

Nishio et al. (2010)

1	Lithium and strontium isotopic systematics of waters around Ontake volcano, Japan:
2	Implications for deep-seated fluids and earthquake swarms
3	
4	Yoshiro Nishio ^{1*} , Kei Okamura ² , Masaharu Tanimizu ¹ , Tsuyoshi Ishikawa ¹ , Yuji Sano ³
5	
6	¹ Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and
7	Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783-8502, Japan
8	² Center for Advanced Marine Core Research, Kochi University, Monobe B200, Nankoku,
9	Kochi 783-8502, Japan
10	³ Ocean Research Institute, University of Tokyo, Minamidai 1-15-1, Nakano, Tokyo 164-8639,
11	Japan
12	
13	Manuscript submitted to Earth and Planetary Science Letters
14	Manuscript revised, July 1, 2010
15	(8570 words in main text, 3 table and 7 figures)
16	Corresponding author (Yoshiro Nishio)
17	E-mail: nishio@jamstec.go.jp; Tel: +81-46-867-9354; Fax: +81-46-867-9315
18	
19	Keywords:
20	lithium isotope; strontium isotope; earthquake swarm; spring; deep-seated fluid; lower crust

21 Abstract

22	Since 1976, earthquake swarms have occurred beneath the southeast flank of Ontake
23	volcano in central Japan. Electrical conductivity surveys have shown that these earthquake
24	swarms are associated with the upwelling of deep-seated fluid. To investigate the nature of the
25	deep-seated fluid, we analyzed ⁷ Li/ ⁶ Li and ⁸⁷ Sr/ ⁸⁶ Sr ratios of water samples collected from
26	springs and wells around Ontake volcano in 2000, 2003, 2005, 2007, and 2009. The Li and Sr
27	isotopic compositions of these water samples are largely explained by binary component mixing
28	between near-surface meteoric water and non-surface fluid at each sampling site. On the basis
29	of their Cl/Li and Cl/Sr ratios, we singled out water samples whose Li and Sr isotopic ratios
30	were minimally affected by meteoric water contamination to represent non-surface fluids. The
31	Li and Sr isotopic compositions of most Ontake non-surface fluids, except for samples from the
32	earthquake swarm region, can be explained as the result of volcanic fluids reacting with
33	basement rocks, where they acquired upper crustal signatures. We attribute the fluid associated
34	with the region of earthquake swarms to the lower crust beneath the study area.

35

2	5
2	J

1. INTRODUCTION

36	Knowledge of the nature and origin of fluids in the deep crust is crucial for
37	understanding the geochemical evolution of the Earth. Fluids in the deep crust also play an
38	important role in the occurrence of intraplate earthquakes (IIO et al., 2002). The M6.8 western
39	Nagano Prefecture earthquake occurred in September 1984 beneath the southeast flank of
40	Ontake volcano in central Japan (Fig. 1a). Earthquake swarm activity in the region began in
41	August 1976 (Fig. 1a). Since the first historic eruption of Ontake volcano in October 1979,
42	earthquake swarms have occurred continuously. Events greater than M4 occur once or twice a
43	year. As shown in Figs. 1b and 1c, electrical conductivity surveys have revealed a
44	low-resistivity fluid conduit from at least 10 km depth to the surface beneath the earthquake
45	swarm region (KASAYA et al., 2002; KASAYA and OSHIMAN, 2004). The event hypocenters are
46	distributed around the edge of this conduit (KASAYA et al., 2002). In the earthquake swarm
47	region, ground uplift of 3-6 mm was detected during a period from 2002 to 2004 (KIMATA et al.,
48	2004). The point pressure source causing the uplift is at a depth of about 2-3 km, and the
49	estimated volume increase from 2002 to 2004 is 5×10^5 m ³ (KIMATA et al., 2004). It has been
50	proposed that ascending deep-seated fluid causes the crustal deformation in the southeast flank

51	of Ontake volcano (KASAYA et al.,	2002; KASAYA	and OSHIMAN,	2004; KIMATA	a et al., 2004)
----	---------------------	----------------	--------------	--------------	--------------	-----------------

- 52 The origin of this fluid is still unknown.
- 53 It is difficult to research deep-seated fluids from spring and well water samples using 54 traditional hydrogen and oxygen isotopic compositions owing to contamination from 55 near-surface meteoric water. Lithium is relatively unsusceptible to contamination from meteoric 56 water because the Li content of deep-seated fluid is significantly higher than that of near-surface 57 water. The amount of Li leached from rock to fluid increases dramatically with temperature, and 58 the leached Li is retained in the fluid as it cools (YOU et al., 1996; JAMES et al., 2003). 59 Approximately 70% of Li contained initially in fresh basalt leaches into the aqueous phase at 60 400 °C, when fluid/rock mass ratios are near unity (SEYFRIED et al., 1984). Lithium has two 61 stable isotopes, ⁷Li and ⁶Li, with respective relative abundances of 92.5% and 7.5%, and ⁷Li/⁶Li ratios may provide further insight into the origin of deep-seated fluids. Because Li is present 62 63 only in the +1 valence, its isotopic composition is not influenced by redox reactions. Also, Li is 64 not a nutrient and does not participate in biologically mediated reactions. These characteristics 65 make Li isotopes a promising tool for researching the origin of spring and well waters. We therefore analyzed ⁷Li/⁶Li ratios together with ⁸⁷Sr/⁸⁶Sr ratios and chemical compositions of 66

67	spring and wel	l waters to	investigate	the crustal	fluid regime	beneath	Ontake volcano.

68	Documented Li isotopic data on spring waters are scarce (TOMASCAK et al., 2003;
69	MILLOT et al., 2007) because accurate Li isotopic measurement was difficult before Tomascak
70	et al. (1999) adapted a multi-collector inductively coupled plasma mass spectrometer
71	(MC-ICP-MS) technique.
72	
73	2. GEOLOGICAL SETTING AND PREVIOUS GEOCHEMICAL RESULTS
74	Mount Ontake is an isolated stratovolcano (3063 m) in central Japan (35°54'N,
75	137°29'E). Beneath the region are two subducting slabs: the Philippine Sea plate at a depth of 70
76	km subducting from the southeast overlaps with the older Pacific plate at a depth of 240 km
77	subducting from the east (KIMURA and YOSHIDA, 1999; NAKAJIMA and HASEGAWA, 2007).
78	The thickness of the crust in this region ranges from 30 to 35 km, and the lower boundary of the
79	seismic upper crust is at 16 km depth (ZHAO et al., 1992; IIDAKA et al., 2003). Interpolating
80	from the depth of the seismic zone, it has been estimated that the temperature at 6 km depth is
81	about 250 °C (TANAKA and ITO, 2002).
82	As shown in Fig. 1a, Ontake volcano is underlain by a Cretaceous–Paleogene caldera

83	complex consisting of the Nohi rhyolite and younger granitoids and by a Mesozoic melange
84	complex of the Mino belt (GEOLOGICAL SURVEY OF JAPAN, 1995). The Mino belt in this region
85	(Misogawa complex) consists of two lithologic units, one dominantly sandstone and the other
86	composed of pelagic chert and hemipelagic siliceous mudstone (SHUTO and OTSUKA, 2004). At
87	Ontake, volcanic activity began in middle Pleistocene time, and its volcanic products are mostly
88	lavas and pyroclastics of andesitic composition plus minor amounts of rhyolite, dacite, and
89	basalt.
90	Since its first historic eruption of October 1979, Ontake volcano has erupted in May
91	1991 and in March 2007. The Ontake area has many springs from which CO ₂ -enriched gases
92	emanate (Fig. 1a). Periodic geochemical surveys of these spring gases since November 1981
93	have shown that their ³ He/ ⁴ He ratios decrease with distance from the volcano (SANO et al.,
94	1984; SANO et al., 1998; TAKAHATA et al., 2003). It has been inferred that volcanic helium with
95	high ³ He/ ⁴ He passed through the basement rocks, where they picked up upper-crustal helium
96	with low ${}^{3}\text{He}/{}^{4}\text{He}$ (SANO et al., 1984; SANO et al., 1998; TAKAHATA et al., 2003).
97	

3. SAMPLING AND ANALYTICAL PROCEDURES

98

3.1. Sampling Procedures and Chemical Compositions

100	Fluid samples analyzed in this study were collected in June 2000, June 2003, June
101	2005, June 2007, and July 2009 (Table 1). Most water samples were from natural flow springs
102	and natural flow wells where CO2-enriched gases were bubbling up from the bottom of pools
103	(SANO et al., 1998; TAKAHATA et al., 2003), whereas water samples from sites KKH-B, KNS-C,
104	KYK, KRB, and NGG-B were pumped up (Table 1; site locations in Fig. 1a). Samples from
105	sites SRK and SJM may be contaminated with river water, because the gases were bubbling up
106	in pools located near riverbank. Site AKG is also located at the edge of a river, and its sample
107	may represent river water rather than spring water.
108	The samples were passed through a 0.2 μ m PTFE syringe filter at the sampling site.
109	Subsequent procedures such as column separation were undertaken under filtered airflow
110	(cleanliness level better than class 1000) and using 18.2 M Ω -grade water prepared by a
111	Millipore purification system. The clean laboratory and all analytical equipment used in this
112	study were at Kochi core center. To prevent precipitation during storage, ultrapure HNO3
113	(Kanto Chemical Co.) was added to sample solutions. Concentrations of Si were determined
114	with an inductively coupled plasma atomic emission spectrograph (Optima 4300DV CYCRON,

115	PerkinElmer) using 100 times diluted sample solutions, and concentrations of K, Ca, Mg, Na,
116	and Cl were determined with an ion chromatograph (ICS-2000, Dionex) using 100 times diluted
117	sample solutions. An absolute calibration curve method was used to determine these
118	concentrations. Concentrations of Li, Rb, and Sr were determined with a quadrupole inductively
119	coupled plasma mass spectrometer (ELAN-DRC II, PerkinElmer) using 360 times diluted
120	sample solutions containing an internal standard of indium. Uncertainties for all these
121	measurements are better than $\pm 3\%$, as estimated from the reproducibility (2RSD) of standard
122	solutions whose salt contents are higher than analyzed samples.
123	
124	3.2. Li and Sr Isotopic Measurements
125	3.2.1. Column Separation
126	Li and Sr isotope ratios were measured with a multi-collector inductively coupled
127	plasma mass spectrometer (MC-ICP-MS) (Neptune, Thermo Sci. Co.) and a thermal ionization
128	mass spectrometer (TIMS) (Triton, Thermo Sci. Co.), respectively, after two-step column
129	separation. Most analytical protocols followed procedures documented previously (NISHIO and
130	NAKAI, 2002; NISHIO et al., 2004), which modified that of Tomascak et al. (1999). Because the

131	Neptune MC-ICP-MS used in this study was able to determine Li isotopic ratio more precisely
132	than the Isoprobe MC-ICP-MS used in previous studies, we adopted additional Li purification
133	(two-step column separation) following procedures of Jeffcoate et al. (2004).
134	The first-stage separation was carried out using a quartz glass column filled to a
135	height of 6 cm with a 6 ml Bio-Rad AG50W X8 (200-400 mesh) cation-exchange resin.
136	Solution samples (1–6 ml) were evaporated, then dissolved in 3 ml of 5 wt.% ultrapure HNO ₃ .
137	Just before separation, 1.5 ml of 100% electronics industry grade (EL-grade) methanol (Kanto
138	Chemical Co.) was added, yielding 4.5 ml of solution. After sample loading, 89 ml of 1 M
139	$HNO_3:80\%$ v/v methanol was passed through the resin; the first 5 ml was discarded and the
140	following 84 ml was collected as the Li fraction. Subsequently, 60 ml of 2 M
141	ultrapure100-grade (UP100-grade) HCl (Kanto Chemical Co.) was passed through the resin, the
142	first 45 ml was discarded, and the following 15 ml was collected as the Sr fraction. The Li and
143	Sr fractions were further separated in independent operations.
144	The second Li purification was carried out using a quartz glass column filled to a
145	height of 2 cm with 0.8 ml Bio-Rad AG50W X12 (200-400 mesh) cation-exchange resin. The

146 Li fraction was evaporated and dissolved in 0.2 ml of 0.25 M ultrapure HCl. Just before the

147	second column separation, 0.5 ml of 0.5 M HCl:80% v/v methanol was added. After sample
148	loading, 2 ml of 0.5 M HCl:80% v/v methanol was passed and discarded. Subsequently, 32 ml
149	of 1 M HCl:80% v/v methanol was passed and collected as the Li fraction. The Li contents of
150	recovered Li fraction have been measured from a comparison of the relative beam intensities of
151	the sample solution and L-SVEC standard solution, and we have confirmed that near 100% Li
152	was recovered during the two-step column separation. Both cation-exchange resins were reused
153	after repeated sequential cleaning with 6 M EL-grade HCl and Milli-Q H ₂ O. Before sample
154	separation, ultrapure HCl was passed through both resins. This is an important procedure to
155	determine ⁷ Li/ ⁶ Li ratios accurately (NISHIO and NAKAI, 2002). If high-purity acid is not used for
156	the last pass, the acquired ⁷ Li/ ⁶ Li ratios are subject to a matrix effect. This analytical procedure
157	results in a Li blank with less than 10 pg Li, far less than the amounts of Li in the analyzed
158	samples (25–6300 ng Li).
159	The second Sr purification was carried out using a polypropylene column that was
160	filled to a height of 2 cm with 1 ml Eichrom Sr resin (50–100 μ m). The Sr fraction from the first

- 161 separation was evaporated and dissolved in 2 ml of 3 M UP100-grade HNO₃. After sample
- loading, 6 ml of 3 M UP100-grade HNO₃, 6 ml of 7 M UP100-grade HNO₃, and 2 ml of 3 M

UP100-grade HNO₃ were passed sequentially and discarded. Then 10 ml of 0.05 M UP-grade
HNO₃ (50 °C) was passed and collected as the Sr fraction. This procedure results in a Sr blank
with less than 50 pg Sr, far less than the amounts of Sr in the analyzed samples (180–5400 ng
Sr).

167

```
168 3.2.2. Mass Spectrometry
```

The ⁷Li/⁶Li ratios were measured on the MC-ICP-MS equipped with a 169 high-sensitivity skimmer cone, "x-cones." The purified Li solution diluted in 2% ultrapure 170 HNO₃ to about 10 ng g⁻¹ Li was introduced into the MC-ICP-MS through an Aridus desolvating 171 system (Cetac Technologies) with a microconcentric PTEE nebulizer (100 µl min⁻¹). Before 172 173 each sample and standard measurement, the beam intensities on m/e 6 and 7 of 2% HNO3 were 174 measured as a background for 30 s. Subsequently, the beam intensity ratios on m/e 6 and 7 were 175 measured repeatedly 30 times (4 s per ratio) after 1 min of initial uptake of sample solution. A 176 sample injection time of less than 4 min requires 0.4 ml of sample solution, equivalent to 4 ng Li. The Li standard solution (NIST L-SVEC) was measured before and after sample analyses to 177 correct for instrumental mass bias. The typical ⁷Li intensity of the 10 ng g⁻¹ Li standard solution 178

is 20 pA (a 2 V signal with the $10^{11} \Omega$ resistor), which is much higher than background levels of 179 0.2 pA. The measured ⁷Li/⁶Li ratios are expressed as permil deviations from the NIST L-SVEC 180 standard: $\delta^7 \text{Li} = [[^7 \text{Li}/^6 \text{Li}]_{\text{sample}}/[^7 \text{Li}/^6 \text{Li}]_{\text{L-SVEC standard}} - 1] \times 1000$. Uncertainty for the $\delta^7 \text{Li}$ value 181 182 was better than $\pm 0.4\%$, as estimated from the long-term reproducibility, $\pm 8.28 \pm 0.39\%$ (2 SD, n = 47) during a period from May 2007 to May 2009 of our in-house Li standard (Kanto Chemical 183 Co.). Reproducibilities of replicate δ^7 Li analyses for geological rock standards were also better 184 than $\pm 0.4\%$. The δ^7 Li values of the rock standard JB2 have been reported in many papers, and 185 the average δ^7 Li value was given by Rosner et al. (2007) as +4.78‰ (n = 12), which agrees with 186 our δ^7 Li value of +4.60 ± 0.34‰ (2 SD, n = 4). Our δ^7 Li value for the proposed seawater 187 standard IRMM BCR-403 was +31.3‰ (Table 2), which agrees with a previously reported 188 value of +31.0‰ (MILLOT et al., 2004) within the ±0.4‰ uncertainty. 189 The ⁸⁷Sr/⁸⁶Sr ratios were measured on the Triton TIMS after the purified 100–300 190 191 ng Sr samples were loaded on single tungsten filaments together with a tantalum activator solution (BIRCK, 1986). Uncertainty for the ⁸⁷Sr/⁸⁶Sr ratio was better than ±0.000007, as 192 estimated from the long-term reproducibility, 0.7102507 ± 0.0000066 (2 SD, n = 36), during a 193 period from May 2007 to May 2009 of the NIST SRM 987 standard (80 ng Sr). Our ⁸⁷Sr/⁸⁶Sr 194

195	ratio of rock standard JB2 was 0.7036785 ± 0.0000065 (2 SD, $n = 4$).
196	
197	4. RESULTS
198	The δ^7 Li and 87 Sr/ 86 Sr values of our water samples around Ontake volcano during the
199	observation period from 2000 to 2009 are listed in Table 2, together with chemical compositions.
200	The contents range from 0.57 $\mu g/L$ to 2370 $\mu g/L$ Li and from 17.8 $\mu g/L$ to 4010 $\mu g/L$ Sr (Table
201	2). The lowest contents of both Li and Sr were observed in sample AKG-03, which was
202	expected as it was river water rather than spring water. The Li content was 0.57 $\mu\text{g/L},$
203	comparable to the flow-weighted mean world river water Li content of 1.5 $\mu g/L$ (HuH et al.,
204	1998).
205	The isotopic values of our water samples ranged from -5.2% to $+12.6\%$ δ^7 Li and
206	from 0.7056 to 0.7228 87 Sr/ 86 Sr (Table 2). Previously reported δ^7 Li values range from -0.1‰ to
207	+17.1‰ in hydrothermal-geothermal water (TOMASCAK et al., 2003; MILLOT and NEGREL,
208	2007), from +16.7‰ to +34.4‰ in lake water (TOMASCAK et al., 2003), and from +6.0‰ to
209	+37.5‰ in river water (HUH et al., 1998; TOMASCAK et al., 2003; VIGIER et al., 2009).
210	Accordingly, our δ^7 Li values from KYK-03 (-2.4‰), KYK-09 (-3.4‰), KRB-09 (-4.9‰), and

211 KRB-07 (-5.2‰) were lower than previously reported geological fluid values.

212	Figure 2a shows the δ^7 Li variation with distance between sampling site and the
213	volcanic cone. The δ^7 Li values of most samples ranged from +2‰ to +9‰. An exceptionally
214	high value of +12.6‰ in sample AKG-03, the river water sample, is comparable to previously
215	reported river water values from +6.0‰ to +37.5‰ (HUH et al., 1998; TOMASCAK et al., 2003;
216	VIGIER et al., 2009). Relatively low δ^7 Li values (the minimum is -5.2‰) were observed in
217	several samples from the restricted area approximately 10 km from the volcano (Fig. 2a).
218	Figure 2b shows the ⁸⁷ Sr/ ⁸⁶ Sr variation with distance between sampling site and the
219	volcanic cone. The ⁸⁷ Sr/ ⁸⁶ Sr ratios of samples within 20 km of the volcano tended to rise with
220	distance from the volcanic cone (Fig. 2b). We found ⁸⁷ Sr/ ⁸⁶ Sr ratios lower than 0.707 only at
221	sites YKW, NGG-C, and KRB less than 8 km from the volcanic cone (Table 2). The ⁸⁷ Sr/ ⁸⁶ Sr
222	ratios of samples farther than 20 km ranged from 0.7083 to 0.7148 (Table 2).
223	We also analyzed Li and Sr isotopic compositions of fresh Ontake volcanic rocks
224	that were drilled for core samples for paleomagnetic research (TANAKA and KOBAYASHI, 2003).
225	The K-Ar ages of the samples ranged from 21 ka to 86 ka (MATSUMOTO and KOBAYASHI,
226	1995; MATSUMOTO and KOBAYASHI, 1999; TANAKA and KOBAYASHI, 2003). Table 3 shows

227	that the δ^7 Li and 87 Sr/ 86 Sr values of these rocks ranged from +1.6‰ to +3.5‰ (+2.7 ± 1.5‰, 2
228	SD) and from 0.7055 to 0.7068 (0.7063 \pm 0.0009, 2 SD), respectively.
229	
230	5. DISCUSSION
231	5.1. Spatial Distribution of Isotopic Ratios around Ontake Volcano
232	5.1.1. Volcanic Fluid in the Vicinity of the Volcanic Center
233	The ⁸⁷ Sr/ ⁸⁶ Sr ratios of most water samples were higher than those in Ontake
234	volcanic rock, which range from 0.705 to 0.707 (Fig. 2b). Strontium ratios lower than 0.707
235	were observed only in sites YKW, NGG-C, and KRB, which are less than 8 km from the
236	volcanic cone (Fig. 2b). Of the water samples whose ⁸⁷ Sr/ ⁸⁶ Sr ratios are lower than 0.707, those
237	from sites YKW and NGG-C had δ^7 Li values from +1.7‰ to +3.2‰ (Table 2), which are
238	comparable to those of the Ontake volcanic rock ranging from $+1.6\%$ to $+3.5\%$ (Table 3). In
239	sum, water samples with Li-Sr isotopic compositions similar to those of volcanic rock came
240	only from sites YKW and NGG-C, both of which are less than 5 km from the volcanic cone. It
241	is expected that the Li-Sr isotopic compositions of volcanic fluid that was interacted with
242	magma at high temperature are similar to those of volcanic rock. Researchers previously found

243	that in spring gases, ${}^{3}\text{He}/{}^{4}\text{He}$ ratios decrease with distance from the volcano, leading them to
244	infer that volcanic helium with high ³ He/ ⁴ He passed through the rocks of the upper crust where
245	they could have picked up helium with low ${}^{3}\text{He}/{}^{4}\text{He}$ (SANO et al., 1984; SANO et al., 1998;
246	TAKAHATA et al., 2003). These helium isotopic results are consistent with the dominance of
247	volcanic Li and Sr in the water samples from less than 5 km from the volcanic cone.
248	
249	5.1.2. Low $\delta^7 Li$ Fluid in Earthquake Swarm Region
250	Earthquake swarms have been beneath the three sites (KRB, KYK, and SRK)
251	whose $\delta^7 Li$ values were especially low (Fig. 3a). At the same time, electrical conductivity
252	surveys have detected a low-resistivity fluid conduit beneath the KRB-KYK-SRK area
253	(KASAYA et al., 2002; KASAYA and OSHIMAN, 2004) (Fig. 1). We therefore infer that the
254	relatively low $\delta^7 Li$ values observed in samples from sites KRB, KYK, and SRK reflect the
255	influence of deep-seated fluids associated with crustal deformation beneath the southeast flank
256	of Ontake volcano. Differences in ⁸⁷ Sr/ ⁸⁶ Sr ratios were not observed in samples from these three
257	sites (Fig. 3b).

259 **5.2.** Characteristics of Low δ^7 Li Fluid

260 5.2.1. Evidence of Exposure to High Temperatures

261	Both Si contents and Na/K ratios are useful indicators of the maximum temperature
262	that a fluid has experienced: Si contents increase and Na/K ratios decrease with the temperature
263	of rock-fluid interaction (FOURNIER and ROWE, 1966; FOURNIER and TRUESDELL, 1973;
264	GIGGENBACH, 1988). Figures 4a and 4b show the correlation between δ^7 Li values and Si
265	content and between δ^7 Li values and Na/K ratios, respectively. The samples from sites KRB,
266	KYK, and SRK had δ^7 Li values that decreased with increasing Si contents and decreasing Na/K
267	ratios (data around dotted lines in Figs. 4) in a trend quite distinct from trends of the other
268	samples (data are underlain by grey shades in Figs. 4). These data suggest that low- δ^7 Li fluids
269	recovered from sites KRB, KYK, and SRK have experienced high temperatures, although their
270	temperatures at the time of sampling were lower than 20 °C (Table 2).

- 271
- 272 5.2.2. Non-surface Fluid

273 The δ^7 Li values of the samples from site SRK collected in 2000, 2005, and 2007 274 varied widely, from +1.1‰ to +4.9‰ (Table 2). Because these values were linearly correlated

275	with the Cl/Li ratios (Fig. 5a), we ascribe the temporal δ^7 Li variation in these samples to a
276	mixture of two components. Site SRK, being located near the river's edge, is more likely to be
277	contaminated with near-surface meteoric water than the other sites. To examine this possibility,
278	we analyzed a river water sample (SRK-2007-river) collected about 10 m upstream from the gas
279	bubbling site where sample SRK-2007 was recovered: both samples were collected at the same
280	time. The Cl/Li ratios of samples SRK-2007-river and SRK-2007 were 2100 and 240,
281	respectively; thus, the Cl/Li ratio of the near-surface meteoric water was higher than that of the
282	non-surface fluid. An exceptionally high Cl/Li ratio was also observed in sample AKG-03,
283	which was extensively contaminated by river water (upper right corner of Fig. 5a).
284	Low δ^7 Li values were also observed in samples from sites KRB and KYK. Those of
285	the KRB samples were identical (-5.2% and -4.9%) whereas those of the KYK samples varied
286	widely (-2.4‰, -4.9‰, and +0.7‰). Because the δ^7 Li values of the KYK samples were
287	correlated linearly with the Cl/Li ratios (Fig. 5a), we ascribe the temporal δ^7 Li variation in the
288	KYK samples, like those from SRK, to binary mixing of near-surface meteoric water (high δ^7 Li,
289	high Cl/Li) and non-surface (deep) fluid (low δ^7 Li, low Cl/Li).

The temporally varied ⁸⁷Sr/⁸⁶Sr ratios at each sampling site are also linearly

	correlated with the Cl/Sr ratios (Fig. 5b). The Cl/Sr ratios of samples SRK-2007-river and
292	SRK-2007 were 210 and 29, respectively; thus, the Cl/Sr ratio of the near-surface meteoric
293	water is higher than that of the non-surface fluid.
294	As shown in Fig. 6a, a negative correlation between $\delta^7 Li$ and ${}^{87}Sr/{}^{86}Sr$ was observed
295	in the SRK samples, including the river water sample. Consequently, we attribute the Li-Sr
296	isotopic trend of the SRK samples to binary mixing between near-surface meteoric water (high
297	δ^7 Li, low 87 Sr/ 86 Sr) and non-surface fluid (low δ^7 Li, high 87 Sr/ 86 Sr). We infer similar mixing in
298	the samples from site KYK (Fig. 6a).
299	
299 300	5.3. Li and Sr Isotopic Systematics of Non-surface Fluids
299300301	5.3. Li and Sr Isotopic Systematics of Non-surface Fluids <i>5.3.1. Identification Method for Non-surface Fluid</i>
299300301302	 5.3. Li and Sr Isotopic Systematics of Non-surface Fluids 5.3.1. Identification Method for Non-surface Fluid Given that Li and Sr isotopic compositions of our water samples were affected by
299300301302303	 5.3. Li and Sr Isotopic Systematics of Non-surface Fluids 5.3.1. Identification Method for Non-surface Fluid Given that Li and Sr isotopic compositions of our water samples were affected by contamination from near-surface meteoric water, we attempted to select samples free of this
 299 300 301 302 303 304 	 5.3. Li and Sr Isotopic Systematics of Non-surface Fluids 5.3.1. Identification Method for Non-surface Fluid Given that Li and Sr isotopic compositions of our water samples were affected by contamination from near-surface meteoric water, we attempted to select samples free of this contamination. The δ⁷Li values of water samples with Cl/Li ratios less than 1100 were
 299 300 301 302 303 304 305 	5.3. Li and Sr Isotopic Systematics of Non-surface Fluids 5.3.1. Identification Method for Non-surface Fluid Given that Li and Sr isotopic compositions of our water samples were affected by contamination from near-surface meteoric water, we attempted to select samples free of this contamination. The δ^7 Li values of water samples with Cl/Li ratios less than 1100 were approximately equal to those of non-surface fluids (Fig. 5a). The uncertainties in δ^7 Li of these

307	samples with Cl/Li ratios of 240 and 1100 (Fig. 5a'). The ⁸⁷ Sr/ ⁸⁶ Sr ratios of water samples with
308	relatively low Cl/Sr ratios appeared not to be appreciably shifted by near-surface meteoric water
309	contamination (Fig. 5b). Then, we selected the ⁸⁷ Sr/ ⁸⁶ Sr ratios of water samples with Cl/Sr ratios
310	less than 350 to represent the non-surface fluid values (Fig. 5b). The uncertainties in ⁸⁷ Sr/ ⁸⁶ Sr
311	ratios of these water samples are expected to be ± 0.003 , as estimated from the ${}^{87}\text{Sr}/{}^{86}\text{Sr}$
312	difference of two SRK samples whose Cl/Sr ratios are 30 and 210 (Fig. 5b). Because ⁸⁷ Sr/ ⁸⁶ Sr
313	was constant regardless of varying Cl/Sr at sites KYK, DKS, NGG-C, and YY, the ⁸⁷ Sr/ ⁸⁶ Sr
314	uncertainties of samples from these sites should be much smaller than ± 0.003 (Fig. 5b).
315	
316	5.3.2. Inactive Earthquake Sites Samples
317	On the basis of their Cl/Li and Cl/Sr ratios, we singled out water samples whose Li
318	and Sr isotopic ratios were minimally affected by meteoric water contamination to represent
319	non-surface fluids. As shown in Figure 3, earthquake swarms have been active beneath the three
320	sites (KRB, KYK, and SRK). Hereafter, this paper calls sampling sites other than the sites KRB,

322 from the inactive earthquake sites, as shown as grey shade in Fig. 6b, are distributed in a cluster.

KYK, and SRK as inactive earthquake sites. The Li and Sr isotopic data of non-surface fluids

323	As mentioned in section 5.1.1, the dominance of volcanic Li and Sr in the water samples from
324	less than 5 km from the volcanic cone. Because only water samples from sites YKW and
325	NGG-C, within 5 km of the volcanic cone, had Li and Sr isotopic compositions falling within
326	the range of volcanic rock values (Fig. 6b), we estimated the $\delta^7 Li$ and ${}^{87}Sr/{}^{86}Sr$ values of the
327	Ontake volcanic fluid as +3‰ and 0.707, respectively, from the average values of the water
328	samples from YKW and NGG-C.
329	As mentioned in section 4, the 87 Sr/ 86 Sr ratios of water samples within 20 km of the
330	volcano tended to rise with distance from the volcanic cone (Fig. 2b). The non-surface fluid data
331	(Cl/Li ratios less than 1100 and Cl/Sr ratios less than 350) also showed the ⁸⁷ Sr/ ⁸⁶ Sr increase
332	with distance from the volcanic cone. The basement rocks of the Ontake region have distinctly
333	higher ⁸⁷ Sr/ ⁸⁶ Sr ratios than Ontake volcanic rocks: the Mino sedimentary rock ranges from 0.715
334	to 0.730 (ASAHARA et al., 2006), the Naegi-Agematsu granite ranges from 0.729 to 0.750
335	(ASAHARA et al., 2006), and the Nohi rhyolite ranges from 0.710 to 0.736 (OKAMOTO et al.,
336	1975). Then, we infer that the volcanic fluids with low ⁸⁷ Sr/ ⁸⁶ Sr ratios passed through basement
337	rocks, where they could have picked up high 87 Sr/ 86 Sr strontium from the basement rocks of the
338	Ontake region.

339	The δ^7 Li values of non-surface fluids from the inactive earthquake sites, as shown as
340	grey shade in Fig. 6b, range from +2‰ to +7‰, while the ⁸⁷ Sr/ ⁸⁶ Sr ratios vary widely from
341	0.707 to 0.723. Thus, some non-surface fluids from the inactive earthquake sites have $\delta^7 Li$
342	values lower than the volcanic fluid (about +3‰, as discussed above in this section 5.3.2). As
343	well as Sr isotopic ratios, a plausible explanation therefore is that the lithium in water samples
344	with δ^7 Li values higher than those of the volcanic rock derived from the basement rocks of the
345	Ontake region. The δ^7 Li values of basement rocks of the Ontake region are unknown, while
346	those of the upper continental crust have been estimated from shales (-3% to $+5\%$), loess
347	(-3% to $+5%$), granites $(-3%$ to $+3%$), and upper crustal composites $(-5%$ to $+3%$) from
348	North America, China, Europe, Australia, and New Zealand (TENG et al., 2004). The average
349	δ^7 Li value of upper continental crust has been estimated as $0 \pm 4\%$ (2SD) (TENG et al., 2004),
350	which is rather lower than the average Ontake volcanic rock value, +3‰ (Table 3).
351	Lithium is found in an 8-coordinate position in most minerals and in a 4-coordinate
352	position in water. Because the lighter isotope has a greater affinity for the most highly
353	coordinated site, fluid–rock interactions lead to fluids with δ^7 Li value higher than the associated
354	rock (OI et al., 1989; WENGER and ARMBRUSTER, 1991; ZACK et al., 2003; WUNDER et al.,

355 2006).

2006). The δ^7 Li difference between fluid and rock (Δ^7 Li_{fluid-rock}) decreases with reaction

356 temperatures. The $\Delta^7 \text{Li}_{\text{fluid-rock}}$ value is given as

357
$$\Delta^7 \text{Li}_{\text{fluid-rock}} = 4.61 \times (1000/\text{T [K]}) - 2.48$$
 (WUNDER et al., 2006; MARSCHALL et al., 2007).

358 (1)

As mentioned above, it is observed the dominance of volcanic Li and Sr in the water samples 359 from less than 5 km from the volcanic cone: Water samples from sites YKW and NGG-C, 360 within 5 km of the volcanic cone, had δ^7 Li ranging from +1.7% to +3.2%, equal to the Ontake 361 362 volcanic rock values (+1.6‰ to +3.4‰). The $\Delta^7 \text{Li}_{\text{fluid-rock}}$ value is therefore +1.6‰ at maximum, 363 and the fluid-rock reaction temperature higher than 860°C is estimated from the formula (1). 364 Thus, it is expected that the Ontake volcanic fluid reacted with the host volcanic rock (magma) at high temperatures. 365 Subsequently, such high temperature volcanic fluid would become cold as it passes 366 through the basement rocks around magma reservoir. As mentioned above, the ⁸⁷Sr/⁸⁶Sr ratios of 367 the basement rocks are distinctly higher than those of volcanic fluid. We therefore estimated 368 that the Ontake upper crustal signature is δ^7 Li of +6‰, from the sample DKS-07 whose 369 ⁸⁷Sr/⁸⁶Sr ratio was the highest among non-surface fluid data (Fig. 6b). Assuming the Ontake 370

```
reaction temperature of 250°C is estimated from the formula (1).
372
373
                    Interpretations mentioned above are not considered about effects from preferential
         decomposition of rock-forming minerals. Each mineral in a source rock is going to have
374
         different <sup>87</sup>Sr/<sup>86</sup>Sr ratio due to in-situ <sup>87</sup>Sr-growth, therefore, it is expected that the <sup>87</sup>Sr/<sup>86</sup>Sr
375
         discrepancy between fluid and whole rock occurs from preferential decomposition of minerals.
376
        The experimental result indeed shows that the <sup>87</sup>Sr/<sup>86</sup>Sr ratios of the fluids interacted with basalt
377
378
         at high temperatures (>250°C) range from 0.705 to 0.706, which are higher than the bulk-basalt
         value, 0.703 (JAMES et al., 2003). However, more wide <sup>87</sup>Sr/<sup>86</sup>Sr variation (0.707 to 0.723) has
379
        been observed in the Ontake non-surface fluid that has once experienced high temperature.
380
         Accordingly, we ascribe that the <sup>87</sup>Sr/<sup>86</sup>Sr variation observed in the non-surface fluids from the
381
        Ontake inactive earthquake sites is mainly a result of interaction between the volcanic fluid and
382
383
        the basement rocks of the Ontake region.
                    In contrast to the <sup>87</sup>Sr/<sup>86</sup>Sr ratio, it is expected that the <sup>7</sup>Li/<sup>6</sup>Li ratios of every high
384
        temperature rock-forming minerals are homogeneous, because both <sup>7</sup>Li and <sup>6</sup>Li are stable
385
```

upper crustal δ^7 Li value of ± 0 %, the Δ^7 Li_{fluid-rock} value would be +6% and the fluid-rock

371

isotopes and the Li isotope fractionation at per mil level does not occur during high-temperature

387	processes (TOMASCAK et al., 1999). Therefore, the Li isotopic difference between fluid and
388	whole rock is not caused by preferential decomposition of rock-forming minerals. As mentioned
389	above, the Li isotopic fractionation between fluid and rock is rather dependent on the
390	temperature.
391	
392	5.3.3. Active Earthquake Sites Samples
393	As discussed in above section 5.3.2, the Li and Sr isotopic distribution of most
394	non-surface fluids can be explained as follows: volcanic fluids passed through the basement
395	rocks, where they could have acquired an upper crustal signature. This model, however, cannot
396	explain the Li and Sr isotopic distribution of non-surface fluids from active earthquake sites,
397	KRB, KYK, and SRK (Fig. 6b). Instead of volcanic fluid, another hot end-member fluid (fluid
398	X) is required to explain the Li and Sr isotopic data of non-surface fluids from the active
399	earthquake sites (Fig. 6b). Then, the Li and Sr isotopic distribution of non-surface fluids from
400	the active earthquake sites can be explained as follows: hot fluid X passed through the basement
401	rocks, where it could have acquired an upper crustal signature. We estimate the $\delta^7 Li$ and
402	87 Sr/ 86 Sr values of fluid X as below -5‰ and below 0.705, respectively, on the basis of the

403 non-surface fluid from site KRB.

404

405	5.4. Origin of Fluid-X related to Earthquake Swarms
406	The major basement rocks beneath the active earthquake region, the southeast flank
407	of Ontake volcano, are sedimentary rock and granite, whose ⁸⁷ Sr/ ⁸⁶ Sr ratios range from 0.715 to
408	0.750 (OKAMOTO et al., 1975; ASAHARA et al., 2006). The estimated ⁸⁷ Sr/ ⁸⁶ Sr ratio of fluid X is
409	much lower at 0.705, a value that cannot be produced by interaction with any of these basement
410	rocks. The ⁸⁷ Sr/ ⁸⁶ Sr ratio of fluid X is rather comparable to that of the Ontake volcanic rock,
411	whereas its δ^7 Li value below –5‰ is distinctly lower than that of the Ontake volcanic rock. As
412	mentioned in section 5.3.2, fluid–rock interactions tend to raise the δ^7 Li values of the fluid (OI
413	et al., 1989; WENGER and ARMBRUSTER, 1991; ZACK et al., 2003; WUNDER et al., 2007).
414	Because the δ^7 Li values of Ontake volcanic rocks range from +1.6 to +3.5‰ (Table 3), fluid
415	$\delta^7 Li$ values lower than +1.6‰ cannot be produced solely by interaction with the Ontake
416	volcanic rocks at any temperature. Then, the fluid X would be reacted with rock bodies with a
417	87 Sr/ 86 Sr ratio of 0.705 and δ^7 Li values below –5‰, but no such rock bodies have ever been

418 observed in island arc upper crust.

Nishio et al. (2010)

419	Many earthquake swarms have occurred beneath sites KRB, KYK, and SRK, where
420	low δ^7 Li values were observed (Fig. 3a), and electrical conductivity data (Fig. 1c) suggest that
421	deep-seated fluid is rising from at least 10 km depth in this area (KASAYA et al., 2002; KASAYA
422	and OSHIMAN, 2004). The thickness of the crust in this region ranges from 30 km to 35 km, and
423	the lower boundary of the seismic upper crust is at a depth of approximately 16 km (ZHAO et al.,
424	1992; IIDAKA et al., 2003). We speculate that the fluid conduit beneath the KRB-KYK-SRK
425	area is connected to the lower crust, and we infer that fluid X is a lower crustal fluid.
426	Data from gabbroic inclusions suggest that the ⁸⁷ Sr/ ⁸⁶ Sr ratios of lower crustal rocks
427	beneath the northern Fossa Magna region (about 120 km north of Ontake volcano) range from
428	0.704 to 0.706 (SHUTO et al., 1988), which is consistent with the values for fluid X (0.705).
429	Although the δ^7 Li value of the lower crust of an island arc is unknown, that of the lower
430	continental crust has been estimated using granulite-facies xenoliths from Australia and China
431	(TENG et al., 2008). Analyses of eight xenoliths that reached intermineral isotopic equilibria,
432	considered most likely to preserve the initial Li isotopic signature of the lower crust, suggest
433	that the lower continental crust is extremely heterogeneous, with $\delta^7 Li$ ranging from -14% to
434	+14‰ (TENG et al., 2008). The distinctly low δ^7 Li value of fluid X is within the range of these

Nishio et al. (2010)

435	data. Hamelin et al. (2009) also suggested that the δ^7 Li value of a portion of lower continental
436	crust may be lower than -5% , based on the observed δ^7 Li variation (from 0‰ to +7‰) in a
437	suite of continental volcanic rocks from Chaine des Puys (French Massif Central).
438	The $\delta^7 Li$ values of the non-surface fluids from sites KRB, KYK, and SRK also
439	decreased with the decrease in ⁸⁷ Sr/ ⁸⁶ Sr (Fig. 6b). This correlation can be explained by lower
440	crustal fluid (fluid X) passing through basement rocks where it acquired an upper crustal
441	signature. Although sites SRK and KYK are close (about 700 m apart), their non-surface Li and
442	Sr isotopic compositions were quite different (Fig. 6b). Samples at SRK were recovered from a
443	spring, while those at KYK were recovered from a well. It may be that the lower crustal fluid
444	signature is present in deep well water samples rather than in spring water samples.
445	As discussed in sections 5.2.2, we assumed both Cl/Li and Cl/Sr ratios of
446	non-surface fluids to be significantly lower than those of near-surface meteoric water. If the Li
447	and Sr isotopic compositions of the non-surface fluids from sites KRB, KYK, and SRK can be
448	explained by interaction of lower crustal fluid and upper crustal materials, then both Cl/Li and
449	Cl/Sr ratios of these fluids should be significantly lower than those of near-surface meteoric
450	water. Lower crustal fluids contain both Cl and Li in abundance (MARKL and BUCHER, 1998;

451	SVENSEN et al., 1999; SVENSEN et al., 2001), although their Sr contents are unknown. From
452	omphacite-hosted and garnet-hosted fluid inclusion data, it has been estimated that Cl/Li ratios
453	of lower crustal fluids range from 300 to 4000 (SVENSEN et al., 2001), distinctly lower than
454	those of water samples contaminated by near-surface water (the maximum is 110000).
455	Figure 7 shows a schematic illustration for non-surface fluid circulation beneath
456	studied region. As shown in this Fig. 7, we ascribe that the fluid-X associated with the
457	earthquake swarms is not simple volcanic fluid, but is rather influenced from the lower crust.
458	The origin of deep crustal fluid still remains unrevealed, but two possible origins are as follows:
459	The first possible origin is slab-derived aqueous fluid (Fig. 7), because of the shallow geometry
460	(70 km depth) of the subducting Philippine Sea plate beneath the studied area (KIMURA and
461	YOSHIDA, 1999; NAKAJIMA and HASEGAWA, 2007). The second possible origin is aqueous
462	fluid dehydrated (degassed) from the deep magma (Fig. 7). The aqueous fluids derived from
463	subducted slab and/or deep magma reacted with the lower crust, and then low δ /Li and low
464	"Sr/"Sr compositions of the fluid-X might be acquired (Fig. 7). However, further research is
465	necessary before we reveal origin of the fluid-X associated with the earthquake swarms.

467	6. CONCLUSIONS
468	The Li and Sr isotopic compositions of spring and well water samples around
469	Ontake volcano are mainly accounted for by binary component mixing between near-surface
470	meteoric water and non-surface fluid. Using data from water samples whose $\delta^7 Li$ values and
471	⁸⁷ Sr/ ⁸⁶ Sr ratios were not greatly altered by near-surface meteoric water contamination, we
472	estimated that the Li and Sr isotopic compositions of non-surface fluids are approximately equal
473	to those in water samples whose Cl/Li ratios are less than 1100 and Cl/Sr ratios are less than
474	350.
475	The Li and Sr isotopic compositions of most non-surface fluids near Ontake can be
476	explained as the result of volcanic fluids passing through basement rocks, where they acquired
477	an upper crustal signature. The estimated $\delta^7 Li$ and ${}^{87}Sr/{}^{86}Sr$ values of the Ontake volcanic fluid
478	were +3‰ and 0.707, respectively, from the average values of the water samples from sites
479	YKW and NGG-C within 5 km of the volcanic cone. The $\delta^7 Li$ and $^{87} Sr/^{86} Sr$ values of the
480	Ontake upper crustal end-member component, respectively +6‰ and 0.723, were estimated
481	from sample DKS-07 whose ⁸⁷ Sr/ ⁸⁶ Sr ratio was the highest among non-surface fluid samples.
482	We observed anomalous Li and Sr isotopic compositions in non-surface fluids from

483	sites KRB, KYK, and SRK above vigorous earthquake swarms. We propose another
484	end-member fluid (fluid X) for these sites. Fluid X must have been produced by interaction with
485	rocks with ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ ratios of 0.705 and $\delta^7\text{Li}$ values below -5% , a combination not found in
486	upper crustal samples from the island arc. Given that a low-resistivity fluid conduit leads from
487	the deep crust to the surface beneath the earthquake swarm region (KASAYA et al., 2002;
488	KASAYA and OSHIMAN, 2004), we consider fluid X to be a lower crustal fluid. Our new Li and
489	Sr isotopic data suggest that the fluid associated with the earthquake swarms beneath the
490	southeast flank of Ontake volcano is not a simple volcanic fluid, but rather is influenced by the
491	lower crust.

Acknowledgements. We thank R. Hirose, K. Nagaishi, J. Matsuoka, and T. Noguchi for
analytical support, Y. Yamamoto and H. Tanaka for providing the volcanic rock samples, and T.
Kim for advice about Li isotope analyses. Thoughtful and constructive reviews by R. Halama, P.
Tomascak, J. Yamamoto, and anonymous referees helped to clarify the presentation, and an
editorial handling by T.M. Harrison is gratefully acknowledged. K. Kiyota, K. Shirai, and D. L.
Pinti assisted in sampling, H. Nakamichi provided map data, and K. Kasaya provided helpful

499	unpublished information on the study area. This study was supported by a Grant-in-Aid for							
500	Scientific Research to Y. Nishio (Nos. 16740309 and 22109511) from the Ministry of Education,							
501	Culture, Sports, Science and Technology of Japan. Nishio thanks the late George Igarashi for							
502	influencing him to advance into crustal fluid science.							
503								
504	References							
505	Asahara, Y., Ishiguro, H., Tanaka, T., Yamamoto, K., Mimura, K., Minami, M. and Yoshida, H.							
506	(2006) Application of Sr isotopes to geochemical mapping and provenance analysis:							
507	The case of Aichi Prefecture, central Japan. Applied Geochemistry 21, 419-436.							
508	Birck, J. L. (1986) Precision K-Rb-Sr isotopic analysis: Application to Rb-Sr chronology. Chem.							
509	<i>Geol.</i> 56 , 73-83.							
510	Fournier, R. O. and Rowe, J. J. (1966) Estimation of underground temperatures from the silica							
511	content of water from hot springs and wet-steam wells. Am J Sci 264, 685-697.							
512	Fournier, R. O. and Truesdell, A. H. (1973) An empirical Na-K-Ca geothermometer for natural							
513	waters. Geochim. Cosmochim. Acta 37, 1255-1275.							
514	Geological Survey of Japan, A. G., 1995. Geological Map of Japan 1:2,000,000 (Images)							
515	Version. 2.0.							
516	Giggenbach, W. F. (1988) Geothermal Solute Equilibria - Derivation of Na-K-Mg-Ca							
517	Geoindicators. Geochim. Cosmochim. Acta 52, 2749-2765.							
518	Hamelin, C., Seitz, HM., Barrat, JA., Dosso, L., Maury, R. C. and Chaussidon, M. (2009) A							
519	low δ ⁷ Li lower crustal component: Evidence from an alkalic intraplate volcanic series							
520	(Chaine des Puys, French Massif Central). Chem. Geol. 266, 214-226.							
521	Huh, Y., Chan, LH., Zhang, L. and Edmond, J. M. (1998) Lithium and its isotopes in major							
522	world rivers: implications for weathering and the oceanic budget. Geochim. Cosmochim.							
523	Acta 62, 2039-2051.							
524	Iidaka, T., Iwasaki, T., Takeda, T., Moriya, T., Kumakawa, I., Kurashimo, E., Kawamura, T.,							
525	Yamazaki, F., Koike, K. and Aoki, G. (2003) Configuration of subducting Philippine							

526 Sea plate and crustal structure in the central Japan region. *Geophys. Res. Lett.* **30**, -.

- 527 Iio, Y., Sagiya, T., Kobayashi, Y. and Shiozaki, I. (2002) Water-weakened lower crust and its
 528 role in the concentrated deformation in the Japanese Islands. *Earth Planet. Sci. Lett.* 203,
 529 245-253.
- James, R. H., Allen, D. E. and Jr., W. E. S. (2003) An experimental study of alteration of
 oceanic crust and terrigenous sediments at moderate temperatures (51 to 350°C):
 insights as to chemical processes in near-shore ridge-flank hydrothermal systems. *Geochim. Cosmochim. Acta* 67, 681-691.
- Jeffcoate, A. B., Elliott, T., Thomas, A. and Bouman, C. (2004) Precise, small sample size
 determinations of lithium isotopic compositions of geological reference materials and
 modern seawater by MC-ICP-MS. *Geostandards Geoanal. Res.* 28, 161-172.
- Kasaya, T. and Oshiman, N. (2004) Lateral inhomogeneity deduced from 3-D magnetotelluric
 modeling around the hypocentral area of the 1984 Western Nagano Prefecture
 earthquake, central Japan. *Earth Planets and Space* 56, 547-552.
- Kasaya, T., Oshiman, N., Sumitomo, N., Uyeshima, M., Iio, Y. and Uehara, D. (2002)
 Resistivity structure around the hypocentral area of the 1984 Western Nagano
 Prefecture earthquake in central Japan. *Earth Planets and Space* 54, 107-118.
- Kimata, F., Miyajima, R., Murase, M., Darwaman, D., Ito, T., Ohata, Y., Irwan, M., Takano, K.,
 Ibrahim, F., Koyama, E., Tsuji, H., Takayama, T., Uchida, K., Okada, J., Solim, D. and
 Anderson, H. (2004) Ground uplift detected by precise leveling in the Ontake
 earthquake swarm area, central Japan in 2002-2004. *Earth Planets and Space* 56,
 E45-E48.
- 548 Kimura, J. and Yoshida, T. (1999) Magma plumbing system beneath Ontake Volcano, central
 549 Japan. *Island Arc* 8, 1-29.
- Markl, G. and Bucher, K. (1998) Composition of fluids in the lower crust inferred from
 metamorphic salt in lower crustal rocks. *Nature* 391, 781-783.
- Marschall, H. R., Pogge von Strandmann, P. A. E., Seitz, H.-M., Elliott, T. and Niu, Y. (2007)
 The lithium isotopic composition of orogenic eclogites and deep subducted slabs. *Earth Planet. Sci. Lett.* 262, 563-580.
- Matsumoto, A. and Kobayashi, T. (1995) K-Ar Age-Determination of Late Quaternary
 Volcanic-Rocks Using the Mass Fractionation Correction Procedure Application to the
 Younger Ontake Volcano, Central Japan. *Chem. Geol.* 125, 123-135.
- 558 Matsumoto, A. and Kobayashi, T. (1999) K-Ar ages of the older Ontake volcanic products,

- 559 Ontake volcano, central Japan: Reappraisal of the volcanic history based on the 560 radiometric data. *Bull. Volcanol. Soc. Japan* 44, 1-12.
- Millot, R., Guerrot, C. and Vigier, N. (2004) Accurate and high-precision measurement of
 lithium isotopes in two reference materials by MC-ICP-MS. *Geostandards Geoanal*. *Res.* 28, 153-159.
- 564 Millot, R. and Negrel, P. (2007) Multi-isotopic tracing (δ^7 Li, δ^{11} B, 87 Sr/ 86 Sr) and chemical 565 geothermometry: evidence from hydro-geothermal systems in France. *Chem. Geol.* **244**, 566 664-678.
- Millot, R., Negrel, P. and Petelet-Giraud, E. (2007) Multi-isotopic (Li, B, Sr, Nd) approach for
 geothermal reservoir characterization in the Limagne Basin (Massif Central, France).
 Applied Geochemistry 22, 2307-2325.
- 570 Nakajima, J. and Hasegawa, A. (2007) Subduction of the Philippine Sea plate beneath
 571 southwestern Japan: Slab geometry and its relationship to arc magmatism. *Journal of*572 *Geophysical Research-Solid Earth* 112, -.
- Nakamichi, H., Kumagai, H., Nakano, M., Okubo, M., Kimata, F., Ito, Y. and Obara, K. (2009)
 Source mechanism of a very-long-period event at Mt Ontake, central Japan: Response
 of a hydrothermal system to magma intrusion beneath the summit. J. Volcanol. *Geotherm. Res.* 187, 167-177.
- 577 Nishio, Y. and Nakai, S. (2002) Accurate and precise lithium isotopic determinations of igneous
 578 rock samples using multi-collector inductively coupled plasma mass spectrometry. *Anal.*579 *Chim. Acta* 456, 271-281.
- Nishio, Y., Nakai, S., Yamamoto, J., Sumino, H., Matsumoto, T., Prikhod'ko, V. S. and Arai, S.
 (2004) Lithium isotopic systematics of the mantle-derived ultramafic xenoliths:
 implications for EM1 origin. *Earth Planet. Sci. Lett.* 217, 245-261.
- 583 Oi, T., Nomura, M., Musashi, M., Ossaka, T., Okamoto, M. and Kakihana, H. (1989) Boron
 584 isotopic compositions of some boron minerals. *Geochim. Cosmochim. Acta* 53,
 585 3189-3195.
- Okamoto, K., Nohda, S., Masuda, Y. and Matsumoto, T. (1975) Significance of Cs/Rb ratios in
 volcanic rocks as exemplified by the Nohi Rhyolite complex, Central Japan. *Geochem*.
 J. 9, 201-210.
- 589Rosner, M., Ball, L., Peucker-Ehrenbrink, B., Blusztajn, J., Bach, W. and Erzinger, J. (2007) A590simplified, accurate and fast method for lithium isotope analysis of rocks and fluids, and591 δ ⁷Li values of seawater and rock reference materials. *Geostandards Geoanal. Res.* 31,

- 592 77-88.
- Sano, Y., Nakamura, Y., Wakita, H., Urave, A. and Tominaga, T. (1984) Helium-3 emission
 related to volcanic activity. *Science* 224, 150-151.
- Sano, Y., Nishio, Y., Sasaki, S., Gamo, T. and Nagao, K. (1998) Helium and carbon isotope
 systematics at Ontake volcano, Japan. J. Geophys. Res. 103, 23863-23873.
- Seyfried, W. E., Janecky, D. R. and Mottl, M. J. (1984) Alteration of the Oceanic-Crust Implications for Geochemical Cycles of Lithium and Boron. *Geochim. Cosmochim. Acta* 48, 557-569.
- Shuto, K., Kagami, H., Shimazu, M. and Yano, T. (1988) Sr and Nd isotopic study of gabbroic
 inclusions in calc-alkaline andesites from the northern Fossa Magna region, Central
 Japan. Journal of Mineralogy, Petrology, and Economic Geology 83, 77-84.
- Shuto, T. and Otsuka, T. (2004) Late Jurassic-earliest Cretaceous accretionary complex of the
 eastern Mino Terrane, central Japan: Radiolarian age and imbricate structure of the
 Misogawa Complex. J. Geol. Soc. Japan 110, 67-84.
- Svensen, H., Jamtveit, B., Banks, D. A. and Austrheim, H. (2001) Halogen contents of eclogite
 facies fluid inclusions and minerals: Caledonides, western Norway. *Journal of Metamorphic Geology* 19, 165-178.
- Svensen, H., Jamtveit, B., Yardley, B., Engvik, A. K., Austrheim, H. and Broman, C. (1999)
 Lead and bromine enrichment in eclogite-facies fluids: Extreme fractionation during
 lower-crustal hydration. *Geology* 27, 467-470.
- Takahata, N., Yokochi, R., Nishio, Y. and Sano, Y. (2003) Volatile element isotope systematics
 at Ontake volcano, Japan. *Geochem. J.* 37, 299-310.
- Tanaka, A. and Ito, H. (2002) Temperature at base of the seismogenic zone and its relationship
 to the focal depth of Western Nagano Prefecture area (in Japanese). J. Seism. Soc. Japan
 (Zishin) 55, 1-10.
- Tanaka, H. and Kobayashi, T. (2003) Paleomagnetism of the late Quaternary Ontake Volcano,
 Japan: directions, intensities, and excursions. *Earth Planets and Space* 55, 189-202.
- Teng, F.-Z., Rudnick, R. L., McDonough, W. F., Gao, S., Tomascak, P. B. and Liu, Y. (2008)
 Lithium isotopic composition and concentration of the deep continental crust. *Chem. Geol.* 255, 47-59.
- Teng, F. Z., McDonough, W. F., Rudnick, R. L., Dalpe, C., Tomascak, P. B., Chappell, B. W.
 and Gao, S. (2004) Lithium isotopic composition and concentration of the upper
 continental crust. *Geochim. Cosmochim. Acta* 68, 4167-4178.

- Tomascak, P. B., Carlson, R. W. and Shirey, S. B. (1999) Accurate and precise determination of
 Li isotopic compositions by multi-collector sector ICP-MS. *Chem. Geol.* 158, 145-154.
- Tomascak, P. B., Hemming, N. G. and Hemming, S. R. (2003) The lithium isotopic
 composition of waters of the Mono Basin, California. *Geochim. Cosmochim. Acta* 67,
 601-611.
- Vigier, N., Gislason, S. R., Burton, K. W., Millot, R. and Mokadem, F. (2009) The relationship
 between riverine lithium isotope composition and silicate weathering rates in Iceland. *Earth Planet. Sci. Lett.* 287, 434-441.
- Wenger, M. and Armbruster, T. (1991) Crystal chemistry of lithium: oxygen coordination and
 bonding. *European Journal of Mineralogy* 3, 387-399.
- Wunder, B., Meixner, A., Romer, R. L., Feenstra, A., Schettler, G. and Heinrich, W. (2007)
 Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous
 fluids: An experimental study. *Chem. Geol.* 238, 277-290.
- Wunder, B., Meixner, A., Romer, R. L. and Heinrich, W. (2006) Temperature-dependent
 isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous
 fluids. *Contrib. Mineral. Petrol.* 151, 112-120.
- You, C.-F., Castillo, P. R., Gieskes, J. M., Chan, L. H. and Spivack, A. J. (1996) Trace element
 behavior in hydrothermal experiments: Implications for fluid processes at shallow
 depths in subduction zones. *Earth Planet. Sci. Lett.* 140, 41-52.
- 644Zack, T., Tomascak, P. B., Rudnick, R. L., Dalpe, C. and McDonough, W. F. (2003) Extremely
- 645 light Li in orogenic eclogites: The role of isotope fractionation during dehydration in
 646 subducted oceanic crust. *Earth Planet. Sci. Lett.* 208, 279-290.
- 647 Zhao, D., Horiuchi, S. and Hasegawa, A. (1992) Seismic Velocity Structure of the Crust
 648 beneath the Japan Islands. *Tectonophysics* 212, 289-301.
- 649

650 **Figure Captions**

651 Fig. 1

663

664

652 Locations of sampling sites (open circles) and geology in the Ontake volcano area (a). The epicenter of the 1984 western Nagano Prefecture earthquake (M6.8) and the causative fault are 653 654 shown as a star and dashed line, respectively. Dots are epicenters of earthquakes during 2001-2005 at depths of -1 to 40 km (NAKAMICHI et al., 2009). The electrical conductivity 655 profiles along X-X' (b) and Y-Y' (c) are from Kasaya et al. (2002). Circles in (b) and (c) are 656 657 earthquake hypocenters during the period October-December 1995. A low-resistivity fluid 658 conduit from deep crust to the surface is inferred beneath the southeast flank of Ontake volcano 659 near this earthquake swarm region (KASAYA et al., 2002; KASAYA and OSHIMAN, 2004). 660 661 Fig. 2 Variations of δ^7 Li values (a) and 87 Sr/ 86 Sr ratios (b) with distance from the volcanic cone. The 662

Cl/Sr ratios less than 350. The dotted line loops are around the active earthquake site data and

large open circles show the non-surface fluid data, defined by Cl/Li ratios less than 1100 and

665 the weak grey shades underlay inactive earthquake site data.

667	Fig.	3
-----	------	---

668	Correlations between $\delta^7 Li$ values and the number of earthquakes (a) and between ${}^{87}Sr/{}^{86}Sr$ ratios
669	and the number of earthquakes (b). Earthquakes selected from the Japan Meteorological Agency
670	earthquake catalog were bigger than M1, shallower than 30 km, within 1 km of each sampling
671	site, and occurred from January 1, 1995 to November 1, 2009. Earthquake swarms have
672	occurred beneath sites KRB, KYK, and SRK, where relatively low δ^7 Li values were observed.
673	
674	Fig. 4

```
675 Correlations between \delta^7Li value and Si content (a) and between \delta^7Li value and Na/K weight
```

676 ratio (b). The Si contents and Na/K weight ratios respectively increase and decrease with the

677 temperature of rock-fluid interaction (FOURNIER and ROWE, 1966; FOURNIER and TRUESDELL,

678 1973; GIGGENBACH, 1988). The dotted line loops and the weak grey shades are as same as those

679 in Fig. 2. The δ^7 Li values of the active earthquake site samples decreased with increasing Si

- 680 contents and decreasing Na/K ratios (data around dotted lines), trends that differ strongly from
- those of the inactive earthquake site samples (data are underlain by grey shades).

683 Fig. 5

684	Correlations between Cl/Li weight ratio and δ^7 Li value (a) and between Cl/Sr weight ratio and
685	⁸⁷ Sr/ ⁸⁶ Sr ratio (b). Fig. 5a' is an enlargement of Fig. 5a. Different linear Cl/Li-δ ⁷ Li correlations
686	were observed in samples KYK and SRK (a). Different linear Cl/Sr- ⁸⁷ Sr/ ⁸⁶ Sr correlations were
687	also observed in samples KYK, SRK, DKS, KKH-A, NGG-C, and YY (b). We infer that these
688	reflect binary component mixing between near-surface meteoric water (high Cl/Li, high Cl/Sr)
689	and non-surface fluid (low Cl/Li, low Cl/Sr).

690

691 Fig. 6

692 Correlations between ⁸⁷Sr/⁸⁶Sr ratio and δ^7 Li value for all analyzed fluid samples (a) and for 693 non-surface fluids (b). Non-surface fluid data were selected from water samples with Cl/Li 694 ratios less than 1100 and Cl/Sr ratios less than 350, showing relatively little contamination by 695 near-surface meteoric water. Fig. 6b also shows ⁸⁷Sr/⁸⁶Sr ratios and δ^7 Li values of the Ontake 696 volcanic rocks analyzed in this study (Table 3). The dotted line loops and the weak grey shades 697 are as same as those in Fig. 2.

699 Fig. 7

700	A schematic illustration for non-surface fluid circulation beneath studied region. We ascribe that
701	the fluid-X associated with the earthquake swarms is not simple volcanic fluid, but is rather
702	influenced from the lower crust. We have speculated that this fluid-X associated with the
703	earthquake swarms may be originated from aqueous fluids derived from subducted slab and/or
704	deep magma.

T 1	1 1		1
1.2	n	e	
1 u	\mathbf{v}		1

Location of sampling sites of spring and well water samples analyzed in this study

Sampling	Latitude	Longitude	Distance from	Type*	Sampling year	
site	(°N)	(°E)	cone (km)		fluid	gas ^{\$}
AKG	35.99	137.40	12.1	Ν	2003	1981-2007
DKS	35.82	137.63	16.5	Ν	1993-2007	1993-2007
KKH	35.81	137.69	21.9			
KKH-A				Ν	2000-2009	1981-2009
KKH-B				Р	2005	2005
KNS	35.91	137.56	7.4			
KNS-A				Ν	2000-2003	1981-2003
KNS-B				Ν	2005-2009	2005-2009
KNS-C				Р	2009	-
KYK	35.88	137.60	10.7	Р	2003-2009	2003-2009
KRB	35.86	137.55	7.4	Р	2007-2009	2007-2009
NGG	35.93	137.45	4.5			
NGG-A				Ν	-	1981-1993
NGG-B				Р	2000	1996-2000
NGG-C				Ν	2003-2009	2003-2009
OTK	35.84	137.53	7.1	Ν	2009	2009
SRK	35.87	137.60	11.0	Ν	2000-2007	1985-2007
SJM	35.78	137.69	23.5	Ν	2000-2007	1981-2009
YKW	35.89	137.51	2.7	Ν	2007	1993-2007
YY	35.91	137.31	11.5	Ν	2000-2009	1981-2009

*: N= natural flow water; P= water pumped up.
\$: The gas data before 2000 have been already reported in Sano et al. (1984;1986;1998) and Takahata et al. (2003).

Table 2
Li and Sr isotopic compositions and chemical compositions of spring and well water samples from Ontake area

Sample name	Sampling	Temperature	pН	δ ⁷ Li ^s	87Sr/86Sr ^{\$}	Li [#]	Rb [#]	Sr [#]	Si [#]	K [#]	Ca [#]	Mg [#]	Na [#]	Cl [#]
	date	(°C)		(‰)		(µg/L)	(µg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
AKG-03	June 2003	11.9	7.74	12.6	0.709228	0.57	0.88	17.8	5.32	0.78	25.1	1.06	3.80	63.0
DKS-00	June 2000	15.8	5.57	5.45	0.722624	63.2	1.89	133	20.7	0.30	71.1	14.8	20.0	79.6
DKS-03	June 2003	13.7	5.87	5.44	0.722757	136	3.97	351	35.6	1.17	205	42.1	54.4	151
DKS-05	June 2005	-	3.30	4.99	0.722773	72.2	2.45	129	23.8	0.63	71.3	14.5	22.1	87.8
DKS-07	June 2007	12.3	5.83	5.72	0.722762	108	3.28	258	30.2	1.03	129	26.4	35.2	3.71
KKH-A-00	June 2000	16.0	4.92	3.90	0.708333	4.26	6.64	126	27.9	1.57	12.2	2.64	6.29	94.6
KKH-A-03	June 2003	17.8	4.91	6.45	0.708325	6.64	7.86	186	31.5	2.91	17.2	3.42	8.98	185
KKH-A-07	June 2007	14.9	5.01	6.67	0.708633	6.65	7.57	173	35.2	3.52	16.6	3.57	11.6	9.25
KKH-A-09	July 2009	15.2	5.12	5.92	0.708500	5.66	7.99	169	33.0	3.42	14.8	2.86	10.8	6.96
KKH-B-05	June 2005	-	4.67	1.87	0.713345	110	20.3	122	34.5	4.08	38.6	6.63	21.7	79.9
KNS-A-00	June 2000	27.7	6.04	4.79	0.710276	1000	189	807	54.2	57.9	132	82.7	422	276
KNS-A-03	June 2003	27.6	6.10	4.12	0.710271	1030	199	848	62.3	65.4	149	93.3	474	281
KNS-B-05	June 2005	24.7	6.07	6.29	0.707925	631	113	478	60.1	39.1	84.5	53.1	279	198
KNS-B-07	June 2007	23.7	6.19	6.33	0.707709	537	99.0	405	53.7	32.1	67.0	42.5	224	103
KNS-B-09	July 2009	22.4	6.30	6.16	0.708014	467	85.5	342	47.9	26.8	58.2	36.4	211	83.1
KNS-C-09	July 2009	37.1	6.76	3.23	0.716137	2370	331	4010	32.1	71.5	353	214	738	682
KRB-07	June 2007	11.0	5.77	-5.17	0.705603	23.9	36.5	646	47.8	12.7	71.5	28.7	12.8	1.51
KRB-09	July 2009	12.6	5.69	-4.91	0.705577	21.6	33.7	616	41.2	9.6	61.2	23.5	10.6	0.73
KYK-03	June 2003	14.8	5.83	-2.35	0.712781	5.77	4.65	31.6	36.2	1.53	4.86	2.37	3.29	44.4
KYK-05	June 2005	13.8	5.08	0.70	0.712051	5.07	5.82	33.2	35.2	2.05	5.56	2.67	5.40	125
KYK-09	July 2009	13.6	7.01	-3.37	0.711864	5.71	7.57	46.6	37.4	2.95	6.71	3.89	6.29	0.60
NGG-B-00	June 2000	49.4	6.23	3.76	0.709084	1090	117	924	88.1	60.5	149	90.1	377	188
NGG-C-03	June 2003	34.0	6.00	2.82	0.706817	310	63.5	473	74.0	28.9	85.7	48.2	165	284
NGG-C-05	June 2005	36.8	5.89	3.05	0.706842	316	64.4	464	74.0	30.9	87.6	49.5	174	110
NGG-C-07	June 2007	36.2	6.15	3.16	0.706840	321	66.2	504	76.7	30.1	88.6	49.9	169	69.7
NGG-C-09	July 2009	37.1	6.22	2.99	0.706845	320	66.0	481	74.0	28.2	85.0	47.4	178	78.5
OTK-09	July 2009	20.7	6.30	6.96	0.714595	817	56.4	1360	51.9	31.7	194	78.3	405	216
SJM-00	June 2000	16.7	5.53	9.02	0.714771	8.51	4.95	54.2	6.66	0.74	10.1	1.81	4.92	21.5
SJM-03	June 2003	13.4	5.93	8.36	0.710533	132	13.1	230	21.7	3.59	55.6	7.44	49.9	190
SJM-05	June 2005	21.6	5.15	4.30	0.710850	47.3	7.63	101	14.6	2.48	20.4	2.58	13.5	137
SJM-07	June 2007	17.0	5.46	5.66	0.710597	96.1	8.63	140	19.1	2.88	31.8	4.22	24.9	19.3
SRK-00	June 2000	14.2	6.80	4.89	0.709571	5.02	3.59	31.0	9.31	0.34	3.63	1.17	1.99	96.5
SRK-05	June 2005	16.5	5.00	1.55	0.716163	32.6	8.32	164	17.9	2.33	18.5	3.93	11.6	34.9
SRK-07	June 2007	15.7	5.36	1.08	0.717768	50.1	12.2	415	20.1	4.13	41.0	8.48	21.4	12.0
SRK-07-river	June 2007	13.8	5.23	2.83	0.715157	15.7	6.70	162	20.4	2.63	21.9	4.15	8.3	33.5
YKW-07	June 2007	30.1	5.31	1.73	0.706434	102	93.1	366	64.9	23.2	95.3	23.0	133	87.5
YY-00	June 2000	13.2	5.95	2.55	0.710479	76.6	13.6	39.5	4.85	0.68	6.08	0.53	20.8	64.3
YY-03	June 2003	13.8	5.58	3.82	0.710782	507	59.2	190	10.0	5.38	18.3	1.53	132	193
YY-05	June 2005	15.9	5.65	3.19	0.710794	652	72.3	213	11.4	7.01	20.6	1.79	170	119
YY-07	June 2007	13.5	5.77	4.11	0.710832	1150	115	361	13.9	11.4	29.3	2.49	279	166
Y Y-09	July 2009	14.1	5.99	4.56	0.710351	106	12.8	70.5	5.11	1.80	9.90	0.52	33.8	18.6
Fluid Standard						(µg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(g/L)	(g/L)	(g/L)
BCR-403				31.3	0.709180	179	111	7.58	4.44	391	393	1.28	10.5	19.8

Li una si isotopie compositions di cintake volcame rocks (buik)								
Sample name	K-Ar age	δ ⁷ Li [#]	⁸⁷ Sr/ ⁸⁶ Sr*					
	(ka)	(‰)						
OT13	59 ± 7^{a}	3.37	0.705476					
OT37	66 ± 5^{a}	1.82	0.706266					
OT40	$48\pm4^{\mathrm{a}}$	3.26	0.706508					
OT43	36 ± 3^{a}	2.70	0.706215					
OT49	81±23 ^b	3.46	0.706708					
OT53	21±5°	2.72	0.706008					
OT63	86 ± 6^{d}	1.61	0.706812					
Mean		2.70	0.706285					
2SD		1.49	0.000910					

 Table 3

 Li and Sr isotopic compositions of Ontake volcanic rocks[§] (bulk)

\$: fresh drilled core samples for paleomagnetic research

#: analyzed by MC-ICP-MS

*: analyzed by TIMS

a: reported in Tanaka and Kobayashi (2002)

b: reported in Matsumoto and Kobayashi (1999); TKN-29, TKN-46

c: reported in Matsumoto and Kobayashi (1995); SNTK-72

d: reported in Matsumoto and Kobayashi (1995); NGRG-240

2D electric conductivity results by Kasaya et al. (2002)

Figure 1/ Nishio et al.

Distance from volcanic cone (km)

Figure 2 / Nishio et al.

Number of earthquakes

Figure 3 / Nishio et al.

Figure 5 / Nishio et al.

Figure 6 / Nishio et al.

Figure 7 / Nishio et al.