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The use of an inter-temporally constant discount rate or cost of capital is a strong assumption in many ex
ante models of finance and in applied procedures such as capital budgeting. We investigate how robust this
assumption is by analysing the implications of allowing the cost of capital to vary stochastically over time.
We use the Feynman–Kac functional to demonstrate how there will, in general, be systematic differences
between present values computed on the assumption that the currently prevailing cost of capital will last
indefinitely into the future and present values determined by discounting cash flows at the expected costs
of capital that apply up until the point in time at which cash flows are to be received. Our analysis is
based on three interpretations of the Feynman–Kac functional. The first assumes that the cost of capital
evolves in terms of a state variable characterised by an Uhlenbeck and Ornstein (“On the Theory of the
Brownian Motion.” Physical Review 36(5): 823–841) process. The second and third interpretations of the
Feynman–Kac functional are based on the continuous time branching process. The first of these assumes
that the state variable tends to drift upwards over time, whilst the second assumes that there is no drift in
the state variable. Our analysis shows that for all three stochastic processes there are significant differences
between present values computed under the assumption that the currently prevailing cost of capital will
last indefinitely into the future and present values determined by discounting cash flows at the expected
costs of capital that apply up until the point in time at which cash flows are to be received. Comparisons
are also made with the environmental economics literature where similar problems have been addressed
by invoking a ‘gamma discounting’ methodology.

Keywords: cost of capital; Feynman–Kac functional; gamma discounting; present value; wiener process

1. Introduction

A widely used convention in the asset valuation and capital investment literature takes the discount
rate applied to future cash flows to be a constant, independent of the time at which the cash flows are
to be received.1 In particular, present value calculations are invariably based on the (often implicit)
assumption that the currently prevailing cost of capital will last indefinitely into the future. This
is a strong assumption that merits further analysis, as failure to allow for the risks associated
with changes in the cost of capital could potentially lead to serious errors in the determination of
asset intrinsic (or fundamental) values.2 In this paper, we demonstrate the dangers associated with
invoking the constant discount rate assumption by using the Feynman–Kac functional to model
the evolution of the expected present values implied by a time varying cost of capital. Our analysis
shows that there will be systematic differences of varying degrees (depending on the nature of
the underlying stochastic process) between present values computed under the assumption that
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2 I. Davidson et al.

the current discount rate will last indefinitely into the future and present values determined by
discounting cash flows at the expected costs of capital that apply up until the point in time at
which cash flows are to be received.

We commence our analysis in the next section with a formal statement of the Feynman–
Kac functional. We then employ three examples in order to demonstrate how the Feynman–Kac
functional can be used to determine the expected present value of a cash flow stream when the
cost of capital fluctuates stochastically in time. Probably the most familiar of these examples is
based on the Uhlenbeck and Ornstein (1930) process that underscores the Cox, Ingersoll, and Ross
(1985) model of the term structure of interest rates. However, two other examples based on the
continuous time branching process of Feller (1951) and others are also employed. We demonstrate
that for all three processes, there will generally be significant differences between present values
computed under the assumption that the currently prevailing cost of capital will last indefinitely
into the future and present values determined by discounting cash flows at the expected costs
of capital which apply up until the point in time at which cash flows are to be received. A final
section contains our summary conclusions and recommendations for further work in the area.

2. The Feynman–Kac functional

Suppose a “state variable”, x(t), evolves in terms of the stochastic differential equation

dx(t) = μ(x)dt + σ(x)dz(t), (1)

where μ(x) is the instantaneous mean drift (per unit time) in the state variable, t is time and σ(x) is
an instantaneous “intensity (or risk) factor” defined on the “white noise” process dz(t).3 Now let

F(x, t) = E

[
exp

{
−

∫ t

0
r(x(s))ds

}]
, (2)

where r(x) is a strictly non-negative function over its entire domain and E(·) is the expectation
operator. It then follows that F(x, t) will be the unique solution of the following partial differential
equation:

1

2
σ 2(x)

∂2F

∂x2
+ μ(x)

∂F

∂x
− r(x)F(x, t) = ∂F

∂t
, (3)

under the initial condition F(x, 0) = 1.4 The important point to make here is that if one defines
r(x) to be the cost of capital (on an annualised basis) and takes it to be completely characterised
in terms of the state variable, x (Cox, Ingersoll, and Ross 1985), then it follows that F(x, t) will be
the expected present value of a unit of currency (dollar, euro, pound, etc.) to be received t years
into the future.

One can demonstrate the application of the Feynman–Kac functional in determining the
expected present value of future cash flows by supposing that the state variable evolves in terms
of the following continuous time branching process (Feller 1951):

dx(t) = μx(t)dt + σ
√

x(t) · dz(t), (4)

where μ > 0 is a parameter, μ(x(t)) = μx(t) is the expected instantaneous upward drift in the
state variable and σ(x(t)) = σ

√
x(t) is an intensity factor defined on the white noise process dz(t).

Note in particular how the above process conforms to the commonly held belief that the variance
associated with increments in an economic variable must become larger as the variable grows in
magnitude (Cox, Ingersoll, and Ross 1985).
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The European Journal of Finance 3

A significant difficulty with the implementation of the branching process given here, however,
is that a closed form solution is not available for Equation (4). Fortunately, Cox and Miller (1965,
236) have determined the moment generating function for the conditional probability density
associated with the branching process and this shows that the conditional expectation of the state
variable will be

E[x(t)] = x(0)eμt , (5)

where x(0) is the current (i.e. time zero) value of the state variable and, as previously, E(·) is the
expectation operator. Likewise, the conditional variance of the state variable turns out to be

Var[x(t)] = σ 2x(0)

μ
eμt(eμt − 1), (6)

where Var(·) is the variance operator. These results show that one can expect the state variable to
grow at a rate of μ per unit time although the uncertainty associated with the evolution of the state
variable increases exponentially the further one looks into the future. Now, here one can follow
Karlin and Taylor (1981, 393) and Cox, Ingersoll, and Ross (1985, 390) in letting the instantaneous
cost of capital be defined in terms of the state variable itself; that is, r(x(t)) = x(t).5 Moreover,
the function describing the expected present value of a unit of currency to be received t years
into the future – that is, F(x, t) – will satisfy the following interpretation of the Feynman–Kac
functional:

1

2
σ 2x

∂2F

∂x2
+ μx

∂F

∂x
− xF(x, t) = ∂F

∂t
, (7)

with the initial condition being F(x, 0) = 1. In the Appendix, we demonstrate that the unique
solution to this initial value problem is

F(x, t) = e−xf (t) = exp

[
−x

{
μ + γ

σ 2
− 2γ

σ 2·
μ + γ

(μ + γ ) + (γ − μ)eγ t

}]
, (8)

where γ = √
μ2 + 2σ 2. Thus, if one takes r(x) = x to be the cost of the firm’s capital as charac-

terised in terms of the state variable x, then F(x, t) represents the expected present value of a unit
of currency to be received t years into the future.6

Now suppose the state variable currently (i.e. at time t = 0) has a value of x(0) = 0.10 = r(0)

in which case the opening cost of capital is r(0) = 10% on an annualised basis. It then follows
that e−0.1t will be the present value of a unit of currency to be received t years into the future when
discounted at the current (time t = 0) cost of capital. One can then compare this with the expected
present value of a unit of currency to be received t years into the future, F(x, t) = F(0.10, t) as
obtained from the Feynman–Kac functional. Figure 1 plots the relationship between F(0.10, t)
and e−0.1t when the drift parameter assumes a value of μ = 0.01 and the intensity parameter
amounts to σ = 0.0375, σ = 0.0625, σ = 0.0875 and σ = 0.1125, respectively. These graphs
show that when the intensity factor, σ(x) assumes relatively small values there will not be too
much difference between the expected present value, F(x, t), of a unit of currency to be received
t years into the future and the present value of a unit of currency to be received t years into the
future when discounted at the current (time t = 0) cost of capital. However, there will, in general,
be significant differences between the two present value measures as the intensity factor grows in
magnitude.7 This in turn will mean that determining the expected present value of the cash flows
associated with a given asset or capital project on the assumption that the cost of capital is an
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Figure 1. Branching process: present value of a unit of currency received t years into the future when
discounted (i) at 10% per annum and (ii) at the expected cost of capital, F(.10, t), prevailing on that
date when the drift parameter is μ = 0.01 and the intensity parameter is (a) σ = 0.0375, (b) σ = 0.0625,
(c) σ = 0.0875 and (d) σ = 0.1125.

inter-temporal constant independent of time will almost inevitably lead to biased estimates of the
intrinsic or fundamental value of the asset or capital project under consideration.8

It might be argued that the disparity in the two present value measures documented here has
been caused by the upward drift, μ, in the state variable as captured by Equation (4). Given this,
we now assume that the state variable, x, evolves in terms of a continuous time branching process
without drift. This will mean that μ(x(t)) = 0 or that the state variable is characterised by the
following differential equation:

dx(t) = σ
√

x(t) · dz(t), (9)

where, as previously, σ(x(t)) = σ
√

x(t) is an intensity factor defined on the white noise process,
dz(t). Again, there is no closed-form solution for the above differential equation and so relatively
little is known about the distributional properties of state variables that evolve in terms of this dif-
ferential equation. However, setting μ = 0 in Equation (5) shows that the conditional expectation
of the state variable will be E[x(t)] = x(0). Furthermore, one can let μ → 0 in the expression for
the conditional variance as summarised in Equation (6) in which case we have

Limit
μ→0

Var[x(t)] = Limit
μ→0

σ 2x(0)

μ
eμt(eμt − 1) = Limit

μ→0
σ 2x(0)t(2e2μt − eμt) (10)
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The European Journal of Finance 5

by virtue of L’Hôpital’s Rule (Courant and John 1965, 464–467). It then follows that the con-
ditional variance of a state variable which evolves in terms of a branching process without drift
will be:

Var[x(t)] = x(0)σ 2t. (11)

Note how these latter two results show that in expectations, all future values of the state variable,
x(t), will be equal to the current value of the state variable, x(0) – although the uncertainty
associated with the state variable increases the further one looks into the future. Finally, one can
set μ = 0 and γ = √

μ2 + 2σ 2 = √
2 · σ in Equation (8) in which case the expected present value

of a unit of currency to be received t years into the future will be:

F(x, t) = exp

[
−x

{√
2

σ
− 2

√
2

σ

1

(1 + e
√

2σ t)

}]

or equivalently

F(x, t) = exp

[
−x

{
(
√

2/σ)(e
√

2σ t − 1)

(e
√

2σ t + 1)

}]
.

Here one can factor out the term exp((
√

2/2)σ t) = exp(σ t/
√

2) from the above equation in which
case it follows:

F(x, t) = exp

[
−x

{
(
√

2/σ)(e
√

2σ t − 1)

(e
√

2σ t + 1)

}]

= exp

[
−x

{
(
√

2/σ)(exp(σ t/
√

2) − exp(−σ t/
√

2))

(exp(σ t/
√

2) + exp(−σ t/
√

2))

}]
(12)

or equivalently

F(x, t) = exp

[
−

√
2 · x

σ
tanh

(
σ t√

2

)]
. (13)

Now suppose, as with previous examples, the state variable currently (i.e. at time t = 0) has a
value of x(0) = 0.10 = r(0) or that the cost of equity is currently r(0) = 10% on an annualised
basis. It then follows that e−0.1t will be the present value of a unit of currency received t years into
the future when discounted at the current (time t = 0) cost of equity capital. One can then compare
this with the expected present value of a unit of currency to be received t years into the future,
F(x, t) = F(0.10, t) as summarised by Equation (13). Figure 2 plots the relationship between
F(0.10, t) and e−0.1t when the intensity parameter assumes values of σ = 0.0375, σ = 0.0625,
σ = 0.0875 and σ = 0.1125. These graphs again show that when the intensity parameter, σ ,
assumes relatively small values there will not be too much of a difference between the expected
present value, F(x, t), of a unit of currency to be received t years into the future and the present
value of a unit of currency to be received t years into the future when discounted at the current
(time t = 0) cost of capital. However, there will, in general, be significant differences between
the two present value measures as the intensity parameter grows in magnitude. This in turn will
mean that determining the present value of cash flows associated with a given capital project on
the assumption that the currently prevailing cost of capital will last indefinitely into the future
will again most likely lead to significant errors in the present value calculations.
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Figure 2. Continuous time branching process without drift: present value of a unit of currency received t
years into the future when discounted (i) at 10% per annum and (ii) at the expected cost of capital, F(.10, t),
prevailing on that date when the intensity parameter is (a) σ = 0.0375, (b) σ = 0.0625, (c) σ = 0.0875 and
(d) σ = 0.1125.

Now here we would emphasise that there is a steadily expanding strand of literature which
argues that the discount rates used in the evaluation of capital projects ought to elastically fluctuate
around a constant long run mean or perhaps, to even decline with time (Weitzman 1998, 2001,
2010; Newell and Pizer 2003; Groom et al. 2007; Gollier 2013). Weitzman (1998, 202; 2001, 261),
for example, proposes a form of ‘gamma discounting’ under which ‘people generally discount
the future at declining rates of interest’. Given this, we now develop an interpretation of the
Feynman–Kac functional which leads to discount rates that are based on the gamma probability
density employed by Weitzman (2001, 2010). We begin by supposing that the state variable, x(t),
evolves in terms of an Uhlenbeck and Ornstein (1930) process; namely9

dx(t) = −θx(t)dt + σdz(t), (14)

where θ > 0 is a speed of adjustment (or mean reversion) coefficient, μ(x) = −θx is the instan-
taneous drift in the state variable and σ(x) = σ is a (constant) intensity parameter defined on the
white noise process dz(t). This process characterises the state variable, x(t), as an elastic random
walk in the sense that it has a greater tendency to revert towards its long-run mean of zero the
further it is removed from it. This is evident from the solution of the Uhlenbeck and Ornstein
(1930, 827) differential equation (14) which takes the form

x(t) = x(0)e−θ t +
∫ t

0
e−θ(t−s)dz(s). (15)
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The European Journal of Finance 7

Note how this shows that the state variable has a mean of E[x(t)] = x(0)e−θ t whilst its variance
will be Var[x(t)] = (σ 2/2θ)(1 − e−2θ t) (Uhlenbeck and Ornstein 1930, 827–828). Since θ > 0
this in turn will imply:

Limit
t→∞ E[x(t)] = 0 (16)

or that the state variable has a long-run mean of zero.
Now, suppose one follows Karlin and Taylor (1981, 393) and Cox, Ingersoll, and Ross (1985,

390) in letting the instantaneous cost of capital be defined in terms of the square of the state
variable, x(t), or

r(x) = x2. (17)

One can then substitute Equation (15) into Equation (17) and take expectations to thereby show
that the expected cost of capital at some future point in time, t, will be:

E[r(t)] = r(0)e−2θ t + σ 2

2θ
(1 − e−2θ t). (18)

Note how this result shows that the expected cost of capital will asymptotically converge towards
a long run inter-temporally constant mean of10

Limit
t→∞ E[r(t)] = σ 2

2θ
. (19)

This in turn implies that the expected cost of capital at some future point in time is a weighted
average of the current cost of capital, r(0), and the long-run mean cost of capital, σ 2/2θ where
the weights are given by e−2θ t and (1 − e−2θ t) respectively.11 Moreover, one can determine the
function describing the expected present value of a unit of currency to be received t years into the
future – i.e. F(x, t) – by appropriate substitution into the Feynman–Kac functional; namely

1

2
σ 2 ∂2F

∂x2
− θx

∂F

∂x
− x2F(x, t) = ∂F

∂t
, (20)

with the initial condition being F(x, 0) = 1. Here one can use procedures similar to those illustrated
in the Appendix to demonstrate that the unique solution to this initial value problem is:

F(x, t) = exp

[
(θ − γ )t

2

]
·
√

θ(θ + γ ) + 2σ 2

θ(θ + γ ) + σ 2(1 + e−2γ t)

× exp

{[ −2

(θ + γ )
+ 2γ e−2γ t

θ(θ + γ ) + σ 2(1 + e−2γ t)

]
x2

2

}
, (21)

where γ = √
θ2 + 2σ 2. Thus, if one takes r(x) = x2 to be the cost of capital as characterised

in terms of the state variable, x, then F(x, t) represents the expected present value of a unit of
currency to be received t years into the future.

Now suppose the state variable currently (that is, at time t = 0) has a value of x(0) = 0.316628
in which case the opening cost of capital amounts to r(x(0)) = r(0.316228) = 0.3162282 = 0.10
or 10% on an annualised basis. It then follows that e−0.1t will be the present value of a unit of
currency to be received t years into the future when discounted at the current (time t = 0) cost
of capital. One can then compare this with the expected present value of a unit of currency to
be received t years into the future, F(x, t) = F(0.316228, t), as obtained from the Feynman–Kac
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8 I. Davidson et al.
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Figure 3. Uhlenbeck and Ornstein process: present value of a unit of currency received t years into the future
when discounted (i) at 10% per annum and (ii) at the expected cost of capital, F(.316228, t), prevailing on
that date when (a) the speed of adjustment coefficient is θ = 0.05 and the (square of the) intensity parameter
is σ 2 = 0.01, (b) the speed of adjustment coefficient is θ = 0.075 and the (square of the) intensity parameter
is σ 2 = 0.015, (c) the speed of adjustment coefficient is θ = 0.10 and the (square of the) intensity parameter
is σ 2 = 0.02 and (d) the speed of adjustment coefficient is θ = 0.125 and the (square of the) intensity
parameter is σ 2 = 0.025.

functional. Figure 3 plots the relationship between F(0.316228, t) and e−0.1t for values of (θ , σ 2) =
(0.05, 0.01), (θ , σ 2) = (0.075, 0.015), (θ , σ 2) = (0.10, 0.02) and (θ , σ 2) = (0.125, 0.025). Note
how for each example the long-run mean cost of capital amounts to:

σ 2

2θ
= 0.01

2 × 0.05
= 0.015

2 × 0.075
= 0.02

2 × 0.10
= 0.025

2 × 0.125
= 0.10

or 10% and is equal to the current – i.e. time zero – cost of capital, r(x(0)) = r(0.316228) =
0.3162282 = 0.10. However, despite this, the graphs summarised in Figure 3 show that there
will, in general, be systematic differences between the expected present value, F(x, t), of a unit
of currency to be received t years into the future and the present value of a unit of currency to
be received t years into the future when discounted at the current (time t = 0) cost of capital.12

This in turn will mean that determining the present value of the expected cash flows associated
with a given asset or capital project on the assumption that the cost of capital is an inter-temporal
constant independent of time will almost inevitably lead to biased estimates of the intrinsic (or
fundamental) values of the given asset or capital project. This is consistent with our analysis
based on the branching process considered earlier for which there are also significant differences
between expected present values, F(x, t), as determined from the Feynman–Kac functional and
present values determined using the currently prevailing cost of capital, r(0).

There are several explanations that one might offer as to why the inter-temporally constant dis-
count rate assumption provides unreliable estimates of present values for the stochastic processes
we have examined here. The first of these can be demonstrated by considering a discount rate that
evolves in terms of the Uhlenbeck and Ornstein (1930) process given earlier. Here Equation (18)
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The European Journal of Finance 9

shows that if a stochastic shock engenders a situation where the current discount rate, r(0), differs
substantially from its long-run mean, σ 2/2θ then it can take an inordinately large period of time
for future discount rates to adjust back to σ 2/2θ – depending on the magnitude of the speed of
the adjustment coefficient, θ . This in turn will mean that employing r(0) as an inter-temporally
constant discount rate will lead to significantly different estimates of present values to those
determined under the Feynman–Kac functional.

A second and more compelling reason, however, arises out of Jensen’s inequality which says
that under mild regularity conditions, the expectation of a convex function will be greater than the
convex function of an expectation (Feller 1971, 153–154). In the present context, this will mean:

F(x, t) = E

[
exp

{
−

∫ t

0
r(x(s))ds

}]
≥ exp

{
−

∫ t

0
E[r(x(s))]ds

}
(22)

or that the expected present value of the future cash flows will generally exceed present values
computed by discounting cash flows at their expected costs of capital at the time the cash flows
are to be received. Thus, if one discounts future cash flows at the long run expected discount
rate, σ 2/2θ arising from the Uhlenbeck and Ornstein (1930) process then Jensen’s inequality
tells us that this will underestimate expected present value – as is demonstrated by the examples
summarised in Figure 3(a)–3(d).

A more detailed understanding of how Jensen’s inequality implies that the expected present
value of the future cash flows will generally exceed present values computed by discounting cash
flows at their expected costs of capital at the time the cash flows are to be received follows from
the fact that there is a non-trivial probability that the state variable, x, can both fall to zero and
then depending on the stochastic process, remain there permanently. Thus, for a continuous time
branching process – i.e. Equation (4) – it may be shown that the probability of the state variable
being permanently absorbed at zero before some future time, t, is given by (Cox and Miller
1965, 236):

Prob[x(t) = 0] = exp

[−2x(0)

σ 2
· μ

(1 − e−μt)

]
, (23)

where, as previously, x(0) is the initial (time zero) value of the state variable, μ is the expected
instantaneous proportionate upwards drift in the state variable and σ is the intensity parameter
associated with the white noise process dz(t). Table 1 summarises the probability of absorption at
x = 0 before time t = 1 out to time t = 300 years for the data on which Figure 1 is based; namely,
that the state variable has an initial value of x(0) = 0.1 = r(0), a proportionate upwards drift
of μ = 0.01 and an intensity parameter which assumes values of σ = 0.0375, σ = 0.0625, σ =
0.0875 and σ = 0.1125, respectively.13 Note how this table shows that for low values of the
intensity parameter, σ , there is only a small probability that the state variable – and by implication
the cost of capital – will fall permanently to zero over the first 10–15 years or so. However,
beyond this period, the probability of absorption grows exponentially. Furthermore, all cash flows
are discounted at a rate of zero beyond the point at which the state variable falls to zero. In such
circumstances, applying the initial (time zero) discount rate, r(0) = x(0), to all future cash flows
will understate the capital project’s present value. Whilst this may not pose a serious problem in
the evaluation of ‘immediate and near future’ capital investment projects (Wietzman 2001, 261),
it can present a major problem in the cost–benefit analysis of long-dated environmental projects
and activities where costs and benefits can ‘be spread out over hundreds of years’ (Weitzman
1998, 201; Weitzman 2001, 2010; Newell and Pizer 2003; Groom et al. 2007; Gollier 2013).14
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10 I. Davidson et al.

Table 1. Continuous time branching process: probability of absorption of state variable at x = 0 before time
t when the state variable has an initial (time zero) value of x(0) = 0.10, a proportionate upwards drift of
μ = 0.01 and an intensity parameter of σ = 0.0375, σ = 0.0625, σ = 0.0875, and σ = 0.1125, respectively.

Time before absorption Probability Probability Probability Probability
at x = 0 σ = 0.0375 σ = 0.0625 σ = 0.0875 σ = 0.1125

1 .0000 .0000 .0000 .0000
2 .0000 .0000 .0000 .0003
3 .0000 .0000 .0001 .0048
4 .0000 .0000 .0013 .0178
5 .0000 .0000 .0047 .0392
6 .0000 .0002 .0113 .0663
7 .0000 .0005 .0210 .0966
8 .0000 .0013 .0335 .1280
9 .0000 .0026 .0481 .1594

10 .0000 .0046 .0642 .1900
11 .0000 .0073 .0814 .2194
12 .0000 .0108 .0993 .2472
13 .0000 .0150 .1173 .2735
14 .0000 .0199 .1354 .2983
15 .0000 .0253 .1533 .3216
16 .0001 .0313 .1709 .3434
17 .0001 .0378 .1881 .3639
18 .0002 .0447 .2048 .3832
19 .0003 .0519 .2210 .4012
20 .0004 .0593 .2367 .4182
25 .0016 .0988 .3070 .4895
30 .0041 .1387 .3650 .5435
35 .0081 .1766 .4129 .5856
40 .0134 .2116 .4528 .6192
50 .0269 .2722 .5148 .6692
60 .0428 .3215 .5605 .7045
70 .0593 .3617 .5952 .7306
80 .0756 .3946 .6223 .7505
90 .0910 .4220 .6439 .7662

100 .1054 .4449 .6615 .7788
125 .1362 .4879 .6934 .8013
150 .1603 .5173 .7144 .8159
175 .1788 .5381 .7289 .8259
200 .1930 .5531 .7393 .8330
250 .2124 .5725 .7523 .8418
300 .2239 .5834 .7596 .8468

Tables 2 and 3 provide additional information about the impact the drift parameter, μ, can have
on the probability that the state variable, x, will eventually be absorbed into the zero state. When
taken in conjunction with Table 1, these tables show the probability that the state variable will
eventually be absorbed into the zero state declines as the drift parameter grows in magnitude.
Thus, when the state variable has an initial value of x(0) = 0.1 = r(0), a proportionate upwards
drift of μ = 0.01 and an intensity parameter of σ = 0.1125 then Table 1 shows that the probability
of the state variable being absorbed at x = 0 before t = 25 years amounts to 0.4895. However,
when the drift parameter assumes the larger value of μ = 0.05 Table 2 shows that the probability
of the state variable being absorbed at x = 0 before t = 25 years declines significantly to 0.0281.
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The European Journal of Finance 11

Table 2. Continuous time branching process: probability of absorption of state variable at x = 0 before time
t when the state variable has an initial (time zero) value of x(0) = 0.10, a proportionate upwards drift of
μ = 0.05 and an intensity parameter of σ = 0.0375, σ = 0.0625, σ = 0.0875 and σ = 0.1125, respectively.

Time before absorption Probability Probability Probability Probability
at x = 0 σ = 0.0375 σ = 0.0625 σ = 0.0875 σ = 0.1125

1 .0000 .0000 .0000 .0000
2 .0000 .0000 .0000 .0000
3 .0000 .0000 .0000 .0000
4 .0000 .0000 .0000 .0000
5 .0000 .0000 .0000 .0000
6 .0000 .0000 .0000 .0000
7 .0000 .0000 .0000 .0000
8 .0000 .0000 .0000 .0000
9 .0000 .0000 .0000 .0001

10 .0000 .0000 .0000 .0002
11 .0000 .0000 .0000 .0005
12 .0000 .0000 .0000 .0009
13 .0000 .0000 .0000 .0015
14 .0000 .0000 .0000 .0024
15 .0000 .0000 .0001 .0034
16 .0000 .0000 .0001 .0048
17 .0000 .0000 .0002 .0064
18 .0000 .0000 .0004 .0083
19 .0000 .0000 .0005 .0104
20 .0000 .0000 .0007 .0128
25 .0000 .0000 .0027 .0281
30 .0000 .0001 .0065 .0474
35 .0000 .0002 .0120 .0689
40 .0000 .0004 .0190 .0910
50 .0000 .0015 .0362 .1342
60 .0000 .0034 .0553 .1736
70 .0000 .0062 .0747 .2081
80 .0000 .0096 .0933 .2382
90 .0000 .0134 .1107 .2641

100 .0000 .0174 .1267 .2865
125 .0000 .0277 .1603 .3304
150 .0001 .0371 .1861 .3617
175 .0002 .0451 .2058 .3843
200 .0003 .0518 .2208 .4010
250 .0004 .0615 .2410 .4228
300 .0006 .0676 .2530 .4354

Finally, Table 3 shows that for a drift parameter of μ = 0.10, the probability of the state variable
being absorbed at x = 0 before t = 25 before years is a mere 0.00008. The reader will be able
to confirm from the other figures summarised in Tables 1, 2 and 3 that if one holds the initial
(time zero) value of the state variable, x(0), and the variance parameter, σ , both constant then
the probability of the state variable being absorbed at x = 0 before any given time, t, gradually
declines as the drift parameter, μ, increases in magnitude.

We conclude this section by noting how it is common practice to add a premium to the current
(that is, time zero) discount rate in order to account for the risks associated with stochastic
variations in the discount rate in subsequent periods (Fama 1977; Bodurtha and Mark 1991;
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12 I. Davidson et al.

Table 3. Continuous time branching process: probability of absorption of state variable at x = 0 before time
t when the state variable has an initial (time zero) value of x(0) = 0.10, a proportionate upwards drift of
μ = 0.10 and an intensity parameter of σ = 0.0375, σ = 0.0625, σ = 0.0875 and σ = 0.1125, respectively.

Time before absorption Probability Probability Probability Probability
at x = 0 σ = 0.0375 σ = 0.0625 σ = 0.0875 σ = 0.1125

1 .0000 .0000 .0000 .0000
2 .0000 .0000 .0000 .0000
3 .0000 .0000 .0000 .0000
4 .0000 .0000 .0000 .0000
5 .0000 .0000 .0000 .0000
6 .0000 .0000 .0000 .0000
7 .0000 .0000 .0000 .0000
8 .0000 .0000 .0000 .0000
9 .0000 .0000 .0000 .0000

10 .0000 .0000 .0000 .0000
11 .0000 .0000 .0000 .0000
12 .0000 .0000 .0000 .0000
13 .0000 .0000 .0000 .0000
14 .0000 .0000 .0000 .0000
15 .0000 .0000 .0000 .0000
16 .0000 .0000 .0000 .0000
17 .0000 .0000 .0000 .0000
18 .0000 .0000 .0000 .0001
19 .0000 .0000 .0000 .0001
20 .0000 .0000 .0000 .0002
25 .0000 .0000 .0000 .0008
30 .0000 .0000 .0000 .0022
35 .0000 .0000 .0001 .0047
40 .0000 .0000 .0004 .0083
50 .0000 .0000 .0013 .0180
60 .0000 .0000 .0031 .0301
70 .0000 .0000 .0056 .0433
80 .0000 .0001 .0087 .0567
90 .0000 .0002 .0123 .0697

100 .0000 .0003 .0160 .0821
125 .0000 .0008 .0257 .1092
150 .0000 .0014 .0346 .1308
175 .0000 .0020 .0424 .1477
200 .0000 .0027 .0487 .1608
250 .0000 .0038 .0581 .1788
300 .0000 .0046 .0640 .1896

Halliwell 2011). However, it is clear from Figures 1, 2 and 3 that the forms of the stochastic
discount rates are more complicated than would be the case if generated by the addition of a
simple term premium to the current discount rate. One can demonstrate this by recalling from
previous analysis that i ≡ r(x(0)) is the current (that is, time zero) discount rate whilst F(x, t) is
the expected stochastic discount factor at some future time, t, as determined from the Feynman–
Kac functional. It then follows that the term premium, p, added to the current discount rate, i, at
some future point in time will be implicitly defined by the following equation:

e−(i+p)t = F(x, t). (24)
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Figure 4. Uhlenbeck and Ornstein process. Term premium, p, on an asset that pays out a unit of currency at
time t when the discount rate is i = 10% the speed of adjustment coefficient is θ = 0.075 and the (square
of the) intensity parameter is σ 2 = 0.015.

Moreover, one can solve this equation for the term premium in which case we have:

p = −
{

log[F(x, t)]
t

+ i

}
. (25)

In Figure 4, we plot the term premium against time, t, when the speed of adjustment coefficient
associated with the Uhlenbeck and Ornstein (1930) process is θ = 0.075 and the (square of
the) intensity parameter is σ 2 = 0.015; that is, for the parameter values on which Figure 3(b) is
based. Observe how the term premium gradually increases in absolute magnitude as one looks
further and further into the future. This confirms our assertion that the addition of a simple term
premium to the currently prevailing cost of capital cannot address the problems which arise in the
determination of expected present values from a stochastically varying cost of capital. This result
is particularly important, given that the Uhlenbeck and Ornstein (1930) process has been widely
applied by empirical researchers in the modelling of the term structure of interest rates (Gibbons
and Ramaswamy 1993).

3. Summary conclusions

We examine the integrity of the widely invoked practice of applying an inter-temporally constant
discount rate to the future cash flows of a given asset or capital project in order to determine
its fundamental (or intrinsic) value. In particular, we employ the Feynman–Kac functional to
determine the expected present value of a unit income stream when the cost of capital evolves
stochastically in time. One can then compare the profile of expected present values under the
assumption that the cost of capital varies stochastically in time with the present value profile
determined under the assumption that the currently prevailing cost of capital will last indefinitely
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14 I. Davidson et al.

into the future. Our analysis of this issue is based on three interpretations of the Feynman–Kac
functional. The most familiar of these is based on the Uhlenbeck and Ornstein (1930) process
which underscores the Cox, Ingersoll, and Ross (1985) model of the term structure of interest rates.
The two other interpretations are based on the continuous time branching process of Feller (1951)
and others. Our analysis shows that for all three processes, there will generally be significant
differences between the expected present values determined from the Feynman–Kac functional
and present values computed under the assumption that the currently prevailing cost of capital
will last indefinitely into the future. The conclusion we reach from our analysis is that there
is an urgent need to reassess the assumption of an inter-temporally constant discount rate on
which most valuation models and capital budgeting procedures are based. Here, the emerging
strand of literature which focuses on the problem of determining discount rates for long-dated
environmental projects and activities is potentially of considerable importance (Weitzman 1998,
2001, 2010; Gollier 2013).
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Notes

1. See Ohlson (1995), Ashton, Cooke, and Tippett (2003) and Easton (2009) for examples of valuation models based
on this convention and for references to the numerous other papers that also invoke this convention.

2. This issue is of relevance in a much broader set of circumstances than is examined here – particularly in relation
to the evaluation of environmental projects. Weitzman (1998, 201–202), for example, notes that ‘. . . today, we are
being asked to analyse environmental projects or activities whose effects will be spread out over hundreds of years.
Prominent examples include: global climate change, radioactive waste disposal, loss of biodiversity, thinning of
stratospheric ozone, groundwater pollution, minerals depletion, and many others . . . Few are the economists who
have not sensed in their heart of hearts that something is amiss about treating a distant future event [in these areas]
as just another term to be discounted away at the same constant exponential rate gotten from extrapolating past
rates of return to capital. . . To think about the distant future in terms of standard discounting is to have an uneasy
intuitive feeling that something is wrong, somewhere’. The observation ‘that something is wrong, somewhere’ has
spawned an extensive cost–benefit literature under which long-dated environmental projects are evaluated using an
inter-temporally declining discount rate (Weitzman 1998, 2001, 2010; Newell and Pizer 2003; Groom et al. 2007;
Gollier 2013).

3. A Wiener process, z(t), is a continuous time stochastic process that is normally distributed with a mean of zero and
variance of t (Hoel, Port, and Stone 1987, 122–124). The derivative of a Wiener process is called a white noise process.
Hoel, Port, and Stone (1987, 142) note that the white noise process “is not a stochastic process in the usual sense.
Rather dz(t) = z′(t)dt is a ‘functional” that . . . can be used to define certain stochastic differential equations”.

4. The proof of this proposition proceeds by breaking the present value expression, F(x, t), into an integral involving the
“current period” plus an integral involving all “later periods”; that is, by iteration of the “single period” present value
expression. One can then apply a simple Taylor series expansion to the “later periods” component of the present value
expression and substitute equation (1) for the increments in the state variable implied by the Taylor series expansion.
Stating the analysis on a “per unit” time basis and letting the “current period” shrink to zero (i.e. the taking of limits)
then retrieves the partial differential equation which defines the Feynman–Kac functional. See Karlin and Taylor
(1981, 222–225) for further details.

5. There are a variety of ways in which one might justify this procedure. One could, for example, follow Cox, Ingersoll,
and Ross (1985, 390) in defining x(t) to be a “technological uncertainty” variable which when appropriately trans-
formed has instantaneous increments that are perfectly correlated with instantaneous increments in the cost of capital
for the given asset. Alternatively, one could base the evolution of x(t) (and by implication the cost of capital itself)
on the discrete time binomial filtration procedures formulated in Cox, Ross, and Rubinstein (1979) which in turn is
an adaptation of the earlier work of Chandrasekhar (1943) and Kac (1947). If one is modelling capital projects in a
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commercial context, then one might base the state variable on the rate of consumptive time preference (Fisher 1930)
or the gradual increase in uncertainty associated with long-dated cash flow streams. If one is modelling environmental
projects and activities, then one might base the state variable on the volume of greenhouse gases or the volume of
free radicals in the stratospheric ozone, both of which will tend to increase with time (Weitzman 1998, 2001, 2010;
Gollier 2013).

6. This interpretation of the Feynman–Kac functional has the important property that:

Limit
t→∞ F(x, t) = exp

[−x(μ + γ )

σ 2

]
.

Note how this means that the discount factor associated with long-dated cash flows does not fall away to zero –
something that is of considerable importance in the evaluation of environmental projects and activities (Weitzman
2001, 261–262; Gollier 2013).

7. We compared present values computed under the assumption that the current discount rate will last indefinitely into
the future and present values determined by discounting cash flows at the expected costs of capital that apply at the
time the cash flows are to be received for a wide range of alternative values of the state variable, x, and the parameters
μ and σ . In virtually every instance there were systematic differences between the expected present value, F(x, t),
of a unit of currency to be received t years into the future and the present value of a unit of currency to be received t
years into the future when discounted at the current (time t = 0) cost of capital.

8. One can differentiate through Equation (8) and use the results summarised in the Appendix to show that the
instantaneous discount rate at time t will be:

−1

F(x, t)

∂F(x, t)

∂t
= xf ′(t) = x

(
1 + μf (t) − 1

2
σ 2[f (t)]2

)
.

Substituting x = 0.10, μ = 0.01 and σ = 0.0625 into the above equation yields the instantaneous discount rates
which lie behind Figure 1(b). These calculations show that the instantaneous discount rate is slightly above 10% over
the first five years of the capital project’s existence but then gradually declines to a little over 9% after 10 years, to
7 1

2 % after 15 years, to a little less than 6% after 20 years and to a little over 4% after 25 years. Instantaneous discount
rates for the other graphs comprising Figure 1 display similar time series properties.

9. The Uhlenbeck and Ornstein (1930) process is one of the most widely cited and applied stochastic processes in
financial economics. For some examples of and further references to its applications, see Gibson and Schwartz
(1990), Barndorff-Nielsen and Shephard (2001) and Hong and Satchell (2012).

10. Alternatively one can apply Itô’s Lemma to r(x) = x2 in which case we have dr = (dr/dx)dx + 1/2 ·
(d2r)/dx2(dx)2 = 2xdx + (dx)2. Substituting Equation (14) into this expression and using the fact that (dx)2 = σ 2dt
will then show that dr = 2x(−θxdt + σdz) + σ 2dt or equivalently dr = 2θ(σ 2/2θ − r)dt + 2σ

√
r · dz. This latter

result shows that the cost of capital, r, evolves as an elastic random walk with a long run mean of σ 2/2θ and a speed
of adjustment coefficient equal to 2θ . Moreover, one can use the stochastic differential equation determined here in
conjunction with the Fokker–Planck equation to show that in the steady state (i.e. as t → ∞) the cost of capital, r,
will possess the gamma probability density with parameters 1/2 and σ 2/θ (Cox and Miller 1965, 213–215). This is
of particular significance, given the widely cited model of Weitzman (2001, 261) which is based on the concept of
‘gamma discounting’.

11. Note that if the current discount rate, r(0), exceeds its long run mean, σ 2/2θ then in expectations the discount rate
will decline over time. The term structure of discount rates will then be compatible with the ‘gamma discounting’
model of Weitzman (2001, 262–270).

12. We again compared present values computed under the assumption that the current discount rate will last indefinitely
into the future and present values determined by discounting cash flows at the expected costs of capital that apply
at the time the cash flows are to be received for a wide range of alternative values of the state variable, x, and the
parameters θ and σ 2. Again, in virtually every instance, there were systematic differences between the expected
present value, F(x, t), of a unit of currency to be received t years into the future and the present value of a unit of
currency to be received t years into the future when discounted at the current (time t = 0) cost of capital.

13. One can take limits across Equation (23) and thereby show that the probability the state variable will ultimately be
absorbed into the zero state will be:

Limit
t→∞ Prob[x(t) = 0] = Limit

t→∞ exp

[−2x(0)

σ 2

μ

(1 − e−μt)

]
= exp

[−2μx(0)

σ 2

]
< 1.
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16 I. Davidson et al.

This in turn will mean that there is a non-trivial probability that the discount rate will remain permanently in a non-zero
state. This contrasts with the branching process without drift for which the probability of absorption into the zero
state before time t is given by:

Prob[x(t) = 0] = exp

[−2x(0)

σ 2t

]
.

This latter result can be obtained by letting μ → 0 in Equation (23) based on the application of L’Hôpital’s Rule
(Courant and John 1965, 464–467). One can then take limits across this expression:

Limit
t→∞ Prob[x(t) = 0] = Limit

t→∞ exp

[−2x(0)

σ 2t

]
= 1.

This shows that when the state variable is defined in terms of a branching process without drift, the instantaneous
discount rate will eventually fall into the zero state almost surely. Finally, zero is a natural reflecting barrier of the
discount rate process when the state variable is defined in terms of an Uhlenbeck and Ornstein (1930) process.
This means that when the discount rate falls to zero all uncertainty momentarily vanishes and the discount rate
instantaneously returns to a positive (i.e. non-zero) state (Cox, Ingersoll, and Ross 1985, 391–392).

14. It is instructive to compare the probability for the branching process that the state variable will ultimately be absorbed
into the zero state with the probability that the state variable will ultimately be absorbed into the zero state for the
well-known geometric Brownian motion. Unfortunately, an expression for the probability of ultimate extinction for
a state variable that evolves in terms of the geometric Brownian motion is not available. Nevertheless, some useful
observations can still be made. A state variable, x(t), that evolves in terms of the geometric Brownian motion will
satisfy the stochastic differential equation:

dx(t) = μx(t)dt + σx(t)dz(t),

where μ > 0 is the expected instantaneous proportionate upwards drift in the state variable and σ is the intensity
parameter associated with the white noise process dz(t). One can use this differential equation in conjunction with
results summarised in Karlin and Taylor (1981, 192–193) to show that the probability the state variable will fall from
its initial (i.e. time zero) value of x(0) to a lower limit of a < x(0) before it rises to a higher limit of b > x(0) will be:

b(1−2μ/σ 2) − x(1−2μ/σ 2)

b(1−2μ/σ 2) − a(1−2μ/σ 2)
,

where 2μ/σ 2 > 1. Now, suppose b → ∞. Then the probability that the state variable will decline to x(t) = a at some
future point in time will be:

Limit
t→∞ Prob[x(t) = a] =

(
a

x(0)

)(2μ/σ 2−1)

.

One can then set a > 0 to an arbitrarily small figure and thereby obtain an approximation to the probability that the
state variable will ultimately be absorbed into the zero state. The important point here is that state variables defined
in terms of the branching process and the geometric Brownian motion will both have a non-trivial probability of
absorption into the zero state.
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Appendix Expected present values when the state variable evolves in terms of a branching
process

Suppose one lets:

F(x, t) = e−xf (t),

where f (t) is a continuously differentiable functions of time. It then follows that ∂F/∂x = −f (t)e−xf (t), ∂2F/∂x2 =
[f (t)]2e−xf (t) and ∂F/∂t = −xf ′(t)e−xf (t). Substitution will then show:

1

2
σ 2x

∂2F

∂x2
+ μx

∂F

∂x
− xF(x, t) = ∂F

∂t

or equivalently:

1

2
σ 2x[f (t)]2e−xf (t) − μxf (t)e−xf (t) − xe−xf (t) = −xf ′(t)e−xf (t).

Dividing the above expression by xe−xf (t) leads to the Riccati equation (Boyce and Diprima 2005, 132)

f (′t) = 1 + μf (t) − 1

2
σ 2[f (t)]2.
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18 I. Davidson et al.

Now, suppose one makes the following substitution in the above equation

f (t) = μ + √
μ2 + 2σ 2

σ 2
+ 1

υ(t)
,

where υ(t) is a continuously differentiable function of time. It then follows that f ′(t) = −υ ′(t)/[υ(t)]2 in which case
substitution shows that the Riccati equation becomes:

υ ′(t) − γ υ(t) = 1

2
σ 2,

where γ = √
μ2 + 2σ 2. Multiplying the above equation by e−γ t will then show:

d

dt
[e−γ tυ(t)] = 1

2
σ 2e−γ t

or equivalently:

υ(t) = − σ 2

2γ
+ keγ t ,

where k is a constant of integration. It then follows:

f (t) = μ + √
μ2 + 2σ 2

σ 2
+ 1

υ(t)
= μ + γ

σ 2
+ 1

−σ 2/2γ + keγ t
.

Now, here it will be recalled that the solution to the Feynman–Kac functional must satisfy the initial condition F(x, 0) =
e−xf (0) = 1. This in turn will mean that f (0) = 0. It thus follows that:

f (0) = μ + γ

σ 2
+ 1

−σ 2/2γ + k
= 0,

in which case we have:

k = σ 2

2γ

μ − γ

μ + γ
.

It then follows that:

f (t) = μ + γ

σ 2
− 2γ

σ 2·
μ + γ

(μ + γ ) + (γ − μ)eγ t
.

Finally, this will mean that when the state variable evolves in terms of a branching process, the unique solution of the
Feynman–Kac functional will be:

F(x, t) = exp

[
−x

{
μ + γ

σ 2
− 2γ

σ 2·
μ + γ

(μ + γ ) + (γ − μ)eγ t

}]
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