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FORCING CONSEQUENCES OF PFA TOGETHER

WITH THE CONTINUUM LARGE

DAVID ASPERÓ AND MIGUEL ANGEL MOTA

Abstract. We develop a new method for building forcing iterations with
symmetric systems of structures as side conditions. Using this method we
prove that the forcing axiom for the class of all finitely proper posets of size ℵ1

is compatible with 2ℵ0 > ℵ2. In particular, this answers a question of Moore
by showing that � does not follow from this arithmetical assumption.

1. Introduction

In the early days of forcing, Solovay and Tennenbaum (see [22]) developed the
theory of c.c.c. iterations in order to show the consistency of Suslin’s Hypothesis
(i.e., the axiom saying that there are no Suslin trees). In fact, as they realised, their
technique could be used to build models of ZFC with the continuum arbitrarily
large and satisfying a condition much stronger – in the presence of ¬CH – than
Suslin’s Hypothesis that came to be known as Martin’s Axiom. Recall that a partial
order has the countable chain condition (c.c.c.) if it has no uncountable antichains.
Given a cardinal κ, Martin’s Axiom for κ–many dense sets, MAκ, is the forcing
axiom for the class of c.c.c. forcing notions and for collections of κ–many dense
sets, i.e. the axiom saying that for any c.c.c. partial order P and any collection D
of κ–many dense subsets of P there is a filter G ⊆ P having nonempty intersection
with all members of D, and Martin’s Axiom is MAκ for all κ < 2ℵ0 . Martin’s
Axiom (typically in the form MAω1

) proved to be very successful in applications in
infinite combinatorics, topology, algebra, and other areas of mathematics (see [7]).
The main features of c.c.c. forcing are that (1) c.c.c. forcing notions preserve all
cardinals, and (2) finite support iterations of c.c.c. forcing notions are themselves
c.c.c. It follows from these two facts together that no forcing axiom of the form
MAκ puts any upper bound on the size of the continuum (on the other hand, MAκ

certainly implies 2ℵ0 > κ).
About a decade later, the theory of proper forcing was developed by Shelah ([19];

see also [20], [21]). A poset P is proper if for every regular cardinal λ > |TC(P)|,
every countable N � H(λ) such that P ∈ N , and every p ∈ P∩N there is a condition

q in P stronger than p which is (N, P)–generic, i.e., such that q forces Ġ∩D∩N �= ∅
for every dense subset D (equivalently, maximal antichain) of P such that D ∈ N ,

where Ġ is the canonical name for the generic filter. The class of proper forcings is
much larger than the class of c.c.c. forcings. Nevertheless, proper forcings are well
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2 D. ASPERÓ AND M. A. MOTA

behaved in the sense that (1) they preserve ω1, and that (2) every countable support
iteration with proper iterands is itself proper. Baumgartner showed the consistency
of the forcing axiom for the class of proper forcings and for collections of ℵ1–many
dense sets, also known as the Proper Forcing Axiom (PFA), by building countable
support iterations of proper forcing notions of length a supercompact cardinal (see
[3]). Soon it was realised that PFA has many consequences (see for example [3]
for a classic overview). One remarkable consequence of PFA (by Todorčević and
Veličković; see [4] and [25]) is that, unlike any forcing axiom of the form MAκ, it
does decide the value of 2ℵ0 ; in fact, PFA implies 2ℵ0 = ℵ2.

1 More recently, Moore
has proved (see [14]) that 2ℵ0 = ℵ2 already follows from the bounded form of PFA
known as BPFA (BPFA can be phrased as the axiom saying that 〈H(ω2),∈〉 is a
Σ1 elementary substructure of the structure 〈H(ω2),∈〉 as computed in any generic
extension by a proper forcing).

Given that strong forcing axioms typically imply 2ℵ0 = ℵ2, a natural problem
when faced with a consequence σ of a forcing axiom is to find out whether σ itself
has any impact on the size of the continuum and which. The standard strategy
for producing models of Π2 consequences σ (over the structure 〈H(ω2),∈, ω1〉) of
forcing axioms is by means of forcing iterations in which one keeps adding witnesses
of the relevant Σ1 facts.2 If it can be shown that there is always a forcing adding
these witnesses which moreover has the c.c.c., then a sufficiently long finite support
iteration of (carefully chosen) instances of this forcing will produce a model of σ.
Since finite support iterations of c.c.c. forcings are themselves c.c.c. and since c.c.c.
forcings preserve cardinals, such a construction will give rise to models of σ in
which 2ℵ0 can attain (almost) any arbitrarily fixed value. For example, this is the
standard way of showing that Suslin’s Hypothesis is consistent with 2ℵ0 being any
arbitrarily fixed ℵα with cf(ℵα) > ω1 (see [22]).3 In fact, if GCH holds and κ
is any cardinal of uncountable cofinality, then a certain finite support iteration of
length κ will produce a model of 2ℵ0 = κ together with MAλ for all λ < cf(κ), and
already MAω1

implies Suslin’s Hypothesis ([22]).
However, one often deals with statements σ that cannot be changed by c.c.c.

forcing. Consider for example Club Guessing (CG), which says that there is a
ladder system on ω1 (a ladder system is a sequence 〈Aδ : δ ∈ Lim(ω1)〉 such
that each Aδ is a cofinal subset of δ of order type ω) that ‘guesses’ clubs, in the
sense that if C ⊆ ω1 is a club, then there is some limit ordinal δ < ω1 such that
a final segment of Aδ is contained in C. Club Guessing is clearly a consequence
of Jensen’s ♦. However, unlike ♦, Club Guessing is immune to c.c.c. forcing. In
fact, every club of ω1 in any generic extension by a c.c.c. forcing contains a club
from the ground model, and therefore Club Guessing holds in any extension by any
c.c.c. forcing if it happens to hold in the ground model. Now take our statement

1The first derivation of 2ℵ0 = ℵ2 from a natural forcing axiom was the proof, due to Foreman,
Magidor and Shelah (see [6]), that Martin’s Maximum, which is a provably maximal forcing axiom
for collections of ℵ1–many dense sets and is strictly stronger than PFA, implies 2ℵ0 = ℵ2.

2This is also the traditional way of building models of actual forcing axioms like MAκ, BPFA,
PFA, or Martin’s Maximum.

3As proved by Jensen ([5]), Suslin’s hypothesis is also consistent with CH, but the proof of
this uses a countable – rather than finite – support iteration. Shelah’s [21] is a classical reference
on forcing Π2 statements over 〈H(ω2),∈, ω1〉 together with CH by means of countable support
iterations. Also, Laver proved in [12] that adding any number of random reals to any model
of MAℵ1

preserves Suslin’s Hypothesis, and therefore Suslin’s Hypothesis is consistent with 2ℵ0

being singular of cofinality ω1.
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σ to be the negation of Club Guessing. It follows from the above observation that
the strategy of producing a model of σ by building a finite support iteration in
which the iterands have the c.c.c. cannot work. However, ¬CG is consistent. It
follows from BPFA, and it can be forced over any model of GCH by a countable
support iteration of proper forcings of length ω2. In fact, given a ladder system
A = 〈Aδ : δ ∈ Lim(ω1)〉, the natural forcing for adding, by initial segments, a
club C ⊆ ω1 ‘avoiding’ A – in the sense that C ∩ Aδ is finite for all δ ∈ Lim(ω1)
– is proper.4 On the other hand, although countable support iterations of proper
forcings are always proper, finite support iterations of infinite length of forcings that
are not c.c.c. always collapse ω1. It follows that any (standard) forcing construction
for producing a model of ¬CG by iterating instances of the proper forcing for adding
clubs avoiding given ladder systems will have to be an iteration with countable
supports rather than finite supports, and therefore will never give rise to a model
with 2ℵ0 > ℵ2. The reason is the well–known general fact that for any countable
support iteration 〈Pξ : ξ ≤ λ〉 of nontrivial forcings and any ordinal ξ, if λ ≥ ξ+ω1,

then Pλ forces over V that there is a surjection from ωV
1 onto the reals of V [Ġξ]

(where of course Ġξ denotes the canonical Pξ–name for the generic filter). In
particular, if cf(λ) ≥ ω1 and Pλ has the λ–c.c., then Pλ forces 2ℵ0 ≤ ℵ2. To sum
up, c.c.c. forcing is useless when it comes to forcing the negation of club–guessing
principles over models satisfying these club–guessing principles, and, on the other
hand, countable support iterations of proper forcing notions can easily give rise to
generic extensions satisfying the negation of club–guessing principles, but 2ℵ0 ≤ ℵ2

must necessarily hold in those extensions.
In view of these considerations it is natural to enquire whether various failures

of Club Guessing on ω1 are consistent with the continuum large. In some cases,
this question can be settled by taking a model of the property in question together
with the continuum small and arguing that adding many Cohen or random reals to
it preserves the property. For example, it can be proved that the very statement we
have been considering above, namely ¬CG, is indeed compatible with 2ℵ0 > ℵ2. In
fact it is not difficult to prove (and possibly folklore) that the product with finite
supports of Cohen forcing always preserves ¬CG.

There are other antidiamond principles for which the strategy of adding many
Cohen reals does not work. This is for example the case for the negation of Weak
Club Guessing. Weak Club Guessing (WCG) says that there exists a ladder system
A = 〈Aδ : δ ∈ Lim(ω1)〉 with the property that for every club C ⊆ ω1 there is some
δ ∈ C such that Aδ ∩ C is infinite. Note that Club Guessing implies Weak Club
Guessing and that, by what we have already mentioned, ¬WCG is a consequence of
BPFA and can be forced over any model of GCH by a countable support iteration
of proper forcings of length ω2. On the other hand, Cohen forcing always adds
a ladder system witnessing WCG. This was originally proved by Juhasz in [9],
where he showed that a weakening of ♣ implying Weak Club Guessing always
holds after adding a Cohen real. Hence, the consistency of ¬WCG with 2ℵ0 > ℵ2

cannot be proved by adding Cohen reals to a model where Weak Club Guessing is
false. However, one possibility for this is to add many random reals to a model of
¬WCG. In fact, it is not hard to see (and, again, possibly folklore) that random
forcing always preserves ¬WCG.

4It follows from this that in fact the negation of the weaker principle known as Weak Club
Guessing (see below) follows from BPFA and can be forced over any GCH model.
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There are however strengthenings of ¬CG for which the above methods do not
work. Consider for example the conjunction of ¬WCG and MAω1

. This theory
implies several strong forms of ¬WCG.5 As we said, ¬WCG is preserved after
adding random reals, but MAω1

will fail in the resulting model.6

Another example of a strengthening of ¬CG that cannot be forced easily with a
large continuum is the negation of � (mho). The principle �, formulated by Moore,
says that there is a sequence 〈fα : α ∈ ω1〉 such that fα is a continuous map, with
respect to the order topology, from α into ω for all α ∈ ω1, and with the property
that for every club E ⊆ ω1 there is a δ in E such that fδ takes all values in ω on
E ∩ δ. The following is an observation of Moore concerning this statement: Notice
that if α < ω1 and f : α → ω is continuous, then α can be partioned into clopen
intervals on which f is constant. In such a situation there is a cofinal C ⊆ α of
order-type at most ω such that f(ε) depends only on the size of ε∩C. From this it
is clear that � follows from CG. In [16] Moore shows that � implies the existence
of an Aronszajn line containing no Countryman type, and asks whether � follows
from 2ℵ0 > ℵ2. One motivation for this question is that, by the above implication,
� entails that there is no basis for the uncountable linear orders containing exactly 5
uncountable members.7 On the other hand, Moore proved in [15] that the existence
of such a basis is consistent with ZFC and that in fact it follows from PFA that
there is such a basis. Hence, if � could be derived from 2ℵ0 > ℵ2, then the existence
of a 5 element basis for the uncountable linear orders would imply 2ℵ0 = ℵ2 (it is
easy to see that it implies 2ℵ0 > ℵ1).

It should be noted that MAω1
, ¬WCG and ¬� follow from the forcing axiom

for the class of all proper posets of size ℵ1 (which we will call PFA(ω1)). In this
paper we introduce an alternative method to standard countable support iterations
for producing models of certain Π2 statements. Using this method we prove that
a certain forcing axiom which is a natural fragment of PFA(ω1) and which implies
the three statements above – MAω1

, ¬WCG, and ¬� – is consistent together with
2ℵ0 > ℵ2.

8 In fact, we build a cardinal–preserving generic extension where this
fragment of PFA(ω1) holds and 2ℵ0 is equal to κ, where κ is an arbitrarily fixed
cardinal satisfying certain GCH like assumptions in the ground model.

Definition 1.1. Given a poset P, we will say that P is finitely proper if and
only if for every regular cardinal λ > |TC(P)|, every finite set {Ni : i ∈ m}
of countable elementary substructures of H(λ) containing P and every condition
p ∈

⋂
{Ni : i < m} ∩ P there is a P–condition extending p and (Ni, P)–generic for

all i.

5One such strong form of ¬WCG is for instance Code(even–odd), a principle formulated by
Miyamoto saying that for every ladder system A = 〈Aδ : δ ∈ Lim(ω1)〉 and every B ⊆ ω1 there
are two clubs C and D of ω1 such that for each δ ∈ C, if δ ∈ B (resp. δ /∈ B), then |Aδ ∩D| < ℵ0

is odd (resp. even).
6One reason why MAω1 fails after adding random reals is that in the extension there is a c.c.c.

partial order whose product with itself is not c.c.c. This result is due to Kunen and a proof can
be found in [18].

7If there is such a basis for the uncountable linear orders, then there must be a Countryman
type C such that every Aronszajn line contains a copy of C or of the reverse of C (or of both).

8Concerning the connection previously mentioned between � and the (non)existence of a 5
element basis for the uncountable linear orders, we should point out that it is still open whether
the existence of such a basis is compatible with 2ℵ0 > ℵ2.
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Definition 1.2. Let PFA
fin(ω1) denote the forcing axiom for the class Γ of all

finitely proper posets of size ℵ1 and for families of ℵ1–many dense sets. More

precisely, PFAfin(ω1) says that whenever P ∈ Γ and {Dα : α ∈ ℵ1} is a set of
dense subsets of P, there is a filter G on P meeting every Dα.

Note that c.c.c. partial orders are finitely proper. Indeed, if P is c.c.c. and N
is any countable elementary substructure of H(λ), for any cardinal λ > |TC(P)|,
such that P ∈ N , then any condition in P is (N, P)–generic, simply because A ⊆ N

for any maximal antichain of P in N . Therefore the forcing axiom PFA
fin(ω1) is

a generalization of MAω1
. Also, unlike any form of Martin’s Axiom, PFAfin(ω1)

does have a strong impact on the club filter on ω1. Specifically, this forcing axiom
implies the failure of both WCG and �. The proofs of these implications can be
found in Section 5.

Our main theorem is the following.

Theorem 1.3 (CH). If κ is a cardinal such that κℵ1 = κ and 2<κ = κ, then
there exists a proper forcing notion P with the ℵ2–chain condition such that both

PFA
fin(ω1) and 2ℵ0 = κ hold in the generic extension by P.

Our method produces a proper forcing notion with the ℵ2–chain condition. This
forcing notion P is the direct limit Pκ of a sequence 〈Pα : α < κ〉 of partial orders,
where Pα is a complete suborder of Pβ whenever α is less than β. Our construction
can thus be seen as a forcing iteration in a broad sense.

One crucial feature in the proof of properness is the use of certain finite “sym-
metric systems” of countable structures as side conditions. These structures will
be elementary substructures of H(κ) and will be added by P0. If N is one of them,
q = (F,Δ) ∈ Pα, (N,α) ∈ Δ, and N belongs to a club of “sufficiently correct”
structures, then all relevant pieces of information coming from any Pα–extension of
q can be relativized to N . This is the case essentially because, under the above as-
sumptions, if ξ ∈ dom(F ) – i.e., F (ξ) carries nontrivial information on the (finitely
proper) poset Φ(ξ) with domain included in ω1 picked by our bookkeeping – and

ξ ∈ α ∩N , then F (ξ) is asked to be generic over N [Ġξ] with respect to Φ(ξ). The
domain of F will be finite, and for every ξ ∈ dom(F ), F (ξ) will be a Pξ–name
for a countable ordinal. The general technique of ensuring properness of a given
forcing notion by explicitly incorporating elementary substructures of some large
enough model as side conditions may be traced back to Todorčević [23]. The more
specific approach of considering symmetric systems of countable structures as side
conditions in contexts in which one starts with a model of CH and wants to obtain
a forcing notion which is proper and has the ℵ2–chain condition is quite natural. In
fact, this approach has already shown up in several places in the literature prior to
our work (see for example [1], [10] and [24]). The main novelty of our present work
is that it incorporates the use of symmetric systems of structures as side conditions
affecting all iterands of a given forcing iteration (or of an initial segment thereof)
rather than a single forcing as in the above references. It is worth pointing out
that Neeman ([17]) has developed a different method for building proper forcing
notions by means of finite support iterations with side conditions. His side con-
ditions are ∈–chains of certain types of objects rather than symmetric systems of
countable structures. The members of Neeman’s side conditions may be countable
elementary substructures but may also be of a different nature. One important
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difference between his work and ours is that in ours we strive to obtain a forcing
notion with the ℵ2–c.c., which is the reason why we cannot do with ∈–chains of
structures and need symmetric systems instead, whereas the ℵ2–c.c. typically does
not hold in Neeman’s constructions.9

We feel that the main contribution of the present paper is not so much a partic-
ular consistency result as the introduction of a fairly general method for building
interesting forcing constructions. In fact, we have found further applications of
(variations of) our method since this paper was first written and circulated in 2010.
For instance, in [2] we build a model of a generalisation of Martin’s Axiom to a
certain natural class of forcing notions with the ℵ2–chain condition, with no restric-
tion on their size. This generalisation of Martin’s Axiom implies certain interesting
‘uniform’ failures of Club Guessing whose consistency we don’t know how to prove
by methods other than ours.

There are natural weakenings of � whose negation does not seem to hold in
the models built by the methods in the present paper. Specifically, given n < ω
let �n be the principle saying that there is a sequence (fδ)δ∈ω1

with fδ : δ −→ n
continuous function for each δ such that for every club C ⊆ ω1 there is some δ ∈ C
such that f−1

δ (j)∩C is unbounded in δ for all j < n. Clearly, for all 2 ≤ n < m < ω,
� implies �m, and �m implies �n (these weakenings of � have also been defined
by Moore). Our present methods do not seem to produce models of ¬�n for any n
(see Section 5 for a brief discussion of this). We should point out that, even if none

of the principles ¬�n is known to follow from PFA
fin(ω1), already ¬�2 certainly

follows from PFA(ω1) (see the remark in Section 5).
The rest of the paper is organized as follows: In Section 2 we introduce the notion

of symmetric system of structures and prove basic properties of this notion that we
will use throughout the paper. In Section 3 we present a rather general construction
of a finite support forcing iteration using symmetric systems of structures as side
conditions and prove several facts applying to this general context. Section 4 starts
with the definition of a partial order P that will be shown to witness the conclusion
of Theorem 1.3. This partial order is a special case of the construction in Section 3.
We then prove the relevant facts of P not covered by the general theory in Section
3. It follows from these facts that P indeed witnesses the conclusion of Theorem
1.3. Finally, in Section 5 we show that PFA

fin(ω1) implies the failure of Weak
Club Guessing and of �.

Even if this work tries to be reasonably self–contained, we will assume that the
reader has a good knowledge of forcing, and in particular some familiarity with
proper forcing. Two good references are Kunen ([11]) and Jech ([8]). Most of
our notation is standard, and we have tried to give complete explanations of the
relevant symbols and notions whenever we deviate from the standard use.

2. Symmetric systems

Our forcing P for proving Theorem 1.3, to be defined in Section 4, will be the
direct limit Pκ of a certain sequence 〈Pα : α < κ〉 of forcings. The properness
of each Pα will be witnessed by a certain club M∗

α of [H(θα)]
ℵ0 for some high

enough cardinal θα (see Section 4). The main idea here is to use the elements of
Mα – where Mα is the club of restrictions to H(κ) of members of M∗

α – as side

9He typically does need some κ–c.c., for larger κ, which he tends to achieve thanks to the use

of structures of the form H(α) in his side conditions.
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conditions to ensure properness, but without losing the ℵ2–chain condition. This
brings us to the notion of a symmetric system of structures. As we mentioned in
the introduction, the notion of a symmetric system of structures is a natural one
in the context of building forcing notions, over models of CH, which are intended
to be both proper and with the ℵ2–chain condition. In this section we define this
notion and analyse its basic properties, which we will repeatedly use throughout
the rest of the paper. This type of analysis can be found also for example in [1],
[10] and [24], where the notion of a symmetric system shows up too (with different
names).

Here, and in the remainder of the paper, we adopt the convention of denoting
by δN the ordinal N ∩ ω1 if N is a set such that N ∩ ω1 is an ordinal. Also, in this
section κ can be taken to be the same κ that has been fixed in the statement of
Theorem 1.3, but everything here works the same with any other choice of κ (as
long as κ ≥ ω2 and κ is a cardinal).10

Definition 2.1. Let P ⊆ H(κ), and let {Ni : i < m} be a finite set of countable
subsets of H(κ). We will say that {Ni : i < m} is a P–symmetric system if

(A) For every i < m, (Ni,∈, P ) is an elementary substructure of (H(κ),∈, P ).
(B) Given distinct i, i′ in m, if δNi

= δNi′ , then there is a (unique) isomorphism

ΨNi,Ni′ : (Ni,∈, P ) −→ (Ni′ ,∈, P ).

Furthermore, we ask that ΨNi,Ni′ be the identity on Ni ∩Ni′ .
(C) For all i, j inm, if δNj

< δNi
, then there is some i′ < m such that δNi′ = δNi

and Nj ∈ Ni′ .
(D) For all i, i′, j in m, if Nj ∈ Ni and δNi

= δNi′ , then there is some j′ < m
such that ΨNi,Ni′ (Nj) = Nj′ .

In (A) in the above definition, and elsewhere, we will tend to refer to structures
(N,∈, P ∩N) by the simpler expression (N,∈, P ).

Lemma 2.2. Let P ⊆ H(κ) and let N , N ′ and M be countable elementary sub-
structures of (H(κ),∈, P ). Suppose M ∈ N and ΨN,N ′ : (N,∈, P ) −→ (N ′,∈, P )
is an isomorphism. Then ΨN,N ′(M) is also a countable elementary substructure of
(H(κ),∈, P ).

Proof. First note that ΨN,N ′ � M is an isomorphism between (M,∈, P ) and
(ΨN,N ′(M),∈, P ). Assume now that −→y is a finite vector of elements of ΨN,N ′(M)
and that the formula ∃xϕ(x,−→y ) is true in (H(κ),∈, P ). We show that there is some
z ∈ ΨN,N ′(M) such that (H(κ),∈, P ) |= ϕ(z,−→y ). But −→y is also a finite vector of
elements of N ′, and by correctness of (N ′,∈, P ), the formula ∃xϕ(x,−→y ) is true in
(N ′,∈, P ). Let ←−y be the vector of elements of N such that ΨN,N ′(←−y ) = −→y , and

note that the formula ∃xϕ(x,←−y ) is true in (N,∈, P ) since the map Ψ−1
N,N ′ : (N ′,∈,

P ) −→ (N,∈, P ) is an isomorphism. Furthermore, by correctness of (N,∈, P ),
the formula ∃xϕ(x,←−y ) is also true in (H(κ),∈, P ). From this, and using the fact
that ←−y is also a vector of elements of M , we conclude that there exists an ele-
ment z′ in M such that the formula ϕ(z′,←−y ) is true in (M,∈, P ). It suffices to let
z = ΨN,N ′(z′). �
Lemma 2.3. Let P ⊆ H(κ), let N be a P–symmetric system, and let N ∈ N .

10The theory works also for the case κ = ω1, but this is a degenerate case in which symmetric
systems are simply finite ∈–chains of countable transitive models.
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(i) If M1 ∈ N ∩N and there is some M2 ∈ N (not necessarily in N ∩N) such
that δM1

< δM2
< δN , then there is some M3 in N ∩N such that M1 ∈ M3

and δM3
= δM2

.
(ii) In particular, N ∩N is also a P–symmetric system.
(iii) If W ⊆ N is a P–symmetric system and N ∩N ⊆ W, then

V := N ∪ {ΨN,N ′(W ) : W ∈ W , N ′ ∈ N , δN ′ = δN}
is a P–symmetric system.

Proof. We start with (i). Since N satisfies clause (C) in the definition of a symmet-
ric system, there exist some M4 and N ′ in N such that M1 ∈ M4 ∈ N ′, δM4

= δM2
,

and δN ′ = δN . Since (N ′,∈, P ) and (N,∈, P ) are isomorphic and the correspond-
ing isomorphism ΨN ′,N fixes N ∩ N ′ (in particular, it fixes M1), it follows that
M1 ∈ ΨN ′,N (M4). Finally, note that clause (D) implies that M3 := ΨN ′,N (M4) is
in N ∩N , and that δM3

= δM4
= δM2

again as ΨN ′,N fixes N ∩N ′.
Let us move on to conclusion (ii). N ∩N satisfies clauses (A), (B) and (D) of

Definition 2.1 since they hold for N , and (C) follows from (i).
We prove now (iii). By Lemma 2.2, V satisfies clause (A) of Definition 2.1.
Let us now check that V satisfies (B). So, let V1 and V2 in V be such that

δV1
= δV2

. We must show that (V1,∈, P ) and (V2,∈, P ) are isomorphic and that
the corresponding isomorphism fixes V1 ∩ V2. Without loss of generality we can
assume that δV1

< δN (note that if δV1
≥ δN , then V1 and V2 are elements of

N ) and that V1 or V2 are not in N . Note also that V ∩ N ⊆ W : If W ∈ W ,
N ′ ∈ N , δN ′ = δN , and ΨN,N ′(W ) ∈ N , then ΨN,N ′(W ) ∈ N ∩N ′, and therefore
ΨN,N ′(W ) = W as ΨN,N ′ is the identity on N ∩ N ′. It follows that there are
N1 and N2, both in N , such that δNi

= δN and Vi ∈ Ni (i ∈ {1, 2}). Let V ′
i =

ΨNi,N (Vi) (i ∈ {1, 2}). It follows that the map ΨN,N2
◦ ΨV ′

1 ,V
′
2
◦ (ΨN1,N � V1) is

an isomorphism ΨV1,V2
between (V1,∈, P ) and (V2,∈, P ), and of course it is the

unique isomorphism between these structures. Let Ṽ1 = ΨN1,N2
(V1) = ΨN,N2

(V ′
1),

and note that ΨV1,V2
= ΨṼ1,V2

◦ (ΨN1,N2
� V1). To see that ΨV1,V2

fixes V1 ∩ V2,

note that if x ∈ V1∩V2, then x = ΨN1,N2
(x) = x (since x ∈ N1∩N2), and therefore

ΨV1,V2
(x) = ΨṼ1,V2

(x) = x. The last equality holds since x ∈ Ṽ1 ∩ V2 and since

ΨṼ1,V2
fixes Ṽ1 ∩ V2 (this is true since ΨṼ1,V2

= ΨN,N2
(ΨV ′

1 ,V
′
2
) and since ΨV ′

1 ,V
′
2

fixes V ′
1 ∩ V ′

2).
The next step is to prove that V satisfies (C). So, assume that V1, V2 are

elements of V such that δV1
< δV2

. We must show that there is a V3 in V containing
V1 and such that δV2

= δV3
. Note that if δV1

≥ δN , then V1 and V2 are elements
of the symmetric system N and we are done. Also note that if δV2

≥ δN > δV1
,

then V2 ∈ N and there is some N3 in N such that V1 ∈ N3 and δN3
= δN . In

particular there is some V3 ∈ N such that δV3
= δV2

and N3 ∈ V3, and therefore
such that V1 ∈ V3. So, we may assume that δV2

< δN and that there are W1, W2 in
W , together with N1, N2 in N , such that V1 = ΨN,N1

(W1) and V2 = ΨN,N2
(W2).

Since W is a symmetric system, there exists some W3 ∈ W such that W1 ∈ W3 and
δW3

= δW2
. It suffices to let V3 = ΨN,N1

(W3).
Finally, we check that V satisfies (D). Let V1, V2 and V3 be elements of V such

that δV1
< δV2

= δV3
and V1 ∈ V2. We must show that ΨV2,V3

(V1) ∈ V . Note that
if δV1

≥ δN , then V1, V2 and V3 are in N and we are done. So, we can assume
that δV1

< δN . Now note that if δV1
< δN ≤ δV2

, then there are N2, N3 ∈ N and
W ∈ W such that V1 = ΨN,N2

(W ) and such that, for all j ∈ {2, 3}, δNj
= δN and
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Nj ⊆ Vj , and N3 = ΨV2,V3
(N2) if δN2

< δV2
. Hence, ΨV2,V3

(V1) = ΨN2,N3
(V1) =

ΨN2,N3
(ΨN,N2

(W )) = ΨN,N3
(W ) ∈ V . The last case of this proof is when δV2

< δN .
In this case there are Wi ∈ W and Ni ∈ N (i ∈ {1, 2, 3}) such that δNi

= δN and
Vi = ΨN,Ni

(Wi). Furthermore, since V1 ∈ N1 ∩ N2 and ΨN1,N2
fixes N1 ∩ N2, we

also have that ΨN2,N (V1) = ΨN2,N (ΨN1,N2
(V1)) = ΨN1,N (V1) = W1. Since W is a

symmetric system, we know that W4 := ΨW2,W3
(W1) is in W . It thus follows that

ΨV2,V3
(V1) = ΨW3,V3

(ΨW2,W3
((ΨV2,W2

(V1)))

= ΨW3,V3
(ΨW2,W3

(ΨN2,N (V1))) = ΨW3,V3
(ΨW2,W3

(W1))

= ΨN,N3
(W4) ∈ V .

(The second equality is true since ΨV2,W2
is the same thing as ΨN2,N � V2, the

third equality is true since ΨN2,N (V1) = W1, and the last equality is true since
W4 = ΨW2,W3

(W1) and since ΨW3,V3
is the restriction of ΨN,N3

to W3.) �

Lemma 2.4. Let P ⊆ H(κ) and let N0 = {N0
i : i < m} and N1 = {N1

i : i < m}
be P–symmetric systems. Suppose that (

⋃
N0) ∩ (

⋃
N1) = X and that there is an

isomorphism Ψ between the structures 〈
⋃

i<mN0
i ,∈, P,X,N0

i 〉i<m and 〈
⋃

i<mN1
i ,∈,

P,X,N1
i 〉i<m fixing X. Then N0 ∪ N1 is a P–symmetric system.

Proof. Obviously, N0 ∪ N1 is a finite set of countable elementary substructures of
(H(κ),∈, P ). We will check that this union also satisfies clauses (B), (C) and (D)
of Definition 2.1.

We start with clause (B). We must show that if i0, i1 < m are such that
δN0

i0
= δN1

i1
, then the isomorphism ΨN0

i0
,N1

i1
:= Ψ ◦ΨN0

i0
,N0

i1
fixes N0

i0
∩N1

i1
. Now,

if x ∈ N0
i0
∩N1

i1
, then x ∈ X ∩N0

i0
, which implies that Ψ(x) = x ∈ N1

i0
∩N1

i1
as Ψ is

an isomorphism between the structures 〈
⋃

i<m N0
i ,∈, X,N0

i 〉i<m and 〈
⋃

i<m N1
i ,∈,

X,N1
i 〉i<m. But then x ∈ N0

i0
∩ N0

i1
again by the fact that Ψ is an isomorphism

between 〈
⋃

i<mN0
i ,∈, X,N0

i 〉i<m and 〈
⋃

i<m N1
i ,∈, X,N1

i 〉i<m, which implies that

ΨN0
i0

,N0
i1
(x) = x and hence that ((Ψ � N0

i1
) ◦ΨN0

i0
,N0

i1
)(x) = ΨN0

i0
,N1

i1
(x) = x.

As for (C), it suffices to note that the existence of Ψ implies that {δN0
i

: i <

m} = {δN1
i
: i < m}.

Finally, we check that N0 ∪ N1 satisfies (D) of Definition 2.1. So, let M1, M2,
M3 ∈ N0 ∪ N1 be such that M2 ∈ M1 and δM1

= δM3
. We must verify that

ΨM1,M3
(M2) is also in N0 ∪ N1. Without loss of generality we may assume that

there are indices i, j ∈ {1, 2, 3} such that Mi ∈ N0 and Mj ∈ N1 (otherwise, the
proof follows from the fact that N0 and N1 satisfy clause (D)). The case when
M1 and M3 are both in N1 and M2 is in N0 can be treated as follows. First
note that there exist some i1 and i2 such that M1 = N1

i1
and M2 = N0

i2
. As

M2 ∈ M1 and Ψ is an isomorphism fixing X (in particular, M2), N
0
i2

∈ N0
i1
. But

ΨN0
i2

,N1
i2

= ΨN0
i1

,N1
i1

� N0
i2
, and this isomorphism also fixes M2. So, M1, M2 = N1

i2

and M3 are elements of N1. The last case that needs to be considered is when
M3 is in N0 and M1 is in N1. Just as before, we can ensure the existence of i1,
i2 and i3 such that M3 = N0

i3
, M1 = N1

i1
and M2 = N1

i2
. Let i4 be such that

N1
i4
= ΨN1

i1
,N1

i3
(N1

i2
) (recall that N1 satisfies clause (D) of Definition 2.1) and note

that N0
i4

= ΨM1,M3
(M2). �



Prepublication copy provided to Miguel Angel Mota. Please give confirmation to AMS by February 5, 2015.

Not for print or electronic distribution. This file may not be posted electronically.
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3. Finite support forcing iterations with symmetric systems

as side conditions

In this section we describe a general construction of a κ–sequence 〈Pα : α ≤ κ〉
of partial orders. This construction will depend on a predicate P ⊆ H(κ), to be

fixed at the outset, together with both a sequence 〈Q̇α : α < κ〉 such that each Q̇α

is a Pα–name for a poset on κ and a sequence 〈Ṙα : α < κ〉 such that each Ṙα is

a Pα–name for a relation included in ([H(κ)]ℵ0)V × Q̇α satisfying a certain closure
property.11 As in Section 2, κ can be taken in this section to be any cardinal at
least ω2.

Let P ⊆ H(κ) be a fixed predicate. We are going to describe what it means for
a sequence 〈(Pα,≤α) : α ≤ κ〉 of partial orders to be the finite support iteration

with P–symmetric systems as side conditions based on 〈(Q̇α, Ṙα) : α < κ〉. This
description will stretch up until Subsection 3.1. As we will see, the description will
specify one unique object (for fixed parameters P and 〈(Q̇α, Ṙα) : α < κ〉). Hence
our use above of the article ‘the’.

To start with, P0 must consist of all pairs of the form

(a) (∅, {(Ni, 0) : i < m}), where {Ni : i < m} is a P–symmetric system.

Given P0–conditions qε = (∅, {(N ε
i , 0) : i < mε}) for ε ∈ {0, 1}, q1 ≤0 q0 if

{N0
i : i < m0} ⊆ {N1

i : i < m1}.
In the definition of a P0–condition we have used the empty set in a completely

vacuous way. These (vacuous) ∅’s are there to ensure that the (uniformly defined)
operation of restricting a condition in a (further) Pα to an ordinal β < α yields a
condition in Pβ when applied to any condition in any Pα and to β = 0.

Notation 3.1. If q is an ordered pair, we denote the first component of q by Fq and
the second component of q by Δq. Also, if q is an ordered pair such that Fq is a
function and Δq is a relation and ξ is an ordinal, the restriction of q to ξ, denoted
by q|ξ, is defined as the pair

q|ξ := (Fq � ξ, {(N,min{β, ξ}) : (N, β) ∈ Δq}).
Let α ≤ κ, α > 0, and suppose that we have defined Pξ for all ξ < α. Suppose

also that if ξ < α and q ∈ Pξ, then q is an ordered pair of the form (Fq,Δq), where

• Fq is a finite function with domain included in ξ, and
• Δq is a finite relation {(Ni, τi) : i ∈ n} such that dom(Δq) = {Ni : i < n}
is a P–symmetric system and, for all i, τi is an ordinal such that τi ≤ ξ.

If α = σ + 1, we require that the following hold:

(1) Q̇σ is a Pσ–name for a partial order.

(2) Ṙσ is a Pσ–name for a relation R such that

R ⊆ ([H(κ)]ℵ0)V × Q̇σ

and such that (N, x′) ∈ R whenever (N, x) ∈ R and x′ is a Q̇σ–condition

extending x (R is downward closed with respect to Q̇σ).

The definition of Pα is as follows (regardless of whether α is a successor or a
limit ordinal). Conditions in Pα are pairs of the form

q = (Fq, Δq)

11In our application, in Section 4, Ṙα will be the name for a relation holding about a typical
pair (N, ν) exactly when ν is an (N [Ġα], Q̇α)–generic condition.
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with the following properties:

(b 0) Fq is a finite function with dom(Fq) ⊆ α.
(b 1) Δq is of the form {(Ni, βi) : i < m} where, for all i < m,

βi ≤ α ∩ sup(Ni ∩ κ).12

(b 2) For all ξ < α, the restriction of q to ξ is a condition in Pξ.

(b 3) If ξ ∈ dom(Fq), then Fq(ξ) is a Pξ–name and q|ξ �ξ Fq(ξ) ∈ Q̇ξ.
(b 4) If ξ ∈ dom(Fq), (N, β) ∈ Δq, β ≥ ξ + 1, and ξ ∈ N , then

q|ξ �ξ (N,Fq(ξ)) ∈ Ṙξ.

Given conditions

qε = (Fε, {(N ε
i , β

ε
i ) : i < mε})

(for ε ∈ {0, 1}) in Pα, we will say that q1 ≤α q0 if and only if the following holds:

(c 1) For all ξ < α, q1|ξ ≤ξ q0|ξ.
(c 2) dom(F0) ⊆ dom(F1) and, for all ξ ∈ dom(F0),

q1|ξ �ξ F1(ξ) ≤Q̇ξ
F0(ξ).

(c 3) For all i < m0 there is some β̃i ≥ β0
i such that (N0

i , β̃i) ∈ Δq1 .

Notation 3.2. Given α ≤ κ and a Pα–condition q = (Fq,Δq), dom(Fq) will also be
denoted by supp(q) and will be called the support of q.

Note that if α < β ≤ κ, then Pα ⊆ Pβ and every Pβ–condition q = (F, {(Nj , βj) :
j < m}) such that supp(q) ⊆ α and βj ≤ α for all j is also a Pα–condition and is
in fact equal to its restriction to α.

Also note that if α is a nonzero limit ordinal, then a pair q = (Fq,Δq) is a
Pα–condition if and only if it satisfies (b 0)–(b 2).

We will sometimes talk about ‘finite support iterations with P–symmetric sys-
tems as side conditions’ in contexts where the sequence 〈(Q̇α, Ṙα) : α < κ〉 is
irrelevant. We may also omit P when it is not relevant.

3.1. General facts. In this subsection we present several facts that all finite sup-
port iterations with P–symmetric systems as side conditions will satisfy.

In arguments involving this type of construction (for example in the proof of The-
orem 1.3) one naturally finds oneself having to prove that natural amalgamations
of conditions are themselves conditions. The following five lemmas give some basic
properties of such amalgamations that are often used in those types of arguments.

We start with our first amalgamation lemma. An immediate consequence of
this lemma (Corollary 3.4) is that our use of the term “iteration” is appropriate;
more specifically, it follows from the lemma that if 〈Pξ : ξ ≤ κ〉 is a finite support
iteration with P–symmetric systems as side conditions, then it is a forcing iteration
in the sense that Pα is a complete suborder of Pβ whenever α < β.

Lemma 3.3. Let P ⊆ H(κ) and let 〈Pα : α ≤ κ〉 be the finite support iteration

with P–symmetric systems as side conditions based on 〈(Q̇α, Ṙα) : α < κ〉. Let
α ≤ β ≤ κ. If q = (Fq,Δq) ∈ Pα, r = (Fr,Δr) ∈ Pβ, and q ≤α r|α, then

r ∧α q := (Fq ∪ (Fr � [α, β)),Δq ∪Δr),

is a condition in Pβ extending r.

12Note that βi is always less than κ (even when α = κ).
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Proof. The proof is a mechanical verification and proceeds by induction on β ≥ α.
The crucial point is the use of the markers βi in the definition of the forcing.
New side conditions (Ni, βi) appearing in Δq may well have the property that
Ni ∩ [α, β) �= ∅, but they will not impose any problematic promises – coming from
clause (b 4) in the definition – on ordinals ξ occurring in dom(Fr � [α, β)). The
reason is simply that βi ≤ α. The details of the proof are as follows.

Note that the case β = α is obvious, so let us start by assuming that β is the
successor of σ with σ ≥ α. Clearly, r ∧α q satisfies clauses (b 0) and (b 1) in the
definition of Pσ+1. By the inductive hypothesis we know that the restriction of
r ∧α q to σ, that is,

(r ∧α q)|σ = (Fq ∪ (Fr � [α, σ)),Δq ∪Δr|σ ),

is a condition in Pσ extending r|σ. Therefore, r ∧α q also satisfies (b 2). If σ /∈
dom(Fr), then r ∧α q is a condition in Pσ+1, since clause (b 4) is automatically

satisfied. If σ ∈ dom(Fr), then (r ∧α q)|σ forces in Pσ that Fr(σ) is in Q̇σ (since
r|σ forces this and (r ∧α q)|σ extends r|σ). This concludes the verification of (b 3)
for q ∧α r. Now we check that

(r ∧α q)|σ �σ (N,Fr(σ)) ∈ Ṙσ

for all those N such that (N, σ+1) ∈ Δq∪Δr and σ+1 ∈ N . But such an N is such
that (N, σ+1) ∈ Δr. Since r satisfies (b 4), r|σ (and hence, the restriction of r∧α q

to σ) forces that (N,Fr(σ)) is in Ṙσ. Finally note that the inductive hypothesis
and the inclusion Δr ⊆ Δr∧αq together imply that r∧α q extends r. The case when
β is a nonzero limit ordinal follows directly from the inductive hypothesis. �
Corollary 3.4. For every finite support iteration 〈Pα : α ≤ κ〉 with symmetric
systems as side conditions and for all α < β ≤ κ, every maximal antichain in Pα

is a maximal antichain in Pβ, and therefore Pα is a complete suborder of Pβ.

Lemma 3.5. Let P ⊆ H(κ) and let 〈Pα : α ≤ κ〉 be the finite support iteration

with P–symmetric systems as side conditions based on 〈(Q̇α, Ṙα) : α < κ〉. Let
q1 = (F1, Δ1) and q2 = (F2, Δ2) be conditions in Pα+1 such that there is a Pα–
name ẋ, a condition r = (Fr,Δr) in Pα, and a finite set {Mj : j ∈ n} with the
following properties:

(a) α+ 1 ≤ sup(Mj ∩ κ) and (Mj , α) ∈ Δr for all j < n,
(b) r extends both q1|α and q2|α,
(c) α ∈ dom(F1) ∩ dom(F2) and r forces in Pα that ẋ extends both F1(α) and

F2(α) in Q̇α, and

(d) r �α (Mj , ẋ) ∈ Ṙα for all j < n such that α ∈ Mj.

Then,
q3 = (Fr ∪ {〈α, ẋ〉}, Δr ∪Δ1 ∪Δ2 ∪ {(Mj , α+ 1) : j ∈ n})

is a condition in Pα+1 extending both q1 and q2.

Proof. First we check that q3 is in Pα+1. It follows from (a) and (b) that the
restriction of q3 to α is equal to r, and hence that q3 satisfies clauses (b 0)–(b 2).
Condition (b 3) for q3 follows from (c). Finally we must show that r forces (N, ẋ) ∈
Ṙα for all those N such that (N,α+ 1) is in Δ1 ∪Δ2 ∪ {(Mj , α + 1) : j ∈ n} and
such that α ∈ N (recall that if (N, γ) ∈ Δr, then γ ≤ α). But for such an N ,
if (N,α + 1) ∈ Δi (i ∈ {1, 2}), it suffices to recall that r ≤α qi|α, that r forces

ẋ ≤Q̇α
Fi(α), and that (by clause (b 4) applied to qi) qi|α forces (N,Fi(α)) ∈ Ṙα.
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Hence, r forces (N, ẋ) ∈ Ṙα by the downward closure of Ṙα with respect to Q̇α.
The case when (N,α + 1) ∈ {(Mj , α + 1) : j ∈ n} follows from (d). Finally note
that (b), (c) and the inclusion Δi ⊆ Δ1 ∪Δ2 ∪{(Mj , α+1) : j ∈ n} imply together
that q3 extends qi for i ∈ {1, 2}. �

Exactly the same proof establishes the following variant of Lemma 3.5.

Lemma 3.6. Let P ⊆ H(κ) and let 〈Pα : α ≤ κ〉 be the finite support iteration

with P–symmetric systems as side conditions based on 〈(Q̇α, Ṙα) : α < κ〉. Let
q1 = (F1, Δ1) and q2 = (F2, Δ2) be conditions in Pα+1, r = (Fr,Δr) a condition
in Pα, and {Mj : j ∈ n} a finite set with the following properties:

(a) α+ 1 ≤ sup(Mj ∩ κ) and (Mj , α) ∈ Δr for all j < n,
(b) r extends both q1|α and q2|α, and
(c) α /∈ dom(F1) ∪ dom(F2).

Then,
q3 = (Fr, Δr ∪Δ1 ∪Δ2 ∪ {(Mj , α+ 1) : j ∈ n})

is a condition in Pα+1 extending both q1 and q2.
Suppose, in addition, that ẋ is a Pα–name such that

(d) r �α (Mj , ẋ) ∈ Ṙα for all j < n such that α ∈ Mj, and

(e) r �α (N, ẋ) ∈ Ṙα for all N such that (N,α+ 1) ∈ Δ1 ∪Δ2 and α ∈ N .

Then,

q′3 = (Fr ∪ {〈α, ẋ〉}, Δr ∪Δ1 ∪Δ2 ∪ {(Mj , α+ 1) : j ∈ n})
is a condition in Pα+1 extending both q1 and q2.

Lemma 3.7. Let P ⊆ H(κ) and let 〈Pα : α ≤ κ〉 be the finite support iteration
with P–symmetric systems as side conditions. Assume that 0 ≤ σ < α ≤ κ. Let
qξ = (Fξ,Δξ) (ξ ∈ {1, 2}) be conditions in Pα such that supp(q1) ∪ supp(q2) ⊆ σ
and such that there exists a condition r = (Fr,Δr) ∈ Pσ extending both q1|σ and
q2|σ. Then q1 and q2 are compatible in Pα.

Proof. Define q3 = (Fr,Δr ∪Δ1 ∪Δ2). We prove by induction on β, σ ≤ β ≤ α,
that q3|β is a condition in Pβ extending q1|β and q2|β. The successor step follows
from Lemma 3.6. �
Lemma 3.8. Let P ⊆ H(κ) and let 〈Pα : α ≤ κ〉 be the finite support iteration

with P–symmetric systems as side conditions based on 〈(Q̇α, Ṙα) : α < κ〉. Let
0 < β ≤ κ. Given conditions qξ = (Fξ,Δξ) (ξ ∈ {0, 1}) in Pβ, let Zξ = supp(qξ) ∪
(β ∩

⋃
dom(Δqξ)). Let α ≤ β be such that Z0 ∩ Z1 ⊆ α, and assume there is

a condition r = (Fr,Δr) in Pα extending q0|α and q1|α. Let F 0,1
r = Fr ∪ (F0 �

[α, β)) ∪ (F1 � [α, β)). Then the natural amalgamation of r, q0 and q1, i.e.,

(q0 ∧ q1) ∧α r := (F 0,1
r ,Δr ∪Δ0 ∪Δ1),

is a Pβ–condition extending q0 and q1.

Proof. The proof is by induction on β ≥ α. Note that the case β = α is clear, so let
us start by assuming that β is the successor of σ with σ ≥ α. Clearly, (q0 ∧ q1)∧α r
satisfies clauses (b 0) and (b 1). Using the inductive hypothesis we know that the
restriction of the amalgamation to σ is a condition in Pσ which extends both q0|σ
and q1|σ. In particular, if σ ∈ dom(F 0,1

r ), then ((q0∧q1)∧αr)|σ forces F 0,1
r (σ) ∈ Q̇σ.

Therefore, (q0 ∧ q1) ∧α r also satisfies (b 2) and (b 3). Let us assume now that
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σ ∈ dom(F 0,1
r ). In fact, since supp(q0) ∩ supp(q1) ⊆ α and σ ≥ α, we may assume

that σ ∈ supp(q0) \ supp(q1) (the proof when σ ∈ supp(q1) is identical). We must

show that the condition ((q0 ∧ q1) ∧α r)|σ forces (N,F 0,1
r (σ)) ∈ Ṙσ for all those N

such that (N, σ+1) ∈ Δ0∪Δ1 and σ ∈ N . Since σ ≥ α and Z0∩Z1 ⊆ α, it follows
for such an N that (N, σ + 1) ∈ Δ0. Since q0 satisfies (b 4) and F 0,1

r (σ) = F0(σ),

q0|σ (and hence, ((q0 ∧ q1)∧α r)|σ) forces (N,F 0,1
r (σ)) ∈ Ṙσ. Finally note that the

inductive hypothesis, the choice of F 0,1
r and the inclusion Δ0 ∪ Δ1 ⊆ Δ(q0∧q1)∧αr

together imply that (q0 ∧ q1)∧α r extends q0 and q1. The case when β is a nonzero
limit ordinal follows directly from the inductive hypothesis. �

The final result in this section applies, assuming CH, to iterations with P–
symmetric systems as side conditions for P for which there is a bijection ϕ :
H(κ) −→ κ definable in (H(κ),∈, P ) and such that, moreover, each Q̇α is forced
to be a poset on ωV

1 . It shows that all such iterations have the ℵ2–chain condition.
We will actually show that these forcings are ℵ2–Knaster.13

Lemma 3.9 (CH). Let 〈Pα : α ≤ κ〉 be the finite support iteration with P–

symmetric systems as side conditions based on 〈(Q̇α, Ṙα) : α < κ〉. Suppose that

• there is a bijection ϕ : H(κ) −→ κ definable in (H(κ),∈, P ), and that

• for all α < κ, Pα forces Q̇α ⊆ ωV
1 .

Then for every ordinal α ≤ κ, Pα is ℵ2–Knaster.

Proof. The proof is by induction on α and involves standard Δ–system and pigeon-
hole principle arguments. The conclusion for α = 0 follows from CH: Suppose

m < ω and qξ = {Nξ
i : i < m} is a P0–condition for each ξ < ω2. For no-

tational convenience we are identifying a P0–condition q with dom(Δq), which is

fine for this proof. By CH we may assume that {
⋃

i<mNξ
i : ξ < ω2} forms a

Δ–system with root X. Furthermore, by CH we may assume, for all ξ, ξ′ < ω2,

that the structures 〈
⋃

i<mNξ
i ,∈, P,X,Nξ

i 〉i<m and 〈
⋃

i<m Nξ′

i ,∈, P,X,Nξ′

i 〉i<m are
isomorphic and that the corresponding isomorphism fixes X. The first assertion
follows from the fact that there are only ℵ1–many isomorphism types for such struc-
tures. For the second assertion note that, if Ψ is the unique isomorphism between

〈
⋃

i<mNξ
i ,∈, P,X,Nξ

i 〉i<m and 〈
⋃

i<m Nξ′

i ,∈, P,X,Nξ′

i 〉i<m, then the restriction of
Ψ to X∩κ has to be the identity on X∩κ. Since there is a bijection ϕ : H(κ) −→ κ
definable in (H(κ),∈, P ), we have that Ψ fixes X if and only if it fixes X ∩ κ. It
follows that Ψ fixes X. Hence, by Lemma 2.4 we have, for all ξ, ξ′ < ω2, that
qξ ∪ qξ′ extends both qξ and qξ′ .

For α = σ+1, suppose qξ is a Pσ+1–condition for each ξ < ω2. Suppose, without
loss of generality, that each qξ is of the form qξ = (Fξ, Δξ) with σ ∈ dom(Fξ) (the
proof in the case that there are ℵ2–many qξ of the form (F,Δ) with dom(F ) ⊆ σ
follows directly from Lemma 3.6). By extending qξ if necessary, we may assume
that each Fξ(σ) is the canonical Pσ–name for an actual ordinal in ω1. We may
also assume by our induction hypothesis that all qξ|σ are pairwise compatible. Let
rξ,ξ′ ∈ Pσ be a condition extending both qξ|σ and qξ′ |σ for all ξ < ξ′ < ω2. Now
find a set I ⊆ ω2 of size ℵ2 such that for all ξ < ξ′ in I, Fξ(σ) = Fξ′(σ). By Lemma
3.5 it follows now, for all such ξ, ξ′, that the natural amalgamation of rξ,ξ′ , qξ and
qξ′ is a Pσ+1–condition extending qξ and qξ′ .

13A forcing P is μ-Knaster if every subset of P of cardinality μ includes a subset of cardinality
μ of pairwise compatible conditions.
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For α a nonzero limit ordinal, suppose qξ is a Pα–condition for all ξ < ω2.
Suppose first that cf(α) �= ω2. There is then some σ < α such that I = {ξ < ω2 :
supp(qξ) ⊆ σ} has size ℵ2. By induction hypothesis there is some I ′ ⊆ I of size ℵ2

such that all qξ|σ (for ξ ∈ I ′) are pairwise compatible in Pσ. But now it follows
from Lemma 3.7 that qξ and qξ′ are compatible in Pα for all ξ < ξ′ in I ′.

Finally, suppose cf(α) = ω2. For each ξ < ω2, let Zξ be equal to the union of
the sets supp(qξ) and α ∩

⋃
dom(Δqξ). By CH we may find I ⊆ ω2 of size ℵ2 such

that {Zξ : ξ ∈ I} forms a Δ–system with root X.
Now let σ < α be such that X ⊆ σ (σ exists by cf(α) ≥ ω1). By induction

hypothesis we may assume that all qξ|σ are pairwise compatible in Pσ. For all
ξ < ξ′ in I let rξ,ξ′ be a condition in Pσ extending qξ|σ and qξ′ |σ. From Lemma 3.8
it follows then, for all such ξ, ξ′, that the natural amalgamation of rξ,ξ′ , qξ and qξ′

is a Pα–condition extending qξ and qξ′ . �

4. Proving Theorem 1.3

We will now proceed to the definition of the forcing P witnessing Theorem 1.3.
The proof of Theorem 1.3 will then be given in a sequence of lemmas.

For this section, assume CH holds and let us fix a cardinal κ such that κℵ1 = κ
and 2<κ = κ. Let Φ : κ −→ H(κ) be a surjection such that for every x in H(κ),
Φ−1({x}) is unbounded in κ. Also let � be a well–order of H(κ+) in order type 2κ.
The bookkeeping function Φ exists by 2<κ = κ, and � exists since |H(κ+)| = 2κ.

Let 〈θα : α ≤ κ〉 be the strictly increasing sequence of regular cardinals defined
as θ0 = |2κ|+ and θα = |2sup{θβ :β≤α}|+ if α > 0. For each α ≤ κ let M∗

α be the
collection of all countable elementary substructures of H(θα) containing Φ, � and
〈θβ : β < α〉. Also let Mα = {N∗ ∩ H(κ) : N∗ ∈ M∗

α} and note that if α < β,
then M∗

α belongs to all members of M∗
β containing the ordinal α.

The forcing P witnessing Theorem 1.3 will be Pκ, where the sequence 〈Pα :
α ≤ κ〉 is the finite support iteration with Φ–symmetric systems as side conditions

based on a certain sequence 〈(Q̇α, Ṙα) : α < κ〉 of pairs of names. Let α < κ be
given and suppose Pα has been defined.

In Definition 4.1, and throughout the rest of the paper, we will abuse notation
slightly when writing things like N [H]: Given a set N , a partial order P and a filter
H ⊆ P, N [H] = {τH : τ ∈ N is a P–name}. Note that we are not requiring that P
be in N , or even that P ∩N be a definable class in N .

Definition 4.1 (For α < κ, in V [Gα], where Gα is a Pα-generic filter). Let Q be a
forcing on ωV

1 . We will say that Q is V –finitely proper (with respect to Gα) if and
only if there exists a club D ⊆ ([H(κ)]ℵ0)V in V with the following property:

If m < ω and {Ni : i ∈ m} ⊆ D is such that {(Ni, α) : i < m} ⊆ Δu for some
u ∈ Gα and such that Q ∈ Ni[Gα] for all i, then for every ν ∈

⋂
{Ni ∩ ω1 : i ∈ m}

there exists some ν∗ such that ν∗ extends ν in Q and is (Ni[Gα],Q)–generic for all
i.

The definition of (Q̇α, Ṙα) is the following: (Q̇α, Ṙα) is the �–least pair of
Pα–names in H(κ+) with the following properties:

(1) If Φ(α) = Q̇ is a Pα–name for a nontrivial14 V –finitely proper forcing on

ωV
1 , then Q̇α = Q̇.15

14Nontrivial in the sense that it has some condition different from 0.
15In Lemma 4.4 we will see that Pα preserves ω1.
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(2) If Φ(α) is not a Pα–name for a nontrivial V –finitely proper forcing on ωV
1 ,

then Q̇α is a Pα–name for trivial forcing on {0} (which is a V –finitely
proper forcing on ωV

1 ).

(3) Ṙα is a Pα–name for the set of pairs (N, ν) such that

(a) ν ∈ Q̇α, and

(b) if N ∈ Mα+1, then ν is (N [Ġα], Q̇α)–generic.

Note that Ṙα is forced to be downward closed with respect to Q̇α, so the con-
struction makes sense. Note also that if α < β ≤ κ, N∗ ∈ M∗

β and α ∈ N∗, then
Pα ∈ N∗.

We are going to prove the relevant properties of the forcings Pα. Theorem 1.3
will follow immediately from them.

The hypotheses of Lemma 3.9 clearly apply to our construction. Hence, every
Pα is ℵ2–Knaster.

Lemma 4.2. For every α ≤ κ and q ∈ Pα there is an extension q′ of q such that
Fq′(ξ) is a canonical Pξ–name for an ordinal in ωV

1 for every ξ ∈ supp(q′).

The proof of Lemma 4.2 is a straightforward induction using the fact that con-
ditions in Pα have finite support.

Definition 4.3. Given α ≤ κ, a condition q ∈ Pα, and a countable elementary
substructure N ≺ H(κ), we will say that q is (N, Pα)–pre-generic in case

• α < κ and the pair (N,α) is in Δq, or else
• α = κ and the pair (N, sup(N ∩ κ)) is in Δq.

The properness of all Pα is an immediate consequence of the following lemma.

Lemma 4.4. Suppose α ≤ κ and N∗ ∈ M∗
α. Let N = N∗ ∩ H(κ). Then the

following conditions hold:

(1)α For every q ∈ N there is some q′ ≤α q such that q′ is (N, Pα)–pre-generic.
(2)α If Pα ∈ N∗ and q ∈ Pα is (N, Pα)–pre-generic, then q is (N∗, Pα)–generic.

Proof. The proof will be by induction on α. We start with the case α = 0. For
simplicity we are going to identify a P0–condition q with dom(Δq). The proof of
(1)0 is trivial: It suffices to set q′ = q ∪ {N}.

The proof of (2)0 is also easy: Let E be a dense subset of P0 in N∗. It suffices
to show that there is some condition in E ∩ N∗ compatible with q. Notice that
q ∩ N∗ ∈ P0 by Lemma 2.3 (ii). Hence, we may find a condition q◦ ∈ E ∩ N∗

extending q ∩N∗. Now let

q∗ = q ∪ {ΨN,N (M) : M ∈ q◦, N ∈ dom(Δq), δN = δN}.
By Lemma 2.3 (iii) we have that q∗ is a condition in P0 extending both q and q◦.

Let us proceed to the more substantial case α = σ + 1. We start by proving
(1)α. Assume first that σ ∈ dom(Fq) and let ν = Fq(σ). By Lemma 4.2 we may
assume that ν is the canonical name for an ordinal in ω1. By (1)σ we may also

assume, by extending q|σ, that q|σ is Pσ–pre-generic for N . Let Ḋ be the �–first
Pσ–name for a club D of ([H(κ)]ℵ0)V in V such that D witnesses the V –finite

properness of Q̇σ and note that q|σ forces N ∈ Ḋ since it forces N∗[Ġσ] ∩ V = N∗

(which follows from (2)σ and from the fact that q|σ is Pσ–pre-generic for N). By
the definition of V –finite properness and the fact that (N, σ) ∈ Δq|σ , there is then
some z = (Fz,Δz) ∈ Pσ extending q|σ and an ordinal ν∗ such that z forces that
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ν∗ is an (N [Ġσ], Q̇σ)–generic condition extending ν. It suffices to define q′ as the
condition (Fz ∪ {〈σ, ν∗〉},Δq ∪ Δz ∪ {(N,α)}) (Lemma 3.5 ensures that q′ is a
condition extending q).

The proof in the case that q = (F,Δ) with dom(F ) ⊆ σ can be reduced to the
previous case by the following claim.

Claim 4.5. If q = (F,Δ) and σ /∈ dom(F ), then we can find a condition q′ = (F ′,Δ′)
extending q and such that σ ∈ dom(F ′).

Proof. This is true, using Lemma 3.6, by essentially the same argument as above
since (2)σ guarantees that q|σ is also (M∗, Pσ)–generic for all M∗ ∈ M∗

σ+1 such
that (M,σ + 1) ∈ Δq for M = M∗ ∩H(κ), which implies that a condition forcing

that all these M are in Ḋ can be found as in that argument. �
Now let us prove (2)α. Let E be an open dense set of Pα in N∗. We should find

a condition q̃ ∈ E ∩ N∗ compatible with q. Since E is dense and open, we may
start assuming that q ∈ E. By Claim 4.5 we may also assume that σ ∈ dom(Fq).
Let ν = Fq(σ). Let Gσ be a Pσ-generic filter over V with q|σ ∈ Gσ. By (2)σ we
have that Gσ is also generic over N∗. Define E/Gσ as the set of those conditions

in E whose restriction to σ belongs to Gσ, and Ẽ as the set of those η < ω1 such
that either

(i) there exists some t ∈ E/Gσ such that σ ∈ dom(Ft) and η = Ft(σ), or else

(ii) there is no η′ in (Q̇σ)Gσ
extending η for which there is any t ∈ E/Gσ such

that σ ∈ dom(Ft) and η′ = Ft(σ).

Note that Ẽ is a dense subset of (Q̇σ)Gσ
and that Ẽ ∈ N∗[Gσ]. In fact, Ẽ is in

N [Gσ] by the ℵ2–c.c. of Pσ and the fact that Ṙσ is a partial order on ωV
1 . Hence,

by condition (b 4) in the definition of Pα together with the choice of Ṙσ, we know

that there is some η ∈ Ẽ ∩N [Gσ] such that ν and η are (Q̇σ)Gσ
–compatible.

Claim 4.6. Condition (i) above holds for η.

Proof. Let r be a condition in Gσ extending q|σ and let η′ be such that r forces that

η′ is a condition in Q̇σ extending both η and ν. But then q∗ := (Fr∪{〈σ, η′〉〉},Δr∪
Δq) is a Pα condition extending q by Lemma 3.5, q∗ ∈ E/Gσ, and q∗|σ forces that
condition (i) holds for η since η′ witnesses the failure of (ii) for η. This shows that
q|σ forces that condition (i) holds for η. �

By the above claim and by N∗[Gσ] ≺ H(θσ)
V [Gσ], there is a condition q̃ in

E/Gσ ∩N∗[Gσ] such that σ ∈ dom(Fq̃) and Fq̃(σ) = η, and of course q̃ ∈ N since
N∗[Gσ] ∩ V = N∗ by (2)σ. It remains to see that q̃ is compatible with q. For this,
notice that there is some w ∈ Gσ extending q|σ and q̃|σ and there is some η∗ < ω1

such that w forces that η∗ extends η and ν in (Q̇σ)Gσ
. But then w forces that η∗

is (M∗[Ġσ], (Q̇σ)Gσ
)–generic whenever M∗ ∈ M∗

α is such that (M∗ ∩ H(κ), α) ∈
Δq̃ ∪Δq since η∗ extends η and ν. It follows that (Fw ∪ {〈σ, η∗〉},Δq ∪Δq̃ ∪Δw)
is a common extension of q and q̃ by Lemma 3.5.

It remains to prove the lemma for the case when α is a nonzero limit ordinal.
We start out proving (1)α: Let σ ∈ α ∩N be a bound for supp(q). By (1)σ there
is a condition t ≤σ q|σ which is pre-generic for N . Now let q′ = (Ft,Δt ∪ Δq ∪
{(M,α ∩ sup(N ∩ κ))}). It suffices to prove by induction on ξ ∈ [σ, α] that q′|ξ
is a condition in Pξ. The limit case of the induction follows immediately from the
induction hypothesis, and the successor case follows trivially from the fact that
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dom(Ft) ⊆ σ, and so condition (b 4) in the definition of Pξ+1 does not apply at that
stage for q′|ξ+1.

For (2)α, let E ⊆ Pα be dense and open, E ∈ N∗, and let q satisfy the hypothesis
of (2)α. We want to find a condition in E ∩N∗ compatible with q. We may assume
that q ∈ E.

Suppose first that cf(α) = ω. In this case we may take σ ∈ N∗ ∩ α above
supp(q). Let Gσ be Pσ–generic with q|σ ∈ Gσ. In N∗[Gσ] it is true that there is a
condition q◦ ∈ Pα such that

(a) q◦ ∈ E and q◦|σ ∈ Gσ, and
(b) supp(q◦) ⊆ σ

(the existence of such a q◦ is witnessed in V [Gσ] by q).
Since q|σ is (N∗,Pσ)–generic by induction hypothesis, q◦ ∈ N∗. By extending q

below σ if necessary, we may assume that q|σ decides q◦ and extends q◦|σ. But now,
the natural amalgamation (Fq,Δq ∪Δq◦) of q and q◦ is a Pα–condition extending
them by Lemma 3.7.

Finally, suppose cf(α) ≥ ω1. We may assume that supp(q) is not bounded by
sup(N ∩α), as otherwise we can argue as in the cf(α) = ω case. Thanks to Lemma
4.2, by extending q if necessary we may also assume that, for every ξ ∈ supp(q),
Fq(ξ) is the canonical Pξ–name for some ordinal in ω1.

Notice that if N ′ ∈ dom(Δq) and δN ′ < δN , then

sup(N ′ ∩N ∩ α) ≤ sup(ΨN , N(N ′) ∩ α) ∈ N ∩ α

whenever N ∈ dom(Δq) is such that δN = δN and N ′ ∈ N . To see this, recall

that ΨN , N fixes N ∩ N ∩ κ. Also, sup(ΨN , N(N ′) ∩ α) ∈ N ∩ α since in N it
holds that ΨN , N(N ′) is countable and that α has uncountable cofinality. This is
the only place in the proof where the symmetry of the systems dom(Δq) is needed.
The symmetry of the systems dom(Δq) is needed precisely to derive the conclusion
that sup(N ′ ∩N ∩ α) < sup(N ∩ α) for every N ′ ∈ dom(Δq) with δN ′ < δN .

Hence we may fix σ ∈ N ∩ α such that:

(i) sup(N ′ ∩N ∩ α) < σ for all N ′ ∈ dom(Δq) with δN ′ < δN , and
(ii) if η ∈ supp(q) and η < sup(α ∩N), then η < σ.

As in the case cf(α) = ω, if Gσ is Pσ–generic with q|σ ∈ Gσ, then in N∗[Gσ]
we can find a condition q◦ ∈ Pα such that q◦ ∈ E, q◦|σ ∈ Gσ, supp(q

◦) \ σ �= ∅
and such that, for each ξ ∈ supp(q◦), Fq◦(ξ) is the canonical Pξ–name for an
ordinal in ω1 (again, the existence of such a condition is witnessed in V [Gσ] by
q), and such a q◦ will necessarily be in N∗. By extending q below σ we may
assume that q|σ decides q◦ and extends q◦|σ. The proof of (2)α in this case will
be finished if we can show that there is a condition q† extending q and q◦. The
condition q† can be built by recursion on supp(q◦)\σ (note that by the choice of σ,
min(supp(q) \σ) ≥ sup(N ∩α), and therefore min(supp(q) \σ) > max(supp(q◦))).
This finite construction mimics the proof of (1)β for successor β, but also uses the
assumption of V –finite properness. The details are as follows.

Let (ξi)i<r be the strictly increasing enumeration of supp(q◦) \ σ. Note that
r > 0, so r − 1 ≥ 0. We build a sequence (qi)i<r of conditions as follows:

For i = 0, we first extend q|σ to a Pξ0–condition q extending q|ξ0 and q◦|ξ0 . q
can be found by appealing to Lemma 3.7 if σ < ξ0, and if σ = ξ0 it is enough of
course to set q0 = q|σ. Now note that Fq◦(ξ0) = π̌ is the canonical name for an

ordinal π in the intersection of all N with N ∈ dom(Δq), ξ0 ∈ N and δN ≥ δN∗
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(on the other hand, (i) implies that there is no N ′ ∈ dom(Δq) with δN ′ < δN such

that ξ0 ∈ N ′). Hence, since Q̇ξ0 is a Pξ0–name for a V –finitely proper poset on

ω1, there is an ordinal π∗ and an extension r of q forcing that π∗ extends π in Q̇ξ0

and is (N [Ġξ0 ], Q̇ξ0)–generic for all relevant N (i.e., such that there some β such

that (N, β) ∈ Δq, β ≥ ξ0 + 1 and N ∈ Mξ0+1). The reason is that q forces that

there is a club Ḋ witnessing the V –finite properness of Q̇ξ0 , and such that every

relevant N is in Ḋ. This Ḋ can be taken to be the first club, in the well–order of
H(κ+)[Ġξ0 ] induced by �, witnessing the V –finite properness of Q̇ξ0 . (For such a

relevant N there is some N
∗ ∈ M∗

ξ0+1 containing � and such that N = N
∗ ∩H(κ)

which, since � ∈ N
∗
, implies that N

∗
contains a name for Ḋ. Applying this fact

and (2)ξ0 we conclude that q forces N ∈ Ḋ.) It follows now from Lemma 3.5 that
there is a Pξ0+1–condition q0 extending r, q|ξ0+1 and q◦|ξ0+1.

For i such that i+ 1 < r, we assume inductively that qi ∈ Pξi+1 extends q|ξi+1

and q◦|ξi+1, and obtain qi+1 ∈ Pξi+1+1 from qi by arguing exactly as in the case
i = 0 with ξi+1 instead of ξ0 and starting with qi rather than q|σ. In the end we
obtain qi+1 ∈ Pξi+1+1 extending both q|ξi+1+1 and q◦|ξi+1+1.

Let μ = ξr−1 = max(supp(q◦)) and let

q† = (Fqr−1
∪ (Fq � [μ+ 1, α)),Δqr−1

∪Δq◦ ∪Δq).

Claim 4.7. q† is a condition in Pα extending both q and q◦.

Proof. We prove by induction that if μ+ 1 ≤ ξ ≤ α, then q†|ξ is in Pξ and q†|ξ ≤ξ

q◦|ξ, q|ξ. Note that the case ξ = μ+1 follows from the fact that qr−1 ≤μ+1 q◦|μ+1,
q|μ+1 and q†|μ+1 = qr−1. Assume now that ξ is the successor of an ordinal η ≥ μ+1.
We show that q†|η+1 satisfies clause (b 4) in the definition of Pη+1 (clearly it satisfies
the other clauses). In other words, we must show that if η ∈ dom(Fq), then q†|η
forces that Fq(η) is (M [Ġη], Q̇η)–generic for all those M ∈ Mη+1 for which there
exists an ordinal β ≥ η + 1 such that (M,β) ∈ Δqr−1

∪ Δq◦ ∪ Δq. But such a
pair (M,β) cannot be in Δqr−1

, since all markers occurring in side conditions in
qr−1 ∈ Pμ+1 are at most μ + 1 < η + 1. On the other hand, (ii) implies that
η ∈ supp(q) \ σ = supp(q) \ (N ∩ α). So, there is no M ∈ dom(Δq◦) such that
M ∈ Mη+1 (such a countable M is in N , and therefore M ∩ α ⊆ N ∩ α), and
hence (M,β) is not in Δq◦ . We conclude that such a pair (M,β) is in Δq. By (b 4)
applied to q|η+1, we have that q|η (and hence, q†|η) forces what we want. Finally
note that the inductive hypothesis q†|η ≤η q◦|η, q|η, the definition of q†, and the
fact that the maximum of the support of q◦ is equal to μ < η together imply that
q†|η+1 ≤η+1 q◦|η+1, q|η+1. The case when ξ is a limit follows from the inductive
hypothesis. �

The above claim finishes the proof of (2)α in the present case and the proof of
the lemma. �
Corollary 4.8. For every α ≤ κ, Pα is proper.

Given an ordinal α < κ, we let Ġ+
α be a Pα+1–name for the collection of all ν

for which there exists a condition q ∈ Ġα+1 with α ∈ dom(Fq) and Fq(α) = ν.
The following lemmas are easy.

Lemma 4.9. If α < κ, then Pα+1 forces that Ġ+
α generates a V [Ġα]–generic filter

over Q̇α.
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Proof. It is easy to see that Ġ+
α is forced to be a set of pairwise compatible Q̇α–

conditions, so it suffices to show that Pα+1 forces Ġ+
α ∩D �= ∅ for every dense subset

D of Q̇α in V [Ġα]. For this, note that if Ḋ is a Pα–name for a dense subset of Q̇α,
then a consecutive application of Claim 4.5 and Lemma 3.5 shows that the set of
q ∈ Pα+1 with α ∈ supp(q) and such that q|α forces that Fq(α) is in Ḋ is a dense
subset of Pα+1. �

Lemma 4.10. Pκ forces 2ℵ0 = κ.

Proof. The inequality 2ℵ0 ≥ κ follows for example from the fact that there are
κ–many ordinals α < κ such that Φ(α) is Cohen forcing, since Cohen forcing has
the c.c.c.

The inequality 2ℵ0 ≤ κ follows from the fact that, by Lemma 3.9 together with
κℵ1 = κ, there are exactly κ–many nice Pκ–names for subsets of ω (see for example
[11] for a discussion of nice names and arguments involving counting of nice names).

�

We are ready to prove our main theorem.

Proof of Theorem 1.3. As we said, our forcing will be Pκ. By Lemma 3.9, Corollary

4.8 and Lemma 4.10, it suffices to show that Pκ forces PFAfin(ω1). But this follows
easily from the following claim together with Lemma 4.9.

Claim 4.11. If Q̇ is a Pκ–name for a nontrivial finitely proper poset defined on ω1

and (Ḋi)i<ω1
is a sequence of Pκ–names for dense subsets of Q̇, then there is a

high enough α < κ such that Q̇ and all members of (Ḋi)i<ω1
are Pα–names and

Φ(α) = Q̇ is a Pα–name for a V –finitely proper forcing with respect to Ġα.

Proof. By the ℵ2–chain condition of Pκ, together with Corollary 3.4 and with the
fact that the relevant information about Q̇ and (Ḋi)i<ω1

is decided by a collection

of ℵ1–many maximal antichains of Pκ, there is some α < κ such that Q̇ and all
Ḋi are Pα–names. Furthermore, by the choice of Φ we may assume Φ(α) = Q̇.

Therefore we will be done if we show that Pα forces that Q̇ is V –finitely proper
with respect to Ġα. The witnessing club for this can be taken to be any club D
consisting of structures of the form N∗ ∩H(κ)V where N∗ ∈ M∗

κ and α ∈ N∗.
Now let q ∈ Pα, let {Ni : i < m} ⊆ D be a finite set such that {(Ni, α) : i <

m} ⊆ Δq, and let ν ∈
⋂

i Ni ∩ ω1. Then

q∗ := (Fq,Δq ∪ {(Ni, sup(Ni ∩ κ)) : i < m})

is clearly a condition in Pκ extending q (viewing q as a Pκ–condition in the natural
way). Let G be any generic filter for Pκ containing q∗. For each i, since Ni =
N∗ ∩ H(κ)V for some N∗ ∈ M∗

κ and q∗ is Pκ–pre-generic for Ni, we have that

Ni[G] ∩ V = Ni by Lemma 4.4. By finite properness of Q := Q̇G there is then
some condition ν∗ < ω1 in Q extending ν and (Ni[G], Q)–generic for all i. But
since, for all i < m, Ni[G] ∩ ω1 = Ni ∩ ω1 = Ni[G ∩ Pα] ∩ ω1, it follows that
ν∗ is also (Ni[G ∩ Pα], Q)–generic for all such i. This finishes the proof since
then, by Corollary 3.4, q can be extended to a Pα–condition forcing that ν∗ is
(Ni[G ∩ Pα], Q)–generic for all i < m. �
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5. Applications: PFA
fin

ω1
and the club filter on ω1

In this final section we show that PFAfin
ω1

implies both ¬WCG and ¬�. It will
be convenient to introduce the following natural notion of rank of an ordinal with
respect to a set of ordinals.16

Definition 5.1. Given a set X and an ordinal δ, we define the Cantor–Bendixson
rank of δ with respect to X, rank(X, δ), by specifying that

• rank(X, δ) ≥ 1 if and only if δ is a limit point of ordinals in X.
• If μ > 1, rank(X, δ) ≥ μ if and only if for every η < μ, δ is a limit of
ordinals ε with rank(X, ε) ≥ η.

A function F : ω1 −→ ω1 is normal if it is strictly increasing and continuous.
The following two lemmas are easy consequences of our definition of rank.

Lemma 5.2. Let A ⊆ X be sets of ordinals and let δ be an ordinal. If rank(A, δ) <
rank(X, δ), then rank(X \A, δ) = rank(X, δ).

Lemma 5.3. Given any strictly increasing finite function f ⊆ ω1×ω1, if rank(f(ξ),
f(ξ)) ≥ ξ for every ξ ∈ dom(f), then f can be extended to a normal function
F : ω1 −→ ω1.

Proof. It suffices to prove, for all ξ < ω1, that if ξ0 < ξ and α < β < ω1 are such
that rank(α, α) ≥ ξ0 and rank(β, β) ≥ ξ, then there is a strictly increasing and
continuous function h : [ξ0, ξ] −→ [α, β] with h(ξ0) = α and h(ξ) = β. The proof
of this fact is immediate by induction on ξ and uses the definition of rank. �

Let us first show the following.

Proposition 5.4. PFA
fin(ω1) implies ¬WCG.

Proof. Let A = 〈Aδ : δ ∈ Lim(ω1)〉 be a ladder system on ω1. We want to show
that there is a club C ⊆ ω1 such that C ∩Aδ is finite for every limit ordinal δ ∈ C.
Let PA be the following partial order:

A condition in PA is a pair (f, 〈bδ : δ ∈ D〉) with the following properties:

(1) f ⊆ ω1×ω1 is a strictly increasing finite function such that rank(f(ξ), f(ξ))
≥ ξ for every ξ ∈ dom(f).

(2) D ⊆ dom(f) ∩ Lim(ω1), and for each δ ∈ D, bδ is a finite subset of Af(δ)

and range(f) ∩Af(δ) = bδ.

Given PA–conditions pε = (f ε, 〈bεδ : δ ∈ Dε)〉) for ε ∈ {0, 1}, p1 extends p0 if
and only if

(i) f0 ⊆ f1,
(ii) D0 ⊆ D1, and
(iii) b0δ = b1δ for every δ ∈ D0.

The forcing PA is a natural variation of Baumgartner’s forcing for adding a club
of ω1 with finite conditions (see [3]). It clearly has size ℵ1, so in order to show
that there is a club of ω1 avoiding A it will suffice to argue that PA adds such a
club and that it is finitely proper. The proof of the following lemma is completely
standard and essentially like in the corresponding proof for Baumgartner’s forcing,

16This notion of rank will be particularly useful in the proof that PFA
fin
ω1

implies ¬� (Propo-

sition 5.8).
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using Lemma 5.3 and the fact that if (f, 〈bδ : δ ∈ D〉) is a condition in PA and
δ ∈ D, then rank(f(δ) \ Af(δ), f(δ)) ≥ δ (which is true by Lemma 5.2, since
rank(Af(δ), f(δ)) = 1 < δ).

Lemma 5.5. Let p = (f, 〈bδ : δ ∈ D〉) ∈ PA. Then the following is true:

(i) For all β < ω1 there is some (f ′, 〈b′δ : δ ∈ D′〉) in PA extending p and
such that β ∈ dom(f ′). If β is a limit ordinal, then we may take D′ such
that β ∈ D′. Furthermore, if β /∈ dom(f) is such that f“β ⊆ β and
rank(β, β) = β, then we may take f ′ such that f ′(β) = β.

(ii) For every limit ordinal α ∈ dom(f) and every ξ < f(α) there is some
(f ′, 〈b′δ : δ ∈ D′〉) in PA extending p and there is some β ∈ dom(f ′) ∩ α
such that f ′(β) > ξ.

It follows from Lemma 5.5 that PA forces that the union of the ranges of all first
components of conditions in the generic filter is a club of ωV

1 and that this club has
finite intersection with each Aδ.

It remains to show that PA is finitely proper. The proof of this is basically the
same as the proof that PA is proper (which is quite well known; see [21]). For
completeness we give the proof of finite properness.

Lemma 5.6. PA is finitely proper.

Proof. Let {Ni : i ∈ m} be a finite set of countable elementary substructures of
H(ω2) such that PA ∈ Ni for all i. Since rank(δNi

, δNi
) = δNi

for all i, by Lemma
5.5 (i) we know that every condition in

⋂
i<mNi can be extended to a condition

(f, 〈bδ : δ ∈ D〉) such that δNi
∈ dom(f) and f(δNi

) = δNi
for all i. Hence, it will

suffice to show that if p = (f, 〈bδ : δ ∈ D〉) is a condition in PA and each δNi
is a

fixed point of f , then p is (Ni, PA)–generic for all i. For this, fix i < m, E a dense
subset of PA in Ni, and suppose without loss of generality that p is in E. We may
also assume that f � δNi

is nonempty. It suffices to show that p is compatible with
a condition in E ∩Ni.

For this, let μ = max(range(f � δNi
)) and let g : ω1 \ (μ + 1) −→ ω1 be the

function sending each ν in ω1 \ (μ+ 1) to the least ξ with the property that there
is a condition p′ in E, p′ = (f ′, 〈b′δ : δ ∈ D′〉), such that

(a) p′ extends (f � δNi
, 〈bδ : δ ∈ D ∩ δNi

〉),
(b) f ′ � δNi

= f � δNi
,

(c) ξ > ν, and
(d) ξ is the least ordinal in the range of f ′ strictly above μ.

Note that for every ν ∈ δNi
\ (μ + 1), δNi

and p witness together that the set
of pairs (ξ, p′) satisfying (a)–(d) is nonempty. Hence g is a well–defined function.
Note also that g, being definable from the condition (f � δNi

, 〈bδ : δ ∈ D ∩ δNi
〉),

is in Ni since f(δNi
) = δNi

, and therefore (f � δNi
, 〈bδ : δ ∈ D ∩ δNi

〉) is in Ni.
It follows that the club C of η < ω1 such that g“η ⊆ η is also in Ni. Now, C
has order type ω1, and therefore C ∩ δNi

has order type δNi
by correctness of Ni.

Hence, we may find some η ∈ δNi
∩ C and some ν < η such that [ν, η] has empty

intersection with Af(δ) for every δ ∈ D such that δ ≥ δNi
. But then, by definition

of g together with the correctness of Ni there is some p′ = (f ′, 〈b′δ : δ ∈ D′〉) in
Ni ∩ E extending (f � δNi

, 〈bδ : δ ∈ D ∩ δNi
〉), such that f ′ � δNi

= f � δNi
, and

such that the least ordinal in the range of f ′ strictly above μ is also above ν. But
then f ∪ f ′ is a function satisfying condition (1) in the definition of PA and, in
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addition, range(f ∪ f ′) ∩ Af(δ) = range(f) ∩ Af(δ) = bδ for every δ ∈ D. It then

follows that (f ∪ f ′,�b), where �b is the union of 〈bδ : δ ∈ D〉 and 〈b′δ : δ ∈ D′〉, is a
condition in PA extending both p and p′. �

Lemma 5.6 completes the proof of the proposition. �

Doing minor modifications to the forcing in the proof of Proposition 5.4 it is easy

to derive other similar statements from PFA
fin(ω1). For example one can check

that the negation of Very Weak Club Guessing (VWCG) follows from PFA
fin(ω1),

where VWCG is the assertion that there is a collection A of size ℵ1 consisting of
subsets of ω1 of order type ω such that every club of ω1 has infinite intersection with
some A ∈ A. In other words, VWCG says the same thing as WCG but allowing
ℵ1–many cofinal subsets of δ for each δ ∈ Lim(ω1). One can actually show that

PFA
fin(ω1) implies the negation of the even weaker versions of VWCG where one

fixes a countable ordinal τ and considers sets of ordinals of order type at most τ .
Specifically, one has the following.

Proposition 5.7. PFA
fin(ω1) implies that for every τ < ω1 and every set A, if

A is a collection of ℵ1–many sets of ordinals of order type at most τ , then there is
a club C ⊆ ω1 having finite intersection with all members of A.

The proof of Proposition 5.7, which we will omit here, is essentially the same as
the proof of Proposition 5.4.

Finally we derive the failure of � from PFA
fin(ω1).

Proposition 5.8. PFA
fin(ω1) implies ¬�.

Proof. We will prove that every instance of ¬� follows from PFA
fin(ω1). Let

G = 〈gδ : δ ∈ ω1〉 be such that each gδ is a continuous function from δ into ω with
respect to the order topology. Let PG be the forcing notion consisting of all pairs
(f, 〈dξ : ξ ∈ D〉) satisfying the following conditions:

(1) f ⊆ ω1 × ω1 is a finite strictly increasing function.
(2) For every ξ ∈ dom(f), rank(f(ξ), f(ξ)) ≥ ξ.
(3) D ⊆ dom(f), and for every ξ ∈ D,

(3.1) dξ < ω,
(3.2) gf(ξ)“ range(f) ⊆ ω\{dξ}, and
(3.3) rank({γ < f(ξ) : gf(ξ)(γ) �= dξ}, f(ξ)) = rank(f(ξ), f(ξ)).

Given conditions pε = (fε, 〈dεξ : ξ ∈ Dε〉) ∈ PG for ε ∈ {0, 1}, we say that p1
extends p0 if and only if f0 ⊆ f1, D0 ⊆ D1, and d1ξ = d0ξ for all ξ ∈ D0.

Lemma 5.9 is easy to prove by appealing to condition (2) in the definition of PG ,
together with the openness of all g−1

δ (n).

Lemma 5.9. For every p = (f, 〈dξ : ξ ∈ D〉) ∈ PG and every ξ0 < ω1 there is a

condition p′ ∈ PG extending p and such that ξ0 ∈ dom(fp′
). Also, if ξ ∈ dom(f) is

a limit ordinal and ε < f(ξ), then there is a condition p′ ∈ PG and some ξ′ < ξ in

dom(fp′
) such that fp′

(ξ′) > ε.

Proof. Let us prove the first claim (the second claim is proved similarly). We may
assume that ξ0 /∈ dom(f) and that ξ1 = min(D\ξ0) exists (otherwise the proof is
easier).
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24 D. ASPERÓ AND M. A. MOTA

Note that for every ξ′ > ξ1 in D there is some lξ′ < ω, lξ′ �= dξ′ , such that

gf(ξ′)(f(ξ1)) = lξ′ . Since all g−1
f(ξ′)({lξ′}) are open in the order topology, we may

fix η < f(ξ1) such that gf(ξ′)“[η, f(ξ1)) = {lξ′} for every ξ′ > ξ1 in D. Let
X = {γ < f(ξ1) : gf(ξ1)(γ) �= dξ1}.

Since rank(X, f(ξ1)) = rank(X\η, f(ξ1)) = rank(f(ξ1), f(ξ1)) ≥ ξ1, we may
find γ ∈ [η, f(ξ1)) such that gf(ξ1)(γ) �= dξ1 and such that rank(γ, γ) ≥ ξ0.

Now it is easy to check that p′ = (f ∪ {〈ξ0, γ〉}, 〈dξ : ξ ∈ D〉) is a condition
extending p. �

Lemma 5.10. For every p = (f, (dξ : ξ ∈ D)) ∈ PG and every ξ ∈ dom(f) there

is a condition p′ ∈ PG extending p and such that ξ ∈ Dp′
.

Proof. Fix two distinct colours d, d′ in ω \ range(gf(ξ) � range(f)). If suffices to
prove that at least one of

(i) rank({γ < f(ξ) : gf(ξ)(γ) �= d}, f(ξ)) = rank(f(ξ), f(ξ)) and
(ii) rank({γ < f(ξ) : gf(ξ)(γ) �= d′}, f(ξ)) = rank(f(ξ), f(ξ))

holds. But if rank({γ < f(ξ) : gf(ξ)(γ) �= d}, f(ξ)) < rank(f(ξ), f(ξ)), then
rank({γ < f(ξ) : gf(ξ)(γ) = d}, f(ξ)) = rank(f(ξ), f(ξ)) by Lemma 5.2, and
therefore rank({γ < f(ξ) : gf(ξ)(γ) �= d′}, f(ξ)) = rank(f(ξ), f(ξ)) since {γ <
f(ξ) : gf(ξ)(γ) = δ} is contained in {γ < f(ξ) : gf(ξ)(γ) �= d′}. �

It follows from the above lemmas that if G is PG–generic, then the union of the
ranges of all first components of conditions in G is a club C of ωV

1 and for every
δ ∈ C there is some dδ ∈ ω such that gδ“C ⊆ ω\{dδ}.

Obviously, PG has cardinality ℵ1. It remains to show the following.

Lemma 5.11. PG is finitely proper.

Proof. Let {Ni : i ∈ m} be a finite set of countable elementary substructures of
H(ω2) containing PG and let p = (f, (dξ : ξ ∈ D)) be a condition of PG such that
for each i:

(a) δNi
is a fixed point of f ,

(b) δNi
∈ D, and

(c) {β < δNi
: gδNi

(β) �= dδNi
} is Nj–stationary

17 for every j ∈ m such that
δNi

= δNj
.

By arguing as in the proof of Lemma 5.6 it is easy to see that such a p is (Ni,PG)–
generic for all i. The main point is that if C ⊆ ω1 is a club in Ni as in the proof of
Lemma 5.6, then C∩{β < δNi

: gδNi
(β) �= dδNi

} �= ∅. But this is of course ensured
by the Ni–stationarity of {β < δNi

: gδNi
(β) �= dδNi

}.
Since every condition in

⋂
i≤m Ni can be extended to a condition p = (f, (dξ : ξ ∈

D)) satisfying (a), the proof of the lemma will be finished once we show that every
p = (f, (dξ : ξ ∈ D)) satisfying (a) can be extended to a PG–condition p′ satisfying
also (b) and (c). For this, let (δj)j<n be the increasing enumeration of {δNi

: i <

m} and let (ijk)j<n, k<nj
be such that {Ni : δNi

= δj} = {Nij0
, . . . , Nijnj−1

} for all

j. For each j let {dj0, . . . , djnj
} be such that {dj0, . . . , djnj

} ∩ gδj“ range(f) = ∅.

17The concept of M–stationarity appears in [14]. In our context, saying that Y ⊆ ω1 is
N–stationary means that Y intersects all clubs of ω1belonging to N .
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Claim 5.12. For every j there is some d(j) ∈ {dj0, . . . , djnj
} such that {β < δNj

:

gδNj
(β) �= d(j)} is Nijk

–stationary for every k < nj .

Proof. By arguing as in the proof of Lemma 5.10 one can see that for every
k < nj there is some ek ∈ {dj0, . . . , djnj

} such that {β < δNj
: gdNj

(β) �= d} is

Nijk
–stationary for every d ∈ {dj0, . . . , djnj

}\{ek}. But then, if d ∈ {dj0, . . . , djnj
}\

{e0, . . . , enj−1}, then {β < δNj
: gdNj

(β) �= d} is Nijk
–stationary for every k. �

Now we may extend p to a condition p′ of the form (f, (d′ξ : ξ ∈ D∪
{δ0, . . . , δn−1})), where d′ξ = dξ if ξ ∈ D and d′δj = d(j) if j < n and δj /∈ D,

and p′ will satisfy (a)–(c). The point is that condition (3.3) in the definition of PG
holds for p′ thanks to (c). For this, given any i and any ν < δNi

, let C ∈ Ni be a
club of ξ < ω1 such that rank(ξ, ξ) ≥ ν and note that C ∩ g−1

δNi
(dNi

) �= ∅. �

Lemma 5.11 concludes the proof of the proposition. �

We do not know whether PFA
fin(ω1) implies ¬�n for any n, 2 ≤ n < ω.

As a matter of fact, the methods in the present paper do not seem to produce
models of ¬�n for any n. The reason is basically that if N0, . . . , Nm are countable
substructures such that δ = N0∩ω1 = . . . = Nm∩ω1, f : δ −→ n, and n ≤ m, then
it need not be true that there is any i ∈ m such that f−1(i) is Nj–stationary for all
j ≤ m. On the other hand, a straightworfard variation of the proof of Proposition
5.8 shows that ¬�2 follows from PFA(ω1).
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[5] Keith J. Devlin and Hȧvard Johnsbrȧten, The Souslin problem, Lecture Notes in Mathemat-
ics, Vol. 405, Springer-Verlag, Berlin, 1974. MR0384542 (52 #5416)

[6] M. Foreman, M. Magidor, and S. Shelah, Martin’s maximum, saturated ideals, and nonregular
ultrafilters. I, Ann. of Math. (2) 127 (1988), no. 1, 1–47, DOI 10.2307/1971415. MR924672
(89f:03043)

18In an earlier version of the paper we were focusing on Code(even–odd) rather than the
stronger (and more natural) MAω1 + ¬WCG.

http://www.ams.org/mathscinet-getitem?mr=2902230
http://www.ams.org/mathscinet-getitem?mr=776640
http://www.ams.org/mathscinet-getitem?mr=776640
http://www.ams.org/mathscinet-getitem?mr=1119303
http://www.ams.org/mathscinet-getitem?mr=1119303
http://www.ams.org/mathscinet-getitem?mr=0384542
http://www.ams.org/mathscinet-getitem?mr=0384542
http://www.ams.org/mathscinet-getitem?mr=924672
http://www.ams.org/mathscinet-getitem?mr=924672
mel
Highlight

mel
Sticky Note
No '(3.3)' in paper. Please check and advise on correction



Prepublication copy provided to Miguel Angel Mota. Please give confirmation to AMS by February 5, 2015.

Not for print or electronic distribution. This file may not be posted electronically.
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