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A novel sufficient condition is developed to obtain the discrete-time analogues of cellular neural
network (CNN) with periodic coefficients in the three-dimensional space. Existence and global
stability of a periodic solution for the discrete-time cellular neural network (DT-CNN) are analysed
by utilizing continuation theorem of coincidence degree theory and Lyapunov stability theory,
respectively. In addition, an illustrative numerical example is presented to verify the effectiveness
of the proposed results.

1. Introduction

Cellular neural networks (CNNs) are the basis of both discrete-time cellular neural networks
(DT-CNNs) [1] and the cellular neural networks universal machine (CNNs-UM). The
dynamical behaviour of Chua and Yang cellular neural network (CY-CNN) is given by the
state equation

C
dxij

dt
= − 1

R
xij +

∑

C(k,l)∈Nr(ij)

Aklykl +
∑

C(k,l)∈Nr(ij)

Bklukl + Iij ,

yij = f
(
xij

)
=

1
2
(∣∣xij + 1

∣∣ − ∣∣xij − 1
∣∣), i = 1, . . . , m, j = 1, . . . , n,

(1.1)

where I, u, y, and x denotes input bias, input, output, and state variable of each cell,
respectively.Nr(ij) is the t-neighbourhood of cell C(k, l) asNr(ij) = {C(k, l) | max{|k − i|, |l −
j|} ≤ r}, i and j denote the position of the cell in the network, k and l denote the position
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of the neighbour cell relative to the cell in consideration. B is the nonlinear weights template
matrices for input feedback and A is the corresponding template matrices for the outputs of
neighbour cells. Non-linearity means that templates can change over time.

A large number of cellular neural networks (CNNs) models have appeared in the
literature [2–4], and these models differ in cell complexity, parameterization, cell dynamics,
and network topology. Various generalizations of cellular neural networks have attracted
attention of scientific community due to their promising potential for tasks of classification,
associative memory, parallel computation [5–9], pattern recognition, computer vision, and
solving any optimization problem [10–13]. Such applications rely on the existence of
equilibrium points and the qualitative properties of cellular neural networks.

Discrete-time cellular neural networks (DT-CNNs) have been studied both in theory
and applications. Previous results introduced many properties of DT-CNN in the two
dimensional plane. For instance, [14] has been successfully applied to investigate the discrete-
time analogues of cellular neural network (CNN) with variable coefficients in the two-
dimensional plane. However, three-dimensional structure is more accurate, specific, and
closer to real structures of CNN. Based on the above discussion, this paper proposes some
effective results of DT-CNN in the three-dimensional space.

Motivated by the constructing of continuous system (1.1), the discrete analogue of the
system (1.1) is considered as follows:

Xij[n + 1] = e−hXij[n] +
(
1 − e−h

)
⎛

⎝
∑

C(k,l)∈Nr(ij)

AklYkl[n] +
∑

C(k,l)∈Nr(ij)

BklUkl + Iij

⎞

⎠, ∀n ∈ Z+
0 .

(1.2)

For any h > 0, the discrete-time analogues (1.2) converge to the continuous-time
system (1.1) will be provided. Without loss of generality, (1.2) can be substituted in the DT-
CNNs model:

xij[n + 1] = e−hxij[n] +
(
1 − e−h

) ∑

C(kijhlijh)∈Nr(kijhlijh)

(
Akijhlijhykijhlijh[n] + Bkijhlijhukijhlijh

)

+ Iij[n], ∀n ∈ Z+
0 ,

xij[n] = ϕij[n], ∀n ∈ Z−
0 = {0,−1,−2, . . .}.

(1.3)

Then, the spatial structure with respect to (1.3) is shown in Figure 1, where r =
maxC(kijhlijh)∈Nr(ijh)(|xkijhlijh − ∂Ω|), Ω � {x ∈ X ⊂ Nr(ijh), ‖x‖ < Θ}, Nr(ijh) is the r-
neighbourhood of a cell C(k, l) = Ckijhlijh , and Θ will be denoted by the proof of Theorem 3.1
in Section 3.

The rest of the paper is organized as follows: in Section 2, system description and
preliminaries are developed in detail and some definitions, assumptions, and lemmas are
stated. Section 3 gives sufficient conditions for a periodic solution for DT-CNN in three-
dimensional space by utilizing continuation theorem of coincidence degree theory. Section 4
proposes global stability of a periodic solution for the DT-CNN. A numerical simulation is
given to show correctness of our analysis in Section 5 and concluded in Section 6.
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Figure 1: Spatial structure with respect to (1.3).

2. System Preliminaries and Description

Consider the following model which is equivalent to the (1.3):

xij[n + 1] = α(h)xij[n] + β(h)
mh∑

h=1

mj∑

j=1

(
Akijhlijhykijhlijh[n] + Bkijhlijhukijhlijh

)
+ Iij[n], ∀n ∈ Z+

0 ,

xij[n] = ϕij[n], ∀n ∈ Z−
0 = {0,−1,−2, . . .},

kijh = k
(
i, j, h

) ∈ N+, lijh = l
(
i, j, h

) ∈ N+, i = 1, 2, . . . , mi,

j = 1, 2, . . . , mj , k = 1, 2, . . . , mk,

(2.1)

where α(h) = e−h, β(h) = 1 − α(h), for allh > 0, ϕij(n) are N(h)-periodic sequences, that is,
ϕij(n) = ϕij(n +N(h)).

Throughout the paper, the following definitions and lemmas will be introduced.

Definition 2.1 (Fredholm operator). Let X and Y be a Banach space, an operator L is called
Fredholm operator if L is a bounded linear operator between X and Y whose kernel and
cokernel are finite-dimensional and whose range is closed. Equivalently, an operator L : X →
Y is Fredholm if it is invertible modulo compact operator, that is, if there exists a bounded
linear operator S : Y → X such that IdX − SL, IdY − LS are compact operators on X and Y,
respectively, where IdX and IdY are the identity operator.
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Definition 2.2 (L-compact). An operatorN will be called L-compact onΩ if the open bounded
setQN(Ω) is bounded andKp(I−Q)N : Ω → X is compact, whereKp is the inverse operator
ofN. Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ → KerL.

The index of a Fredholm operator is indL = dim KerL–codim ImL, then operator L
will be called a Fredholm operator of index zero if dim KerL = codim ImL < +∞ and Im L
is closed in Y. Then a following abstract equation in Banach space X is defined by

Lx = λNx. (2.2)

Let L : DomL ⊂ X → Y be linear operator, andN : X → Y be a continuous operator.
If L is a Fredholm operator of index zero, there must exist continuous projectors P : X → X
and Q : Y → Y, such that:

P : X ∩DomL −→ KerL, KerL = ImP,

Q : Y −→ Y/ ImL , ImL = KerQ.
(2.3)

In other words, L|DomL∩KerP : DomL ∩ KerP → Im L is invertible, and the inverse of
the operator L is denoted by Kp.

Lemma 2.3 (Gaines andMawhin [15]). LetX be a Banach space, L be a Fredholm operator of index
zero, and letN : Ω → X be L-compact on Ω, Ω ⊂ X, where Ω is an open bounded set, suppose:

(i) Lx/=λNx, for any (x, λ) ∈ (∂Ω ∩DomL) × (0, 1);

(ii) QNx/= 0, for any x ∈ ∂Ω ∩ KerL;

(iii) deg(JQN,Ω ∩ KerL, 0)/= 0.

(2.4)

Then Lx = Nx has at least one solution in DomL ∩Ω.

Lemma 2.4. If a and b are some certain nonnegative vectors, then there exists a positive constant β,
such that ab ≤ (β/2)a2 + (1/2β)b2.

Proof. Assuming a and b are some certain non-negative vectors, β is a positive constant, then

2ab = 2a
√
β

(√
β

)−1
b ≤ βa2 +

1
β
b2 =⇒ ab ≤ β

2
a2 +

1
2β

b2. (2.5)

Thus, the proof of Lemma 2.4 is completed.

Assumption 2.5. Akijhlijh , Bkijhlijh , Iij (i = 1, . . . , mi, j = 1, . . . , mj , h = 1, . . . , mh) are N-
periodic sequence of Z+

0 . For the sake of convenience, we use the following notations:
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‖x‖2
R2 =

∑mj

j=1
∑mi

i=1 maxn∈IN |xij[n]|2. For each operator P : Nr(ijh) → Nr(ijh) and any
s = s(u, v,w), t = t(i, j, h) ∈ Nr(ijh), such that:

|P(s) − P(t)| ≤
(
|mi||u − i|2 + ∣∣mj

∣∣∣∣v − j
∣∣2 + |mh||w − h|2

)1/2

≤ 2mijh ×max
{
dist
(
s, oijh

)
,dist

(
t, oijh

)} ≤ 2mijhr,

(2.6)

where oijh is the spherical centre ofNr(ijh)with a radius length r,mijh = max{|mi|, |mj |, |mh|},
then it is easy to obtain: |P(s) − P(t)| ≤ ‖P‖|(s − t)| ≤ 2mijhr < + ∞.

Assumption 2.6. There is a positive constant Cykl , such that |ykijhlijh[x1]−ykijhlijh[x2]| ≤ Cykl |x1 −
x2|, for all x1 /=x2 ∈ R.

3. Existence of a Periodic Solution with respect to (2.1)

In many cases, many proposed results are not ideal and therefore it is necessary to formulate
a novel and effective result for DT-CNN in the three-dimensional space. Can we obtain
the result about the existence and stability of a periodic solution for DT-CNN in three-
dimensional space? This is the topic we wish to address in this paper. The aim of the present
work is to develop a strategy to determine the existence and global stability of a periodic
solution with respect to (2.1) in the three-dimensional space. Consequently, we processed
with the following result.

Theorem 3.1. Suppose that Assumptions 2.5 and 2.6 hold, and the following condition holds:

mh∑

h=1

∣∣∣B̃kijhlijhukijhlijh

∣∣∣
2 − γij > 0, (3.1)

where γij =
∑mh

h=1 |Ãkijhlijhykijhlijh |
2 − Ĩ2ij , i = 1, . . . , mi, j = 1, . . . , mj , n ∈ IN = {0, 1, . . . ,N − 1}, then

(2.1) has at least one N-periodic solution.

Proof. In this section, by means of using Mawhin’s continuation theorem of coincidence
degree theory, we will study the existence of at least one periodic solution with respect to
(2.1), for convenience, some following notations will be used:

IN = {0, 1, . . . ,N − 1}, f = min
n∈IN

{∣∣f(n)
∣∣}, f = max

n∈IN

{∣∣f(n)
∣∣}, (3.2)

where f(n) is any function. Let X = Y = x[n] = {(x11[n], . . . , x1mj [n], . . . , xmi1[n], . . . ,
xmimj [n])

T : xij[n] = xij[n + N] ∈ R
mimj

+ , N ∈ N+, i = 1, . . . , mi, j = 1, . . . , mj}, and
yN ⊂ X = Y be the subspace of all N-periodic sequence; equip it with the norm ‖x‖2

R2 =∑mj

j=1

∑mi

i=1 maxn∈IN |xij[n]|2. For any ε > 0, {xim}mi

im=1
⊂ Nr(ijh), there exists N(ε) > 0 and ε > 0,

such that im > N(ε) ⇒ d(xim , xim+1) ≤ d(xim , oijh) + d(xim+1, oijh) < ε. Thus, {xim}mi

im=1
is a

Cauchy sequence inNr(ijh) and oijh is the spherical centre ofNr(ijh), d(x, y) = max{|x−y| :
x ∈ X}. By utilizing themeaning ofNr(ijh) and Bolzano-Weierstrass theorem (Each bounded
sequence in Rn has a convergent subsequence, here Rmimj ⊂ Rn, dim(Rmimj ) < +∞), it is easy
to know that (X, ‖ · ‖) is a Banach space.
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Set

Nx =
(
x̂11[n], . . . , x̂1mj [n], x̂21[n], . . . , x̂2mj [n], x̂mi1[n], . . . , x̂mimj [n]

)T
,

Lx =
(
Δx11[n], . . . ,Δx1mj [n],Δx21[n], . . . ,Δx2mj [n],Δxmi1[n], . . . ,Δxmimj [n]

)T
,

Px = Qx =
(
x̃11[n], . . . , x̃1mj [n], x̃21[n], . . . , x̃2mj [n], x̃mi1[n], . . . , x̃mimj [n]

)T
,

(3.3)

that is

x[n] =
(
x11[n], . . . , x1mj [n], . . . , xmi1[n], . . . , xmimj [n]

)T ∈ X,

KerL =
{
x = {x[n]} ∈ yN ⊂ X : x[n] = c ∈ Rmimj , n ∈ IN

}
,

ImL =

{
x = {x[n]} ∈ yN ⊂ X :

N−1∑

n=0

xij[n] = 0, i = 1, . . . , mi, j = 1, . . . , mj , n ∈ IN

}
,

(3.4)

whereΔxij[n] = xij[n+1]−xij[n] = −β(h)[xij[n]−
∑mh

h=1

∑mj

j=1(Akijhlijhykijhlijh[n]+Bkijhlijhukijhlijh)]+

Iij[n], x̂ij[n] = −β(h)[xij[n] − ∑mh

h=1

∑mj

j=1(Akijhlijhykijhlijh[n] + Bkijhlijhukijhlijh)] + Iij[n], x̃ =

(1/N)
∑N−1

n=0 x[n], for all n ∈ IN . Then we will learn that dim KerL = codim ImL < +∞,
it is easy to prove that L is a bounded linear operator, P and Q are two continuous operators
such that KerL = ImP , ImL = KerQ = Im(I −Q), and Kp|ImL

: ImL → DomL ∩ KerP , that
is

Kp(x[n]) =
N−1∑

s=0

x(s) − 1
N

N∑

s=1

s−1∑

t=1

x(t), n ∈ IN, (3.5)

that is

QNx

=
β(h)

1 + β(h)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

mh∑

h=1

(
Ãk11hl11hyk11hl11h[n] + B̃k11hl11huk11hl11h

)
+
(
1 +
(
β(h)
)−1)

Ĩ11

...
mh∑

h=1

(
Ãk1mjh

l1mjh
yk1mjh

l1mjh
[n] + B̃k1mjh

l1mjh
uk1mjh

l1mjh

)
+
(
1 +
(
β(h)
)−1)

Ĩ1mj

...
mh∑

h=1

(
Ãkmi1hlmi1h

ykmi1hlmi1h
[n] + B̃kmi1hlmi1h

ukmi1hlmi1h

)
+
(
1 +
(
β(h)
)−1)

Ĩmi1

...
mh∑

h=1

(
Ãkmimj h

lmimj h
ykmimj h

lmimj h
[n] + B̃kmimj h

lmimj h
ukmimj h

lmimj h

)
+
(
1 +
(
β(h)
)−1)

Ĩmimj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n∈IN

,
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Kp(I −Q)Nx

= −β(h)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ
N−1∑

n=0

([
x11[n] −

mh∑

h=1

(
Ak11hl11hyk11hl11h[n] + Bk11hl11huk11hl11h

)
]
+
(
β(h)
)−1

I11[n]

)

− 1
N

N∑

s=1

s−1∑

t=1

([
x11[t] −

mh∑

h=1

(
Ak11hl11hyk11hl11h[t] + Bk11hl11huk11hl11h

)
]
+
(
β(h)
)−1

I11[n]

)

...

δ
N−1∑

n=0

([
xmimj [n] −

mh∑

h=1

(
Akmimj h

lmimj h
ykmimj h

lmimj h
[n] + Bkmimj h

lmimj h
ukmimj h

lmimj h

)]

+
(
β(h)
)−1

Ikmimj h
lmimj h

[n]

)

− 1
N

N∑

s=1

s−1∑

t=1

([
xmimj [t] −

mh∑

h=1

(
Akmimj h

lmimj h
ykmimj h

lmimj h
[t] + Bkmimj h

lmimj h
ukmimj h

lmimj h

)]

+
(
β(h)
)−1

Ikmimj h
lmimj h

[n]

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n∈IN

,

(3.6)

where δ(β(h), n,N) is a constant, which is only depended on variables h, n, and N.
Obviously, employing the Lebesgue’s convergence theorem, we can easily learn that

QN(Ω) is bounded, Kp(I −Q)N(Ω) is compact for any open bounded set Ω ⊂ X ⊂ Nr(ijh)
by using Ascoli-Arzela’s theorem (A subset F of C(X) is compact if and only if it is closed,
bounded and equi-continuous). Thus, N is L-compact on a closed set Ω with any open
bounded set Ω ⊂ X ⊂ Nr(ijh).

Suppose that x[n] = (x11[n], . . . , x1mj [n], . . . , xmi1[n], . . . , xmimj [n])
T ∈ X is a solution

with respect to (2.1), for certain λ ∈ (0, 1). Then the following equation can be derived by
(2.2):

Δxij[n] = xij[n + 1] − xij[n]

= − λ

⎧
⎨

⎩β(h)

⎡

⎣xij[n] −
mh∑

h=1

mj∑

j=1

(
Akijhlijhykijhlijh[n] + Bkijhlijhukijhlijh

)
⎤

⎦ + Iij[n]

⎫
⎬

⎭, ∀n ∈ IN.

(3.7)

Then, the following results can be derived by utilizing (3.7):

max
n∈IN

∣∣xij[n]
∣∣ = max

n∈IN

∣∣xij[n + 1]
∣∣

≤ max
n∈IN

⎡

⎣(1 − λβ(h)
)∣∣xij[n]

∣∣ + λβ(h)

×
mh∑

h=1

mj∑

j=1

(∣∣∣Akijhlijhykijhlijh[n]
∣∣∣ +
∣∣∣Bkijhlijhukijhlijh

∣∣∣
)
+
∣∣λIij[n]

∣∣
⎤

⎦
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≤ max
n∈IN

(
1 − λβ(h)

)n∣∣ϕij[0]
∣∣ + (λ(1 − α(h)))n

×
mh∑

h=1

mj∑

j=1

(∣∣∣Akijhlijhykijhlijh[0]
∣∣∣
)
+ λnIij + σij

≤ max
n∈IN

⎧
⎨

⎩
∣∣ϕij[0]

∣∣ + (1 − α(h))n
mh∑

h=1

mj∑

j=1

Akijhlijh

⎫
⎬

⎭ + σij < +∞,

(3.8)

where σij = maxn∈IN (1 − α(h))
∑mh

h=1

∑mj

j=1 |Bkijhlijhukijhlijh | + Iij , for all n ∈ IN . Therefore, the
solution with respect to (2.1) is bounded for certain λ ∈ (0, 1). In other words,

max
n∈IN

∣∣xij[n]
∣∣ ≤ max

n∈IN

⎧
⎨

⎩
∣∣ϕij[0]

∣∣ + (1 − α(h))n
mh∑

h=1

mj∑

j=1

(∣∣∣Akijhlijhykijhlijh[0]
∣∣∣
)

+(1 − α(h))
mh∑

h=1

mj∑

j=1

∣∣∣Bkijhlijhukijhlijh

∣∣∣ + Iij

⎫
⎬

⎭ � Θij .

(3.9)

Then the open bounded set Ω is presented as follows:

Ω �

⎧
⎨

⎩x ∈ X ⊂ Nr

(
ijh
)
, ‖x‖ <

mi∑

i=1

mj∑

j=1

Θij

⎫
⎬

⎭. (3.10)

Thus Lx/=λNx for any (x, λ) ∈ (∂Ω ∩ DomL) × (0, 1), the Ω satisfies condition (i) in
Lemma 2.3.

In Figure 2, the nonlinear weights template matrices B and the boundary of Ω are
shown, respectively. Then for any two dimensional plane of any spherical neighbourhood is
denoted. Thus, for any x ∈ ∂Ω ∩ KerL = ∂Ω ∩ Rmimj , KerL = {x = {x[n]} ∈ yN ⊂ X : x[n] =
c ∈ Rmimj , n ∈ IN}, it is easy to learn that x is a constant vector in Rmimj with ‖x‖ = Θ; Thus,
we have

QNx =
(
QNx11, . . . , QNx1mj , . . . , QNxmi1, . . . , QNxmimj

)T
, (3.11)

where QNxij[n] = (β(h)/(1 + β(h)))
∑mh

h=1

∑mj

j=1(Ãkijhlijhykijhlijh[n] + B̃kijhlijhukijhlijh) + Ĩij[n],
for all n ∈ IN . Furthermore, we can calculate the bound of QNx as follows:

‖QNx‖2 =
mj∑

j=1

mi∑

i=1

max
n∈IN

∣∣xij[n]
∣∣2

=
mj∑

j=1

mi∑

i=1

max
n∈IN

∣∣∣∣∣∣
β(h)

1 + β(h)

mh∑

h=1

mj∑

j=1

(
Ãkijhlijhykijhlijh[n] + B̃kijhlijhukijhlijh

)
+ Ĩij[n]

∣∣∣∣∣∣

2
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≥
mj∑

j=1

mi∑

i=1

∣∣∣∣
β(h)

1 + β(h)

∣∣∣∣
2

×max
n∈IN

{
mh∑

h=1

∣∣∣B̃kijhlijhukijhlijh

∣∣∣
2
+ Ĩ2ij[n] −

mh∑

h=1

∣∣∣Ãkijhlijhykijhlijh

∣∣∣
2
}

≥
mj∑

j=1

mi∑

i=1

(
max
n∈IN

(
mh∑

h=1

∣∣∣B̃kijhlijhukijhlijh

∣∣∣
2 − γij

))
> 0,

(3.12)

where γij =
∑mh

h=1 |Ãkijhlijhykijhlijh |
2 − Ĩ2ij , i = 1, . . . , mi, j = 1, . . . , mj , n ∈ IN . Thus for any x =

∂Ω ∩ KerL, QNx/= 0, this proves the condition (ii) in Lemma 2.3.
In order to prove the condition (iii) is satisfied with respect to (2.1), we only need to

prove that deg(JQN,Ω ∩ KerL, 0)/= 0. Define Φ : DomL → X by

Φ
(
x11, . . . , x1mj , . . . , xmi1, . . . , xmimj

)T
=
(
x̃11, . . . , x̃1mj , . . . , x̃mi1, . . . , x̃mimj

)T
, (3.13)

where x̃ij[n] = (β(h)/(1 + β(h)))
∑mh

h=1

∑mj

j=1(Ãkijhlijhykijhlijh[n] + B̃kijhlijhukijhlijh) + Ĩij[n], for all
n ∈ IN .

Now we will prove that x ∈ ∂Ω ∩ KerL = ∂Ω ∩ Rmimj ,Φ(x11, . . . , x1mj , . . . , xmi1,

. . . , xmimj )
T
/= (0, 0, . . . , 0)T . If this is not true, then x ∈ ∂Ω ∩ Ker L = ∂Ω ∩ Rmimj ,Φ(x11,

. . . , x1mj , . . . , xmi1, . . . , xmimj )
T = (0, 0, . . . , 0)T , thus, for constant vector x ∈ ∂Ω, we have:

x̃ij[n] =
β(h)

1 + β(h)

mh∑

h=1

mj∑

j=1

(
Ãkijhlijhykijhlijh[n] + B̃kijhlijhukijhlijh

)
+ Ĩij[n] = 0. (3.14)

Equivalently, (3.14) can be written as the following form:

mh∑

h=1

mj∑

j=1

(
Ãkijhlijhykijhlijh[n] + B̃kijhlijhukijhlijh

)

= −1 + β(h)
β(h)

Ĩij[n]

=⇒
mh∑

h=1

mj∑

j=1

Ãkijhlijhykijhlijh[n] = −
⎛

⎝1 + β(h)
β(h)

Ĩij[n] +
mh∑

h=1

mj∑

j=1

B̃kijhlijhukijhlijh

⎞

⎠.

(3.15)

Combining (3.12) and (3.15), the following results are obtained:

max
n∈IN

mh∑

h=1

mj∑

j=1

∣∣∣Ãkijhlijhykijhlijh

∣∣∣ = max
n∈IN

∣∣∣∣∣∣
1 + β(h)
β(h)

Ĩij +
mh∑

h=1

mj∑

j=1

B̃kijhlijhukijhlijh

∣∣∣∣∣∣
. (3.16)
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r
Ckijhlijh

Nr(ijh)

Bin-template

The boundary of Ω

xihjh (n)

Figure 2: Input B-template and the boundary of Ω.

Thus, the following result is derived by calculating the (3.16):

∣∣∣∣∣∣
1 + β(h)
β(h)

Ĩij +
mh∑

h=1

mj∑

j=1

B̃kijhlijhukijhlijh

∣∣∣∣∣∣
−

mh∑

h=1

mj∑

j=1

∣∣∣B̃kijhlijhukijhlijh

∣∣∣

≤
∣∣∣∣
1 + β(h)
β(h)

Ĩij

∣∣∣∣ <
∣∣∣Ĩij
∣∣∣

< max
n∈IN

⎧
⎨

⎩

mh∑

h=1

mj∑

j=1

∣∣∣B̃kijhlijhukijhlijh

∣∣∣ + Ĩij

⎫
⎬

⎭.

(3.17)

Obviously, (3.17) is a contradiction since ((1 + β(h))/β(h)) > 1, then for any x =
∂Ω ∩ KerL, KerL = ImP , Px = (x̃11[n], . . . , x̃1mj [n], x̃mi1[n], . . . , x̃mimj [n])

T
/= (0, . . . , 0)T ,

Φ(x11, . . . , x1mj , . . . , xmi1, . . . , xmimj )
T
/= (0, . . . , 0)T . Thus, deg(JQN,Ω∩Ker L, 0)/= 0. Therefore,

(2.1) has at least one N-periodic solution, thus the proof of Theorem 3.1 is completed.

Corollary 3.2. Suppose that Assumptions 2.5 and 2.6 hold, and the following condition holds:

mh∑

h=1

∣∣∣Ãkijhlijhykijhlijh

∣∣∣
2 − ηij > 0, (3.18)

where ηij =
∑mh

h=1 |B̃kijhlijhukijhlijh |
2 − Ĩ2ij , i = 1, . . . , mi, j = 1, . . . , mj , n ∈ IN , then (2.1) has at least

one N-periodic solution.

Proof. Similar to the proof of Theorem 3.1, so it is omitted.
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4. Globally Stability of a Periodic Solution with respect to (2.1)

The existence of a periodic solution for the system (2.1) is derived in the Theorem 3.1. Then
global stability of a periodic solution with respect to (2.1) in the three-dimensional space is
presented in the following.

Theorem 4.1. Suppose that Assumptions 2.5 and 2.6 hold, and the following condition holds:

mh∑

h=1

mj∑

j=1

Akijhlijh ≤
1

Cyklmhmj
, (4.1)

where i = 1, 2, . . . , mi, Cykl ,mj and mh are positive constants, then the periodic solution with respect
to (2.1) is global stability.

Proof. It follows from the Theorem 3.1 that (2.1) has at least a periodic solution, without loss
of generality, the periodic solution can be described by:

x∗[n] =
(
x∗
11[n], . . . , x

∗
1mj

[n], . . . , x∗
mi1[n], . . . , x

∗
mimj

[n]
)T ∈ X. (4.2)

Then we can define the following formula:

uij[n] =
∣∣∣xij[n] − x∗

ij[n]
∣∣∣, i = 1, . . . , mi, j = 1, . . . , mj . (4.3)

Now, we show that the a periodic solution x∗[n] is globally stable, and the following
inequality is obtained by utilizing (2.1) and (4.3):

uij[n + 1] =
∣∣∣xij[n + 1] − x∗

ij[n + 1]
∣∣∣

≤
⎧
⎨

⎩α(h)
∣∣∣xij[n] − x∗

ij[n]
∣∣∣ + Cyklβ(h)

mh∑

h=1

mj∑

j=1

Akijhlijh

∣∣∣ykijhlijh[n] − y∗
kijhlijh

[n]
∣∣∣

⎫
⎬

⎭

≤
⎧
⎨

⎩α(h)
[∣∣∣xij[n] − xoijh[n]

∣∣∣ +
∣∣∣xoijh[n] − x∗

ij[n]
∣∣∣
]
+ Cyklβ(h)

mh∑

h=1

mj∑

j=1

Akijhlijh

×
[∣∣∣xkijhlijh[n] − xoijh[n]

∣∣∣ +
∣∣∣xoijh[n] − x∗

kijhlijh
[n]
∣∣∣
]
⎫
⎬

⎭

≤ 2r

⎛

⎝α(h) + Cyklβ(h)mhmj

mh∑

h=1

mj∑

j=1

Akijhlijh

⎞

⎠ < +∞.

(4.4)
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We design the following Lyapunov-type sequence V [n] by

V [n] =
mi∑

i=1

mj∑

j=1

∣∣∣xij[n] − x∗
ij[n]
∣∣∣. (4.5)

Then, we can calculate the ΔV [n] by combining (2.1) and (4.5):

ΔV [n] = V [n + 1] − V [n]

=
mi∑

i=1

mj∑

j=1

(∣∣∣xij[n + 1] − x∗
ij[n + 1]

∣∣∣ −
∣∣∣xij[n] − x∗

ij[n]
∣∣∣
)

≤
mi∑

i=1

mj∑

j=1

⎧
⎨

⎩−β(h)
∣∣∣xij[n] − x∗

ij[n]
∣∣∣ + Cyklβ(h)

mh∑

h=1

mj∑

j=1

Akijhlijh

∣∣∣ykijhlijh[n] − y∗
kijhlijh

[n]
∣∣∣

⎫
⎬

⎭

≤
mh∑

h=1

mj∑

j=1

2rβ(h)

⎛

⎝Cyklmhmj

mh∑

h=1

mj∑

j=1

Akijhlijh − 1

⎞

⎠ ≤ 0.

(4.6)

Thus, it is easy to obtain V [n] ≤ V [0] by the meaning of the (4.6), and furthermore,

mi∑

i=1

mj∑

j=1

∣∣∣xij[n] − x∗
ij[n]
∣∣∣ ≤ β(h)

⎧
⎨

⎩Cyklmhmj

mh∑

h=1

mj∑

j=1

Akijhlijh − 1

⎫
⎬

⎭sup
s∈Z−

0

d[s]

=⇒
mi∑

i=1

mj∑

j=1

∣∣∣xij[n] − x∗
ij[n]
∣∣∣ ≤ β(h)

⎧
⎨

⎩Cyklmhmj

mh∑

h=1

mj∑

j=1

Akijhlijh − 1

⎫
⎬

⎭sup
s∈Z−

0

d[s] ≤ 0

=⇒ xij[n] = x∗
ij[n], n ∈ IN = {0, 1, . . . .,N − 1},

(4.7)

where d[s] = maxs∈Z−
0
{|xkijhlijh[s] − x∗

kijhlijh
[s]|, |xij[s] − x∗

ij[s]|}. Obviously, from the proof of
Theorem 4.1, the globally stable of a periodic solution with respect to (2.1) is derived. Then,
existence and global stability of a periodic solution for DT-CNNs are obtained by utilizing
the conditions of the proposed theorems in an arbitrary diameter plane of a convex space.
Thus the proof of Theorem 4.1 is completed.
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x11(t)

x11(t)

, x12(t)

x12(t)

, x21(t)

x21(t)

,

x22(t)

x22(t)

, x31(t)

x31(t)

and x32(t)

x32(t)

,

Figure 3: State trajectories of the neurons x11, x12, x21, x22, x31, x32.

5. Numerical Simulation

In this section, we give an example to show the effectiveness and improvement of the derived
results. Consider the following continuous cellular neural networks:

C
dxij

dt
= − 1

R
xij +

∑

C(k,l)∈Nr(ij)
Aklykl +

∑

C(k,l)∈Nr(ij)
Bklukl + Iij ,

yij = f
(
xij

)
=

1
2
(∣∣xij + 1

∣∣ − ∣∣xij − 1
∣∣), i = 1, 2, 3, j = 1, 2,

(5.1)

for t > 0, where C = 1, R = 1/2, ykl = (1/2)(|xij + 1| − |xij − 1|), Ak111l111 = Ak311l311 =
Ak321l321 = 0.1 sin(8πt), Ak121l121 = Ak211l211 = Ak221l221 = 0.1 cos(8πt), Bki11li11uki11li11 = −0.06 +
0.08 sin(8πt), Bki21li21uki21li21 = −0.02 + 0.06 cos(8πt), Ii1 = sin(8πt), Ii2 = cos(8πt), i =
1, 2, 3, x[0] = (5.386,−4.836, 8.863,−3.683, 6.386,−4.836)T . Then, state trajectories of xij(i =
1, 2, 3, j = 1, 2) are denoted in Figure 3.

From Figure 3, it is easy to know that a (1/4)-periodic solution of the continuous
cellular neural networks is globally stable. Compared to the system (5.1), we design the
discrete-time analogue of the continuous cellular neural network as follows:

xij[n + 1] = α(h)xij[n] + β(h)
mh∑

h=1

mj∑

j=1

(
Akijhlijhykijhlijh[n] + Bkijhlijhukijhlijh

)

+ Iij[n], n ∈ Z+
0 , i = 1, 2, 3, j = 1, 2,
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x[0] = (x11[0], x12[0], x21[0], x22[0], x31[0], x32[0])T

= (5.386,−4.836, 8.863,−3.683, 6.386,−4.836)T ,
(5.2)

for h > 0, by using Assumptions 2.5 and 2.6 in Section 2, each variable is denoted as:

α(h) = e−h, β(h) = 1 − e−h,

Ak111l111 = Ak311l311 = Ak321l321 =
1
20

(
1 − e−2h

)
sin(8πnh),

ykijhlijh[n] =
1
2

(∣∣∣xkijhlijh[n] + 1
∣∣∣ −
∣∣∣xkijhlijh[n] − 1

∣∣∣
)
,

Ak121l121 = Ak211l211 = Ak221l221 =
1
20

(
1 − e−2h

)
sin(8πnh), Ii1 =

1
20

(
1 − e−2h

)
sin(8πnh),

Ii2 =
1
20

(
1 − e−2h

)
cos(8πnh), Bki11li11uki11li11 = −0.02 + 0.08 sin(8πnh),

i = 1, 2, 3, Bki21li21uki21li21 = −0.08 + 0.06 cos(8πnh), i = 1, 2, 3.
(5.3)

The derived results of this paper are verified by the following steps.
(1) According to the illustrations of the neighbourhood distance r for cell C(k, l) =

Ckijhlijh which is given byNr(ijh) function, and by (3.9) and (3.10), the exact values of distance
r and Ω are illustrated as:

Ω �

⎧
⎨

⎩x ∈ X ⊂ Nr

(
ijh
)
, ‖x‖ <

3∑

i=1

2∑

j=1

Θij

⎫
⎬

⎭,

max
n∈IN

∣∣xij[n]
∣∣ ≤ max

n∈IN

⎧
⎨

⎩
∣∣ϕij[0]

∣∣ + (1 − α(h))n
1∑

h=1

2∑

j=1

(∣∣∣Akijhlijhykijhlijh[0]
∣∣∣
)

+(1 − α(h))
1∑

h=1

2∑

j=1

∣∣∣Bkijhlijhukijhlijh

∣∣∣ + Iij

⎫
⎬

⎭ � Θij , i = 1, 2, 3.

(5.4)

Then, Θij(i = 1, 2, 3, j = 1, 2) is calculated below,

max
n∈IN

∣∣x1j[n]
∣∣ ≤ max

n∈IN

⎧
⎨

⎩
∣∣ϕ1j[0]

∣∣ + (1 − α(h))n
1∑

h=1

2∑

j=1

(∣∣∣Ak1jhl1jhyk1jhl1jh[0]
∣∣∣
)

+(1 − α(h))
1∑

h=1

2∑

j=1

∣∣∣Bk1jhl1jhuk1jhl1jh

∣∣∣ + I1j

⎫
⎬

⎭

≤ 5.386 + 4.836 + 0.05 × 4 + 0.24 = 10.662 � Θ1j , j = 1, 2,
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max
n∈IN

∣∣x2j[n]
∣∣ ≤ max

n∈IN

⎧
⎨

⎩
∣∣ϕ2j[0]

∣∣ + (1 − α(h))n
1∑

h=1

2∑

j=1

(∣∣∣Ak2jhl2jhyk2jhl2jh[0]
∣∣∣
)

+(1 − α(h))
1∑

h=1

2∑

j=1

∣∣∣Bk2jhl2jhuk2jhl2jh

∣∣∣ + I2j

⎫
⎬

⎭

≤ 8.863 + 3.683 + 0.05 × 4 + 0.24 = 12.986 � Θ2j , j = 1, 2,

max
n∈IN

∣∣x3j[n]
∣∣ ≤ max

n∈IN

⎧
⎨

⎩
∣∣ϕ3j[0]

∣∣ + (1 − α(h))n
1∑

h=1

2∑

j=1

(∣∣∣Ak3jhl3jhyk3jhl3jh[0]
∣∣∣
)

+ (1 − α(h))
1∑

h=1

2∑

j=1

∣∣∣Bk3jhl3jhuk3jhl3jh

∣∣∣ + I3j

⎫
⎬

⎭

≤ 6.386 + 4.836 + 0.05 × 4 + 0.24 = 11.662 � Θ3j , j = 1, 2.

(5.5)

Thus, the subset Ω of function Nr(ijh) is derived by the following:

Ω �

⎧
⎨

⎩x ∈ X ⊂ N35.31
(
ijh
)
, ‖x‖ <

3∑

i=1

2∑

j=1

Θij = 35.31

⎫
⎬

⎭. (5.6)

(2)Wewill verify the condition of Theorem 3.1 if we want to utilize Theorem 4.1. After
strictly calculating the condition of Theorem 3.1, it is easy to obtain that the function g[n] =

|B̃kij1lij1ukij1lij1 |
2 − |Ãkij1lij1ykij1lij1 |

2
+ Ĩ2ij ∈ R+, i = 1, 2, 3, j = 1, 2, n ∈ IN ; therefore, the condition of

the Theorem 3.1 is critically satisfied as well.
(3) According to (4.1), the condition of the Theorem 4.1 will be derived as follows:

mh∑

h=1

mj∑

j=1

Akijhlijh <
3
10

<
1

1 × 1 × 2
=

1
Cyklmhmj

. (5.7)

Then state trajectories of neurons x11, x12, x21, x22, x31, x32 are shown in Figures 4 and 5.
From Figures 4 and 5, we can learn that all the periodic solution converges to a unique

a 1/4h-periodic solution, then the DT-CNN (2.1) has a globally stable 1/4h-periodic solution.
Thus, all conditions of Theorems 3.1 and 4.1 are strictly satisfied; therefore all conditions of
proposed theorems are critically verified.

6. Conclusions

Existence and global stability are important dynamical properties in CNN. In this paper, we
consider the discrete-time analogues of CNNwith periodic coefficients and obtain some new
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Figure 4: State trajectories of neurons x11, x12, x21, x22, x31, x32(h = 1/4).

results for the DT-CNN in the three-dimensional space. Comparisons between our results
and the previous results have also been made. And it has been demonstrated that our criteria
are more general and effective than those reported in the literature.

Acknowledgments

The authors wish to acknowledge Major Program of National Natural Science Foundation
(NNSF) of China under Grants 11190015 and 60875035, Research Fund for the Doctoral



Discrete Dynamics in Nature and Society 17

0 5 10 15 20 25 30 35 40

0

5

−5x
31
(n
)

an
d
x

32
(n
)

x31

x32

State trajectories of the neurons x31 and x32, h =1/2.

(n)

0 5 10 15 20 25 30 35 40

0

5

−5

0

5

−5

x
21
(n
)

an
d
x

22
(n
)

x21

x22

State trajectories of the neurons x21 and x22, h =1/2.

(n)

0 5 10 15 20 25 30 35 40

x
11
(n
)

an
d
x

12
(n
)

x11

x12

State trajectories of the neurons x11 and x12, h =1/2.

(n)

Figure 5: State trajectories of neurons x11, x12, x21, x22, x31, x32(h = 1/2).

Program of Higher Education of China under Grant 20100092110020, and Scientific Research
Foundation of Graduate School of Southeast University under Grant YBJJ1215.

References

[1] L. O. Chua and L. Yang, “Cellular neural networks: theory,” IEEE Transactions on Circuits and Systems,
vol. 35, no. 10, pp. 1257–1272, 1988.

[2] Q. Zhang, L. Yang, and D. Liao, “Existence and exponential stability of a periodic solution for fuzzy
cellular neural networks with time-varying delays,” International Journal of Applied Mathematics and
Computer Science, vol. 21, no. 4, pp. 649–658, 2011.



18 Discrete Dynamics in Nature and Society

[3] M. U. Akhmet, D. Aruğaslan, and E. Yılmaz, “Stability in cellular neural networks with a piecewise
constant argument,” Journal of Computational and Applied Mathematics, vol. 233, no. 9, pp. 2365–2373,
2010.

[4] I. Stamova, H. Akca, and G. Stamov, “Qualitative analysis of dynamic activity patterns in neural
networks,” Journal of Applied Mathematics, vol. 2011, Article ID 208517, 2 pages, 2011.

[5] J. Javier Martinez, F. Javier Toledo, and J. Manuel Ferrandez, “Discrete-time cellular neural networks
in FPGA,” in Proceedings of the International Symposium on Field-Programmable Custom Computing
Machines, pp. 293–294, 2007.

[6] P. Balasubramaniam, J. A. Samath, N. Kumaresan, and A. V. A. Kumar, “Solution of matrix Riccati
differential equation for the linear quadratic singular system using neural networks,” Applied
Mathematics and Computation, vol. 182, no. 2, pp. 1832–1839, 2006.

[7] P. Balasubramaniam, J. Abdul Samath, and N. Kumaresan, “Optimal control for nonlinear singular
systems with quadratic performance using neural networks,” Applied Mathematics and Computation,
vol. 187, no. 2, pp. 1535–1543, 2007.

[8] K. Mali and S. Mitra, “Symbolic classification, clustering and fuzzy radial basis function network,”
Fuzzy Sets and Systems, vol. 152, no. 3, pp. 553–564, 2005.

[9] P. Barmpalexis, F. I. Kanaze, K. Kachrimanis, and E. Georgarakis, “Artificial neural networks in the
optimization of a nimodipine controlled release tablet formulation,” European Journal of Pharmaceutics
and Biopharmaceutics, vol. 74, pp. 316–323, 2010.

[10] J. Zhang, “Global stability analysis in delayed cellular neural networks,” Computers & Mathematics
with Applications, vol. 45, no. 10-11, pp. 1707–1720, 2003.

[11] W. Zhang and L.Wang, “Robust stochastic stability analysis for uncertain neutral-type delayed neural
networks driven by Wiener process,” Journal of Applied Mathematics, vol. 2012, Article ID 829594, 12
pages, 2012.

[12] J. Javier Martinez, F. Javier Toledo, and J. Manuel Ferrandez, “Implementation of a discrete cellular
neuron model (DT-CNN) architecture on FPGA,” Bioengineered and Bioinspired Systems II, vol. 5839,
pp. 332–340, 2005.

[13] Y. Zhang, “Asymptotic stability of impulsive reaction-diffusion cellular neural networks with time-
varying delays,” Journal of Applied Mathematics, vol. 2012, Article ID 501891, 17 pages, 2012.

[14] Y. Li, “Global stability and existence of periodic solutions of discrete delayed cellular neural
networks,” Physics Letters A, vol. 333, no. 1-2, pp. 51–61, 2004.

[15] D. R. E. Gaines and J. L. Mawhin, Coincidence Degree and Non-Linear Differential Equations, Springer,
Berlin, Germany, 1977.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


