if it satisfies three conditions.

1. Each column has unit norm: ‖sn‖2 = 1 for n = 1, . . . , N .

2. The columns are equiangular. For some nonnegative α, we have

|〈sm, sn〉| = α when 1 ≤ m < n ≤ N .

3. The columns form a tight frame. That is, SS∗ = (N/d) I.

If the entries of S are real (resp. complex) numbers, we refer to S as a real

ETF (resp. complex ETF). Note that condition (3) implies N ≥ d.

By associating each column of an ETF with its one–dimensional span,

we may view an ETF as a collection of lines through the origin. The number

α in the definition represents the cosine of the acute angle between each pair

of lines. Connected with this geometric interpretation are some known facts.

Proposition 1. Fix d > 1, and suppose that S is a d × N matrix with unit

norm columns. Then

max
i 6=j
|〈si, sj〉| ≥

√
N − d

d (N − 1)
.

This bound is attained if and only if S is an ETF.
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The inequality is originally due to Welch [62]. Strohmer and Heath offer a

direct argument that also gives the second statement [53]. A very insightful

proof appears in [15].

The literature also contains upper bounds on the number of equiangular

lines that can exist in a Euclidean space. The usual proof of these results [19]

is not very accessible. An elegant and elementary argument in [55, page 20]

relies only on matrix theory.

Theorem 2. An upper bound on the number N of equiangular lines that can

be constructed in a d–dimensional Euclidean space is

N ≤ 1
2
d (d+ 1) in Rd, and

N ≤ d2 in Cd.
(3.1)

3.1.2 Algebraic integers

Our proofs on the existence of real and certain complex equiangular

frames depend on some basic facts from field theory. Lang’s textbook is a

standard introduction to this material [43]. We review the essential definitions

and facts that we explicitly need in our results.

The ring of integers and the field of rationals are denoted by Z and

Q respectively. A polynomial whose coefficients are drawn from a subfield F

of the complex numbers is referred to as a polynomial over F. The complex

number ω is algebraic over F if it is the root of some polynomial over F. An

algebraic integer is the root of a monic polynomial with integer coefficients.
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Fact 1. The algebraic integers form a ring, i.e., they are closed under addition

and multiplication.

Fact 2. The roots of a monic polynomial with algebraic integer coefficients are

also algebraic integers.

The minimal polynomial of ω over F is the (unique) lowest degree monic

polynomial over F that contains ω among its roots.

Fact 3. A minimal polynomial over F has simple roots.

Two numbers that have the same minimal polynomial over F are called

algebraic conjugates over F.

Fact 4. Suppose that ω and ζ are algebraic conjugates over F. If p is a

polynomial over F that has ω as a root with multiplicity m, then ζ is also a

root of p with multiplicity m.

Fact 5. Suppose that ζp is a primitive pth root of unity. The ring of algebraic

integers in the field Q(ζp) equals the ring Z[ζp].

Fact 6. The set of real algebraic integers in Z[ζp] coincides with the ring

Z[2 Re ζp].

The following lemma that is needed for our results on real ETFs illus-

trates how to use the above facts.
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Lemma 1. Let A be an Hermitian matrix whose entries are algebraic integers.

Then the eigenvalues of A are real algebraic integers.

In addition, assume that the entries of A belong to a subfield F of the

complex numbers. If A has an eigenvalue ω whose multiplicity differs from the

multiplicity of every other eigenvalue, then ω belongs to F.

Proof. The matrix A is Hermitian, so its eigenvalues are real numbers. By

definition, an eigenvalue of A is a root of the characteristic polynomial t 7→

det(t I− A). Since the entries of A are algebraic integers, Fact 1 implies that

the characteristic polynomial is a monic polynomial with algebraic integer

coefficients. Then Fact 2 shows that the eigenvalues of A are algebraic integers.

Assume that the entries of A belong to F. Thus, the eigenvalues of A

are algebraic over F. Since ω has a different multiplicity from the other eigen-

values of A, Fact 4 precludes the possibility that ω might have any algebraic

conjugates over F. Applying Fact 3, we see that the minimal polynomial of ω

over F is t 7→ t− ω. Thus, ω belongs to F.

We will also need to use cyclotomic polynomials; for an excellent in-

troduction we refer to [61]. We recall he relevant definitions and facts.. The

minimal polynomial of ζp is called the pth cyclotomic polynomial, and it is

denoted by Φp(t). The roots of Φp(t) are precisely the primitive pth roots of

unity. Note that Φ1(t) = t− 1.
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Fact 7. The cyclotomic polynomials satisfy the identity

∏
a|p

Φa(t) = tp − 1 (3.2)

where the symbol a|p means that a divides p.

3.2 Real Equiangular Tight Frames

Assume that 1 < d < N , and suppose that S is a d × N real ETF.

In this section, we will see that the pair (d,N) must satisfy rigid integrality

conditions. Denote the absolute inner product between columns by α, and

recall from Proposition 1 that

α =

√
N − d
d(N − 1)

. (3.3)

Next, construct the signature matrix of the ETF:

A =
1

α
(S∗S − I).

Since the inner products between columns of S have magnitude α, the off–

diagonal entries of A are 1 or −1. Therefore, this matrix completely encodes

the pattern of phases in the inner products. It is identical with the signature

matrix considered by Holmes and Paulsen [36, Def. 3.1].

Our primary analysis is based on a detailed study of the eigenvalues

of A using methods of field theory. Observe that A is Hermitian; it has a

zero diagonal; and its off–diagonal entries have unit modulus. Since an ETF
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satisfies the equation SS∗ = (N/d) I, it follows that the two eigenvalues of A

are

λ1 = − 1

α
= −

√
d(N − 1)

N − d
and λ2 =

N − d
dα

=

√
(N − 1)(N − d)

d

with respective multiplicities N − d and d. The key idea in our proof is that

λ1 and λ2 cannot take general real values because the entries of A are severely

limited.

Following [36], we note that

λ1λ2 = −(N − 1)

and that A satisfies the quadratic matrix equation1

A2 − (λ1 + λ2)A− (N − 1)I = 0. (3.4)

This point can be verified by a direct calculation.

For a real ETF, the off-diagonal entries of the signature matrix A equal

±1. Although we are only interested in real ETFs, it is more natural to

consider the case where the entries of the signature matrix are roots of unity.

In this setting, the possible values of λ1 and λ2 are already quite special.

Theorem 3. Assume that 1 < d < N − 1 and N 6= 2d. Suppose that S is a

d×N ETF whose signature matrix A has entries in the ring Z[ζp]. Then the

eigenvalues λ1 and λ2 of A both belong to Z[2 Re ζp].

1In fact the left hand side is the minimal polynomial of A.
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Proof. Since N 6= 2d, the two eigenvalues of A have different multiplicities.

The entries of A are algebraic integers in Q(ζp), so Lemma 1 implies that λ1

and λ2 belong to the set of real algebraic integers in Q(ζp). Facts 5 and 6

identify this set as Z[2 Re ζp].

As we have noted, a real ETF generates a matrix A whose off-diagonal

entries equal ±1. We may apply the previous theorem with p = 1 to obtain

our first result for real ETFs.

Corollary 1. Assume that 1 < d < N − 1 and N 6= 2d. Suppose that S is

a d×N real ETF. Then the eigenvalues λ1 and λ2 of the signature matrix A

are ordinary integers.

A simple consequence of this corollary is the weak integrality condition

stated in the paper of Holmes and Paulsen [36, Thm. 3.3].

Corollary 2 (Holmes–Paulsen). If d < N and a real d×N ETF exists, then

(N − 2d)

√
N − 1

d (N − d)
is an integer.

Proof. When d = 1, d = N − 1 or N = 2d, the result is obvious. Otherwise,

we introduce the value of α from (3.3), and we find that (λ1 + λ2) equals the

stated expression. Since λ1 and λ2 are integers, the result follows instantly.

Holmes and Paulsen established this condition for real ETFs by looking

at the components of the matrix equation (3.4). They do not appear to rec-

ognize that λ1 and λ2 must in fact be integers. We note that in the technical

report [54] we apply Theorem 3 to more general signature matrices.
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In the next theorem we claim stricter conditions on λ1 and λ2.

Theorem 4. Assume that 1 < d < N − 1 and N 6= 2d. Suppose that S is a

real d × N ETF. Then the eigenvalues λ1 and λ2 of the signature matrix are

both odd integers.

Our proof adapts an argument of P. M. Neumann quoted in [44]. The

basic idea is to derive from the signature matrix A another integer matrix with

known eigenvalues. Then we apply field–theoretic methods to see that these

eigenvalues must lie in a discrete set.

Proof. Let us form a new matrix M whose entries all equal zero or one:

M = 1
2

(J− I− A)

where the symbol J denotes a conformal matrix of ones. We have ruled out the

possibility that N ≤ d+1, so the eigenvalue λ1 of A has geometric multiplicity

at least two. In consequence, the (N − 1)-dimensional null space of J must

intersect the invariant subspace of A associated with λ1. Any vector in this

intersection is an eigenvector of M with eigenvalue µ1 = −1
2

(1+λ1). A similar

argument establishes that µ2 = −1
2

(1 + λ2) is also an eigenvalue of M .

Corollary 1 establishes that λ1 and λ2 are integers, so the eigenvalues

µ1 and µ2 must be rational numbers. The entries of M are integers, so Lemma

1 proves that the eigenvalues of M are also algebraic integers. We conclude

that µ1 and µ2 are rational integers. That is, λ1 and λ2 are odd.
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This result has another striking consequence.

Corollary 3. If 1 < d < N − 1 and a real d×N ETF exists, then N is even.

Proof. When N 6= 2d this point follows immediately from Theorem 4 and the

fact that λ1λ2 = −(N − 1).

It was observed in [7,36,53] that real equiangular tight frames naturally

give rise to regular two–graphs and vice versa. It is also known that regular

two–graphs naturally give rise to strongly regular graphs with certain parame-

ter sets [11, Ch. 4]. In consequence, there is also a natural connection between

real ETFs and certain strongly regular graphs. We used the full power of this

correspondence in [54] to prove:

Theorem 5. If there exists a real d× 2d ETF, then d is odd and (2d− 1) is

the sum of two squares.

We end this section on real ETFs with an example demonstrating

how to create a real equiangular tight frame from a suitable strongly regular

graph, see also [54]. We consider the strongly regular graph with parameters:

(15, 6, 1, 3), depicted on Figure 3.1. We denote the incidence matrix of this

graph by A. One can verify that this matrix satisfies A2 = 2A + 15I. The

eigenvalues are equal to λ1 = −3 and λ2 = 5, the latter with multiplicity

d = 6. Finally, the matrix G = −1
3
A+ I, factors as STS (e.g. by the spectral

decomposition) providing 16 frame vectors of R6. Figure 3.2 shows the frame

vectors as the row vectors for typesetting reasons.
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Figure 3.1: Strongly regular graph with parameters (15, 6, 1, 3).

Figure 3.2: Frame matrix (transposed) generated from the strongly regular
graph with parameters (15, 6, 1, 3).



−0.1436 0.0386 0.6623 −0.4633 −0.3333 −0.4620
−0.7718 0.4187 0.2162 −0.2004 0.3333 −0.1767

0.6783 0.4346 0.0137 −0.1800 −0.3333 −0.4554
−0.6362 −0.2930 −0.2162 −0.5925 −0.3333 −0.0235
−0.1356 0.7116 0.4324 0.3921 −0.3333 −0.1528

0.1464 −0.5292 −0.2162 −0.1633 −0.3333 −0.7169
0.6282 −0.3801 0.4461 −0.2630 0.3333 −0.2857
−0.6675 −0.2522 0.2025 0.4089 −0.3333 −0.4143
−0.1544 −0.1439 0.4461 −0.6921 0.3333 0.4077

0.0108 0.1824 0.2162 0.2288 0.3333 −0.8697
0.4818 0.1491 0.6623 −0.0997 −0.3333 0.4312
0.0421 0.1416 −0.2025 −0.7725 0.3333 −0.4789
−0.0501 −0.8147 0.4324 −0.0829 −0.3333 0.1697
−0.1043 0.6708 0.0137 −0.6092 −0.3333 0.2380
−0.1857 −0.1031 0.8648 0.3092 0.3333 0.0169

0.0000 0.0000 0.0000 0.0000 −1.0000 0.0000



.
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3.3 Complex Equiangular Tight Frames

We present one integrality condition on a special class of complex ETFs

called unital ETFs. For these frames each entry of the scaled frame matrix

d1/2S is a pth root of unity. The proof relies on well–known properties of the

cyclotomic polynomial that we mentioned in Section 3.1.2

Theorem 6. Fix d > 1, and suppose that there exists a d×N unital ETF of

degree p = qs, where q is a prime. Then q divides N .

Proof. Suppose that d−1/2X is a d×N unital ETF of degree p. Let xT and yT

be the first two rows of X. By ETF condition 3 in Definition 3, the two rows

are orthogonal: 〈x, y〉 = 0. Since the entries of x and y are all powers of ζp,

it follows that their inner product is a sum of N powers of ζp, not necessarily

distinct. Therefore,

〈x, y〉 =

p−1∑
k=0

ck ζ
k
p = 0

where {ck} is a set of nonnegative integers that sum to N .

Define the polynomial u(t) =
∑p−1

k=0 ckt
k. We have established that

u(ζp) = 0 and that u(1) = N . It also follows that the minimal polynomial

Φp of ζp divides the polynomial u. In particular, Φp(1) divides u(1). We can

complete the proof by showing that Φp(1) = q whenever p = qs for a prime

number q and positive integer s.

We prove by induction on s that Φqs(1) = q. For the base case s = 1,
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we invoke Fact 7:

Φ1(t)Φq(t) = tq − 1 = (t− 1)(tq−1 + tq−2 + · · ·+ t+ 1).

Since Φ1(t) = t−1, the polynomial Φq(t) must be equal to tq−1+tq−2+· · ·+t+1.

Substitute t = 1 to complete the argument.

For the inductive step, assume the statement is true for each positive

integer j < s. We invoke Fact 7 again to obtain

s∏
j=0

Φqj(t) = tq
s − 1 = (t− 1)(tq

s−1 + tq
s−2 + · · ·+ 1).

Cancel the factor Φ1(t) = t− 1 from both sides to arrive at the identity:

s∏
j=1

Φqj(t) = tq
s−1 + tq

s−2 + · · ·+ 1.

Substitute t = 1 to obtain
∏s

j=1 Φqj(1) = qs. By the induction hypothesis,

the left-hand side equals qs−1Φqs(1). We conclude that Φqs(1) = q for each

positive integer s.
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Chapter 4

Kernel Learning Application

Kernel learning is an important problem in machine learning. In math-

ematical terms, the goal is to find a matrix that satisfies the constraints

extracted from previous observations and enable a classification, clustering

or similar task to be carried out on new data. Fast image search [39] and

information–theoretic metric learning [18] are recent applications benefiting

from our work.

4.1 Background

We briefly introduce kernel learning and some technical tools we will

need, namely, matrix divergences and Bregman’s algorithm. For further details

we refer to [41,42].

4.1.1 Kernel Learning

Consider a set of training points a1, ..., an, and transform the data using

a non–linear function ψ. This mapping represents a transformation of the data

to a higher–dimensional feature space. A kernel function is a function κ that
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gives the inner product between two vectors in the feature space:

κ(ai, aj) = ψ(ai) · ψ(aj).

It is often possible to compute this inner product without explicitly computing

the expensive mapping of the input points to the higher–dimensional feature

space. Generally, given n points ai, we form an n × n matrix K, called the

kernel matrix, whose (i, j) entry corresponds to κ(ai, aj). In kernel–based

algorithms, the only information needed about the input data points is the

inner products; hence, the kernel matrix provides all relevant information for

learning in the feature space. A kernel matrix is always positive semidefinite.

See [51] for more details.

Despite the popularity of kernel methods in machine learning, many

kernel–based algorithms scale poorly. To improve scalability, the use of low–

rank kernel representations has been proposed. Given an n× n kernel matrix

K, if the matrix is of low rank, say r < n, we can represent the kernel matrix

in terms of a decomposition K = GGT , with G an n× r matrix.

4.1.2 Matrix Divergences

To measure the nearness between two matrices, we will use Bregman

matrix divergences, which are generalizations of Bregman vector divergences.

Let ϕ be a real–valued strictly convex function defined over a convex set S =

dom(ϕ) ⊆ Rm such that ϕ is differentiable on the relative interior of S. The
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Bregman vector divergence [8] with respect to ϕ is defined as

Dϕ(x,y) = ϕ(x)− ϕ(y)− (x− y)T∇ϕ(y).

For example, if ϕ(x) = xTx, then the resulting Bregman divergence be-

comes Dϕ(x,y) = ‖x − y‖2
2. Another example is ϕ(x) =

∑
i(xi log xi − xi),

where the resulting Bregman divergence is the (unnormalized) relative entropy

Dϕ(x,y) = KL(x,y) =
∑

i(xi log xi
yi
− xi + yi). Bregman divergences gener-

alize many properties of squared loss and relative entropy. See [12] for more

details.

We can naturally extend this definition to real, symmetric n×n matri-

ces, denoted by Sn. Given a strictly convex, differentiable function φ : Sn → R,

the Bregman matrix divergence is defined to be

Dφ(X, Y ) = φ(X)− φ(Y )− tr((∇φ(Y ))T (X − Y )),

where tr(A) denotes the trace of matrix A. Examples include φ(X) = ‖X‖2
F ,

which leads to the well–known squared Frobenius norm ‖X − Y ‖2
F . In this

paper, we will extensively study two less well–known divergences. Let φ be the

entropy of the eigenvalues of a positive definite matrix. Specifically, if X has

eigenvalues λ1, ..., λn, let φ(X) =
∑

i(λi log λi−λi), which may be expressed as

φ(X) = tr(X logX −X), where logX is the matrix logarithm. The resulting

Bregman divergence is

DvN(X, Y ) = tr(X logX −X log Y −X + Y ), (4.1)
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and we call it the von Neumann divergence. This divergence is also called

quantum relative entropy, and is used in quantum information theory [48].

Another important matrix divergence arises by taking the Burg entropy of the

eigenvalues, i.e. φ(X) = −
∑

i log λi, or equivalently as φ(X) = − log detX.

The resulting Bregman divergence over positive definite matrices is

D`d(X, Y ) = tr(XY −1)− log det(XY −1)− n, (4.2)

and is commonly called the LogDet divergence. For now, we assume that X

is positive definite for both divergences; later we will discuss extensions when

X is positive semidefinite, i.e., low–rank.

For all three divergences introduced above, the generating convex func-

tion of the Bregman matrix divergence can be viewed as a composition φ(X) =

(ϕ◦λ)(X), where λ(X) is the function that lists the eigenvalues in algebraically

decreasing order, and ϕ is a strictly convex function defined over vectors [23].

In general, every such ϕ defines a Bregman matrix divergence over symmetric

matrices via the eigenvalue mapping. For example, if ϕ(x) = xTx, then the

resulting composition (ϕ ◦λ)(X) is the squared Frobenius norm. We call such

divergences spectral Bregman matrix divergences.

We prove the following lemma in [42, page 6] which provides an al-

ternative expression for a spectral matrix divergence Dφ(X, Y ) based on the

eigendecompositions of X and Y . This will prove to be useful when motivating

extensions to the low–rank case.
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Lemma 2. Let the eigendecompositions of X and Y be V ΛV T and UΘUT re-

spectively, and assume that ϕ is separable, i.e. φ(X) = (ϕ◦λ)(X) =
∑

i ϕi(λi).

Then

Dφ(X, Y ) =
∑
i,j

(vTi uj)
2(ϕi(λi)− ϕj(θj)− (λi − θj)∇ϕj(θj)). (4.3)

Note that each of the divergences discussed earlier—the squared Frobe-

nius divergence, the LogDet divergence, and the von Neumann divergence—

arise from separable convex functions. Furthermore, in these three cases, the

functions ϕi do not depend on i (so we denote ϕ = ϕ1 = . . . = ϕn) and the

corollary below follows:

Corollary 4. Given X = V ΛV T and Y = UΘUT , the squared Frobenius, von

Neumann and LogDet divergences satisfy:

Dφ(X, Y ) =
∑
i,j

(vTi uj)
2Dϕ(λi, θj). (4.4)

4.1.3 Bregman’s Algorithm

We now can give a formal description of the problem that we study

in this chapter. Given an input kernel matrix X0, we attempt to solve the

following for X:

minimizeX Dφ(X,X0)

subject to tr(XAi) ≤ bi, 1 ≤ i ≤ c,

rank(X) ≤ r,

X � 0. (4.5)
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The objective function Dφ is either the von Neumann or the LogDet diver-

gence. Any of the linear inequality constraints tr(XAi) ≤ bi may be replaced

with equalities. This problem is non–convex in general, due to the rank con-

straint. However, when the rank of X0 does not exceed r, then this problem

turns out to be convex when we use the von Neumann and LogDet matrix

divergences (we will extend the definition of the divergences to rank–deficient

matrices in Section 4.2). Convex optimization problems are easier to solve,

because local minimums are also global minimums.

A notable advantage of using the von Neumann and LogDet divergences

(in contrast to the squared Frobenius divergence) is that the algorithms used to

solve the minimization problem implicitly maintain the positive semidefinite-

ness constraint, eliminating extra work which would be necessary otherwise.

We find the minimum in (4.5) by the iterative method of Bregman

projections [8,12]. The idea is to enforce only one constraint per iteration and

acquire the optimum as a limit. We also call the single constraint nearness

problem a projection step, referring to the minimization property of orthogonal

projections in Euclidean geometry.

In the case of inequality constraints, an appropriate correction has to

follow the projection step. The method may also be viewed as a dual coor-

dinate ascent procedure that optimizes the dual with respect to a single dual

variable per iteration (with all other dual variables remaining fixed). Details

of convergence can be found in [12].
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For an equality constraint of the form tr(XAi) = bi, the Bregman

projection of the current iterate Xt may be computed by solving:

minimizeX Dφ(X,Xt)

subject to tr(XAi) = bi. (4.6)

We introduce the dual variable αi, and form the Lagrangian L(X,αi) =

Dφ(X,Xt)+αi(bi− tr(XAi)). By setting the gradient of the Lagrangian (with

respect to X and αi) to zero, we can obtain the Bregman projection by solving

the resulting system of equations simultaneously for αi and Xt+1:

∇φ(Xt+1) = ∇φ(Xt) + αiAi (4.7)

tr(Xt+1Ai) = bi.

For an inequality constraint of the form tr(XAi) ≤ bi, let νi ≥ 0 be the

corresponding dual variable. To maintain non–negativity of the dual variable

(which is necessary for satisfying the KKT conditions), we can solve (4.7) for

αi and perform the following updates:

α′i = min(νi, αi), νi ← νi − α′i. (4.8)

Clearly the update guarantees that νi ≥ 0. Finally, update Xt+1 via

∇φ(Xt+1) = ∇φ(Xt) + α′iAi. (4.9)

The main difficulty in using Bregman projections lies in efficiently solv-

ing the nonlinear system of equations given in (4.7).
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In the case where Ai = ziz
T
i , by calculating the gradient for the LogDet

and von Neumann matrix divergences, respectively, (4.7) simplifies to:

Xt+1 =
(
X−1
t − αizizTi

)−1
(4.10)

Xt+1 = exp(log(Xt) + αiziz
T
i ), (4.11)

subject to zTi Xt+1zi = bi. As we will see, for the von Neumann and LogDet

divergences, these projections can be computed very efficiently.

4.2 Bregman Divergences for Rank–deficient Matrices

As given in (4.1) and (4.2), the von Neumann and LogDet divergences

are seemingly undefined for low–rank matrices. For the LogDet divergence, the

convex generating function φ(X) = − log detX is infinite when X is singular—

in other words, its effective domain is the set of positive definite matrices. For

the von Neumann divergence the situation is somewhat better, since one can

define φ(X) = tr(X logX −X) via continuity for rank–deficient matrices.

The key to using these divergences in the low–rank setting comes from

restricting the convex function φ to the range spaces of the matrices. We fully

motivate this approach using Corollary 4 in [42, page 10] and arrive to the

following observations:

Observation 1. The von Neumann divergence DvN(X, Y ) is finite if and only

if range(X) ⊆ range(Y ).

Observation 2. The LogDet divergence D`d(X, Y ) is finite if and only if

range(X) = range(Y ).
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Assuming the eigenvalues of X and Y are in non–increasing order, we

arrive to the low–rank equivalent of (4.4) simply as:

Dφ(X, Y ) =
∑
i,j≤r

(vTi uj)
2Dϕ(λi, θj).

If we now revisit our optimization problem formulated in (4.5), where

we aim to minimize Dφ(X,X0), we see that the LogDet and von Neumann di-

vergences naturally maintain rank constraints. For the LogDet divergence,

the equality of the range spaces of X and Y implies that the rank of X

is equal to the rank of Y . Thus, when minimizing Dφ(X,X0), we main-

tain rank(X) = rank(X0), assuming that there is a feasible X with a finite

Dφ(X,X0). Similarly, for the von Neumann divergence, the property that

range(X) ⊆ range(X0) implies rank(X) ≤ rank(X0).

The rigorous treatment of the generalization to low–rank matrices is

found in [42, page 11]. Here we omit some of the proofs.

Let W be an orthogonal n× r matrix, such that its columns span the

range space of Y . We need the following simple and well–known lemma:

Lemma 3. Let Y be a symmetric n× n matrix with rank(Y ) ≤ r, and let W

be an n×r column orthogonal matrix (W TW = I) with range(Y ) ⊆ range(W ).

Then Y = WW TYWW T .

We are now ready to extend the domain of the von Neumann and

LogDet divergences to low–rank matrices.
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Definition 4. Consider the positive semidefinite n×n matrices X and Y such

that range(X) ⊆ range(Y ) when considering the von Neumann divergence, and

range(X) = range(Y ) when considering the LogDet divergence. Let an n × r

column orthogonal matrix W satisfy range(Y ) ⊆ range(W ) and define:

Dφ(X, Y ) = Dφ,W (X, Y ) = Dφ(W TXW,W TYW ), (4.12)

where Dφ is either the von Neumann or the LogDet divergence.

The first equality in (4.12) implicitly assumes that the right hand side

is not dependent on the choice of W , for a proof we refer to [42, page 11].

Lemma 4. In Definition 4, Dφ,W (X, Y ) is independent of the choice of W .

We now show that definition 4 is consistent with Corollary 4, demon-

strating that our low–rank formulation agrees with the informal discussion

given earlier.

Theorem 7. Let the positive semidefinite matrices X and Y have eigende-

compositions X = V ΛV T , Y = UΘUT and let range(X) ⊆ range(Y ). Let the

rank of Y equal r. Assuming that the eigenvalues of X and Y are sorted in

non–increasing order, i.e., λ1 ≥ λ2 ≥ ... ≥ λr and θ1 ≥ θ2 ≥ ... ≥ θr, then

DvN(X, Y ) =
∑
i,j≤r

(vTi uj)
2(λi log λi − λi log θj − λi + θj).

Proof. Denote the upper left r × r submatrices of Λ and Θ by Λr and Θr

respectively, and the corresponding reduced eigenvector matrices for X and Y
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by Vr and Ur. Picking W in (4.12) to equal Ur, we get:

DvN(X, Y ) = DvN(UT
r XUr, U

T
r Y Ur) = DvN((UT

r Vr)Λr(V
T
r Ur),Θr).

The arguments on the right hand side are r × r matrices and Θr is not rank–

deficient. We can now apply Corollary 4 to get the result.

Theorem 8. Let the positive semidefinite matrices X and Y have eigende-

compositions X = V ΛV T , Y = UΘUT , and let range(X) = range(Y ) and

assume that the eigenvalues of X and Y are sorted in decreasing order. Then:

D`d(X, Y ) =
∑
i,j≤r

(vTi uj)
2

(
λi
θj
− log

λi
θj

)
− r.

Proof. Similar to the proof of Theorem 7. Note that the range spaces must

coincide in this case, because the determinant of XY −1 should not vanish for

the restricted transformations, which agrees with the range(X) = range(Y )

restriction.

We next show that the optimization problem and Bregman’s projection

algorithm for low–rank matrices can be cast as a full rank problem in a lower

dimensional space, namely the range space. This equivalence implies that

we do not have to re–derive the convergence proofs and other properties of

Bregman’s algorithm in the low–rank setting.

Consider the optimization problem (4.5) for low–rank X0, and denote

a suitable orthogonal matrix as required in Definition 4 by W . The matrix of
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the eigenvectors of the reduced eigendecomposition of X0 is a suitable choice.

Consider the following matrix mapping:

M −→ M̂ = W TMW.

By Lemma 3, the mapping is one–to–one on the set of symmetric matrices

with range space contained in range(W ). We now apply the mapping to all

matrices in the optimization problem (4.5) to obtain:

minimize Dφ(X̂, X̂0)

subject to tr(X̂Âi) ≤ bi, 1 ≤ i ≤ c

rank(X̂) ≤ r

X̂ � 0. (4.13)

The rank constraint is automatically satisfied when rank(X0) = r and the

problem is feasible. X̂ � 0 if and only if X � 0. By Definition 4, Dφ(X̂, X̂0) =

Dφ(X,X0). Finally, the next lemma verifies that the constraints are equivalent

as well.

Lemma 5. Given an orthogonal matrix W , such that it satisfies range(X) ⊆

range(W ), it follows that tr(X̂Âi) = tr(XAi), where X̂ = W TXW , Âi =

W TAiW .

Proof. Let rank(X) = r and let the rank–r eigendecomposition of X be V ΛV T .

Since range(X) ⊆ range(W ), we may assume without the loss of generality
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that range(V ) = range(W ). We can write W = V Q for some orthogonal Q.

Then

tr(X̂Âi) = tr((W TXW )(W TAiW )) = tr(QTV TV ΛV TV QQTV TAiV Q)

= tr(V QQTΛQQTV TAi) = tr(V ΛV TAi) = tr(XAi).

If we assume that the optimization problem (4.5) has a (rank–deficient)

solution with finite divergence measure, then the corresponding full–rank op-

timization problem (4.13) also has a solution. Conversely, by Lemma 3, for a

solution X̂ of (4.13), there is the unique solution of (4.5) X = WX̂W T (with

finite Dφ(X,X0)) that satisfies the range space restriction.

4.3 The von Neumann Matrix Update Algorithm

In this section we derive the explicit matrix updates for Bregman’s

algorithm in the low–rank setting. Recall (4.7), which we used to calculate

the projection update and apply it to the mapped problem (4.13):

∇φ(X̂t+1) = ∇φ(X̂t) + αÂi

tr(X̂t+1Âi) = bi.

In case of the von Neumann divergence this leads to the update X̂t+1 =

exp(log(X̂t + αÂi). The arguments of Section 4.2 and induction on t implies

that Xt+1 = WX̂t+1W
T (with W as in Definition 4), or explicitly:

Xt+1 = W exp(log(W TXtW ) + α(W TAiW ))W T .
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If we choose W = Vt from the reduced eigendecomposition Xt = VtΛtV
T
t , then

the update is written as:

Xt+1 = Vt exp(log(Λt) + αV T
t AiVt)V

T
t , (4.14)

which we will use in the von Neumann kernel learning algorithm. Note that

the limit of exp(log(Xt + εI) + αAi) as ε approaches zero yields the same

formula, which becomes clear if we apply a basis transformation that puts Xt

in diagonal form.

The matrix Ai has often a quite special structure; we concentrate on

the case when it is of rank–one: Ai = zTi zi. The so–called distance constraints

are a special case with zi = ej − ek.

We take the eigendecomposition of the exponent:

log(Λt) + αV T
t ziz

T
i Vt = UtΘt+1U

T
t ,

and calculate the eigendecomposition of Xt+1 by Vt+1 = VtUt and Λt+1 =

exp(Θt+1). This special eigenvalue problem (diagonal plus rank–one update)

can be solved in O(r2) time; see [28], [31] and [20]. This means that the

matrix multiplication Vt+1 = VtUt becomes the most expensive step in the

computation, yielding O(nr2) complexity.

We reduce this cost by modifying the decomposition slightly. We let

Xt = VtWtΛtW
T
t V

T
t be the factorization of Xt, where Wt is an r×r orthogonal

matrix, while Vt and Λt are defined as before. The matrix update becomes

Xt+1 = VtWt exp(log Λt + αW T
t V

T
t ziz

T
i VtWt)W

T
t V

T
t ,
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yielding the following formulas:

Vt+1 = Vt, Wt+1 = WtUt, Λt+1 = exp(Θt+1),

where log Λt + αW T
t V

T
t ziz

T
i VtWt = UtΘt+1U

T
t . For a general rank–one con-

straint the product V T
t zi is calculated in O(nr) time, but for distance con-

straints O(r) operations are sufficient. The calculation of W T
t V

T
t zi and com-

puting the eigendecomposition UtΘt+1U
T
t will both take O(r2) time. The ma-

trix product WtUt appears to cost O(r3) time, but in fact a right multiplication

by UT
t can be approximated very accurately in O(r2 log r) and even in O(r2)

time using the fast multipole method—see [3] and [30].

Since we repeat the above update calculations until convergence, we can

avoid calculating the logarithm of Λt at every step by maintaining Θt = log Λt

throughout the algorithm.

The above calculations assumed a known value for the projection pa-

rameter α. In reality, we have to determine this value such that tr(Xt+1Ai) = bi

holds. There is no closed formula available and therefore we find α as the zero

of the function f(α) = tr(Xt+1Ai) − bi by using an iterative method (for ex-

ample the secant method).

The algorithm for distance inequality constraints using the von Neu-

mann divergence is given as Algorithm 4.
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Algorithm 4: Learning a low–rank kernel matrix in von Neumann
matrix divergence under distance constraints.

Input : r: rank of desired kernel matrix, {Ai}ci=1: constraints,
V0,Λ0: input kernel in factored form

1 Set W = Ir, Θ = log Λ0, i = 1, and νj = 0 ∀ constraints j.
2 repeat
3 vT = V0(i1, :)− V0(i2, :)
4 w = W Tv
5 Call ZeroFinder(f, bi) to determine α.
6 β = min(νi, α)
7 νi ← νi − β.
8 Factor Θ + βwwT = UΘUT .
9 W ← WU

10 i = mod (i+ 1, c)

11 until convergence of ν
12 V = V0W exp(Θ/2)

4.4 The LogDet Matrix Update Algorithm

In this section we derive the explicit matrix updates for Bregman’s

algorithm in the low–rank setting. Recall (4.7), which we used to calculate

the projection update and apply it to the mapped problem (4.13):

∇φ(X̂t+1) = ∇φ(X̂t) + αÂi

tr(X̂t+1Âi) = bi.

In case of the LogDet divergence this leads to the matrix update X̂t+1 =

((X̂−1
t −αÂi)−1. The arguments of Section 4.2 and induction on t implies that

Xt+1 = WX̂t+1W
T . (with W as in Definition 4), or explicitly:

Xt+1 = W ((W TXtW )−1 − α(W TAiW ))−1W T , (4.15)
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If we choose W = Vt from the reduced eigendecomposition Xt = VtΛtV
T
t , then

the update is written as:

Xt+1 = Vt((V
T
t XtVt)

−1 − α(V T
t AiVt))

−1V T
t , (4.16)

using Lemma 3 and the fact that range(Xt+1) = range(Xt). The right hand

side of (4.16) can be calculated without the eigendecomposition and a closed

formula exists for the projection parameter. Note that the projection parame-

ter α had to be calculated by iterative means for the von Neumann divergence.

The matrix Ai has often a quite special structure; we concentrate on

the case when it has rank–one: Ai = zTi zi. The so–called distance constraints

are a special case with zi = ej−ek. Equation 4.16 with a rank–one constraint

calculates the inverse of a rank–one update, suggesting the application of the

Sherman-Morrison inverse formula. Subsequent rewriting and simplification

leads to the following equation for α (for details see [42, page 14]);

zTi

(
Xt +

αXtziz
T
i Xt

1− αzTi Xtzi

)
zi = bi. (4.17)

Let p = zTi Xtzi. Note that in the case of distance constraints, p is the distance

between the two data points corresponding to constraint i. When p 6= 0,

elementary arguments reveal that there is exactly one solution for α provided

that bi 6= 0. The unique solution, in this case, can be expressed as:

α =
1

p
− 1

bi
. (4.18)

If we let

β = α/(1− αp), (4.19)
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then our matrix update is given by

Xt+1 = Xt + βXtziz
T
i Xt. (4.20)

When p = 0, (4.17) has a solution if and only if bi = 0 since (4.17)

implies that bi = p/(1− αp).

The following lemma confirms the expectation that we remain in the

positive semidefinite cone and that the range space is unchanged; for the proof

refer to [42, page 15].

Lemma 6. Given a positive semidefinite matrix Xt, the matrix Xt+1 from

the update in (4.20) is positive semidefinite with range(Xt+1) = range(Xt),

assuming that (4.6) is feasible.

A naive implementation of the update given in (4.20) costs O(n2) per

iteration. However, we can achieve a more efficient update for low–rank ma-

trices by working on a suitable factored form of the matrix Xt resulting in

an O(r2) algorithm. Both the reduced eigendecomposition and the Cholesky

factorization are possible candidates for the factorization; we prefer the latter

because the resulting algorithm does not have to rely on iterative methods.

The positive semidefinite rank–r matrix Xt can be factored as GGT ,

where G is an n× r matrix, and thus the update can be written as:

Xt+1 = G(I + βGTziz
T
i G)GT .

The matrix I + βz̃iz̃
T
i , where z̃i = GTzi, is an r × r matrix. To update G for

the next iteration, we factor this matrix as LLT ; then our new G is updated
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Algorithm 5: Learning a low–rank kernel matrix in LogDet diver-
gence under distance constraints.

Input : r: rank of desired kernel matrix, {Ai}ci=1: constraints,
G0: input kernel factor matrix

Output: G: output low–rank kernel factor matrix
1 Set B = Ir, i = 1, and νj = 0 ∀ constraints j.
2 repeat
3 vT = G0(i1, :)−G0(i2, :)
4 w = BTv

5 α = min
(
νi,

1
‖w‖22
− 1

bi

)
6 νi ← νi − α
7 β = α/(1− α‖w‖2

2)
8 Call CholUpdateMult(β,w, B) to factor I + βwwT = LLT

and update B ← BL.
9 Set i← mod (i+ 1, c).

10 until convergence of ν
11 G = G0B

to GL. Since I+βz̃iz̃
T
i is a rank–one perturbation of the identity, this update

can be done in O(r2) time using a standard Cholesky rank–one update routine.

To increase computational efficiency, we note that G = G0B, where B

is the product of all the L matrices from every iteration and G0 is the initial

factor of X0. Instead of updating G explicitly at each iteration, we simply

update B to BL. The matrix I + βGTziz
T
i G is then I + βBTGT

0 ziz
T
i G0B.

In the case of distance constraints, we can compute GT
0 zi in O(r) time as the

difference of two rows of G0. The multiplication update BL appears to have

O(r3) complexity, dominating the run time. The kernel learning algorithm

utilizing the matrix updates is presented as Algorithm 5.

In the next section we derive an algorithm that combines the Cholesky
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Algorithm 6: CholUpdateMult(α, x,B). Right multiplication
of a lower triangular r × r matrix B with the Cholesky factor of
I + αxxT in O(r2) time.

Input : α,x, B, with I + αxxT � 0, B is lower triangular
Output: B ← BL, with LLT = I + αxxT

1 α1 = α
2 for i = 1 to r do
3 t = 1 + αix

2
i

4 hi =
√
t

5 αi+1 = αi/t
6 t = Bii

7 s = 0
8 Bii = Biihi
9 for j = i− 1 to 1 do

10 s = s+ txj+1

11 t = Bij

12 Bij = (Bij + αj+1xjs)hj
13 end

14 end

factorization and the matrix multiplication with this factor into a single O(r2)

routine and reducing the complexity of Algorithm 5 to O(r2).

4.5 Fast Multiplication with a Cholesky Update Factor

We efficiently combine the Cholesky factorization with the matrix mul-

tiplication in CholUpdateMult, as given by Algorithm 6. A simple analy-

sis of this algorithm reveals that it requires 3r2 + 2r floating point operations

(flops). Thus, we can perform the Cholesky factorization followed by matrix

multiplication in O(r2) time, as opposed to the usual O(r3) time needed by

matrix multiplication. We devote this section to the development of this fast
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multiplication algorithm.

Recall the algorithm used for the Cholesky factorization of an r × r

matrix A (see [20], page 78):

1 for j = 1 to r do

2 ljj = (ajj −
∑j−1

k=1 l
2
jk)

1/2

3 for i = j + 1 to r do

4 lij = (aij −
∑j−1

k=1 likljk)/ljj
5 end

6 end

We will derive a corresponding algorithm in a manner similar to [20],

while exploiting the special structure present in our problem. Let us denote

the Ir +α1xx
T matrix by A (α1 = α) and write it as a product of three block

matrices:

A =

[√
1 + α1x2

1 0
α1x1√
1+α1x21

x2:r Ir−1

][
1 0

0 Ã22

] [√
1 + α1x2

1
α1x1√
1+α1x21

xT2:r

0 Ir−1

]
.

It follows that Ã22 +
α2
1x

2
1

1+α1x21
x2:rx

T
2:r = A22. Substitution of A22 by

Ir−1 + α1x2:rx
T
2:r and simplification leads to:

Ã22 = Ir−1 +
α1

1 + α1x2
1

x2:rx
T
2:r.

Introduce α2 = α1

1+α1x21
and proceed by induction. We extract the following

algorithm which calculates L satisfying LLT = A:
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1 for j = 1 to r do
2 t = 1 + αjx

2
j

3 ljj =
√
t

4 αj+1 = αj/t
5 t = αjxj/ljj
6 for i = j + 1 to r do
7 lij = txi
8 end

9 end

The above algorithm uses 1
2
r2+13

2
r flops to calculate L, while 1

2
r3+O(r2)

are needed for the general algorithm. However, we do not necessarily have

to calculate L explicitly, since the parameters αi together with x implicitly

determine L. Notice that the cost of calculating α1, α2, . . . , αr is linear in r.

Next we show how to calculate uTL for a given vector u without ex-

plicitly calculating L and arrive at an O(r) algorithm for this vector–matrix

multiplication. The coordinates of vT = uTL are equal to:

v1 = u1

√
1 + α1x2

1 +
α2√

1 + α1x2
1

x1(u2x2 + u3x3 + . . . urxr)

v2 = u2

√
1 + α2x2

2 +
α3√

1 + α2x2
2

x2(u3x3 + . . . urxr)

...

vr−1 = ur−1

√
1 + αr−1x2

r−1 +
αr√

1 + αr−1x2
r−1

xr−1urxr

vr = ur
√

1 + αrx2
r.

We can avoid the recalculation of some intermediate results if we eval-

uate vr first, followed by vr−1 down to v1. This strategy leads to the following
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algorithm:

1 vr = ur
√

1 + αrx2
r

2 s = 0
3 for j = r − 1 to 1 do
4 s = s+ uj+1xj+1

5 t =
√

1 + αjx2
j

6 vj = ujt+ αjxjs/t

7 end

Exactly 11r−5 flops are required by the above vector–matrix multipli-

cation algorithm, and therefore we can readily multiply an r × r matrix by L

using 11r2 − 5r flops. Even fewer flops are sufficient to implement the matrix

multiplication if we observe that the square root expression above is repeat-

edly calculated for each row, since it depends only on xj and αj. Additionally,

when multiplying with a lower triangular matrix, the presence of zeros allows

further simplifications. Taking these considerations into account we arrive at

the previously presented Algorithm 6, which uses exactly 3r2 + 2r flops.
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Chapter 5

A Zero-Finding Involving the Matrix

Exponential

5.1 Background and motivation

In the machine learning application of Chapter 4, see also [38, 41, 42],

a matrix nearness problem depends on finding the zero of the function

f(α) = zT elogX+αzzT

z − b (5.1)

where the n×n symmetric positive definite matrix X, vector z and the scalar

b > 0 are given parameters; the exponentiation and logarithm used are matrix

functions. The zero-finding computation arises during the construction of a

positive definite matrix that satisfies linear constraints while minimizing a dis-

tance measure called the von Neumann matrix divergence, see also [42]. In the

machine learning application the constraints are extracted from observations,

and the constructed positive definite matrix is used to carry out data analysis

tasks such as clustering, classification or nearest neighbor search [18, 39]. In

another application, one aims to find the nearest correlation matrix (positive

semidefinite matrix with diagonal elements equal to one) to a given initial

matrix. In [33], the nearness is measured using the Frobenius norm; how-

ever, other measures, such as the von Neumann matrix divergence, are also
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feasible [23].

The underlying matrix nearness problem can be solved by Bregman’s

iterative algorithm which consists of matrix updates that depend on finding

the zero of f(α). In this section we present an efficient zero-finding algorithm

that exploits the structure of the function. If the cost of evaluating the deriva-

tive is similar to the cost of evaluating the function itself, inverse quadratic

interpolation (which needs no derivative computations) is expected to be faster

than Newton’s method, see [40] and [49][p. 55]. In our problem, the evalua-

tion of f ′(α), once f(α) has been computed, costs less than the computation

of f(α) alone and therefore the cost of the derivative computations is offset by

the faster convergence of Newton’s method.

The lack of commutativity of matrix multiplication makes the deriva-

tive computation non-trivial. Our algorithm operates on the eigendecompo-

sition of the matrix and arranges the computations of f(α) and f ′(α) effi-

ciently. We also take advantage of the not widely used improvement to New-

ton’s method described in [40]. In numerical experiments we compare our

algorithm to zero-finders which do not need computation of the derivative.

5.1.1 Derivative of the Matrix Exponential

The formula for the derivative of the matrix exponential is not as simple

as that for the exponential function defined on the reals. The difficulty stems

from the non-commutativity of matrix multiplication. We start with some

basic properties of the matrix derivative and then review the formula for the
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derivative of the matrix exponential.

We consider smooth matrix functions of one variable denoted by M(x) :

R → Rn×n; these can also be thought of as R → R functions arranged in an n×

n matrix. The derivative matrix M ′(x) is formed by taking the derivatives of

the matrix elements. Our first observation is about the trace of the derivative.

By definition:

tr(M(x))′ = tr(M ′(x)). (5.2)

We turn to multiplication next. The lack of commutativity does not yet indi-

cate any difficulties:

(M(x)N(x))′ = M ′(x)N(x) +M(x)N ′(x). (5.3)

We are seeking tr
(
eM(α)A

)′
as the function f(α) defined in (5.1) is

of this form with M(α) = logX + αzzT and A = zzT . But in order to

demonstrate the issues caused by non-commutativity we take a short diversion

by looking at the slightly simpler example of tr(eM)′. From here on, when there

is no chance of confusion, we may omit the variable from our formulae.

We can express the matrix derivative of the kth power as follows:

(Mk)′ =
∑k−1

i=0 M
iM ′Mk−1−i. Note that the summation cannot be collapsed

when M and M ′ do not commute. However, if we take the trace on both sides

then the summation can be collapsed since tr(AB) = tr(BA) and tr(
∑

iAi) =∑
i tr(Ai) (the latter also holds for infinite sums when one of the sides con-

verges):

tr
(
Mk
)′

= k tr
(
Mk−1M ′) . (5.4)

57



By (5.4) and the power series expansion of the exponential function tr(eM)′

we get:

tr
(
eM
)′

= tr

(
∞∑
k=0

Mk

k!

)′
=
∞∑
k=0

tr
(
Mk
)′

k!

=
∞∑
k=1

tr
(
Mk−1M ′)

(k − 1)!
= tr

(
eMM ′) .

The above argument does not imply that the derivative of eM equals to

eMM ′ and it also does not readily extend to tr
(
eM(α)A

)′
. In order to tackle this

latter expression, we apply (5.2) and (5.3) to get tr(eM(α)A)′ = tr((eM(α))′A)

and then we use the formula for (eM)′ from [50][p. 15, Theorem 5]:

(eM)′ = eMh(adM)M ′, (5.5)

where the commutator operator adA : Rn×n → Rn×n satisfies adAB = AB −

BA, and

h(t) =

{
1−e−t

t
, t 6= 0

1 t = 0.
(5.6)

The analytical function h can be extended to act on linear operators (transfor-

mations) via its Taylor series and by the Jordan canonical form; for a detailed

treatment we refer the reader to [34][Chapter 1, Definition 1.2]1. The exten-

sion applied to the operator adM maps matrices to matrices and appears on

1The space of linear transformations over an n-dimensional vector space can be identified
with, and therefore is equivalent to the space of n × n matrices denoted by Mn. A linear
operator, like ad, that acts on Mn can be represented by an n2 × n2 matrix, because the
underlying linear space, Mn has dimension n2.
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the right hand side of (5.5) operating on M ′. The Taylor expansion of h(t)

around 0 is:

h(t) = 1− t

2!
+
t2

3!
− t3

4!
+ . . . =

+∞∑
i=0

(−t)i

(i+ 1)!
,

so one may write (5.5) in a more verbose way as:

(eM)′ = eM
+∞∑
i=0

1

(i+ 1)!
(− adM)iM ′.

5.2 Algorithms

We propose to solve f(α) = 0 using Newton’s method and the method

described by Jarratt in [40]. The latter zero-finder uses a rational interpolating

function of the form

y =
x− a

bx2 + cx+ d
(5.7)

fitted to the function and derivative values from two previous iterations. For

completeness, we outline Jarratt’s method in Algorithm 7. When the cost of

the interpolation itself is negligible, Jarrat’s method needs the same compu-

tational work as Newton’s method, but it yields faster convergence. Despite

this fact, this zero-finder has not gained sufficient attention. The (asymp-

totic) efficiency index2 in the sense of Ostrowski [49][Chapter 3, Section 11]

is
√

1 +
√

3 ≈ 1.653, if we assume that the computational cost to evaluate

f(α) and f ′(α) are the same. The efficiency index for Newton’s method under

the same assumption is only
√

2 ≈ 1.414. In comparison, inverse quadratic

2A similar concept is the order of convergence per function evaluation.
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Algorithm 7: Zero-finding based on P. Jarratt’s method, see [40].

Input : Subroutines to evaluate f and f ′, initial guess α0.
Output: Sequence of approximation to the solution of f(α) = 0.

1 Compute f0 = f(α0), f ′0 = f ′(α0).
2 α1 = α0 − f0/f

′
0. (Initial Newton step.)

3 for i = 2, 3, . . . do
4 Compute fi−1 = f(αi−1) and f ′i−1 = f ′(αi−1).
5 Set αi = αi−1 −

(αi−1 − αi−2)fi−1[fi−2(fi−1 − fi−2)− (αi−1 − αi−2)fi−1f
′
i−2]

2fi−1fi−2(fi−1 − fi−2)− (αi−1 − αi−2)(f 2
i−1f

′
i−2 + f 2

i−2f
′
i−1)

.

6 end

interpolation, which is the workhorse of Brent’s method [9] requires no deriva-

tive computations and has asymptotic efficiency index of 1.839. Newton’s and

Jarratt’s method can perform better when the derivative computation costs

less than the function evaluation and this is often the case when the objective

function is built from exp, sin, cos, see also [40]. In such circumstances, the

efficiency index for Newton’s and Jarratt’s methods may approach the order

of convergence, 2 and 1 +
√

3 ≈ 2.732 respectively.

We show how to efficiently carry out and arrange the computations

of f(α) and f ′(α) in Section 5.3. An additional improvement exploiting the

shape of the objective function is discussed in Section 5.4. We end this section

by a lemma that establishes that f is strictly monotone, which implies that

f(α) = 0 has a unique solution. The proof is very similar to Lemma 7 of [1];

the fact that zzT has rank one allows some simplifications. We also establish

convexity.

Lemma 7. If M is symmetric and z 6= 0 then f(α) + b = zT eM+αzzT
z is
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strictly monotone increasing and strictly convex.

Proof. First, we note that it is sufficient to show that the first and second

derivatives are positive at any given α0. Consider the function f(α) = f(α +

α0), a shift by α0. Since f(α) = zT eM+αzzT
z − b where M = M + α0zz

T is

also a symmetric matrix, we can conclude that it is sufficient to prove that the

first and second derivatives are positive at α = 0.

Second, we show that we can assume that M is positive definite. Oth-

erwise, pick a β that is large enough so that M̂ = M + βI is positive definite.

Since eM+αzzT
= e−βeM̂+αzzT

, we conclude that the sign of the derivatives is

the same for M̂ and M .

In order to establish the claim in the case of a positive definite M and

α = 0, we inspect the coefficients in the power series expansion of zT eM+αzzT
z

around zero. We note that f is analytical, which can be seen by bounding the

terms of the expansion. According to the power series expansion of exp we

have:

zT eM+αzzT

z = zT
∞∑
k=0

(M + αzzT )k

k!
z

=
∞∑
k=0

zTMkz

k!
+ α

∞∑
k=1

1

k!

k−1∑
i=0

zTM izzTMk−1−iz

+ α2

∞∑
k=2

1

k!

∑
i+j≤k−2

zTM izzTM jzzTMk−2−i−jz + · · ·

For a positive definite M and integer i we have zTM iz > 0, implying

that the coefficient of αl is positive for all l ≥ 0.
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5.3 Evaluation of f and its derivative

We now show that f(α) can be computed at a cost of 2n2+O(n) floating

point operations (flops), in addition to the flops that are needed to compute

the eigendecomposition of a diagonal plus rank-one matrix. This eigendecom-

position is expected to dominate the total cost of the function evaluation. In

order to compute f ′(α) as well, we need 3n2 + O(n) additional flops. We

note that n floating point exponentiations (which are significantly more costly

than additions and multiplications) are also necessary to get f(α), however the

computational cost is still dominated by the O(n2) additions/multiplications.

No additional floating point exponentiations are needed to compute f ′(α).

We assume that we maintain the eigendecomposition of each iterate of

Bregman’s algorithm as is done in the machine learning application, see [42].

We do not count the initial cost of computing this eigendecomposition. In

some applications the factors form the input to the whole procedure and the

updated factors are the output. Even if the factors have to be produced, or the

matrix assembled upon return, these steps need to be carried out only once

and the cost is amortized over the iterative steps of Bregman’s algorithm.

In the presence of the eigendecomposition X = V ΛV T , we can express

f(α) as follows:

f(α) = zT elog(V ΛV T )+αzzT

z − b = zTV elog Λ+αV T zzTV V Tz − b (5.8)

= vT elog Λ+αvvT

v − b,

where v = V Tz. We begin the evaluation by solving a diagonal plus rank-one
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eigendecomposition

log Λ + αvvT = UΘUT , Θ = diag(θ) (5.9)

which can be done in O(n2) time [32]. Next, we form u = UTv and get:

f(α) = vT eUΘUT

v − b = vTUeΘUTv − b = uT eΘu− b (5.10)

= (u ◦ eθ)Tu− b,

where ◦ denotes the Hadamard product. We move on to the efficient compu-

tation of f ′(α). The expression in (5.8) can be written in the form tr(eM(α)A)

with A = vvT and M(α) = log Λ + αvvT . According to (5.2), (5.3) and (5.5)

the derivative at α equals:

f ′(α) = tr
(
(eM(α))′A

)
(5.11)

= tr
(
elog Λ+αvvT ·

(
h
(
adlog Λ+αvvT

)
vvT

)
· vvT

)
.

In order to compute the expression h
(
adlog Λ+αvvT

)
vvT , we reduce the problem

to the diagonal case and then use the spectral decomposition of the operator

in question.

Lemma 8. Let U ∈ Rn×n orthogonal and let Θ and B be arbitrary matrices.

Then the following holds:

adUΘUT B = U adΘ(UTBU)UT .

Proof. By the definition of the ad operator and UUT = I, the right hand side

above may be rewritten as:

U(ΘUTBU − UTBUΘ)UT = UΘUTB −BUΘUT = adUΘUT B.
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An analytical function can be extended to the operator space using

the Jordan canonical form [34] (Chapter 1, Definition 1.2). Lemma 9 below

generalizes the above result to analytical functions of the operator adΘ:

Lemma 9. Let U , Θ and B be as in Lemma 8 and let g be analytical. The

following holds:

g(adUΘUT )B = Ug(adΘ)(UTBU)UT .

Proof. Since g is analytical, it is sufficient to show that for any nonnegative

integer k:

adkUΘUT B = U adkΘ(UTBU)UT .

For k = 0 the statement is immediate and we proceed by induction on k.

Assume that the statement holds for k ≥ 1, then apply Lemma 8 and the

definition of ad to finish the proof:

adkUΘUT B = adUΘUT (adk−1
UΘUT B) = adUΘUT (U adk−1

Θ (UTBU)UT )

= U adΘ(UTU adk−1
Θ (UTBU)UTU)UT = U adkΘ(UTBU)UT .

Our next step is to calculate g(adΘ) using the spectral theorem. By the

definition of the adjoint, one can easily show that if X is symmetric, then adX

is self-adjoint, and so in our case we can use the eigendecomposition of adΘ to

calculate g(adΘ). The following argument mimics Lemma 8 of [50, Chapter 1],
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which gives the eigenvectors of adX ; here we only need to deal with diagonal

matrices. The definition of ad and the elementary calculation

adΘ eie
T
j = Θeie

T
j − eieTj Θ = (θi − θj)eieTj (5.12)

shows that the eigenvectors of adΘ are the n2 matrices of the form eie
T
j with

eigenvalues θi − θj respectively, where Θ = diag(θ).

Lemma 10. Let Θ = diag(θ) be diagonal, and g analytical. For any B we

have:

g(adΘ)B =
∑
i,j

g(θi − θj)(eTi Bej)eieTj . (5.13)

Proof. Repeated application of (5.12) establishes that for any nonnegative

integer k:

adkΘB = adkΘ
∑
ij

(eTi Bej)eie
T
j =

∑
ij

(θi − θj)k(eTi Bej)eieTj .

The proof is completed by appealing to the analytical property of g.

We note that the right hand side of (5.13) can be expressed as the

Hadamard product of B and the matrix which has its (i, j) element equal

to g(θi − θj). According to Lemma 9 and equation (5.9), we have for any

analytical g,

g
(
adlog Λ+αvvT

)
vvT = g(adUΘUT )vvT = Ug(adΘ)(UTvvTU)UT .
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Recall from Section 5.3 that we introduced u = UTv and that Θ = diag(θ).

Now we define matrix H to have (i, j) element equal to h(θi − θj), where h is

as in (5.6) and so finally from (5.11) and Lemma 10 we have:

f ′(α) = vT eUΘUT

U(H ◦ uuT )UTv (5.14)

= vTUeΘUTU(H ◦ uuT )u = (u ◦ eθ)T (H ◦ uuT )u.

An alternative derivation for f ′(α) based on the Daleckii–Krein theorem is also

possible, see [5][p. 60, p.154].

Note that the computation of the eigenvalues and the vector u is also

part of the computations needed to evaluate f at α, see (5.10). Therefore

no additional eigendecompositions are necessary to compute the derivative.

The direct computation of elements of the matrix H would require n2 floating

point exponentiations. Fortunately, we do not need to compute H explicitly,

but instead we may expand the right hand side of (5.14) to get:

f ′(α) =
n∑

i,j=1

u2
iu

2
je
θih(θi − θj) (5.15)

= 2
∑

1≤i<j≤n

θi 6=θj

u2
iu

2
j

eθi − eθj
θi − θj

+ 2
∑

1≤i<j≤n

θi=θj

u2
iu

2
je
θi +

n∑
i=1

u4
i e
θi .

The above form exploits symmetry and allows the reuse of the eθi terms avail-

able from the computation of f(α). We need 2.5n2 floating point additions,

subtractions and multiplications and 0.5n2 floating point divisions. The cost

of floating point divisions on modern architectures is between 2.5 to 3 times

that of floating point addition. It is important to note that exponentiation is a
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much more expensive operation; its cost is about ten times that of a division.

We summarize the computational steps required to compute f(α) and f ′(α)

in Algorithm 8.

Algorithm 8: Computations needed to evaluate f and f ′.

Input : Matrix X with its V ΛV T eigendecomposition; vector z;
scalar α.

Output: f(α), f ′(α), see (5.1).
∗
± / exp

1 v = V Tz 2n2

2 Factor log Λ + αvvT = U diag(θ)UT `n2

3 u = UTv 2n2

4 x = u ◦ eθ n n
5 f(α) = xTu− b 2n
6 f ′(α) = xT (H ◦ uuT )u see (5.14), (5.15) 2.5n2 0.5n2

The repeated computation of f(α) takes (2+`)n2 +O(n) floating point

operations (flops) where `n2+O(n) flops are needed for the eigendecomposition

of a diagonal plus rank-one matrix3. Note that only steps 2 to 6 in Algorithm 8

have to be done repeatedly while finding the zero, so we did not include the

matrix-vector multiplication in step 1 in the flop count for computing f(α).

When we are computing f ′(α), we are reusing intermediate results from the

computation of f(α) and therefore we need only about 2.5n2 additional float-

ing point additions/multiplications and 0.5n2 divisions. We expect the total

computational cost to be dominated by the eigendecomposition.

The above discussion of the operation counts did not consider the issue

of numerical accuracy. The difference quotient term of (eθi − eθj)/(θi − θj)

3We observed the value of ` to typically fall between 25 and 50.
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in (5.15) may suffer from catastrophic cancellation when θi and θj are not well

separated. Our solution is to use an alternate formula when x = (θi− θj)/2 is

sufficiently small:

eθi − eθj
θi − θj

= eθi/2eθj/2
sinh(x)

x
= eθi/2eθj/2

(
1 +

x2

3!
+
x4

5!
+
x6

7!
+R(x)

)
.

As indicated by the above equation we approximate sinh x using its Taylor

expansion, which converges rapidly for small x. The native floating point

instruction computing sinh produces accurate results, but if it were used for

all (θi, θj) pairs, then we would pay a substantial performance penalty4. When

|x| ≥ 0.1, we use the original form that appears in (5.15), otherwise we use

the above Taylor approximation. Elementary calculations using the Lagrange

form of the remainder reveal that |R(x)| is less than the machine epsilon when

|x| < 0.1. Our implementation uses six floating point multiplications and three

additions and no divisions5 which should be compared to the two subtractions

and a division in the original difference quotient formula. We observed no

adverse effect on performance.

5.4 Logarithmic prescaling

All the zero-finding algorithms discussed use interpolation to fit simple

functions to find the next approximation. Newton’s method as well as the

secant method use straight lines, the inverse quadratic interpolation method

4We found that the computation of sinh using a floating point instruction is 35 times
longer than a multiplication.

5Constant divisions are turned into multiplications.
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Figure 5.1: Overflow and underflow resulting in α2 = α4 (no progress) for the
secant method.
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uses the inverse of a quadratic function, as its name suggests, and Jarrat’s

method uses a function of the form given by (5.7).

When the graph of the objective function has a known specific shape,

it may be advantageous, or even necessary, to fit a different function. We note

that convexity of f , established in Lemma 7, implies convergence for the secant

method, regardless of initial guesses. However, in floating point arithmetic,

the presence of overflow, underflow and rounding error may result in lack of

convergence. Figure 5.1 depicts the situation where the secant method does

not make progress: the function value at α3 is so large (not shown on the figure)
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that the computation of α4 suffers from underflow, resulting in α4 = α2. This

issue affects the other three zero-finding algorithms as well.

A similar problem occurs during the solution of the secular equation

used to compute the eigendecomposition of a rank-one update to a diagonal

matrix. The solution there is to fit a rational function which has the same

asymptotes as the objective function [10, 45]. In our case, better convergence

can be attained by fitting parameterized exponential functions. Doing so helps

with the overflow/underflow problem depicted in Figure 5.1 and speeds up

convergence.

We implement this idea of fitting a nonlinear function using a slightly

different approach than what is found in [10, 45]. The main advantage of our

solution is that we do not need to derive the (parameterized) fitting function,

making it is easier to apply when a function such as (5.7) is used for interpola-

tion. We apply a transformation to the function f(α) that yields a transformed

function, g(α), and we use the zero-finders on g(α) in their original form. Our

transformation applies a logarithmic prescaling; we introduce:

g(α) = log(f(α) + b)− log b (5.16)

and observe that g is monotone and has the same zero as f . For the Newton-

type methods we also need the derivative: g′(α) = f ′(α)/(f(α)+b). Note that

the additional computations are negligible.
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5.5 Experimental results

We compare Newton’s method and Jarrat’s method, both of which

employ the use of derivatives, to the secant method and inverse quadratic

interpolation which are zero-finding algorithms that do not require calculation

of the derivative.

We implemented the algorithms in C++ as matlab [47] and oc-

tave [27] compatible mex files which call the Fortran dlaed4 function from

lapack [2] for the diagonal plus rank-one eigendecompositions. We imple-

mented the correction for accurate eigenvectors according to [32], and also

implemented deflation in C++; we utilized fast linear algebra routines from

blas [6]. In all algorithm versions we accepted an approximation as the zero

when the function value was not larger then n · eps for an n × n matrix. We

tested the performance of the algorithms in three sets of experiments. We

revisited the protein data experiment (gyrB) from [41, 42]; we carried out a

“synthetic” correlation matrix experiment motivated by [33]; and in the third

experiment we find the zero of a slightly modified version of (5.1) as a result of

the use of the so called “slack variables” in the hand written digits recognition

(MNIST) experiment in [42].

We compare running times and the number of eigendecompositions

(the most expensive step) executed by the zero-finding methods. We used

a computer with an Intel X3460 CPU running at 2.8GHz utilizing 8MB of

cache. We ran the algorithms in single threaded mode (including the BLAS

and LAPACK subroutines) with no other programs running.
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Table 5.1: Running times and number of (rank-one update to a diagonal ma-
trix) eigendecompositions executed by the various algorithms when solving the
protein data classification problem using 1000 constraints. The middle column
indicates the relative performance when compared to the secant method ap-
plied to f . Function g is defined by (5.16).

Protein data classification
Applied run-time run-time ratio com- number of

to Method (sec) pared to secant on f eigendecomp.

f
secant 7.49 1.00 43,781
inv. quad. int. 6.82 0.91 39,733
Newton 5.63 0.75 30,148
Jarratt 4.73 0.63 24,994

g
secant 6.62 0.88 38,380
inv. quad. int. 6.20 0.83 35,941
Newton 4.86 0.65 25,557
Jarratt 4.49 0.60 23,523

The first experiment reproduces a result from [41,42], where the objec-

tive is to find a 52× 52 kernel matrix for protein data classification. The task

is formulated as a matrix nearness problem using the von Neumann matrix

divergence, DvN(X, Y ) = tr(X logX−X log Y −X+Y ), as the nearness mea-

sure. We extract 1000 linear inequality constraints from the training data and

use Bregman’s iterative process starting from the identity matrix; for addi-

tional details we refer the reader to [41, 42]. Table 5.1 presents running times

of the different zero-finders and the number of eigendecompositions needed.

The methods using derivatives are seen to have better performance due to

fewer eigendecompositions.

In the second experiment the objective is to find the nearest correlation
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Table 5.2: Running times and number of (rank-one update to a diagonal
matrix) eigendecompositions executed by the various algorithms when solving
the correlation matrix problem. The middle column indicates the relative
performance when comparing to the secant method applied to f . Function g
is defined by (5.16).

Nearest correlation matrix
Applied run-time run-time ratio com- number of

to Method (sec) pared to secant on f eigendecomp.

f
secant 201.3 1.00 9,255
inv. quad. int. 190.1 0.94 8,568
Newton 172.3 0.86 6,824
Jarratt 145.5 0.72 5,321

g
secant 182.0 0.90 8,082
inv. quad. int. 169.9 0.84 7,371
Newton 141.8 0.70 5,094
Jarratt 136.6 0.68 4,741

matrix X to a given positive definite starting matrix Y :

minimize DvN(X, Y ), subject to Xii = 1, i ∈ {1, . . . , n}, X � 0.

We generated Y to be a random symmetric matrix with eigenvalues uniformly

distributed in (0, 1). The results in Table 5.2 are averaged from ten runs using

500 × 500 randomly generated matrices. We observe again that the use of

the derivative improves performance when compared to non-derivative based

zero-finding methods.

In the third experiment we executed Bregman’s algorithm using the

MNIST data set consisting of images of handwritten digits encoded as 164-

dimensional vectors. For details on this experiment we refer the reader to [42].
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The zero-finding problem is a slightly modified version of (5.1) due to the use

of slack variables. Here, we only give a short summary. Instead of enforcing

the constraints, we penalize deviation from the desired conditions using the

relative entropy KL(x,y) =
∑

i(xi log(xi/yi)− xi + yi), the vector divergence

from which the von Neumann matrix divergence is generalized:

minimizeX,b DvN(X, Y ) + γKL(b, b0),

subject to tr(XAi) ≤ eTi b, i ∈ {1, . . . , c}, X � 0.

The objective function measures the distance from the starting matrix Y as

well as the amount by which the constraints are relaxed. The γ > 0 parameter

controls how much “slack” we permit; in essence it is used to find the balance

between over- and under-constraining the optimization problem.

The resulting zero-finding problem is a slightly modified version of (5.1):

zT elogX+αzzT

z + eα/γ − b = 0.

The derivative computation and other discussions of Section 5.2 apply after

minor modifications.

In Table 5.3 we present the MNIST handwritten digits recognition

experiment results for four zero-finding methods. We only show the versions

using the logarithmic prescaling, because without that improvement the algo-

rithms greatly suffer from the overflow/underflow problem discussed in Sec-

tion 5.4, which would force the use of the bisection (or some other, but still in-

efficient) method for many iterations. Due to the modified objective function,
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Table 5.3: Running times and number of (rank-one update to a diagonal ma-
trix) eigendecompositions executed by the algorithms when solving the MNIST
handwritten digits recognition problem. The algorithms were applied to func-
tion g as defined by (5.16).

MNIST handwritten digits recognition
run-time number of rank-one

Method (sec) eigendecompositions
secant 281.7 444,385
inv. quad. int. 274.7 432,411
Newton 175.0 241,637
Jarratt 175.0 241,641

for which the logarithmic prescaling works very well, the number of iterations

executed by the zero-finders is quite low (never more than four for Newton

and Jarrat’s method). The inverse quadratic interpolation provides its first

approximation only in the fourth iteration and Jarratt’s method in the third.

Simply put, the faster convergence has no time to set in for inverse quadratic

interpolation and Jarrat’s method. As a result, the quadratic interpolation

method yields only a slight benefit over the secant method and Jarratt’s

method does not yield any improvement over Newton’s method. Newton’s

method requires nearly half the number of eigendecompositions when com-

pared to inverse quadratic interpolation, while the running time improvement

is 36%.
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Chapter 6

Improvement of the Secular Equation Solver

Finding the eigenvalues of a diagonal plus rank-one matrix amounts to

computing the zeros of the so-called secular function. The central idea of the

state-of-the-art LAPACK implementation written by Ren-Cang Li is based

on a modified Newton’s method where a suitable rational approximation is

used in place of straight lines. In this chapter, we describe an improvement

to the secular equation solver that speeds up convergence by building on a

long forgotten zero finding method by P. Jarratt. Numerical experiments of

Section 5.5 demonstrate the advantages of our approach.

6.1 Background

The state-of the art LAPACK [2] implementation of the divide and

conquer eigensolver [10, 32, 45] relies on the finding of the zeros of the secular

equation:

f(x) =
1

ρ
+

n∑
k=1

z2
k

dk − x
. (6.1)

The zeros are interlaced between the poles of f located at dk and the iterative

algorithm computes them independent of each other, making the approach
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highly parallelizable. The algorithm is motivated by Newton’s method. How-

ever, instead of fitting straight lines, rational approximating functions are used

with up to three poles, two of which always coincide with the nearest poles of

f , see [45] for details.

The improvement is based on the somewhat forgotten algorithm of P.

Jarratt [40], dating back to 1966. He described how to use two prior iterations

to speed up Newton’s algorithm without the need for extra function evaluations

to achieve a convergence order of 1 +
√

3. We note however, that the (asymp-

totic) efficiency index (or the similar order of convergence per function evalua-

tion) in the sense of Ostrowski [49][Chapter 3, Section 11] is a better measure

of actual performance. For example, when the cost of the computation of the

derivative equals to that of the function, the order of convergence per func-

tion evaluation is
√

2 for Newton’s method. In comparison, inverse quadratic

interpolation, the workhorse of Brent’s method [9], which does not need the

computation of the derivative has asymptotic efficiency index of 1.839 >
√

2.

The algorithm due to Jarratt can perform well when the additional cost of the

derivative computation is less than the cost of the function evaluation. It is

also necessary that the cost of the rational approximation employed is suffi-

ciently small in comparison to the function evaluation. This was the case for

the zero-finding problem discussed in Chapter 5, see also [56]. The algorithm

finding the zero of the function involving the matrix exponential takes advan-

tage of the accelerated convergence of Jarrat’s method. We emphasize that

Jarratt’s method is always an improvement over Newton’s method when the
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cost of the rational approximation is small compared to the function evalua-

tion. Only when comparing the performance to inverse quadratic interpolation

one needs to consider the cost of the derivative computations.

6.2 Jarratt’s method

First we recall the zero finder due to P. Jarratt that we have also used

in Chapter 5.2, full details are in [40]. This iterative zero finder uses a rational

interpolating function of the form

y =
x− a

bx2 + cx+ d
(6.2)

fitted to the function and derivative values from two previous iterations. We

denote the function by g, the last two approximations to its zero by xi−2 and

xi−1, and we also introduce the gi−1 = g(xi−1), gi−2 = g(xi−2) and g′i−1 =

g′(xi−1), g′i−2 = g′(xi−2) shorthands. The new approximation to the zero

denoted by xi can be computed as follows:

xi = xi−1 −
(xi−1 − xi−2)gi−1[gi−2(gi−1 − gi−2)− (xi−1 − xi−2)gi−1g

′
i−2]

2gi−1gi−2(gi−1 − gi−2)− (xi−1 − xi−2)(g2
i−1g

′
i−2 + g2

i−2g
′
i−1)

. (6.3)

We outlined Jarratt’s method as Algorithm 7 in Section 5. In its original

form, Jarratt’s method can simply replace Newton’s method; however in the

case of the secular function the fitting of straight lines is already replaced by a

rational approximation. In the next section we formulate the secular equation

solver in a way that will make the connection to Newton’s method clear and

the application of Jarrat’s method straightforward.
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6.3 Reparameterization

We formulate the fitting of a rational function in place of straight lines

in a way which provides a quite convenient view for our exposition and also

for the algorithm implementation. We can transform an arbitrary zero finding

problem f(x) = 0 to

g(x) = h−1(f(x))− h−1(0) = 0 (6.4)

where the function h is strictly monotone and continuous. If we assume that

h is sufficiently smooth, then the function g inherits the necessary smoothness

of f and we can apply a given zero finder algorithm to g in place of f .

In case of the secular function (6.1) we select h to be the two or three

pole approximation between the poles at di and di+1 as described in [45]. The

approximation h is constructed such that:

h(xi−1) = f(xi−1), h′(xi−1) = f ′(xi−1),

where xi−1 is the previous approximation to the zero. The derivative of g

defined by (6.4) is:

g′(x) =
f ′(x)

h′(h−1(f(x)))
.

We compute g(xi−1) and g′(xi−1) as follows:

g(xi−1) = h−1(f(xi−1)− h−1(0) = h−1(h(xi−1))− h−1(0) = xi−1 − h−1(0)

g′(xi−1) =
f ′(xi−1)

h′(h−1(f(xi−1)))
=
f ′(xi−1)

h′(xi−1)
= 1.
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The Newton iteration applied to g yields: xi = xi−1 − g(xi−1)/g′(xi−1) =

h−1(0), in other words, the next approximation xi is the zero of the approxi-

mating function h just as called for when solving the secular equation in [45].

Now, that we have established that the zero finding algorithm in ques-

tion can be viewed as a classical Newton iteration step applied to the function

g, it will be straightforward to apply Jarratt’s method as well. We describe

the details in the next section.

It is worth pointing out the use of a different h approximation in each

iteration. This is slightly different from the approach we used in Section 5

where we employed a single reparametrization function.

6.4 Algorithm

We are modifying the secular equation solver described in [45] by im-

proving the approximation by using Jarratt’s method [40] and as a result we

reduce the number of iterations needed. We continue to use the definitions

introduced in Section 6.3.

We will apply Jarratt’s rational approximation to the function g defined

by (6.4). We already have g(xi−1) = xi−1 − h−1(0) and g′(xi−1) = 1; we need

to compute g(xi−2) and g′(xi−2) as well in order to successfully apply step 5 of

Algorithm 7. By definition g(xi−2) = h−1(f(xi−2))− h−1(0), and therefore we

solve the h(x)− f(xi−2) = 0 zero finding problem in addition to the h(x) = 0

(which was already needed to compute g(xi−1)). We introduce η and µ as the
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solutions of these equations:

h(η) = 0, h(µ)− f(xi−2) = 0. (6.5)

We note that since h is a two or three pole approximation, the above zero

finding tasks are easier to solve (and cost much less computationally) than

working with f . Definitions and elementary calculations yield:

g(xi−2) = µ− η, g′(xi−2) =
f ′(xi−2)

h′(β)
, g(xi−1) = xi−1 − η, g′(xi−1) = 1. (6.6)

We present the resulting algorithm as Algorithm 9.

Algorithm 9: High level proposed secular equation solver.

Input : Secular equation (f in (6.1)) parameters: zk, dk, ρ.
Index of zero sought: k.

Output: Approximations x1, x2, . . . to the zero of f in the interval
(dk, dk+1).

1 Compute the initial guess x1.
2 Evaluate f(x1) and f ′(x1).
3 Compute the h approximation with two or three poles, such that
h(x1) = f(x1) and h′(x1) = f ′(x1) holds.

4 Solve h(x2) = 0.
5 for i = 3, 4, . . . do
6 Compute the h approximation with two or three poles, such

that h(xi−1) = f(xi−1) and h′(xi−1) = f ′(xi−1) holds.
7 Solve h(η) = 0.
8 Solve h(µ)− f(xi−2) = 0.
9 Compute h′(µ).

10 Set gi−2 = µ− η, g′i−2 = f ′(xi−2)/h′(µ).
11 Set gi−1 = xi−1 − η, g′i−1 = 1.
12 Compute xi using (6.3).

13 end
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6.5 Numerical accuracy and implementation

We already encountered one issue related to numerical accuracy that

we did not yet discuss explicitly. Recall the computation of the next approxi-

mation to the zero, described by Equation (6.3):

xi = xi−1 −
(xi−1 − xi−2)gi−1[gi−2(gi−1 − gi−2)− (xi−1 − xi−2)gi−1g

′
i−2]

2gi−1gi−2(gi−1 − gi−2)− (xi−1 − xi−2)(g2
i−1g

′
i−2 + g2

i−2g
′
i−1)

.

We compute a small correction to xi−1 in the second term above and therefore

even when the number of useful digits in the computed correction term is

relatively small, it still allows the computation of xi to high accuracy.

In step 9 of Algorithm 9 we have to be careful in evaluating h′(µ). Note,

that the parameters of function h are to be computed so that h and h′ matches

f and f ′ at the two prior points. However, the actual computed parameters

suffer from errors due to the floating point representation. If we substitute into

the computed h we find that the results do not equal the prescribed values

of f and f ′. The reparametrization that we introduced in Section 6.3 does

not rely on h satisfying the equations determining the approximation. One

possible solution is to recompute h′(xi−1) even though in exact arithmetic this

value must be 1.

6.6 Experiments

We compared our secular equation solver to the state-of-the-art imple-

mentation that can be found in lapack. Our goal is to demonstrate that

our improved secular equation solver computes the eigenvalues to the same
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acuracy as the state-of-the-art implementation and that a small improvement

in execution speed can be expected. We executed our algorith in standalone

mode as well as integrated into the Divide and Conquer (D&C) eigensolver.

Our goal is to compare our secular equation algorithm to the state-of-the-art

implementation. It is not our intention to compare the symmetric eigensolvers

including D&C, for such a study we refer to [22].

We used a computer with an Intel X3460 CPU running at 2.8GHz

utilizing 8MB of cache. We ran the algorithms in single threaded mode, and

we report CPU time.

In the first experiment we look at eight problem instances which chal-

lenge the secular equation zero-finders by featuring clustered zeros. These

examples were provided by Ren-Cang Li [46]. The data originates from stress

tests and actual (problematic or failing) runs of the divide and conquer al-

gorithm originated from problem reports. Subsequent analysis resulted in al-

gorithm modifications for the secular equation solver. We present the results

in Table 6.1. Our improved algorithm implementation reduces the maximum

number of iterations (approximation steps) needed to find the zeros in seven

out of the eight examples as well as the total number of iterations executed.

The lack of improvement in the eighth example can be explained by the smaller

problem size and the fact that a relatively low number of approximation steps

are needed for both algorithms.

In the next set of experiments we look at four large matrix examples

that we extracted from the stetester software package [21], see also [22]. We
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Table 6.1: Total number of iterations and maximum iteration for the Ren-Cang
Li examples.

Eight clustered eigenvalue tests
max # OLD 8 6 7 7 7 8 6 5
of iterations NEW 7 5 6 6 6 7 5 5
total # OLD 113 194 245 1805 337 134 173 86
of iterations NEW 110 186 232 1687 334 132 165 86
problem size 30 40 50 364 100 40 40 23

Table 6.2: Running times and maximum relative errors in the eigenvalues
computed for selected large symmetric tridiagonal matrices.

Four large eigenvalue tests
Clement NASA BCSSTKM13 Bennighof

time relative time relative time relative time relative
(sec) error (sec) error (sec) error (sec) error

OLD 8.36 3.8e-13 2.00 2.0e-13 5.49 8.2e-11 76.40 4.9e-08
NEW 8.05 4.0e-13 1.95 2.0e-13 5.37 6.0e-11 73.61 4.9e-08

incorporated our improved secular equation solver into the divide-and-conquer

eigensolver and computed the eigenvalues of the symmetric tridiagonal matri-

ces. In Table 6.2 we feature the four matrices: Clement which has known

exact eigenvalues and three large matrices that arose from aerospace engineer-

ing, see [22] and references therein. The Clement matrix in the experiment

has dimension n = 10000, its eigenvalues are well separated, namely they

are ±1,±2, . . . ± 10000. Deflation is limited for this matrix [22]. The ma-

trices NASA, BCSSTKM13 and Bennighof have dimensions 2146, 8012 and

24873 respectively, they arose in aerospace engineering applications. We ob-
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Table 6.3: Iteration and floating point counts and CPU times when using
quadruple precision IEEE arithmetic for selected tridiagonal matrices.

Quadruple precision tests
Clement NASA BCSSTKM13

iter. flops time iter. flops time iter. flops time
×103 ×106 (sec) ×103 ×106 (sec) ×103 ×106 (sec)

OLD 475 4114 886.5 325 2895 624.6 375 3948 856.8
NEW 423 3705 817.1 296 2694 587.8 346 3641 804.6

serve that our solver computes the eigenvalues to the same accuracy while it

executes 3.5% faster.

In the third set of experiments we look at iteration and floating point

operation counts when using quadruple precision. Higher precision require-

ments result in more iteration per zero when solving the secular equation and

therefore we expect a larger improvement. In Table 6.3 we observe that the

iteration count and the number of floating point operations is reduced by more

than 7.5%. The quadruple precision IEEE arithmetic is not usually supported

in hardware, but instead emulated in software, resulting in much longer execu-

tion times. We provide the execution times for completeness, while we stress

that the presence of the software emulation layer is not fully considered. We

run this experiment using an Intel T7700 CPU running at 2.4GHz.
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6.7 Convergence speed

We present an alternative proof for the order of convergence for Jar-

ratt’s method [40]. Our first lemma establishes the progress the algorithm

makes in each iteration, provided that the starting point is sufficiently close

to the approximated zero.

Lemma 11. Assume that f is at least three times continuously differentiable

in a neighborhood of a simple root α of f . Let x and y be approximations to

the root satisfying 2|y − α| ≤ |x− α| < δ. If δ is small enough, then the next

approximation that we denote by z as it is calculated by Algorithm 7 satisfies:

|z − α| < C|x− α||y − α|2

where C > 0 depends on δ, but not on x or y.

Proof. Without loss of generality we assume that α = 0 is the simple root

of f we are approximating. This restriction simplifies the calculations, but

could be removed in a straightforward manner. Our goal is to bound |z| in

terms of the previous iterates x and y, provided that δ is small enough. We

will not explicitly calculate a suitable value for δ, but it will be clear from our

argument that the value exists, and could be calculated if needed.

The formula for z can be written as N/D instead of the sum of y and

a correction term which was preferred for numerical computations:

N = (x+ y)fxfy(fy − fx)− (y − x)(xf 2
y f
′
x + yf 2

xf
′
y)

D = 2fxfy(fy − fx)− (y − x)(f 2
y f
′
x + f 2

xf
′
y).
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In order to prove the desired upper bound for the next approximation z, we

will bound the numerator N and the denominator D separately. We want to

express them using the Taylor series expansion of both f and its derivative f ′

around α = 0.

Taylor’s theorem applied to f and its derivative (note that f(0) = 0)

can be used to express f(x), f(y), f ′(x) and f ′(y) as follows:

f(x) = f ′(0)x+
1

2
f ′′(0)x2 +

1

6
f ′′′(ξx)x

3 (6.7)

f(y) = f ′(0)y +
1

2
f ′′(0)y2 +

1

6
f ′′′(ξy)y

3 (6.8)

f ′(x) = f ′(0) + f ′′(0)x+
1

2
f ′′′(ηx)x

2 (6.9)

f ′(y) = f ′(0) + f ′′(0)y +
1

2
f ′′′(ηy)y

2 (6.10)

We substitute these into the formulas for N and D and group the terms accord-

ing to the powers of x and y. A significant amount of algebraic manipulations

are necessary to reach the desired form; fortunately computer algebra packages

can automate this tedious task.

We used the maxima computer algebra system to carry out the sim-

plifications. We issued the following commands:

fx : T1*x + 1/2*T2*x^2 + 1/6*T3xix*x^3;

fy : T1*y + 1/2*T2*y^2 + 1/6*T3xiy*y^3;

fdx : T1 + T2*x + 1/2*T3etax*x^2;

fdy : T1 + T2*y + 1/2*T3etay*y^2;
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N : (x+y)*fx*fy*(fy-fx)-

(y-x)*(x*fy^2*fdx+y*fx^2*fdy);

D : (2*fx*fy*(fy-fx)-

(y-x)*(fy^2*fdx+fx^2*fdy));

collectterms(expandwrt(N, x, y), x, y);

collectterms(expandwrt(D, x, y), x, y);

The T1, T2, T3xix, T3xiy, T3etax, T3etay variables in the above maxima

commands correspond to f ′(x), f ′′(x), f ′′′(ξx), f
′′′(ξy), f

′′′(ηx), f
′′′(ηy) from

equations (6.7)-(6.10); the remaining variable correspondences should be self

explanatory.

The numerator can be bound to be small if all the terms occur with

large powers of x and y; therefore we need to look for the terms with small

exponents. The terms having the smallest x, y exponents have order six; they

dominate all the other terms when δ and hence x, y are small:

x4y2f ′(0)2 f
′′′(ηx)−f ′′′(ξx)

2
(6.11)

x2y4f ′(0)2 f
′′′(ξy)−f ′′′(ηy)

2
(6.12)

x3y3f ′(0)2
(
f ′′′(ξx)−f ′′′(ξy)

6
+ f ′′′(ηy)−f ′′′(ηx)

2

)
(6.13)

We denote by M = Mδ the absolute supremum of the continuous f ′′′ on [−δ, δ].

Elementary calculations exploiting |y| ≤ |x|/2 yield that the absolute sum of
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the dominating terms is bound by 23
12
|f ′(0)|2Mx4y2; therefore if δ is small

enough, we have:

|N | ≤ 2|f ′(0)|2M |x|4|y|2.

Note that f ′(0) 6= 0 because we are approximating a simple root.

Similarly, the terms in D are dominated by (x − y)3f ′(0)3 when δ is

small enough. Since |(x− y)3| ≥ |x|3/8, we derive that:

|D| ≥ |f
′(0)|3|x|3

9
.

Finally, we bound |z| as required:

|z| = |N |
|D|
≤ 18|f ′(0)|2M |x|4|y|2

|f ′(0)|3|x|3
=

18M

|f ′(0)|
|x||y|2.

When the function f is a little smoother, we can prove a stronger result.

Lemma 12. Assume that f is at least four times continuously differentiable

in a neighborhood of a simple root α of f . Using the same notations as in

Lemma 11 the next approximation z satisfies:

|z − α| < C|x− α|2|y − α|2.

Proof. We improve the bound established for the dominating terms of the

numerator N from the proof of Lemma 11.

Consider f ′′′(ηx)− f ′′′(ξx) from equation (6.11) and express this differ-

ence using the mean–value theorem:

f ′′′(ηx)− f ′′′(ξx) = f (4)(νx)(ηx − ξx),
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where νx is in the interval with endpoints ξx and ηx. Since |ξx|, |ηx| < |x|, we

deduce that |f ′′′(ηx) − f ′′′(ξx)| ≤ 2S|x|, where S = Sδ denotes the absolute

supremum of f (4) on [−δ, δ]. Apply the same argument to the other dominating

terms to sharpen the bound on N as follows:

|N | ≤ 4|f ′(0)|2S|x|5|y|2.

Using the bound on |D| from the proof of Lemma 11 yields:

|z| = |N |
|D|
≤ 36|f ′(0)|2S|x|5|y|2

|f ′(0)|3|x|3
=

36S

|f ′(0)|
|x|2|y|2. (6.14)

We expect Jarratt’s iteration to be at least quadratically convergent. In

the following sequel we prove that the order of the convergence is at least 1+
√

3

in a neighborhood of a simple root of a sufficiently smooth function. First,

we have a short diversion regarding the definition of order of convergence. We

start out with a simple definition that can be applied to certain sequences only.

We say, that the order of convergence of the sequence xi → α (i = 0, 1, 2, . . .)

is κ > 1 if the limit

lim
i→∞

|xi − α|
|xi−1 − α|κ

(6.15)

is finite and non-zero. For example, 2−2i converges to zero with order 2 as i ap-

proaches infinity. However, the apparently more rapidly converging sequence

with elements 2−2i/(i+ 1) does not have an order of convergence in the above

sense. For 1 < κ ≤ 2 the limit in question is zero, while for κ > 2 the limit

is infinity, but it is never a finite non-zero value. Furthermore, sequences with
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variable convergence “speed” like the one with elements 2−4bi/2c also evade the

simple definition. The counterexamples motivate the following extension.

Definition 5. We say that the sequence xi converges to α with at least order

κ > 1, if there exists a nonnegative sequence εi such that for all i indices

|xi − α| < εi, and

lim
i→∞

εi
εκi−1

= κ.

The convergence order of Jarratt’s method is easier to determine when

the limit in (6.15) exists, in other words when the simple definition is sufficient.

Application of the next result—after shifting the root to zero—leads to the

proof that Jarratt’s method has convergence order at least 1 +
√

3 under the

assumptions of Lemma 12 and the existence of the limit in (6.15).

Lemma 13. Assume that the sequence xi (i = 0, 1, 2, . . .) converges to zero,

and it satisfies |xi| ≤ Cx2
i−2x

2
i−1 for i ≥ 2. If for some κ > 1 the limit

µ = lim
i→∞

|xi|
|xi−1|κ

(6.16)

is finite and non-zero, then κ ≥ 1 +
√

3.

Proof. We may assume for simplicity that |xi| < 1 holds for all indices. We

first prove that:

lim
i→∞

log |xi|
log |xi−1|

= κ. (6.17)

Indeed, log µ can be expressed as limi→∞(log |xi| − κ log |xi−1|) and a division

by log |xi−1| which converges to −∞ leads to:

0 = lim
i→∞

(
log |xi|

log |xi−1|
− κ),
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and this is equivalent to (6.17). Next, apply the logarithm function to both

sides of the inequality |xi| ≤ Cx2
i−2x

2
i−1, and divide by the negative log |xi−1|:

log |xi|
log |xi−1|

≥ logC

log |xi−1|
+ 2 +

log |xi−2|
log |xi−1|

.

Take the limit of each term as i approaches infinity and arrive to:

κ ≥ 2 +
2

κ

which is equivalent to κ ≥ 1 +
√

3 since κ is positive.

Note that the existence of the limit in (6.17) does not imply that the

µ limit in (6.16) is non-zero. For practical purposes the sequence appearing

in (6.17) is useful, because it eliminates the need to guess the value of κ. The

following lemma is the next step towards establishing the order of convergence

in the sense of Definition 5.

Lemma 14. Assume that the sequence xi (i = 0, 1, 2, . . .) satisfies |xi| ≤

Cx2
i−2x

2
i−1 for i ≥ 2. We can bound the ith iterate (i ≥ 2) in terms of x0 and

x1 by

|xi| ≤ CGix
2Hi−1

0 xHi
1

where Gi, Hi are defined recursively by the equations and starting values:

Gi = 2Gi−2 + 2Gi−1 + 1 G0 = 0 G1 = 0

Hi = 2Hi−2 + 2Hi−1 H0 = 0 H1 = 1.
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Proof. The proof uses induction on i. For i = 2 the claim coincides with

|x2| ≤ Cx2
0x

2
1, which is an instance of the assumed inequality. We establish

the induction step by writing (i ≥ 3):

|xi| ≤ Cx2
i−2x

2
i−1 ≤

C
(
CGi−2x

2Hi−3

0 x
Hi−2

1

)2 (
CGi−1x

2Hi−2

0 x
Hi−1

1

)2

.

Collect the exponents with the same base and notice that the defining equa-

tions for Gi, Hi yield the required formulas.

We seek closed formulas for both Gi and Hi, in particular we hope that

the growth rate of these sequences will allow us to prove the convergence order

of Jarrat’s algorithm. The method used for calculating the closed formulas is

classical, maybe with the exception of the idea of reducing the calculation of

Gi to that of Hi. We include the proofs for completeness.

Lemma 15. A closed formula for the sequence Hi defined in Lemma 14 is the

following:

Hi =
1

2
√

3

(
(1 +

√
3)i − (1−

√
3)
)i
.

Proof. Sequences obeying the recursion that Hi satisfies are closed for linear

combinations. We will determine two geometrical series which satisfy the

recursion and then we will form Hi as a linear combination.

Denote the ith element of the geometric series by qi. The following

must hold:

qi = 2qi−2 + 2qi−1.
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All these equations are equivalent to q2 − 2q − 2 = 0, called the characteristic

equation. The roots provide the (1+
√

3)i and (1−
√

3)i geometrical series and

we determine the linear combination producing Hi by considering the H0, H1

elements only. Elementary calculation finishes the proof.

Lemma 16. The sequences Gi, Hi as defined above satisfy1:

Gi =
i−1∑
j=0

Hj

and as a consequence a closed formula for Gi is:

Gi =
1

6

(
(1 +

√
3)i + (1−

√
3)i − 2

)
.

Proof. We will use induction on i. When i = 0, 1, the formula is satisfied

based on the definition of the sequences. Let i ≥ 2 and assume the that the

formula is true for i− 1 and i− 2. Use the defining equations in addition and

write:

Gi = 2Gi−2 + 2Gi−1 + 1 = 2
i−3∑
j=0

Hj + 2
i−2∑
k=0

Hk + 1

= 1 +H0 +
i−3∑
j=0

(2Hj + 2Hj+1) = H1 +
i−3∑
j=0

Hj+2

=
i−1∑
j=0

Hj.

The closed formula for Gi follows from the closed formula for Hj (j < i)

provided by Lemma 15.

1The empty sum is zero by convention.
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Finally, we can state:

Theorem 9. Consider the sequence xi produced by the Jarratt’s method defined

by Algorithm 7 that converges to a simple root α of the function f . We assume

that f is at least four times continuously differentiable in a neighborhood of α.

It follows that the order of the convergence is at least κ = 1 +
√

3.

Proof. To simplify our arguments we shift the root to zero and assume that

the whole approximating sequence is inside the neighborhood provided by

Lemma 12. We apply Lemma 14 to get:

|xi| ≤ CGix
2Hi−1

0 xHi
1 .

Define εi = CGix
2Hi−1

0 xHi
1 . To satisfy the requirements of Definition 5 we are

left to prove that limi→∞ εi/ε
κ
i−1 is a finite non-zero value. Expand the εi/ε

κ
i−1

expression using Lemmas 15 and 16 collect the exponents. The largest terms

conveniently cancel out; for example, the exponent of x0 becomes:

1√
3

(
2

κ

)i−1(
κ− 2

κ

)
.

As the index i approaches infinity, the above exponent converges to zero, a

consequence of κ > 2. The exponent of x1 also converges to zero by a similar

argument, while the exponent of C can be seen to converge to 1/
√

3. So

indeed, limi→∞ εi/ε
κ
i−1 is a finite non-zero value, finishing the proof.

Finally, we can outline a proof establishing that our secular equa-

tion solver algorithm converges with order (at least) 1 +
√

3. We recall the
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reparametrization discussed in Section 6.3 and that the function h is an ap-

proximation to f near the zero. We view the secular equation solver algorithm

as an application of Jarratt’s method to the g(x) = h−1(f(x))− h−1(0) func-

tion. Even though the function h is different for each step, it is approximating

f around the zero and therefore a bound similar to (6.14) can be established

(with a different constant) and that proves that the order of convergence is at

least as much as for Jarratt’s method.
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Tropp. Generalized finite algorithms for constructing hermitian matri-

ces with prescribed diagonal and spectrum. SIAM Journal on Matrix

Analysis and Applications, 27(1):61–71, 2005.

[25] J. J. Dongarra and D. C. Sorensen. A fully parallel algorithm for the

symmetric eigenproblem. SIAM J. Sci. Statist. Comp., 8:139–154, 1987.

[26] R. J. Duffin and A. C. Schaeffer. A class of nonharmonic fourier series.

Transactions of the American Mathematical Society, 72:341–366, 1952.

[27] John W. Eaton. GNU Octave Manual. Network Theory Limited, 2002.

[28] G. Golub. Some modified matrix eigenvalue problems. SIAM Review,

15:318–334, 1973.

[29] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins

University Press, 3rd edition, 1996.

[30] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations.

J. Comput. Phys., 73:325–348, 1987.

[31] M. Gu and S. Eisenstat. A stable and efficient algorithm for the rank-

one modification of the symmetric eigenproblem. SIAM J. Matrix Anal.

Appl., 15:1266–1276, 1994.

[32] M. Gu and S. C. Eisenstat. A stable and efficient algorithm for the

rank-one modification of the symmetric eigenproblem. SIAM Journal on

Matrix Analysis and Applications, 15:1266–1276, October 1994.

100



[33] N. J. Higham. Computing the nearest correlation matrix. IMA Journal

of Numerical Analysis, 22:329–343, 2002.

[34] N. J. Higham. Functions of Matrices: Theory and Computation. Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[35] R. B. Holmes. On random correlation matrices. SIAM Journal on

Matrix Analysis and Applications, 12(2):239–272, April 1991.

[36] R. B. Holmes and V. I. Paulsen. Optimal frames for erasures. Linear

Algebra and its Applications, 377:31–51, 2004.

[37] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University

Press, 1985.

[38] P. Jain, B. Kulis, J. Davis, and I. S. Dhillon. Metric and kernel learn-

ing using a linear transformation. Journal of Machine Learning Re-

search(JMLR), 2012. to appear.

[39] P. Jain, B. Kulis, and K. Grauman. Fast image search for learned metrics.

In Proc. IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2008.

[40] P. Jarratt. A rational iteration function for solving equations. The

Computer Journal, 9:304–307, 1966.

[41] B. Kulis, M. A. Sustik, and I. S. Dhillon. Learning low-rank kernel

matrices. In Proc. 23rd International Conference on Machine Learning

(ICML), 2006.

101



[42] B. Kulis, M. A. Sustik, and I. S. Dhillon. Low-rank kernel learning with

Bregman matrix divergences. Journal of Machine Learning Research,

10:341–376, 2009.

[43] S. Lang. Algebra. Springer Verlag, 3rd, revised edition, 2002.

[44] P.W.H Lemmens and J.J. Seidel. Equiangular lines. Journal of Algebra,

24:494–512, 1973.

[45] R.-C. Li. Solving secular equations stably and efficiently. Technical

Report UCB/CSD-94-851, EECS Department, University of California,

Berkeley, Dec 1994.

[46] Ren-Cang Li. personal communication, 2012.

[47] MATLAB. version 7.12.0.635 (R2011a). The MathWorks Inc., Natick,

Massachusetts, 2011.

[48] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum

Information. Cambridge University Press, 2000.

[49] A. M. Ostrowski. Solution of equations in Euclidean and Banach spaces.

Academic Press, 1973.

[50] Wulf Rossman. Lie Groups an Introduction Through Linear Groups.

Oxford University Press, 2002.

[51] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.

Cambridge University Press, 2004.

102



[52] G. W. Stewart. The efficient generation of random orthogonal matrices

with an application to condition estimation. SIAM J. Numer. Anal.,

17(30):403–409, 1980.

[53] T. Strohmer and R. W. Heath. Grassmannian frames with applications to

coding and communication. Applied and computational harmonic analy-

sis, 14(3):257–275, May 2003.

[54] M. Sustik, J. A. Tropp, I. S. Dhillon, and R. W. Heath. On the existence

of equiangular tight frames. Department. of Computer Sciences TR04–

32, University of Texas at Austin, August 2004.

[55] M. A. Sustik, J. A. Tropp, I. S. Dhillon, and R. W. Heath Jr. On the ex-

istence of equiangular tight frames. Linear Algebra and its Applications,

426:619–635, October 2007.
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